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Abstract

Scientific literature is prolific both on exact and on heuristic solution methods developed to solve

optimization problems. Although the former methods have an indisputable theoretical value

when it comes to solve large realistic combinatorial optimization problems they are usually as-

sociated with large and even prohibitive running times. Heuristic methods, do not guarantee to

determine a global optimal solution for a problem but are usually able to find a good solution

rapidly, perhaps a local optimum, and require less computational resources. Ant Colony Opti-

mization (ACO) algorithms belong to a class of heuristics based on the behaviour of nature ants.

These algorithms have been used to solve many combinatorial optimization problems and have

been known to outperform other popular heuristics such as Genetic Algorithms. Therefore, we

believe that the number of ACO based algorithms will continue to grow for a long time. The

contribution of this work is to provide the reader with a sort of consultation guide for devel-

oping ACO algorithms, by presenting a collection of different approaches that can be found in

literature, regarding the ACO building blocks.
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CRO/116014/2009.
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1 Introduction

The idea behind ant algorithms is to adapt and use their communication style which has been

proven to be so good in nature, rather than truly mimic the behaviour of real ants. Artificial

ants can then be seen and described as communicating agents sharing some characteristics of

the real ants, but also incorporating other characteristics for which there is no parallel in nature,

(Solimanpur et al, 2004). The overall characteristics are what makes them fit to solve problems,

if not optimally, at least by finding very good solutions. A real foraging ant spends all its life

travelling between its nest and some food source. It does not then come as a surprise that the first

problem solved with an ant algorithm, called Ant System (AS), was the Travelling Salesman

Problem (TSP), a well-known combinatorial problem, where the shortest route (path) that visits

exactly once each city of a given set of cities, starting and ending at the same city, is to be found.

The very good results that were being achieved with ant algorithms pointed to the broadening

of the definition of path therefore allowing for the use of this method to solve other problems.

Some adaptations of the algorithm had to take place, resulting in the so called Ant Colony

Optimization metaheuristic, which is based on the ant system. The definition of the ACO meta-

heuristic, as a series of generic guidelines that could be very easily adapted to almost all types

of combinatorial optimization problems, allowed a boost in the use of this methodology and in

the number of researchers and publications in the area. Since then, ACO procedures have been

applied to solve a broad set of problems, including: Network Flow Problems (Monteiro et al,

2012), Network Design Problems (Rappos and Hadjiconstantinou, 2004), Assignment Prob-

lems (Shyu et al, 2006; Bernardino et al, 2009), Facility Location Problems (Baykasoglu et al,

2006; Chen and Ting, 2008), Transportation Problems (Musa et al, 2010; Santos et al, 2010),

Covering Problems (Lessing et al, 2004; Crawford and Castro, 2006; Mehrabi et al, 2009), Lo-

cation Problems (Pour and Nosraty, 2006), just to mention but a few in the area of combinatorial

optimization. Curiously enough, although the TSP was the first problem to be solved by the AS

and ACO metaheuristics, it still inspires researchers such as Garcı́a-Martı́nez et al (2007), for

instance, that have recently used ACO to solve a bi-criteria TSP or Tavares and Pereira (2011)

that use the TSP to test an evolving strategy to update pheromone trails.

Although in general ACO algorithms achieve very good results, there are cases where an hy-

bridization with other heuristics or metaheuristics, proves to be necessary. Therefore, in the

past few years authors have developed hybrid algorithms between ACO and Local Search (Pour

and Nosraty, 2006), Simulated Annealing (Bouhafs et al, 2006), Post Processing Procedures
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(Crawford and Castro, 2006), and even with Genetic Algorithms as is the case of (Altiparmak

and Karaoglan, 2007). This allowed ant algorithms to achieve even better results in problems

too complex to be solved by a single heuristic method.

In the following section we will explore, in detail, the first ant algorithm, that was called the Ant

System. Afterwards, we review some of the large number of interesting works that have been

developed ever since. We focus our attention mostly in works that have introduced modifica-

tions and extensions to the so-called building blocks of ACO algorithms. This is made with the

purpose of showing alternative methods, that worked well with specific optimization problems,

so that the reader who is developing an ACO algorithm can easily perceive its utility and how

to adapt it for the problem at hand.

2 Ant Colony Principles

Ant Colony Optimization principles are based on the natural behaviour of ants. In their daily

life, one of the tasks ants have to perform is to search for food, in the vicinity of their nest.

While walking in such a quest, the ants deposit a chemical substance called pheromone in the

ground. This is done with two objectives. On the one hand, it allows ants to find their way back

to the nest, such as Hansel and Gretel in the fairytale. And on the other hand, it allows other

ants to know the way they have taken, so that the others can follow them. The curiosity is that,

because hundreds or even thousands of ants have this behaviour, if one could see the pheromone

laid in the ground as a kind of light, the ground would be a large network with some of the arcs

brighter than the others. Within the paths created by those arcs would surely be the shortest path

between the nest and the food source. This behaviour can be seen as a kind of communication

between the ants. If the path has a large concentration of pheromone, this is probably due to its

shorter length that allowed ants to travel faster, resulting in a larger number of travels through

the path therefore with much more ants depositing pheromone on it. Furthermore, over time

the pheromone evaporates and thus its concentration reduces. The more time it takes for the ant

to travel from the nest to the food source and back to the nest, the more time the pheromones

have to evaporate. This system is thus based both on the positive feedback, i.e. depositing of

pheromone attracts other ants to use the same path which will increase the pheromone quan-

tity, and on negative feedback, i.e. dissipating of the pheromone through evaporation leads to

lower levels of pheromone thus discouraging other ants. Deneubourg et al (1990) and Goss et al

(1989) performed some experiences with real ants and they where able to show that foraging

ants can find the shortest path between their nest and some food source, by the use of a chem-

ical substance called pheromone, that they deposit while walking. After these experiments the

authors proposed a stochastic model to describe what they had observed. This was the first step

leading to an optimization algorithm based on the foraging behaviour of ants. Some years later,

Dorigo et al (1996) developed the first foraging ants algorithm which was called Ant System and
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that was firstly proposed to solve the travelling salesman problem.

2.1 Ant System

The objective of the travelling salesman problem is to find the shortest route between a set of

cities, starting and finishing in the same city, going through all cities without visiting each city

more than once. This problem is very easily adapted to the idea of the Ant System due to their

similarity in concepts: find the shortest path between two points in a graph.

An AS algorithm considers a single ant colony with m artificial ants cooperating with each

other. Before the algorithm starts to run each arc linking two different cities is given a certain

quantity of pheromone τ0. This is usually a very small value just enough to ensure that the

probability of each arc to be chosen is different from zero. Also, the ants are created.

The algorithm has two main phases, the construction of the tour/solution and the pheromone

update. Other important decisions have to be made before the ants can start finding a solution,

such as defining the structure (representation) of the solution, or the initial pheromone quantity

to be given to each arc. These questions will be discussed further ahead.

At each iteration each ant is randomly placed in a city, from the set of n cities. That city will be

the starting point of the tour that is to be constructed by the ant. A solution to the TSP can be

represented by a set of n consecutive cities. Therefore, at each step of the construction the ant

has to choose, with a given probability, the next city to travel to.

This choice is made by using a transition rule, the short expression for random proportional

transition rule, that uses a combination of attractiveness of the city, which is given by the

heuristic information ηij of the problem, and of the fitness of the move, i.e. past usage, which

is given by the pheromone quantity τij . The transition rule quantifies the probability of ant k,

positioned at city i, travelling to city j and it is given by:

P k
ij(t) =

[τij(t)]
α · [ηij ]β

∑

l∈Jk
i

[τil(t)]
α · [ηil]β

, (1)

where ηij , the heuristic information or visibility of arc (i, j), is the inverse of the distance

between city i and city j, i.e.

ηij =
1

dij
, (2)

Jk
i is the set of cities not yet visited by ant k while at city i, and α and β are parameters weighting

the relative importance of the pheromone and of the heuristic information, respectively.

Therefore, the closest cities, that is, the ones that the ant can see from where it is standing, will
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have a higher visibility value, whereas the others will have a lower one.

The values α and β are two tunable parameters that weight the pheromone information and the

heuristic information on the transition rule.

After building the solutions the pheromone values in the arcs are updated. The update is done

in two phases. Just before the ants can deposit pheromone in the arcs of their solution, the

algorithm applies an evaporation rate ρ, with ρ ∈]0, 1], to the pheromone present at each arc,

see equation (3).

τij(t) = (1− ρ) · τij(t). (3)

This operation simulates the natural process of evaporation preventing the algorithm from con-

verging too quickly (all ants constructing the same tour) and getting trapped into a local op-

timum. The value of the evaporation rate indicates the relative importance of the pheromone

values from one iteration to the following one. If ρ takes a value near 1, then the pheromone

trail will not have a lasting effect, potentiating the exploration of the solutions space, whereas a

small value will increase the importance of the pheromone, potentiating the exploitation of the

search space near the current solution.

The length Sk of each tour is then calculated and the ants will be allowed to deposit pheromone

in every arc of their tour. The pheromone quantity to be deposited in each arc is proportional

to the quality of the solution of each ant and to the number of ants to incorporate that arc in its

solution, as can be seen in equations (4) and (5).

∆τij(t) =
m
∑

k=1

∆τkij(t), (4)

∆τkij(t) =







Q

Sk(t)
if (i, j) belongs to the solution of ant k,

0 otherwise,

(5)

where Q is a positive proportionality parameter and Sk(t) is the length of the tour constructed by

ant k at iteration t. For small problem instances, this update leads to a reduction of the search

space thus converging to one where the optimal solution components will have the highest

values in the matrix. However, for large instance problems it is known that stagnation is likely

to happen, driving the solution to a suboptimal solution rather than to an optimal one. This is

why pheromone evaporation is so important.

The previous steps are performed until some stopping criterion is reached, which can be a fixed

number of iterations, as was the case, but it can also be the setting of a bound on running time

or even the number of solutions evaluated.
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The best values for the parameters used in ant algorithms depend both on problem characteris-

tics and on the strategy chosen for searching the solution space. Therefore, before setting values

for the parameter, decisions on the search strategy have to be made. Then, the algorithm must

be run several times in order to establish the values of the parameters which tend to perform

better.

3 Ant Colony Optimization

Meanwhile, some improvements were inserted into the AS such as the introduction of elitist

ants into the colony (Dorigo et al, 1996), the ranking of ants (Bullnheimer et al, 1997), and

the bounding of the allowed accumulated pheromone in each path (Stützle and Hoos, 1997).

Nevertheless, the most important development is the description of the Ant Colony Optimiza-

tion Metaheuristic by Dorigo and Di Caro (1999) and Dorigo et al (1999). The ACO, which

is described in Algorithm 1, is made of general guidelines for the development of algorithms

based on foraging ants to solve combinatorial optimization problems.

Algorithm 1 Pseudo-code for Ant Colony Optimization.

1: Initialize parameters

2: Initialize pheromone trails

3: Create ants

4: while Stopping criteria is not reached do
5: Let all ants construct their solution

6: Update pheromone trails

7: Allow Daemon Actions

8: end while

The main difference from the basic structure of the AS algorithm is the introduction of a Dae-

mon. The daemon can perform problem specific operations or centralized operations, which use

global knowledge of the solutions, thus having a very active and important role in the algorithm.

Note that in contrast to the AS no global knowledge is used since each ant deposits pheromone

in its solution despite what the other solutions are like. This is a task that has no equivalence

in the nature. The daemon can, for example, control the feasibility of each solution or give

an extra pheromone quantity to the best solution found from the beginning of the algorithm or

to the best solution in the current iteration. These last operations were already mentioned in

previous algorithms but never attributing its responsibility to a main entity in the colony.

Another important feature, frequently used by authors on ant based algorithms is the introduc-

tion of Local Search procedures following the construction of the solutions. This is an optional

feature that has been proved to be very important in the exploitation of the search space near to

good solutions, leading almost always to better performances of the ACO.
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3.1 The building blocks of an ACO

ACO algorithms have a set of characterising features that can be considered as their step stones.

These features must always be specified, preferably, when describing the algorithm:

• method chosen to construct the solution,

• heuristic information,

• pheromone updating rule,

• transition rule and probability function,

• parameters values, and

• termination condition.

It becomes obvious that the combination of the different techniques, that can be developed for

each of them, result in a large diversity of ant colony algorithms, each of which more adequate

to a certain class of problems. Within the vast literature on the subject, different proposes can

be identified to either improve earlier results or simply to solve a new type of problems. In this

section, and for each of these building blocks, we review some of the extremely large number

of techniques previously proposed, since it is impossible to track all the work that has been

done ever since the early stages of ant algorithms. Nonetheless, the reader is always referred to

the works that will be discussed in this section, for further details, as well as to the references

therein.

3.1.1 Constructing a solution

The construction of a solution, along with its representation, is one major issue of an ant algo-

rithm, as it is with any other heuristic method, since it will influence the rest of the procedures to

be defined. Thus, it plays a crucial role on the success of the algorithm. Besides, it is common

knowledge that it has a great effect on the running time of the ACO algorithm (Neumann and

Witt, 2010). Therefore, if the construction is badly chosen, the probability of a bad performance

is high.

Regarding the solution construction, a critical decision is whether to allow or not that unfeasible

solutions are constructed. This decision alone, can have several outcomes, such as:

• allowing the construction of unfeasible solutions and then creating an extra procedure to

fix them. This may involve too much of running time effort just to fix the solution;
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• allowing the construction of unfeasible solutions and then discarding or penalizing un-

feasible solutions. In this case, it may happen that the number of usable solutions is too

small (or even nonexistent), and thus the algorithm converges quickly to a suboptimal so-

lution. Even if this is not the case, if there are several constraints being violated then it is

too hard to use the penalties since they are of different nature and thus may have opposite

behaviours;

• if only feasible solutions are allowed, then the construction procedure may be too complex

leading to large running times.

The construction of a solution is influenced by many aspects, such as the problem being solved

and the constraints to be considered, the representation chosen for the problem, the investigator

preferences, and so on.

Alaya et al (2004) solve a Multidimensional Knapsack problem where a decision on a subset

of objects, satisfying a few resource constraints, has to be made in order to maximize the total

profit. The solution for this problem only requires the choice of a subset of objects to be intro-

duced in the knapsack, with no order specified, and can then be represented as a string of object

identifiers. Each ant starts the construction of their solution by randomly choosing an object

to be put in the knapsack. Then, objects are added to the solution, by using a transition rule

as defined in equation (1), as long as they do not violate any resource constraint. This way a

feasible solution is always obtained.

Rappos and Hadjiconstantinou (2004), in order to design two-edge connected flow networks,

use two types of ant colonies sharing information about their pheromone levels. This problem

is about configuring a network in order to satisfy demand nodes, provided that an extra arc is

considered to keep the network flowing in the case that one of the arcs in the network fails.

The solution for this problem is constructed in two phases, each of which solved by a different

type of ants. One ant colony is inhabitated by flow ants and the other colony by reliability ants.

The number of flow ants is the same as the number of demand nodes and, although they all

start constructing their solution from the source node, each ant is assigned to reach just one

specific demand node. When all flow ants have constructed their partial solutions, reaching

their demand node destination, the network is created. The next step involves the reliability

ants whose objective is to decide upon the extra arc, called reliability arc, to be added to the

solution. For every flow ant a reliability ant is created and associated with each arc visited by

the flow ant. Therefore, for each flow ant there is a set of reliability ants, as many as arcs in

the solution of the flow ant. The objective of a reliability ant is to find an alternative path from

the root node to the same destination node of the flow ant as long as it does not use a particular

arc, from the ones used in the solution of the flow ant. This ACO algorithm provides a single

feasible solution at each iteration, which is only entirely defined when all partial solutions of

the flow ants have been assembled together, and the extra arc found by the reliability ants is
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identified.

Baykasoglu et al (2006) solve a dynamic facility layout problem, where each ant has to de-

cide, for each period t, the location of the n departments considered. The authors use a string

with size t × n to represent the final solution, where the first n consecutive values identify the

department locations for the first period, the second n consecutive values give the locations

for the second period, and so on. Therefore, to construct a solution, all an ant has to do is to

choose t × n elements of the type department location, accordingly to the pheromone levels,

and provided that, within a time period, no department location is repeated, thus guaranteeing

the construction of a feasible solution.

Partitioning and covering problems are solved with ACO algorithms by Crawford and Castro

(2006). In this case, given a set of columns and rows, the objective is to choose a subset of

columns covering all rows while minimizing cover costs. The solution is represented by a

subset of columns. This implies a different approach, from the ones we have been mentioning

before, because the solution components are represented by nodes and not by arcs, a fact that

simplifies the calculations. The construction is straightforward. Each ant starts with an empty

set of columns. Then, the ant adds columns one at the time, based on pheromone values, until

all rows are covered. Solutions constructed in this way, can be unfeasible in the partitioning

case because a row may be covered by more than one column. That is why post processing

procedures, that will try to eliminate redundant columns, are added afterwards in order to turn

unfeasible solutions into feasible ones.

In a transportation problem with N supply nodes and M demand nodes, it is known that a

solution has, at most, N + M − 1 arcs. This observation allows Altiparmak and Karaoglan

(2006) to decide on allowing each ant in their algorithm to be able to choose N +M − 1 arcs

to construct a feasible solution. Each ant starts by randomly choosing an arc from the set of

available arcs A, and proceeds the construction by adding, one at the time, the remaining arcs

by using pheromone information. The arcs in the set of allowed arcs to be chosen to enter

the solution is defined by the demand and supply nodes that have not exceeded already their

demand and supply, respectively. In this case the sense of path is not applied since arcs are

chosen arbitrarily as long as they satisfy demand and supply constraints.

The Single Source Capacitated Facility Location Problem deals with the location of a set of

facilities, with a limited capacity on the supply, and the allocation of a single facility to each

customer so as to satisfy customer demands and minimize total costs. Chen and Ting (2008)

propose an algorithm to solve it which integrates an Ant Colony System with two types of ants,

location ants and assignment ants. Therefore, there are two different solution representations

and constructions. Location ants select the facilities to be opened, and their solutions are not

uniform, in the sense that each ant can open a different number of facilities, according to:
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fa =

⌊

∑

i di
∑

j(sj/m)

⌋

+ U [0, r], (6)

where fa is the number of facilities to be opened by ant a, di is the demand of customer i, sj

is the supply on node j, m is the number of available locations for the facilities, and r is a

pre-specified integer constant with a value between the first term of the sum in equation (6) and

m. After selecting the facilities to be opened, assignment ants assign each customer to one and

only one facility but they do not acknowledge, at least in this phase, whether the solution is

feasible or not, from the supply capacity point of view. The unfeasible solutions are dealt with

by using penalties, in the local search phase.

3.1.2 Visibility Information

The heuristic information, also known as visibility, is an extra information available to the ant

algorithm which is usually referred to as a kind of local information. Originally used as the

inverse of the length of the arc between two cities in the TSP, it has suffered several mutations

throughout the hundreds of approaches that have been developed since then.

Lessing et al (2004) studied the influence of the heuristic information, also called the visibility

value, in the performance of ant algorithms when solving Set Covering Problems (SCPs). Two

types of heuristic information are studied, static heuristic information, where the values are

calculated only once, at the beginning of the algorithm, and dynamic heuristic information, in

which case the values are calculated at each construction step of each ant, as in the case of the

ant-density algorithm. The different heuristic information values used are based on the Column

Costs,

ηj =
1

cj
; (7)

the (normalized) Lagrangean Costs Cj ,

ηj =
1

Cj

; (8)

the Cover Costs,

ηj =
cardj(S)

cj
, (9)

where cardj(S) is the number of rows covered by a column j;

(normalized) Lagrangean Cover Costs,

ηj =
cardj(S)

Cj

; (10)
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Marchiori and Steenbeck Cover Costs,

ηj =
1

(cj/cv(j, S)
, (11)

where cv(j, S) is the sum, for all rows covered by column j but not covered by any other column

in S \ {j}, of the minimum cover costs;

Marchiori and Steenbeck Lagrangean Cover Costs with Normalized Costs,

ηj =
1

(Cj/cv(j, S)
; (12)

and finally lower bounds, where the heuristic information for column j is the inverse of the cost

of the lower bound obtained by tentatively adding column j.

Each of these heuristic information types was tested with four different ant algorithms, and the

results obtained suggest that different types of heuristic information should be used for different

types of ant algorithms.

Reimann and Laumanns (2006) use savings values as the heuristic information instead of the

usual inverse of the arc cost,

ηij = Sij , (13)

in an ACO algorithm to solve Capacitated Minimum Spanning Tree problems. The savings

Sij = ci0 + c0j − cij are related to the cost difference obtained by merging the subtrees of node

i and j, previously linked directly to the source node 0. In this case, the larger the savings

associated to an arc the higher probability of that arc being selected.

A Capacitated Fixed-Charge Location problem aims at deciding on the supply facilities that

must be opened such that they can satisfy all the customers demand at the lowest possible

cost. Venables and Moscardini (2006) developed an ACO based algorithm that defines and

uses the information of a matrix called the total opportunity matrix Tij . This matrix uses the

sum of the differences between the cost of each arc (i, j), that is cij , and both ci∗j the lower

supplying cost from facility i and Cij∗ the lower supplying cost to customer j, such that Tij =

(cij−cij∗)+(cij−ci∗j). At the end, the visibility is set to be the facility visibility, and is defined

as the sum on the customers index of the total opportunity cost,

ηi =

n
∑

j=1

Tij. (14)

The lower the Tij the higher the visibility and probability of an arc to be chosen.

In the work of Altiparmak and Karaoglan (2007) the heuristic information is based on the con-

cave nature of the arcs costs in the Transportation Problem to be solved. In this case, the
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heuristic information takes into account not only the cost of the arc cij but also the flow of that

arc xij , that is the unit transportation cost

ηij =
1

(cij/
√
xij)

. (15)

Pour and Nosraty (2006) have solved the NP-hard plant/facility location problem with an ACO

algorithm. In this problem, there is a set of existing facilities pi and a set of locations where

new facilities xj are to be located and the objective is to locate these new facilities, such that

the sum of the costs between the facilities is minimized, and each location is assigned a single

facility. In this algorithm, the heuristic information used by the authors is defined as the inverse

of the product of distances di and costs fi between existing facility i and all new facilities xj ,

taking the form of

ηij =
1

fi · dj
. (16)

This way, nearest and lower cost facilities have a better heuristic value.

The Minimum Weight Vertex Cover problem is solved by Shyu et al (2004) with an ACO

algorithm where the heuristic information is defined for pairs of the type (node, ant). In it, the

heuristic information is defined as the local preference of ant k to choose node j to enter the

solution, and it translates into the ratio between the number of arcs linked to node j but not yet

covered by ant k and the weight of node j. Being thus defined, this heuristic information is not

static because its value changes with each step of the construction of the solution, and also from

solution to solution, since ants may construct different solutions.

Crawford and Castro (2006) calculate the value of the heuristic information in a dynamic fash-

ion, to solve Partitioning and Covering problems. At each step of the construction of the so-

lution, the algorithm computes the heuristic information as the per unit cost of covering an

additional row, as given bellow

ηj =
ej
cj
, (17)

where ej is the number of additional rows that are covered by node j when it is added to the

partial solution already constructed.

In the Cell Assignment Problem a set of cells must be linked to a set of switches such that each

cell is associated to exactly one switch, however switches may be linked to several cells. Shyu

et al (2006) define two heuristic information matrices, instead of the usual single one, to be

used in an ACO algorithm developed to solve the Cell Assignment Problem. These matrices are

associated with the choice of to which switch to move to when located at a certain cell, and vice-

versa. On the former, the decision uses a heuristic information function based on the inverse of

the partial costs. This heuristic information is dynamic since whenever an arc (ci, sj) linking
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a cell ci and a switch sj is included in the partial solution, the heuristic value for that arc will

be updated with the inverse of the partial solution cost constructed to the moment. This update

is performed at each step of the construction procedure. Therefore, the higher the partial cost

the lower the value of the heuristic information ηci,sj . Whenever an ant is located at a certain

switch it must choose to which cell to move to. In order to do so, the heuristic information used

is the call volume associated with each cell, thus ηci is defined for cells rather than for arcs.

Therefore, the larger the cell volume the higher the value of the heuristic, thus favouring cells

with high call volumes to be handled first.

3.1.3 Pheromone Bounds

At some point on the run of an ACO algorithm, the values of the pheromones in the components

of the solution, let us say arcs, may be extremely small, almost prohibiting the choice of those

arcs, or extremely large which will lead to the construction of the same solution, over and

over again. To prevent that from happening one might set upper and a lower bounds on the

pheromones. The first work to introduce this mechanism was (Stützle and Hoos, 1997), and the

authors define the following pheromone bounds:

τmax =
1

ρF ∗
, (18)

where the pheromone upper bound τmax depends not only on the evaporation rate ρ but also on

the total cost of the best solution found so far F ∗;

τmin =
τmax(1− pdec)

(n
2
− 1)pdec

, (19)

where the pheromone lower bound τmin depends on the value of τmax, on the the number n of

the components of the solution, and on the probability of constructing the best solution pdec,

which is a value to be set.

Therefore, whenever a new global best solution is found, τmin must also be updated.

Venables and Moscardini (2006) and Altiparmak and Karaoglan (2007) both define the upper

bound τmax, as in equation (18). The minimum pheromone value allowed is given by a fraction

of the maximum pheromone value allowed,

τmin = τmax/a, (20)

where a is a parameter value given by the size of the problem both in the work of Venables and

Moscardini (2006) and in the work of Altiparmak and Karaoglan (2007). It is easy to see that

τmin and τmax are not static values changing whenever a new best solution is found.
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Another mechanism also based on pheromone trails is the identification of stagnation. Altipar-

mak and Karaoglan (2007) use a two phase reinitialization scheme. On the one hand, if more

than 50% of the arcs in a transportation network have pheromone values equal to τmin, then

τmax and τmin are updated according to the global best solution and all values in the pheromone

matrix are set to τmax. On the other hand, if the global best solution has not been updated

for 50 iterations, then 10% of the population is randomly generated and will replace the worst

solutions.

Blum and Blesa (2005) propose an ACO algorithm to solve edge-weighted k-cardinality tree

problems, where the pheromone values are in the interval [0, 1], following the HyperCube

Framework defined by Blum et al (2001). In order to define an usable value for each limit,

the minimum and maximum pheromone values are as given in equation (21).

[τmin, τmax] = [0.001, 0.999] . (21)

The algorithm also incorporates a so-called convergence factor cf , defined in equation (22), in

order to estimate the degree of convergence of the system,

cf =

∑

a∈A(Si
k
)

τa

k · τmax

, (22)

where k is the cardinality of the problem, A is the set of arcs belonging to the best k-cardinality

tree of the iteration, τmax is the already defined maximum pheromone value, and finally τa is

the pheromone of arc a. By definition cf is a value always between 0 and 1, and the closer cf

is to 1, the closer is the system to convergence because the probability to construct again Si
k is

closer to 1. When this happens pheromone values and the best solution are reset.

Bui and Zrncic (2006), which address degree-constrained Minimum Spanning Trees, define

the maximum and the minimum value allowed for pheromone levels based on the differences

between the cost M of the most expensive arc and the cost m of the cheapest arc, as follows

τmax = 1000 · (M −m) + (M −m)

3
(23)

and

τmin =
M − 3

3
. (24)

Whenever an arc exceeds τmax it is not reset to τmax, as usual, but rather adjusted to τmax−τ initij ,

where τ initij is the initial pheromone value for arc (i, j) and is given by τ initij = (M−cij)+(M−
m)/3. In a similar way, τij = τmin+ τ initij whenever the pheromone value goes under τmin. This

way, as some of the original information is maintained it is expected that the ant still recognizes

good arcs and bad arcs.
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Bin et al (2009) use lower and upper bounds for the pheromone values in the arcs of the routes

found by the ants, for the vehicle routing problem, which are dependent on the distance d0i

between the central supply node 0 and each customer node i. The bounds are given by

[τmin, τmax] =









Q
∑

i

d0i
,

Q
∑

i

2d0i









, (25)

where Q is a parameter. These bounds are calculated only once, at the beginning of the al-

gorithm. The algorithm incorporates a mutation operator, in a similar fashion to genetic al-

gorithms, to try to include arcs other than the ones with higher pheromone value, chosen by

influence of the probability function. Given two parent tours from a solution, two customers,

one from each tour, are randomly selected and exchanged. If this operation turns out to result

into unfeasible solutions, then they are fixed by using a repairing mechanism. Thus, two new

feasible solutions are always created.

3.1.4 Pheromone Update

In the definition of the ACO metaheuristic the pheromone update has been defined to be per-

formed after all the ants have constructed their solutions. Although it is the recommended/sug-

gested method, it has not been proven to be the best choice for all problems. In fact, different

pheromone update schemes have been provided in the literature differing in three key aspects:

the moment at which pheromones are updated, the pheromone quantity to be deposited and

evaporated, and which ants are allowed to deposit pheromone in their trails.

The work of Talbi et al (2001) is one of those cases where an alternative approach has proven to

achieve good results. In order to solve a Quadratic Assignment Problem, the pheromone update

instead of reinforcing the components of the best solution found, as is usually done, reinforces

every solution F (S) taking into account both the value of the best (F (S∗)) and the value of the

worst (F (S−)) solutions found, as follows

τij = (1− ρ)× τij +
ρ

F (S)
× F (S−)− F (S)

F (S∗)
. (26)

The intention is to weaken the reinforcement, preventing a quick convergence, due to the un-

usual large number of ants depositing pheromone on their solutions.

A different approach is that of Rappos and Hadjiconstantinou (2004) that was developed to

design flow networks that are two-edge connected, that is, that can continue to satisfy the cus-

tomers demands if any single arc in the network is removed. Having in consideration the nature

of the problem, the authors decided to make a distinction between two types of pheromone val-

ues associated to each arc. One, Te(ij), is called the arc trail and is related to the fixed cost that
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has to be paid for using that arc. The other one, Tf(ij), is called the flow trail and is related to

the cost of the flow passing through the arc. Flow ants, which can detected and reinforce both

pheromone types, are created, as well as reliability ants, that can only detect and reinforce arc

pheromone. In each iteration a single solution is produced by the flow ants, and then the solu-

tion is made reliable by adding an extra arc by the reliability ants. Both flow trails and reliability

trails are updated, at the end of the corresponding construction phase, by initially performing a

reduction on the pheromone of all arcs. Then, each reliability ant adds:

∆Te(ij) =
1

bij
(27)

to each arc on its solution, regarding the arc pheromone trail, where bij is the fixed cost to be

incurred by using arc (i, j). Each flow ant adds the following quantities to the arc and flow

pheromone trails, respectively, on the arcs of its solution, provided that fixed-costs are only

paid once

∆Te(ij) =
1

bij
and ∆Tf (ij) =

1

cijdj
, (28)

where cij is the cost per unit flow and dj is the demand of node j. The reason why reliability

ants to not deposit pheromone on flow trails is straightforward, the extra arc that they add to the

solution does not carry any flow.

In a work by Alaya et al (2004), where multidimensional knapsack problems are solved, the

pheromone update is done in such a way that the quantity deposited in each component of the

solution includes information about the difference between the objective function value of the

best solution of the iteration F (Sit) and of the global best solution F (S∗),

∆τij =
1

1 + F (S∗)− F (Sit)
. (29)

Therefore, the closer the solution is to the global best solution, the higher the quantity of

pheromone deposited.

Two pheromone updating rules are proposed in (Shyu et al, 2004), a global and a local one.

On the one hand, at the end of each iteration, and after evaporation is applied, the pheromone

present on the nodes of the incumbent solution S∗ are reinforced with a quantity inversely

proportional to the total weight of the nodes in the solution.

∆τi =
1

∑

j∈S∗ wj

. (30)

On the other hand, the local pheromone updating rule is applied each time the ant adds a node

into its solution and is given by
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τi = (1− ϕ)τi + ϕτ0 (31)

where τ0 is the initial pheromone laid in every node and ϕ is the evaporation rate applied locally.

This latter rule has the objective of preventing the ants of always choosing the most significant

node. Eswaramurthy and Tamilarasi (2009) have also used a similar global and local updating

rule but considering arcs instead of nodes. It should be noticed that while Shyu et al (2004)

solve the Minimum Weight Vertex Cover problem, Eswaramurthy and Tamilarasi (2009) solve

the Job Shop Scheduling problem.

Solimanpur et al (2005), have also considered depositing more pheromone in the components

of the solutions closer to the global best solution. In this case, they allow not only the best ant

in the iteration to deposit pheromone but also all other ants. The amount of pheromone to be

deposited by ant k is given by

∆τkij = λ · F (S∗)

F (Sk)
, (32)

where F (Sk) is the solution of ant k, and λ is a scaling factor that must be chosen appropriately

such that a quick convergence to a local optima may be avoided. This method clearly encourages

search along the vicinities of the global best solution in the hope that a better one can be found

nearby.

According to the value defined in equation (22), Blum and Blesa (2005) define a pheromone

updating rule rewarding three solutions: the best solution in the current iteration Sib
k , the best

global solution to the moment Sgb
k , and the restart-best solution Srb

k , that is, the best solution

found at the restart of the algorithm. The reinforcement is then not based on the fitness of the

solution, that is, the corresponding value of the objective function, but rather on the value of a

convergence factor cf , see equation (22), which is computed at every iteration. Each of these

three solutions is attributed a different weight kib, kgb, and krb, defined in the same manner as

above, such that their sum equals 1. The schedule the authors have applied is dependent on

cf in such a way as to increase the value of krb and decrease the value attributed to kib with

the increase of cf , if cf < 0.99. The value of the evaporation rate parameter is also dynamic,

decreasing with the increase of cf . When a global convergence has been reached, that is, when

cf ≥ 0.99 then the only solution being updated is Sgb
k since a reset of the algorithm is to be

made, and this is the only solution to be maintained. The pheromone values are updated, as

well, initially by evaporating a percentage of the pheromone present in each arc, and then by

adding the following pheromone quantity in each arc,

ξa = kibδ(S
ib
k , a) + krbδ(S

rb
k , a) + kgbδ(S

gb
k , a), (33)
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where δ(Sk, a) = 1 if arc a belong to the solution tree Sk, and 0 otherwise.

Following the work of Bin et al (2009), Yang et al (2007) use an ant-weight pheromone updating

strategy based on the ant-density algorithm, in the Improved ACO used to solve the Vehicle

Routing Problem. The idea behind it is to incorporate both local and global information about

solutions. Therefore, every ant, representing a single route, deposits pheromone in its solution

components, following

∆τkij =
Q

K × L
× Dk − dij

mk ×Dk
, (34)

where Q is the usual proportionality constant parameter, L is the sum of the lengths of all tours

in the solution, K is the total number of routes in the solution, Dk is the length of tour k, dij is

the distance between customer i and customer j, and mk is the number of customers visited in

route k. Note that, a solution is only entirely defined when all routes constructed are assembled.

The first component
Q

K × L
, the global pheromone increment, depends on the total length of the

solution and on the number of tours, and it represents a compromise between the total cost and

the number of vehicles used. The second component
Dk − dij
mk ×Dk

, the local pheromone increment,

uses the contribution of arc (i, j) to the kth tour, which increases as dij decreases.

3.1.5 Transition Rule and Probability Function

This may be considered the characteristic that has less suffered from the evolution of ant algo-

rithms. Its initial structure, as given in equation (1), is almost always used in the works of the

researchers in the area. Nonetheless, different methods have been introduced mainly associated

to the high complexity of the problem to be solved.

The probability distribution used by Bouhafs et al (2006) to calculate the probability of visiting

customer j when in customer i, in a Capacitated Location-Routing problem, also incorporates

the savings value γij , for visiting customer j from customer i:

P k
ij(t) =

[τij(t)]
α · [ηij]β · [γij]λ

∑

j∈Jk
i
[τij(t)]α · [ηβij ] · [γij]λ

(35)

where Jk
i is the set of costumers not yet visited by ant k in its solution and that, by being

chosen, do not violate any constraint. The savings value is computed once at the beginning of

the algorithm as follows

γij = di0 + di0 − g · dij + f · |di0 − d0j|, (36)

where g and f are parameters, dij is the distance between nodes i and j, and 0 is the starting

node.

Afshar (2005) proposes a new transition rule for ant colony optimization algorithms, that is
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given by:

P k
ij(t) =

ατij(t) + βηij
∑

j∈Jk
i
[ατij(t) + βηij]

. (37)

The strategy is defined to prevent a domination of the pheromone trails in the ants decision, by

incorporating an additive form instead of the usual multiplicative form. This way, the author

expects both pheromone and heuristic information to have an active role in the decision. This

new transition rule comes with a modification of the heuristic value, which is a simple scaling

procedure given by:

ηsij =
ηij

max(ηij)
, (38)

making every value to be between zero and one regardless of problem size, a difficulty which

was already mentioned before.

A probability function based on the one developed by Maniezzo (1999) for the Quadratic As-

signment problem is used within an algorithm developed to solve single row layout problems

by Solimanpur et al (2005). The function also presents an additive scheme but eliminates the

necessity of the parameter β associated to the heuristic value

P k
ij(t) =

ατij(t) + (1− α)ηij
∑

j∈Jk
i
[ατij(t) + (1− α)ηij ]

. (39)

In this case, it is clear that α must be a number between zero and one, and not any positive num-

ber as was the case of the original method. Therefore, if one wishes to prioritize the pheromone

information one is implicitly decreasing the importance of the heuristic information, and vice-

versa, and there is only one value for which they have the same weight, which is 0.5.

Blum and Blesa (2005) introduced some changes to the transition rule defined for the Ant

Colony System (ACS), earlier developed by Dorigo and Gambardella (1997), in order to solve

k-minimum spanning tree problems. An ant starts its solution by randomly choosing the first

arc to enter the solution tree. Then, at each step of the construction, the next arc a to be added is

chosen deterministically if q ≤ 0.8, and probabilistically if q > 0.8, according to equation (40):

a =







argmin

{

τa
w(a)

: a ∈ ANH(St−1)

}

if q ≤ 0.8

l if q > 0.8,

(40)

where τa is the pheromone in arc a, w(a) is the weight of arc a, ANH(St−1) is the set of all arcs

that do not belong to solution St−1 and have exactly one end-point in St−1, and where
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l =















τa/wa
∑

a′

∈ ANH(St−1)
τa′/wa′ if a ∈ ANH(St−1)

0 otherwise.

(41)

This rule, assigns equal weight to the pheromone and the heuristic values, hereby represented

by 1/wa, by eliminating parameters α and β from the exponents of the pheromone and heuristic

values respectively. Given that the probabilistic rule is only triggered whenever a random num-

ber q > 0.8, the search for solutions is in 80% of the cases usually concentrated on relatively

good areas.

3.1.6 Parameter Values

The setting of an ant based algorithm can take a long time to achieve in order to produce some

useful results. Furthermore, a set of parameter values has also to be defined:

• α - parameter related to the weight of the pheromone concentration in the probability

function;

• β - parameter weighting the relative importance of heuristic information in the probability

function;

• ρ - pheromone evaporation rate, where ρ ∈]0, 1], measures the information that is to be

transported to the next iteration;

• Q - parameter weighting the quantity of pheromone to be deposited in each component

of the solution;

• τ0 - initial pheromone value to be deposited in every solution component, to guarantee

that every one of them has, at least, a small probability of being chosen;

• number of ants in the colony;

• stopping criterion - the number of iterations to be performed, the number of solutions to

be evaluated, maximum allowed running time, and so on.

For each algorithm developed, there can be other parameters to be set, for example, if bounds

are imposed on the pheromone values, a pbest parameter, as well as, the limit values have to be

defined. There are other cases where differences in the definition of the probability function, or

the type of ant used, require more parameters. We feel that there is no need to report on these

parameters in a section of their own as they tend to be unique for each algorithm. Nonetheless,

almost every work that was reviewed in this paper reports to have tried several combinations of

parameter values before choosing the ones to be used.
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3.2 Books and Surveys

Reviews are very important, specially when someone is starting on a new research area. There-

fore, we could not finish this work without referring to some of the detailed and comprehensive

reviews. For a good review on early Ant Colony Optimization historical applications we re-

fer to (Cordon et al, 2002). The reader may also find the review of Mullen et al (2009) very

interesting, since the authors review the application of ant algorithms in fields such as digital

image processing, data mining and other machine learning techniques. In this work we have

omitted multi-criteria combinatorial optimization problems. A good work reviewing this type

of problems is provided by Garcı́a-Martı́nez et al (2007), where the authors, besides providing

a survey on previous works also solve a set of instances of the bi-criteria TSP with several ACO

algorithms, in order to be able to compare them and discuss their characteristics.

Although a little out-of-date, due to the large number of works that have seen the broad daylight

after they have been published, (Bonabeau et al, 1999) and (Dorigo and Stützle, 2004) are still

very important references regarding ant based algorithms, providing excellent explanations on

ant algorithms and their evolution. The first book gives us an insight on the general social insect

behaviour with particular emphasis on ant algorithms. The second book is fully dedicated to ant

colony algorithms and surveys several applications of ACO in several fields, such as scheduling,

machine learning and bio-informatics. In addition, it also discusses some theoretical findings

and is an excellent guide to everyone who wishes to implement ant algorithms.

4 Conclusion

The class of combinatorial optimization problems is prolific in NP-hard problems. But, al-

though some small instances of such problems can be solved with exact methods, heuristics are

more adequate to solve large instances as they usually need far less computational resources.

Ant Colony Optimization is a metaheuristic initially defined to solve problems within the class

of combinatorial optimization, although its frontiers have long been overcome. In this work, we

have presented a collection of different approaches that can be found in the literature, regarding

the ACO building blocks. The algorithms that were reviewed have been used to solve all sorts

of problems, but mainly problems within the combinatorial optimization class. Our objective

is to provide a list of alternative methods that can be used for each ACO feature, in order to

facilitate the identification of the most adequate technique or simply to inspire an investigator

that is thinking on developing his own ACO algorithm.
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