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Ant Colony Learning Algorithm for Optimal

Control

Jelmer Marinus van Ast, Robert Babuška, and Bart De Schutter

Abstract Ant Colony Optimization (ACO) is an optimization heuristic for solving

combinatorial optimization problems and it is inspired by the swarming behavior

of foraging ants. ACO has been successfully applied in various domains, such as

routing and scheduling. In particular, the agents, called ants here, are very efficient

at sampling the problem space and quickly finding good solutions. Motivated by the

advantages of ACO in combinatorial optimization, we develop a novel framework

for finding optimal control policies that we call Ant Colony Learning (ACL). In

ACL, the ants all work together to collectively learn optimal control policies for any

given control problem for a system with nonlinear dynamics. In this chapter, we will

discuss the ACL framework and its implementation with crisp and fuzzy partitioning

of the state space. We demonstrate the use of both versions in the control problem of

two-dimensional navigation in an environment with variable damping and discuss

their performance.

1 Introduction

Ant Colony Optimization (ACO) is a metaheuristic for solving combinatorial opti-

mization problems [1]. Inspired by ants and their behavior in finding shortest paths

from their nest to sources of food, the virtual ants in ACO aim at jointly finding opti-
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mal paths in a given search space. The key ingredients in ACO are the pheromones.

With real ants, these are chemicals deposited by the ants and their concentration en-

codes a map of trajectories, where stronger concentrations represent the trajectories

that are more likely to be optimal. In ACO, the ants read and write values to a com-

mon pheromone matrix. Each ant autonomously decides on its actions biased by

these pheromone values. This indirect form of communication is called stigmergy.

Over time, the pheromone matrix converges to encode the optimal solution of the

combinatorial optimization problem, but the ants typically do not all converge to

this solution, thereby allowing for constant exploration and the ability to adapt the

pheromone matrix to changes in the problem structure. These characteristics have

resulted in a strong increase of interest in ACO over the last decade since its intro-

duction in the early nineties [2].

The Ant System (AS), which is the basic ACO algorithm, and its variants, have

successfully been applied to various optimization problems, such as the traveling

salesman problem [3], load balancing [4], job shop scheduling [5, 6], optimal path

planning for mobile robots [7], and routing in telecommunication networks [8]. An

implementation of the ACO concept of pheromone trails for real robotic systems is

described in [9]. A survey of industrial applications of ACO is presented in [10]. An

overview of ACO and other metaheuristics to stochastic combinatorial optimization

problems can be found in [11].

This chapter presents the extension of ACO to the learning of optimal control

policies for continuous-time, continuous-state dynamic systems. We call this new

class of algorithms Ant Colony Learning (ACL) and present two variants, one with

a crisp partitioning of the state space and one with a fuzzy partitioning. The work in

this chapter is based on [12] and [13] in which we have introduced these respective

variants of ACL. This chapter not only unifies the presentation of both versions, it

also discusses them in greater detail, both theoretically and practically. Crisp ACL,

as we call ACL with crisp partitioning of the state space, is the more straightforward

extension of classical ACO to solving optimal control problems. The state space is

quantized in a crisp manner, such that each value of the continuous-valued state

is mapped to exactly one bin. This renders the control problem non-deterministic,

as state transitions are measured in the quantized domain, but originate from the

continuous domain. This makes the control problem much more difficult to solve.

Therefore, the variant of ACL in which the state space is partitioned with fuzzy

membership functions was developed. We call this variant Fuzzy ACL. With a fuzzy

partitioning, the continuous-valued state is mapped to the set of membership func-

tions. The state is a member of each of these membership functions to a certain

degree. The resulting Fuzzy ACL algorithm is somewhat more complicated com-

pared to Crisp ACL, but there are no non-deterministic state transitions introduced.

One of the first real applications of the ACO framework to optimization problems

in continuous search spaces is described in [14] and [15]. An earlier application of

the ant metaphor to continuous optimization appears in [16], with more recent work

like the Aggregation Pheromones System in [17] and the Differential Ant-Stigmergy

Algorithm in [18]. [19] is the first work linking ACO to optimal control. Although

presenting a formal framework, called ant programming, no application, or study



Ant Colony Learning Algorithm for Optimal Control 3

of its performance is presented. Our algorithm shares some similarities with the

Q-learning algorithm. Earlier work [20] introduced the Ant-Q algorithm, which is

the most notable other work relating ACO with Q-learning. However, Ant-Q has

been developed for combinatorial optimization problems and not to optimal control

problems. Because of this difference, ACL is novel in all major structural aspects of

the Ant-Q algorithm, namely the choice of the action selection method, the absence

of the heuristic variable, and the choice of the set of ants used in the update. There

are only a few publications that combine ACO with the concept of fuzzy control

[21, 22, 23]. In all three publications fuzzy controllers are obtained using ACO,

rather than developing an actual fuzzy ACO algorithm, as introduced in this paper.

This chapter is structured as follows. In Section 2, the ACO heuristic is reviewed

with special attention paid to the Ant System and the Ant Colony System, which are

among the most popular ACO algorithms. Section 3 presents the general layout of

ACL, with in more detail its crisp and fuzzy version. Section 4 presents the appli-

cation of both ACL algorithms on the control problem of two-dimensional vehicle

navigation in an environment with a variable damping profile. The learning perfor-

mance of Crisp and Fuzzy ACL is studied using of a set of performance measures

and the resulting policies are compared to an optimal policy obtained by the fuzzy

Q-iteration algorithm from [24]. Section 5 concludes this chapter and presents and

outline for future research.

2 Ant Colony Optimization

This section presents the preliminaries for understanding the ACL algorithm. It

presents the framework of all ACO algorithms in Section 2.1. The Ant System,

which is the most basic ACO algorithm, is discussed in Section 2.2 and the Ant

Colony System, which is slightly more advanced compared to the Ant System, is

discussed in Section 2.3. ACL is based on these two algorithms.

2.1 ACO Framework

ACO algorithms have been developed to solve hard combinatorial optimization

problems [1]. A combinatorial optimization problem can be represented as a tu-

ple P = 〈S, F 〉, where S is the solution space with s ∈ S a specific candidate

solution and where F : S → R+ is a fitness function assigning strictly positive val-

ues to candidate solutions, where higher values correspond to better solutions. The

purpose of the algorithm is to find a solution s∗ ∈ S , or a set of solutions S∗ ⊆ S
that maximize the fitness function. The solution s∗ is then called an optimal solution

and S∗ is called the set of optimal solutions.

In ACO, the combinatorial optimization problem is represented by a graph con-

sisting of a set of vertices and a set of arcs connecting the vertices. A particular
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solution s is a concatenation of solution components (i, j), which are pairs of ver-

tices i and j connected by the arc ij. The concatenation of solution components

forms a path from the initial vertex to the terminal vertex. This graph is called the

construction graph, as the solutions are constructed incrementally by moving over

the graph. How the terminal vertices are defined depends on the problem consid-

ered. For instance, in the traveling salesman problem1, there are multiple terminal

vertices, namely for each ant the terminal vertex is equal to its initial vertex, after

visiting all other vertices exactly once. For the application to control problems, as

considered in this chapter, the terminal vertex corresponds to the desired state of the

system. Two values are associated with the arcs: a pheromone trail variable τij and a

heuristic variable ηij . The pheromone trail represents the acquired knowledge about

the optimal solutions over time and the heuristic variable provides a priori informa-

tion about the quality of the solution component, i.e., the quality of moving from

vertex i to vertex j. In the case of the traveling salesman problem, the heuristic vari-

ables typically represent the inverse of the distance between the respective pair of

cities. In general, a heuristic variable represents a short-term quality measure of the

solution component, while the task is to acquire a concatenation of solution com-

ponents that overall form an optimal solution. A pheromone variable, on the other

hand, encodes the measure of the long-term quality of concatenating the respective

solution components.

2.2 The Ant System

The most basic ACO algorithm is called the Ant System (AS) [25] and works as

follows. A set of M ants is randomly distributed over the vertices. The heuristic

variables ηij are set to encode the prior knowledge by favoring the choice of some

vertices over others. For each ant c, the partial solution sp,c is initially empty and all

pheromone variables are set to some initial value τ0 > 0. In each iteration, each ant

decides based on some probability distribution, which solution component (i, j) to

add to its partial solution sp,c. The probability pc{j|i} for an ant c on a vertex i to

move to a vertex j within its feasible neighborhood Ni,c is defined as:

pc{j|i} =
ταijη

β
ij

∑

l∈Ni,c
ταilη

β
il

, ∀j ∈ Ni,c, (1)

with α ≥ 1 and β ≥ 1 determining the relative importance of ηij and τij respec-

tively. The feasible neighborhood Ni,c of an ant c on a vertex i is the set of not yet

visited vertices that are connected to i. By moving from vertex i to vertex j, ant

1 In the traveling salesman problem, there is a set of cities connected by roads of different lengths

and the problem is to find the sequence of cities that takes the traveling salesman to all cities,

visiting each city exactly once and bringing him back to its initial city with a minimum length of

the tour.
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c adds the associated solution component (i, j) to its partial solution sp,c until it

reaches its terminal vertex and completes its candidate solution.

The candidate solutions of all ants are evaluated using the fitness function F (s)
and the resulting value is used to update the pheromone levels by:

τij ← (1− ρ)τij +
∑

s∈Supd

∆τij(s), (2)

with ρ ∈ (0, 1) the evaporation rate and Supd the set of solutions that are eligible to

be used for the pheromone update, which will be explained further on in this section.

This update step is called the global pheromone update step. The pheromone deposit

∆τij(s) is computed as:

∆τij(s) =

{

F (s) , if (i, j) ∈ s
0 , otherwise.

The pheromone levels are a measure of how desirable it is to add the asso-

ciated solution component to the partial solution. In order to incorporate forget-

ting, the pheromone levels decrease by some factor in each iteration. This is called

pheromone evaporation in correspondence to the physical evaporation of the chemi-

cal pheromones for real ant colonies. By evaporation, it can be avoided that the algo-

rithm prematurely converges to suboptimal solutions. Note that in (2) the pheromone

level on all vertices is evaporated and only those vertices that are associated with the

solutions in the update set receive a pheromone deposit.

In the following iteration, each ant repeats the previous steps, but now the

pheromone levels have been updated and can be used to make better decisions about

which vertex to move to. After some stopping criterion has been reached, the values

of τ and η on the graph encode the solution for all (i, j)-pairs. This final solution

can be extracted from the graph as follows:

(i, j) : j = argmax
l

(ταilη
β
il), ∀i.

Note that all ants are still likely to follow suboptimal trajectories through the

graph, thereby exploring constantly the solution space and keeping the ability to

adapt the pheromone levels to changes in the problem structure.

There exist various rules to construct Supd, of which the most standard one is

to use all the candidate solutions found in the trial. This update set is then called:

Strial
2. This update rule is typical for the Ant System. However, other update rules

have shown to outperform the AS update rule in various combinatorial optimization

2 In ACO literature, the term trial is seldom used. It is rather a term from the reinforcement learning

(RL) community [26]. In our opinion it is also a more appropriate term for ACO, especially in the

setting of optimal control, and we will use it to denote the part of the algorithm from the initial-

ization of the ants over the state space until the global pheromone update step. The corresponding

term for a trial in the ACO literature is iteration and the set of all candidate solutions found in

each iteration is denoted as Siter. In this chapter, equivalently to RL, we prefer to use the word

iteration to indicate one step of feeding an input to the system and measuring its state. In Figure 2,
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problems. Rather than using the complete set of candidate solutions from the last

trial, either the best solution from the last trial, or the best solution since the ini-

tialization of the algorithm can be used. The former update rule is called Iteration

Best in the literature (which should be called Trial Best in our terminology), and the

latter is called Best-So-far, or Global Best in the literature [1]. These methods result

in a strong bias of the pheromone trail reinforcement towards solutions that have

been proven to perform well and additionally reduce the computational complexity

of the algorithm. As the risk exists that the algorithm prematurely converges to sub-

optimal solutions, these methods are only superior to AS if extra measures are taken

to prevent this, such as the local pheromone update rule, explained in Section 2.3.

Two of the most successful ACO variants in practice that implement the update rules

mentioned above, are the Ant Colony System [27] and theMAX -MIN Ant Sys-

tem [28]. Because of its relation to ACL, we will explain the Ant Colony System

next.

2.3 The Ant Colony System

The Ant Colony System (ACS) [27] is an extension to the AS and is one of the

most successful and widely used ACO algorithms. There are four main differences

between the AS and the ACS:

1. The ACS uses the global-best update rule in the global pheromone update step.

This means that only the one solution that has been found since the start of the

algorithm that has the highest fitness, called sgb is used to update the pheromone

variables at the end of the trial. This is a form of elitism in ACO algorithms that

has shown to significantly speed up the convergence to the optimal solution.

2. The global pheromone update is only performed for the (i, j)-pairs that are an

element of the global best solution. This means that not all pheromone levels are

evaporated, as with the AS, but only those that also receive a pheromone deposit.

3. The pheromone deposit is weighted by ρ. As a result of this and the previous two

differences, the global pheromone update rule is:

τij ←

{

(1− ρ)τij + ρ∆τij(sgb) , if (i, j) ∈ sgb
τij , otherwise.

4. An important element from the ACS algorithm that acts as a measure to avoid

premature convergence to suboptimal solutions is the local pheromone update

step, which occurs for each ant after each iteration within a trial and is defined as

follows:

τij(κ+ 1) = (1− γ)τij(κ) + γτ0, (3)

everything that happens in the outer loop is the trial and the inner loops represent the iterations for

all ants in parallel.
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where γ ∈ (0, 1) is a small parameter similar to ρ, ij is the index corresponding

to the (i, j)-pair just added to the partial solution, and τ0 is the initial value of

the pheromone trail. The effect of (3) is that during the trial, the visited solution

components are made less attractive for other ants to take, in that way promoting

the exploration of other, less frequently visited, solution components.

5. There is an explicit exploration-exploitation step with the selection of the next

node j, where with a probability of ǫ, j is chosen as being the node with the

highest value of ταijη
β
ij (exploitation) and with the probability (1 − ǫ), a random

action is chosen according to (1) (exploration).

The Ant Colony Learning algorithm, which is presented next, is based on the AS

combined with the local pheromone update step from the ACS algorithm.

3 Ant Colony Learning

This section presents the Ant Colony Learning (ACL) class of algorithms. First, in

Section 3.1 the optimal control problem for which ACL has been developed is intro-

duced. Section 3.2 presents the general layout of ACL. ACL with crisp state space

partitioning is presented in Section 3.3 and the fuzzy variant in Section 3.4. Re-

garding the practical application of ACL, Section 3.5 discusses ways of setting the

parameters from the algorithm and Section 3.6 presents a discussion on the relation

of ACL to reinforcement learning.

3.1 The Optimal Control Problem

Assume that we have a nonlinear dynamic system, characterized by a continuous-

valued state vector x =
[

x1 x2 . . . xn

]T
∈ X ⊆ R

n, with X the state space and

n the order of the system. Also assume that the state can be controlled by an input

u ∈ U that can only take a finite number of values and that the state can be measured

at discrete time steps, with a sample time Ts with k the discrete time index. The

sampled system is denoted as:

x(k + 1) = f(x(k),u(k)). (4)

The optimal control problem is to control the state of the system from any given

initial state x(0) = x0 to a desired goal state x(K) = xg in at most K steps and in

an optimal way, where optimality is defined by minimizing a certain cost function.

As an example, take the following quadratic cost function:

J(s) = J(x̃, ũ) =

K−1
∑

k=0

eT(k + 1)Qe(k + 1) + uT(k)Ru(k), (5)
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with s the solution found by a given ant, x̃ = x(1) . . .x(K) and ũ = u(0) . . .u(K−
1) the sequences of states and actions in that solution respectively, e(k + 1) =
x(k + 1) − xg the error at time k + 1, and Q and R positive definite matrices of

appropriate dimensions. The problem is to find a nonlinear mapping from the state

to the input u(k) = g(x(k)) that, when applied to the system in x0 results in a

sequence of state-action pairs (u(0),x(1)), (u(1),x(2)), . . ., (u(K − 1),xg) that

minimizes this cost function. The function g is called the control policy. We make

the assumption that Q and R are selected in such a way that xg is reached in at

most K time steps. The matrices Q and R balance the importance of speed versus

the aggressiveness of the controller. This kind of cost function is frequently used in

optimal control of linear systems, as the optimal controller minimizing the quadratic

cost can be derived as a closed expression after solving the corresponding Riccati

equation using the Q and R matrices and the matrices of the linear state space de-

scription [29]. In our case, we aim at finding control policies for non-linear systems

which in general cannot be derived analytically from the system description and the

Q and R matrices. Note that our method is not limited to the use of quadratic cost

functions.

The control policy we aim to find with ACL will be a state feedback controller.

This is a reactive policy, meaning that it will define a mapping from states to actions

without the need of storing the states (and actions) of previous time steps. This poses

the requirement on the system that it can be described by a state-transition mapping

for a quantized state q and an action (or input) u in discrete time as follows:

q(k + 1) ∼ p(q(k),u(k)), (6)

with p a probability distribution function over the state-action space. In this case,

the system is said to be a Markov Decision Process (MDP) and the probability dis-

tribution function p is said to be the Markov model of the system. Note that finding

an optimal control policy for an MDP is equivalent to finding the optimal sequence

of state-action pairs from any given initial state to a certain goal state, which is a

combinatorial optimization problem. When the state transitions are stochastic, like

in (6), it is a stochastic combinatorial optimization problem. As ACO algorithms

are especially applicable to (stochastic) combinatorial optimization problems, the

application of ACO to deriving control policies is evident.

3.2 General Layout of ACL

ACL can be categorized as a model-free learning algorithm, as the ants do not have

direct access to the model of the system and must learn the control policy just by

interacting with it. Note that as the ants interact with the system in parallel, the

implementation of this algorithm to a real system requires multiple copies of this

system, one for each ant. This hampers the practical applicability of the algorithm
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to real systems. However, when a model of the real system is available, the paral-

lelism can take place in software. In that case, the learning happens off-line and after

convergence, the resulting control policy can be applied to the real system. In prin-

ciple, the ants could also interact with one physical system, but this would require

either a serial implementation in which each ant performs a trial and the global

pheromone update takes place after the last ant has completed its trial, or a serial

implementation in which each ant only performs a single iteration, after which the

state of the system must be reinitialized for the next ant. In the first case, the local

pheromone update will lose most of its use, while in the second case, the repetitive

reinitializations will cause a strong increase of simulation time and heavy load on

the system. In either case, the usefulness of ACL will be heavily compromised.

An important consideration for an ACO approach to optimal control is which set

of solutions to use in the global pheromone update step. When using the Global Best

pheromone update rule in an optimal control problem, all ants have to be initialized

to the same state, as starting from states that require less time and less effort to reach

the goal would always result in a better Global Best solution. Ultimately, initializing

an ant exactly in the goal state would be the best possible solution and no other

solution, starting from more interesting states would get the opportunity to update

the pheromones in the global pheromone update phase. In order to find a control

policy from any initial state to the goal state, the Global Best update rule cannot be

used. By simply using all solutions of all ants in the updating, like in the original AS

algorithm, the resulting algorithm does allow for random initialization of the ants

over the state space and is therefore used in ACL.

3.3 ACL with Crisp State Space Partitioning

For a system with a continuous-valued state space, optimization algorithms like

ACO can only be applied if the state space is quantized. The most straightforward

way to do this is to divide the state space into a finite number of bins, such that each

state value is assigned to exactly one bin. These bins can be enumerated and used as

the vertices in the ACO construction graph.

3.3.1 Crisp State Space Partitioning

Assume a continuous-time, continuous-state system sampled with a sample time Ts.

In order to apply ACO, the state x must be quantized into a finite number of bins

to get the quantized state q. Depending on the sizes and the number of these bins,

portions of the state space will be represented with the same quantized state. One

can imagine that applying an input to the system that is in a particular quantized

state results in the system to move to a next quantized state with some probability.

In order to illustrate these aspects of the quantization, we consider the continuous

model to be cast as a discrete stochastic automaton. An automaton is defined by the
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triple Σ = (Q,U , φ), with Q a finite or countable set of discrete states, U a finite

or countable set of discrete inputs, and φ : Q × U × Q → [0, 1] a state transition

function.

Given a discrete state vector q ∈ Q, a discrete input symbol u ∈ U , and a

discrete next state vector q′ ∈ Q, the (Markovian) state transition function φ defines

the probability of this state transition, φ(q,u,q′), making the automaton stochastic.

The probabilities over all states q′ must each sum up to one for each state-action pair

(q,u). An example of a stochastic automaton is given in Figure 1. In this figure, it

is clear that, e.g., applying an action u = 1 to the system in q = 1 can move the

system to a next state that is either q′ = 1 with a probability of 0.2, or q′ = 2 with a

probability of 0.8.

φ(q = 2, u = 1, q′ = 2) = 1

q = 2q = 1

φ(q = 1, u = 1, q′ = 1) = 0.2

φ(q = 2, u = 2, q′ = 2) = 0.1φ(q = 1, u = 2, q′ = 1) = 1

φ(q = 1, u = 1, q′ = 2) = 0.8

φ(q = 2, u = 2, q′ = 1) = 0.9

Fig. 1 An example of a stochastic automaton.

The probability distribution function determining the transition probabilities re-

flects the system dynamics and the set of possible control actions is reflected in the

structure of the automaton. The probability distribution function can be estimated

from simulations of the system over a fine grid of pairs of initial states and inputs,

but for the application of ACL, this is not necessary. The algorithm can directly in-

teract with the continuous-state dynamics of the system, as will be described in the

following section.

3.3.2 Crisp ACL Algorithm

At the start of every trial, each ant is initialized with a random continuous-valued

state of the system. This state is quantized ontoQ. Each ant has to choose an action

and add this state-action pair to its partial solution. It is not known to the ant to

which state this action will take him, as in general there is a set of next states to

which the ant can move, according to the system dynamics.

No heuristic values are associated with the vertices, as we assume in this chapter

that no a priori information is available about the quality of solution components.

This is implemented by setting all heuristic values equal to one. It can be seen that
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ηij disappears from (1) in this case. Only the value of α remains as a tuning pa-

rameter, now in fact only determining the amount of exploration as higher values

of α make the probability higher for choosing the action associated with the largest

pheromone level. In the ACS, there is an explicit exploration-exploitation step when

the next node j associated with the highest value of ταijη
β
ij is chosen with some

probability ǫ (exploitation) and a random node is chosen with the probability (1−ǫ)
according to (1) (exploration). In our algorithm, as we do not have the heuristic fac-

tor ηij , the amount of exploration over exploitation can be tuned by the variable α.

For this reason, we do not include an explicit exploration-exploitation step based on

ǫ. Without this and without the heuristic factor, the algorithm needs less tuning and

is easier to apply.

Action Selection

The probability of an ant c to choose an action u when in a state qc is:

pc{u|qc} =
ταqcu

∑

l∈Uqc
ταqcl

, (7)

where Uqc
is the action set available to ant c in state qc.

Local Pheromone Update

The pheromones are initialized equally for all vertices and set to a small positive

value τ0. During every trial, all ants construct their solutions in parallel by interact-

ing with the system until they either have reached the goal state, or the trial exceeds

a certain pre-specified number of iterations Kmax. After every iteration, the ants

perform a local pheromone update, equal to (3), but in the setting of Crisp ACL:

τqcuc
(k + 1)← (1− γ)τqcuc

(k) + γτ0. (8)

Global Pheromone Update

After completion of the trial, the pheromone levels are updated according to the

following global pheromone update step:

τqu(κ+ 1)←(1− ρ)τqu(κ) (9)

+ ρ
∑

s∈Strial;
(q,u)∈s

J−1(s), ∀(q,u) : ∃s ∈ Strial; (q,u) ∈ s, (10)

with Strial the set of all candidate solutions found in the trial and κ the trial counter.

This type of update rule is comparable to the AS update rule, with the important

difference that only the pheromone levels are evaporated that are associated with

the elements in the update set of solutions. The pheromone deposit is equal to

J−1(s) = J−1(q̃, ũ), the inverse of the cost function over the sequence of quan-

tized state-action pairs in s according to (5).

The complete algorithm is given in Algorithm 1. In this algorithm the assignment

xc ← random(X ) in Step 7 selects for ant c a random state xc from the state space
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X with a uniform probability distribution. The assignment qc ← quantize(xc) in

Step 9 quantizes for ant c the state xc into a quantized state qc using the prespecified

quantization bins fromQ. A flow diagram of the algorithm is presented in Figure 2.

In this figure, everything that happens in the outer loop is the trial and the inner

loops represent the iterations for all ants in parallel.

Algorithm 1 The Ant Colony Learning algorithm for optimal control problems.

Input: Q,U ,X , f ,M, τ0, ρ, γ, α,Kmax, κmax

1: κ← 0
2: τqu ← τ0, ∀(q,u) ∈ Q× U
3: repeat

4: k ← 0; Strial ← ∅
5: for all ants c in parallel do

6: sp,c ← ∅
7: xc ← random(X )
8: repeat

9: qc ← quantize(xc)

10: uc ∼ pc{u|qc} =
τα
qcu∑

l∈Uqc
τα
qcl

, ∀u ∈ Uqc

11: sp,c ← sp,c

⋃
{(qc,uc)}

12: xc(k + 1)← f(xc(k),uc)
13: Local pheromone update:

τqcuc
(k + 1)← (1− γ)τqcuc

(k) + γτ0
14: k ← k + 1
15: until k = Kmax

16: Strial ← Strial
⋃
{sp,c}

17: end for

18: Global pheromone update:

τqu(κ+1)← (1−ρ)τqu(κ)+ρ
∑

s∈Strial;
(q,u)∈s

J−1(s), ∀(q,u) : ∃s ∈ Strial; (q,u) ∈ s

19: κ← κ+ 1
20: until κ = κmax

Output: τqu, ∀(q,u) ∈ Q× U

3.4 ACL with Fuzzy State Space Partitioning

The number of bins required to accurately capture the dynamics of the original sys-

tem may become very large even for simple systems with only two state variables.

Moreover, the time complexity of ACL grows exponentially with the number of

bins, making the algorithm infeasible for realistic systems. In particular, note that

for systems with fast dynamics in certain regions of the state space, the sample time

needs to be chosen smaller in order to capture the dynamics in these regions ac-

curately. In other regions of the state space where the dynamics of the system are

slower, the faster sampling requires a denser quantization, increasing the number

of bins. All together, without much prior knowledge of the system dynamics, both
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START

k = Kmax?

Initialize
Trial (1-2)

Initialize
Iteration (4)

Initialize
Ant (6-7)

Choose
Action (9-11)

Apply Action
to System (12)

Local Pheromone
Update (13)

k ← k + 1

k = Kmax?

Initialize
Ant (6-7)

Choose
Action (9-11)

Apply Action
to System (12)

Local Pheromone
Update (13)

k ← k + 1

Update
Strial (16)

Global Pheromone
Update (18)

κ← κ + 1

κ = κmax?

END

For
M

ants
in

parallel

YES YES

NO NO

NO

YES

Fig. 2 Flow diagram of the Ant Colony Learning algorithm for optimal control problems. The

numbers between parentheses refer to the respective lines of Algorithm 1.
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the sampling time and the bin size need to be small enough, resulting in a rapid

explosion of the number of bins.

A much better alternative is to approximate the state space by a parametrized

function approximator. In that case, there is still a finite number of parameters, but

this number can typically be chosen to be much smaller compared to using crisp

quantization. The universal function approximator that is used in this chapter is the

fuzzy approximator.

3.4.1 Fuzzy State Space Partitioning

With fuzzy approximation, the domain of each state variable is partitioned using

membership functions. We define the membership functions for the state variables

to be triangular-shaped, such that the membership degrees for any value of the state

on the domain always sum up to one. Only the centers of the membership functions

have to be stored. An example of such a fuzzy partitioning is given in Figure 3.4.1.

0

1

a1 a2 a3 a4 a5

A1 A2 A3 A4 A5

x

µ

Fig. 3 Membership functions A1, . . . A5, with centers a1, . . . , a5 on an infinite domain.

Let Ai denote the membership functions for x1, with ai their centers for i =
1, . . . , NA, with NA the number of membership functions for x1. Similarly for x2,

denote the membership functions by Bi, with bi their centers for i = 1, . . . , NB ,

with NB the number of membership functions for x2. Similarly, the membership

functions can be defined for the other state variables in x, but for the sake of nota-

tion, the discussion in this chapter limits the number to two, without loss of gener-

ality. Note that in the example in Section 4, the order of the system is four.

The membership degree of Ai and Bi are respectively denoted by µAi
(x1(k))

and µBi
(x2(k)) for a specific value of the state at time k. The degree of fulfillment

is computed by multiplying the two membership degrees:

βij(x(k)) = µAi
(x1(k)) · µBj

(x2(k)).

Let the vector of all degrees of fulfillment for a certain state at time k be denoted

by:
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β(x(k)) =[β11(x(k)) β12(x(k)) . . . β1NB
(x(k))

β21(x(k)) β22(x(k)) . . . β2NB
(x(k))

. . . βNANB
(x(k))]T, (11)

which is a vector containing βij for all combinations of i and j. Each element will

be associated to a vertex in the graph used by Fuzzy ACL. Most of the steps taken

from the AS and ACS algorithms for dealing with the β(x(k)) vectors from (11)

need to be reconsidered. This is the subject of the following section.

3.4.2 Fuzzy ACL Algorithm

In the crisp version of ACL, all combinations of these quantized states for the differ-

ent state variables corresponded to the nodes in the graph and the arcs corresponded

to transitions from one quantized state to another. Because of the quantization, the

resulting system was transformed into a stochastic decision problem. However, the

pheromones were associated to these arcs as usual. In the fuzzy case, the state space

is partitioned by membership functions and the combination of the indices to these

membership functions for the different state variables correspond to the nodes in the

construction graph. With the fuzzy interpolation, the system remains a deterministic

decision problem, but the transition from node to node now does not directly corre-

spond to a state transition. The pheromones are associated to the arcs as usual, but

the updating needs to take into account the degree of fulfillment of the associated

membership functions.

In Fuzzy ACL, which we have introduced in [12], an ant is not assigned to a

certain vertex at a certain time, but to all vertices according to some degree of ful-

fillment at the same time. For this reason, a pheromone τij is now denoted as τiu
with i the index of the vertex (i.e. the corresponding element of β) and u the action.

Similar to the definition of the vector of all degrees of fulfillment in (11), the vector

of all pheromones for a certain action u at time k is denoted as:

τu(k) =
[

τ1u(k) τ2u(k) . . . τNANBu(k)
]T

. (12)

Action Selection

The action is chosen randomly according to the probability distribution:

pc{u|βc(k)}(k) =
NANB
∑

i=1

βc,i(k)
ταi,u(k)

∑

ℓ∈U ταi,ℓ(k)
. (13)

Note that when βc contains exactly one 1 and for the rest only zeros, this would

correspond to the crisp case, where the state is quantized to a set of bins and (13)

then reduces to (7).
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Local Pheromone Update

The local pheromone update from (3) can be modified to the fuzzy case as follows:

τu ←τu(1− β) + ((1− γ)τu + γτ0)β

= τu(1− γβ) + τ0(γβ), (14)

where all operations are performed element-wise.

As all ants update the pheromone levels associated with the state just visited and

the action just taken in parallel, one may wonder whether or not the order in which

the updates are done matters, when the algorithm is executed on a standard CPU,

where all operations are done in series. With crisp quantization, the ants may indeed

sometimes visit the same state and with fuzzy quantization, the ants may very well

share some of the membership functions with a membership degree larger than zero.

We will show that in both cases, the order of updates in series does not influence

the final value of the pheromones after the joint update. In the crisp case, the local

pheromone update from (8) may be rewritten as follows:

τ (1)qu ←(1− γ)τqu + γτ0

= (1− γ)(τqu − τ0) + τ0.

Now, when a second ant updates the same pheromone level τqu, the pheromone

level becomes:

τ (2)qu ←(1− γ)(τ (1)qu − τ0) + τ0

= (1− γ)2(τqu − τ0) + τ0.

After n updates, the pheromone level is:

τ (n)qu ← (1− γ)n(τqu − τ0) + τ0, (15)

which shows that the order of the update is of no influence to the final value of the

pheromone level.

For the fuzzy case a similar derivation can be made. In general, after all the ants

have performed the update, the pheromone vector is:

τu ←

(

M
∏

c=1

(1− γβc)

)

(τu − τ0) + τ0, (16)

where again all operations are performed element-wise. This result also reveals that

the final values of the pheromones are invariant with respect to the order of updates.

Furthermore, also note that when βc contains exactly one 1 and for the rest only ze-

ros, corresponding to the crisp case, the fuzzy local pheromone update from either

(14) or (16) reduces to the crisp case in respectively (8) or (15).
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Global Pheromone Update

In order to derive a fuzzy representation of the global pheromone update step it is

convenient to rewrite (10) using indicator functions:

τqu(κ+ 1)←







(1− ρ)τqu(κ) + ρ
∑

s∈Supd

J−1(s)Iqu,s







Iqu,Supd

+ τqu(κ)(1− Iqu,Supd
). (17)

In (17), Iqu,Supd
is an indicator function that can take values from the set {0, 1}

and is equal to 1 when (q,u) is an element of a solution belonging to the set Supd
and 0 otherwise. Similarly, Iqu,s is an indicator function as well, and it is equal to

1 when (q,u) is an element of the solutions s and 0 otherwise.

Now, by using the vector of pheromones from (12), we introduce the vector in-

dicator function Iu,s, being a vector of the same size as τu, with elements from

the set {0, 1} and for each state indicating whether it is an element of s. A similar

vector indicator function Iu,Strial
is introduced as well. Using these notations, we

can write (17) for all states q together as:

τu(κ+ 1)←







(1− ρ)τu(κ) + ρ
∑

s∈Supd

J−1(s)Iu,s







Iu,Supd

+ τu(κ)(1− Iu,Supd
), (18)

where all multiplications are performed element-wise.

The most basic vector indicator function is Iu,s(i) , which has only one ele-

ment equal to 1, namely the one for (q,u) = s(i). Recall that a solution s =
{s(1), s(2), . . . , s(Ns)} is an ordered set of solution components s(i) = (qi,ui).
Now, Iu,s can be created by taking the union of all Iu,s(i) :

Iu,s = Iu,s(1) ∪ Iu,s(2) ∪ . . . ∪ Iu,s(Ns) =

Ns
⋃

i=1

Iu,s(i) , (19)

where we define the union of indicator functions in the light of the fuzzy represen-

tation of the state by a fuzzy union set operator, such as:

(A ∪B)(x) = max[µA(x), µB(x)]. (20)

In this operator, where A and B are membership functions, x a variable and µA(x)
the degree to which x belongs to A. Note that when A maps x to a crisp domain

{0, 1}, the union operator is still valid. Similar to (19), if we denote the set of so-

lutions as the ordered set of solutions Supd = {s1, s2, . . . , sNS
}, Iu,Strial

can be

created by taking the union of all Iu,s:
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Iu,Strial
= Iu,s1 ∪ Iu,s2 ∪ . . . ∪ Iu,sNS

=

NS
⋃

i=1

Iu,si . (21)

In fact, Iu,si can be regarded as a representation of the state-action pair (qi,ui).
In computer code, Iu,si may be represented by a matrix of dimensions |Q| · |U|
containing only one element equal to 1 and the others zero3.

In order to generalize the global pheromone update step to the fuzzy case, realize

that β(x(k)) from (11) can be seen as a generalized (fuzzy, or graded) indicator

function Iu,s(i) , if combined with an action u. The elements of this generalized

indicator function take values in the range [0, 1], for which the extremes 0 and 1

form the special case of the original (crisp) indicator function. We can thus use

the state-action pair where the state has the fuzzy representation of (11) directly to

compose Iu,s(i) . Based on this, we can compose Iu,s and Iu,Strial
in the same way

as in (19) and (21) respectively. With the union operator from (20) and the definition

of the various indicator functions, the global pheromone update rule from (18) can

be used in both the crisp and fuzzy variant of ACL.

Note that we need more memory to store the fuzzy representation of the state

compared to its crisp representation. With pair-wise overlapping normalized mem-

bership functions, like the ones shown in Figure 3.4.1, at most 2d elements are

nonzero, with d the dimension of the state space. This means an exponentially

growth in memory requirements for increasing state space dimension, but also that

it is independent of the number of membership functions used for representing the

state space.

As explained in Section 3.2, for optimal control problems, the appropriate update

rule is to use all solutions by all ants in the trial Strial. In the fuzzy case, the solutions

s ∈ Strial consist of sequences of states and actions, and the states can be fuzzified

so that they are represented by sequences of vectors of degrees of fulfillment β.

Instead of one pheromone level, in the fuzzy case a set of pheromone levels are

updated to a certain degree. It can be easily seen that as this update process is just

a series of pheromone deposits, the final value of the pheromone levels relates to

the sum of these deposits and is invariant with respect to the order of these deposits.

This is also the case for this step in Crisp ACL.

Regarding the terminal condition for the ants, with the fuzzy implementation,

none of the vertices can be identified as being the terminal vertex. Rather one has to

define a set of membership functions that can be used to determine to what degree

the goal state has been reached. These membership functions can be used to express

the linguistic fuzzy term of the state being close to the goal. Specifically, this is

satisfied when the membership degree of the state to the membership function with

its core equal to the goal state is larger than 0.5. If this has been satisfied, the ant has

terminated its trial.

3 In MATLAB this may conveniently be represented by a sparse matrix structure, rendering the

indicator-representation useful for generalizing the global pheromone update rule and while still

being a memory efficient representation of the state-action pair.
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3.5 Parameter Settings

Some of the parameters in both Crisp and Fuzzy ACL are similarly initialized as

in the ACS. The global and local pheromone trail decay factors are set to a prefer-

ably small value, respectively ρ ∈ (0, 1) and γ ∈ (0, 1). There will be no heuristic

parameter associated to the arcs in the construction graph, so only an exponential

weighting factor for the pheromone trail α > 0 has to be chosen. Increasing α leads

to more biased decisions towards the one corresponding to the highest pheromone

level. Choosing α = 2 or 3 appears to be an appropriate choice. Furthermore, the

control parameters for the algorithm need to be chosen, such as the maximum num-

ber of iterations per trial, Kmax, and the maximum number of trials, Tmax. The latter

one can be set to, e.g., 100 trials, where the former one depends on the sample time

Ts and a guess of the time needed to get from the initial state to the goal optimally,

Tguess. A good choice for Kmax would be to take 10 times the expected number

of iterations, Kmax = 10Tguess/Ts. Specific to ACL, the number and shape of the

membership functions, or the number of quantization bins, and their spacing over

the state domain need to be determined. Furthermore, the pheromones are initial-

ized as τiu = τ0 for all (i,u) in Fuzzy ACL and as τqu = τ0 for all (q,u) in Crisp

ACL and where τ0 is a small, positive value. Finally the number of ants M must

be chosen large enough such that the complete state space can be visited frequently

enough.

3.6 Relation to Reinforcement Learning

In reinforcement learning [26], the agent interacts in a step-wise manner with the

system, experiencing state transitions and rewards. These rewards are a measure of

the short-time quality of the taken decision and the objective for the agent is to cre-

ate a state-action mapping (the policy) that maximizes the (discounted) sum of these

rewards. Particularly in Monte Carlo learning, the agent interacts with the system

and stores the states that it visited and the actions that it took in those states until it

reaches some goal state. Now, its trial ends and the agent evaluates the sequence of

state-action pairs over some cost function and based on that updates a value func-

tion. This value function basically stores the information about the quality of being

in a certain state (or in the Q-learning [30] and SARSA [31] variants, the quality

of choosing a particular action in a certain state). Repeating this procedure of inter-

acting with the system and updating its value function will eventually result in the

value function converging to the optimal value function, which corresponds to the

solution of the control problem. It is said that the control policy has been learned,

because it has been automatically derived purely by interaction with the system.

This procedure shows strong similarities with the procedure of ACL. The main

difference is that rather than a single agent, in ACL there is a multitude of agents

(called ants) all interacting with the system in parallel and all contributing to the

update of the value function (called the set of pheromone levels). For exactly the
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same reason as with reinforcement learning, the procedure in ACL enables the ants

to learn the optimal control policy.

However, as all ants work in parallel, the interaction of all these ants with a single

real world system is problematic. You would require multiple copies of the system

in order to keep up this parallelism. In simulation, this is not an issue. If there is

a model of the real world system available, making many copies of this model in

software is very cheap. Nevertheless, it is not completely correct to call ACL for

this reason a model-based learning algorithm. As the model may be a blackbox

model, with the details unknown to the ants, it is purely a way to benefit from the

parallelism of ACL.

Because of the parallelism of the ants, ACL could be called a multi-agent learn-

ing algorithm. However, this must not be confused with multi-agent reinforcement

learning, as this stands for the setting in which multiple reinforcement learning

agents all act in a single environment according to their own objective and in order

for each of them to behave optimally, they need to take into account the behavior

of the other agents in the environment. Note that in ACL, the ants do not need to

consider, or even notice, the existence of the other ants. All they do is benefit from

each other’s findings.

4 Example: Navigation with Variable Damping

This section presents an example application of both Crisp and Fuzzy ACL to a

continuous-state dynamic system. The dynamic system under consideration is a sim-

ulated two-dimensional (2D) navigation problem and similar to the one described in

[24]. Note that it is not our purpose to demonstrate the superiority of ACL over any

other method for this specific problem. Rather we want to demonstrate the function-

ing of the algorithm and compare the results for both its versions.

4.1 Problem Formulation

A vehicle, modeled as a point-mass of 1 kg, has to be steered to the origin of a

two-dimensional surface from any given initial position in an optimal manner. The

vehicle experiences a damping that varies non-linearly over the surface. The state of

the vehicle is defined as x =
[

c1 v1 c2 v2
]T

, with c1, c2 and v1, v2 the position and

velocity in the direction of each of the two principal axes respectively. The control

input to the system u =
[

u1 u2

]T
is a two-dimensional force. The dynamics are:
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ẋ(t) =









0 1 0 0
0 −b(c1, c2) 0 0
0 0 0 1
0 0 0 −b(c1, c2)









x(t) +









0 0
1 0
0 0
0 1









u(t),

where the damping b(c1, c2) in the experiments is modeled by an affine sum of two

Gaussian functions:

b(c1, c2) = b0 +

2
∑

i=1

bi exp



−
2
∑

j=1

(cj −mj,i)
2

σ2
j,i



 ,

for which the chosen values of the parameters are b0 = 0.5, b1 = b2 = 8, and

m1,1 = 0, m2,1 = −2.3, σ1,1 = 2.5, σ2,1 = 1.5 for the first Gaussian, and m1,2 =
4.7, m2,2 = 1, σ1,2 = 1.5, σ2,2 = 2 for the second Gaussian. The damping profile

can be seen in, e.g., Figure 7, where darker shading means more damping.

4.2 State Space Partitioning and Parameters

The partitioning of the state space is as follows:

• For the position c1: {−5,−3.75,−2,−0.3, 0, 0.3, 2, 2.45, 3.5, 3.75, 4.7, 5} and

for c2: {−5,−4.55,−3.5,−2.3,−2,−1.1,−0.6,−0.3, 0, 0.3, 1, 2.6, 4, 5}.
• For the velocity in both dimensions v1, v2: {−2, 0, 2}.

This particular partitioning of the position space is composed of a baseline grid

{−5 − 0.300.35} and adding to it, extra grid lines inside each Gaussian damping

region. This partitioning is identical to what is used in [24]. In the crisp case, the

crossings in the grid are the centers of the quantization bins, where in the fuzzy

case, these are the centers of the triangular membership functions. The action set

contains of 9 actions, namely the cross-product of the sets {−1, 0, 1} for both di-

mensions. The local and global pheromone decay factors are respectively γ = 0.01
and ρ = 0.1. Furthermore, α = 3 and the number of ants is 200. The sampling time

is Ts = 0.2 and the ants are randomly initialized over the complete state space at the

start of each trial. An ant terminates its trial when its position and velocity in both

dimensions are within a bound of±0.25 and±0.05 from the goal respectively. Each

experiment is carried out thirty times. The quadratic cost function from (5) is used

with the matrices Q = diag(0.2, 0.1, 0.2, 0.1) and R = 0. The cost function thus

only takes into account the deviation of the state to the goal. We will run the fuzzy

Q-iteration algorithm from [24] for this problem with the same state space parti-

tioning in order to derive the optimal policy to which we can compare the policies

derived by both versions of the ACL algorithm.
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4.3 Results

The first performance measure considered represents the cost of the control policy

as a function of the number of trials. The cost of the control policy is measured as the

average cost of a set of trajectories resulting from simulating the system controlled

by the policy and starting from a set of 100 pre-defined initial states, uniformly

distributed over the state space. Figure 4 shows these plots. As said earlier, each

experiment is carried out thirty times. The black line in the plots is the average

cost over these thirty experiments and the gray area represents the range of costs

for the thirty experiments. From Figure 4 it can be concluded that the Crisp ACL

algorithm does not converge as fast and smoothly compared to Fuzzy ACL and that

it converges to a larger average cost. Furthermore, the gray region for Crisp ACL is

larger than that of Fuzzy ACL, meaning that there is a larger variety of policies that

the algorithm converges to.
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Fig. 4 The cost of the control policy as a function of the number of trials passed since the start of

the experiment. The black line in each plot is the average cost over thirty experiments and the gray

area represents the range of costs for these experiments.

The convergence of the algorithm can also be measured by the fraction of quan-

tized states (crisp version), or cores of the membership functions (fuzzy version)

for which the policy has changed at the end of a trial. This measure will be called

the policy variation. The policy variation as a function of the trials for both Crisp

and Fuzzy ACL is depicted in Figure 5. It shows that for both ACL versions, the

policy variation never really becomes completely zero and confirms that Crisp ACL

converges slower compared to Fuzzy ACL. It also provides the insight that although

for Crisp ACL the pheromone levels do not converge to the same value at every run

of the algorithm, they do all converge in about the same way in the sense of policy

variation. This is even more true for Fuzzy ACL, where the gray area around the

average policy variation almost completely disappears for an increasing number of

trials. The observation that the policy variation never becomes completely zero in-
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dicates that there are some states for which either action results in nearly the same

cost.
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(b) Fuzzy ACL

Fig. 5 Convergence of the algorithm in terms of the fraction of states (cores of the membership

functions, or centers of the quantization bins) for which the policy changed at the end of a trial.

The black line in each plot is the average policy variation over thirty experiments and the gray area

represents the range of policy variation for these experiments.

A third performance measure that is considered represents the robustness of the

control policy. For each state, there is a certain number of actions to choose from.

If the current policy indicates that a certain action is the best, it does not say how

much better it is compared to the second-best action. If it is only a little better, a

small update of the pheromone level for that other action in this state may switch

the policy for this state. In that case, the policy is not considered to be very robust.

The robustness for a certain state is defined as follows:

umax1(q) = argmax
u∈U

(τqu),

umax2(q) = arg max
u∈U\umax1(q)

(τqu),

robustness(q) =
τα
qumax1(q)

− τα
qumax2(q)

τα
qumax1(q)

,

where α is the same as the α from the Boltzmann action selection rule ((13) and (7)).

The robustness of the policy is the average robustness over all states. Figure 6 shows

the evolution of the average robustness during the experiments. The figure shows

that the robustness increases with the number of trials, explaining the decrease in the

policy variation from Figure 5. The fact that it does not converge to one explains that

there remains a probability larger than zero for the policy to change. This suggests

that ACL algorithms are potentially capable of adapting the policy to changes in the

cost function, due to changing system dynamics, or a change of the goal state.
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(b) Fuzzy ACL

Fig. 6 Evolution of the robustness of the control policy as a function of the number of trials. The

black line in each plot is the average robustness over thirty experiments and the gray area represents

the range of the robustness for these experiments.

Finally, we present the policies and the behavior of a simulated vehicle controlled

by these policies for both Crisp and Fuzzy ACL. In the case of Crisp ACL, Fig-

ure 7(a) depicts a slice of the resulted policy for zero velocity. It shows the mapping

of the positions in both dimensions to the input. Figure 7(b) presents the trajec-

tories of the vehicle for various initial positions and zero initial velocity. In both
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(a) Crisp ACL: policy
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(b) Crisp ACL: simulation

Fig. 7 The left figure presents a slice of the best resulting policy for zero velocity obtained by Crisp

ACL in one of the thirty runs. It shows the control input for a fine grid of positions. The multi-

Gaussian damping profile is shown, where darker shades represent regions of more damping. The

figure on the right shows the trajectories of the vehicle under this policy for various initial positions

and zero initial velocity. The markers indicate the positions at twice the sampling time.
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figures, the mapping is shown for a grid three times finer than the grid spanned by

the cores of the membership functions. For the crisp case, the states in between the

centers of the partition bins are quantized to the nearest center. Figure 8 presents

the results for Fuzzy ACL. Comparing these results with those from the Crisp ACL

algorithm in Figure 7, it shows that for Crisp ACL, the trajectories of the vehicle

go widely around the regions of stronger damping, in one case (starting from the

top-left corner) even clearly taking a suboptimal path to the goal. For Fuzzy ACL,

the trajectories are very smooth and seem to be more optimal, however the vehicle

does not avoid the regions of stronger damping much. The policy of Fuzzy ACL is

also much more regular compared to the one obtained by Crisp ACL.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

c
1
  [m]

c
2
  

[m
]

h(c
1
,0,c

2
,0) [Nm]

(a) Fuzzy ACL: policy
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(b) Fuzzy ACL: simulation

Fig. 8 The left figure presents a slice of the best resulting policy for zero velocity obtained by

Fuzzy ACL in one of the thirty runs. It shows the control input for a fine grid of positions. The

multi-Gaussian damping profile is shown, where darker shades represent regions of more damping.

The figure on the right shows the trajectories of the vehicle under this policy for various initial

positions and zero initial velocity. The markers indicate the positions at twice the sampling time.

In order to verify the optimality of the resulting policies, we also present the

optimal policy and trajectories obtained by the fuzzy Q-iteration algorithm from

[24]. This algorithm is a model-based reinforcement learning method developed for

continuous state spaces and is guaranteed to converge to the optimal policy on the

partitioning grid. Figure 9 present the results for fuzzy Q-iteration. It can be seen

that the optimal policy from fuzzy Q-iteration is very similar to the one obtained by

Fuzzy ACL, but that it manages to avoid the regions of stronger damping somewhat

better. Even with the optimal policy, the regions of stronger damping are not com-

pletely correctly avoided. Especially regarding the policy around the lower damping

region, where it steers the vehicle towards an even stronger damped part of the state

space. The reason for this is the particular choice of the cost function in these ex-

periments. The results in [24] show that for a discontinuous cost function, where
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(a) Fuzzy Q-iteration: Policy
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(b) Fuzzy Q-iteration: simulation

Fig. 9 The baseline optimal policy derived by the fuzzy Q-iteration algorithm. The left figure

presents a slice of the policy for zero velocity. The figure on the right shows the trajectories of the

vehicle under this policy for various initial positions and zero initial velocity. The markers indicate

the positions at twice the sampling time.

reaching the goal results in a sudden and steep decrease in cost, the resulting policy

avoids the highly damped regions much better. Also note that in those experiments,

the policy interpolates between the actions resulting in a much smoother change of

the policy between the centers of the membership functions. Theoretically, Fuzzy

ACL also allows for interpolation of the action set, but this is outside the scope of

this chapter. Also, the ACL framework allows for different cost functions than the

quadratic cost function used in this example. Designing the cost function carefully

is very important for any optimization or control problem and directly influences

the optimal policy. It is however not the purpose of this chapter to find the best cost

function for this particular control problem.

5 Conclusions and Future Work

This chapter has discussed Ant Colony Learning (ACL), a novel method for the de-

sign of optimal control policies for continuous-time, continuous-state dynamic sys-

tems based on Ant Colony Optimization (ACO). The partitioning of the state space

is a crucial aspect to ACL and two versions have been presented with respect to this.

In Crisp ACL, the state space is partitioned using bins, such that each value of the

state maps to exactly one bin. Fuzzy ACL, on the other hand, uses a partitioning of

the state space with triangular membership functions. In this case, each value of the

state maps to the membership functions to a certain membership degree. Both ACL

algorithms are based on the combination of the Ant System and the Ant Colony
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System, but have some distinctive characteristics. The action selection step does not

include an explicit probability of choosing the action associated with the highest

value of the pheromone matrix in a given state, but only uses a random-proportional

rule. In this rule, the heuristic variable, typically present in ACO algorithms, is left

out as prior knowledge can also be incorporated through an initial choice of the

pheromone levels. The absence of the heuristic variable makes ACL more straight-

forward to apply. Another particular characteristic of our algorithm is that it uses the

complete set of solutions of the ants in each trial to update the pheromone matrix,

whereas most ACO algorithms typically use some form of elitism, selecting only

one of the solutions from the set of ants to perform the global pheromone update. In

a control setting, this is not possible, as ants initialized closer to the goal will have

experienced a lower cost than ants initialized further away from the goal, but this

does not mean that they must be favored in the update of the pheromone matrix.

The applicability of ACL to optimal control problems with continuous-valued

states is outlined and demonstrated on the non-linear control problem of two-

dimensional navigation with variable damping. The results show convergence of

both the crisp and fuzzy version of the algorithm to suboptimal policies. However,

Fuzzy ACL converged much faster and the cost of its resulting policy did not change

as much over repetitive runs of the algorithm compared to Crisp ACL. It also con-

verged to a more optimal policy than Crisp ACL. We have presented the additional

performance measures of policy variation and robustness in order to study the con-

vergence of the pheromone levels in relation to the policy. These measures showed

that ACL converges as a function of the number of trials to an increasingly robust

control policy meaning that a small change in the pheromone levels will not result in

a large change in the policy. Compared to the optimal policy derived from fuzzy Q-

iteration, the policy from Fuzzy ACL appeared to be close to optimal. It was noted

that the policy could be improved further by choosing a different cost function. In-

terpolation of the action space is another way to get a smoother transition of the

policy between the centers of the state space partitioning. Both these issues were

not considered in more detail in this chapter and we recommend to look further into

this in future research.

The ACL algorithm currently did not incorporate prior knowledge of the system,

or of the optimal control policy. However, sometimes prior knowledge of such kind

is available and using it could be a way to speed up the convergence of the algorithm

and to increase the optimality of the derived policy. Future research must focus on

this issue. Comparing ACL to other related methods, like for instance Q-learning,

is also part of our plans for future research. Finally, future research must focus on a

more theoretical analysis of the algorithm, such as a formal convergence proof.
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12. J. M. van Ast, R. Babuška, and B. De Schutter, “Novel ant colony optimization approach

to optimal control,” International Journal of Intelligent Computing and Cybernetics, vol. 2,

no. 3, pp. 414 – 434, 2009.

13. ——, “Fuzzy ant colony optimization for optimal control,” in Proceedings of the American

Control Conference (ACC 2009), no. 1003–1008, Saint Louis, MO, USA, June 2009.

14. K. Socha and C. Blum, “An ant colony optimization algorithm for continuous optimiza-

tion: application to feed-forward neural network training,” Neural Computing & Applications,

vol. 16, no. 3, pp. 235–247, May 2007.

15. K. Socha and M. Dorigo, “Ant colony optimization for continuous domains,” European Jour-

nal of Operational Research, vol. 185, no. 3, pp. 1155–1173, 2008.

16. G. Bilchev and I. C. Parmee, “The ant colony metaphor for searching continuous design

spaces,” in Selected Papers from AISB Workshop on Evolutionary Computing, ser. Lecture

Notes in Computer Science, T. Fogarty, Ed., vol. 993. London, UK: Springer-Verlag, April

1995, pp. 25–39.

17. S. Tsutsui, M. Pelikan, and A. Ghosh, “Performance of aggregation pheromone system on

unimodal and multimodal problems,” in Proceedings of the 2005 Congress on Evolutionary

Computation (CEC 2005), September 2005, pp. 880–887.

18. P. Korosec, J. Silc, K. Oblak, and F. Kosel, “The differential ant-stigmergy algorithm: an

experimental evaluation and a real-world application,” in Proceedings of the 2007 Congress

on Evolutionary Computation (CEC 2007), September 2007, pp. 157–164.

19. M. Birattari, G. D. Caro, and M. Dorigo, “Toward the formal foundation of Ant Program-

ming,” in Proceedings of the International Workshop on Ant Algorithms (ANTS 2002). Brus-

sels, Belgium: Springer-Verlag, September 2002, pp. 188–201.



Ant Colony Learning Algorithm for Optimal Control 29

20. L. M. Gambardella and M. Dorigo, “Ant-Q: A reinforcement learning approach to the travel-

ing salesman problem,” in Machine Learning: Proceedings of the Twelfth International Con-

ference on Machine Learning, A. Prieditis and S. Russell, Eds. San Francisco, CA: Morgan

Kaufmann Publishers, 1995, pp. 252–260.

21. J. Casillas, O. Cordn, and F. Herrera, “Learning fuzzy rule-based systems using ant colony

optimization algorithms,” in Proceedings of the ANTS’2000. From Ant Colonies to Artifi-

cial Ants: Second Interantional Workshop on Ant Algorithms. Brussels (Belgium), September

2000, pp. 13–21.

22. B. Zhao and S. Li, “Design of a fuzzy logic controller by ant colony algorithm with applica-

tion to an inverted pendulum system,” in Proceedings of the IEEE International Conference

on Systems, Man and Cybernetics, Taipei, Taiwan, October 2006, pp. 3790–3794.

23. W. Zhu, J. Chen, and B. Zhu, “Optimal design of fuzzy controller based on ant colony algo-

rithms,” in Proceedings of the IEEE International Conference on Mechatronics and Automa-

tion, Luoyang, China, June 2006, pp. 1603–1607.
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