
Ant Colony Optimization Algorithms for Dynamic Optimization: A Case
Study of the Dynamic Travelling Salesperson Problem
Mavrovouniotis, M., Yang, S., Van, M., Li, C., & Polycarpou, M. (2020). Ant Colony Optimization Algorithms for
Dynamic Optimization: A Case Study of the Dynamic Travelling Salesperson Problem. IEEE COMPUTATIONAL
INTELLIGENCE MAGAZINE, 15(1), 52-63. https://doi.org/10.1109/MCI.2019.2954644

Published in:
IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2019 IEEE.
This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:27. Aug. 2022

https://doi.org/10.1109/MCI.2019.2954644
https://pure.qub.ac.uk/en/publications/530d599d-e14b-48b8-957b-e20fb166635e

Ant Colony Optimization Algorithms for

Dynamic Optimization: A Case Study of the

Dynamic Travelling Salesperson Problem

Michalis Mavrovouniotis
KIOS Research and Innovation Center of Excellence, Department of Electrical and Computer

Engineering, University of Cyprus, Nicosia, CYPRUS

Shengxiang Yang
School of Computer Science and Informatics, De Montfort University, Leicester, UK

Mien Van
School of Electronics, Electrical Engineering and Computer Science, Queen’s University

Belfast, Belfast, UK

Changhe Li
School of Automation and Hubei Key Laboratory of Advanced Control and Intelligent

Automation for Complex Systems, China University of Geosciences, Wuhan, CHINA

Marios Polycarpou
KIOS Research and Innovation Center of Excellence, Department of Electrical and Computer

Engineering, University of Cyprus, Nicosia, CYPRUS

Abstract

Ant colony optimization is a swarm intelligence metaheuristic inspired by the foraging behavior of

some ant species. Ant colony optimization has been successfully applied to challenging optimization

problems. This paper investigates existing ant colony optimization algorithms specifically designed

for combinatorial optimization problems with a dynamic environment. The investigated algorithms

are classified into two frameworks: evaporation-based and population-based. A case study of using

these algorithms to solve the dynamic travelling salesperson problem is described. Experiments are

systematically conducted using a proposed dynamic benchmark framework to analyze the effect of

important ant colony optimization features on numerous test cases. Different performance measures are

used to evaluate the adaptation capabilities of the investigated algorithms, indicating which features are

the most important when designing ant colony optimization algorithms in dynamic environments.

Corresponding Author: Michalis Mavrovouniotis (Email: mavrovouniotis.michalis@ucy.ac.cy)

I. INTRODUCTION

Ant colony optimization (ACO) is a well-known metaheuristic for combinatorial optimization

problems inspired by the foraging behavior of real ant colonies [1], [2]. Ants are able to find

the shortest path between a food source and their nest [3]. They lay pheromones (a chemical

substance produced by ants) on the ground to mark their path, forming in this way a pheromone

trail, and they tend to follow paths marked by strong pheromone concentrations. In this way, the

ants are able to share information with their nest mates.

In ACO, a colony of (artificial) ants cooperates in constructing high-quality solutions to

difficult combinatorial optimization problems [4]. The construction of solutions is guided by

(artificial) pheromone trails. The pheromone model used to update the pheromone trails is

inspired by the pheromone trail laying and following behavior of real ants. This is basically

a parametrized probabilistic model that is modified by the ants to reflect their experience while

optimizing a particular problem.

ACO was initially designed for solving static combinatorial optimization problems [4]. How-

ever, the environments of many real-world problems are often dynamic [5]. A dynamic combina-

torial optimization problem can be seen as a series of different static problem instances. Hence, a

straightforward method to deal with these type of problems is to consider each dynamic change

as the arrival of a new problem instance that needs to be solved from scratch. However, this

method is often impractical when the dynamic change is relatively small [5], [6], [7]. A better

strategy is to adapt to dynamic changes by transferring the past experience of the optimization

process since the new environment will be in some sense related to the old one. ACO is a good

choice in adapting to dynamic changes because it naturally implements a memory structure

(i.e., the pheromone model), allowing ACO to remember the past experience. Therefore, when

a dynamic change occurs the past experience can be transferred via the pheromone trails of

previously optimized environments [7]. Successful ACO applications to dynamic combinatorial

optimization problems include Internet-like network routing [8], vehicle routing [9] and train

scheduling [10].

In the last decade, studying ACO algorithms for dynamic environments attracted a lot of

attention because of their intrinsic features [6], [7]. Several dynamic strategies have been de-

signed to enhance the adaptation capabilities of ACO [11], [12], [13], [14]. These strategies

have been mainly tested on different dynamic variations of the travelling salesperson problem

(TSP), which makes the dynamic TSP (DTSP) an ideal subject for a case study in this paper.

However, in the existing DTSPs [15], [16], [17], [18], [19], [20], important dynamic optimization

settings (e.g., the type, frequency, and magnitude of the dynamic change) are not following any

experimentation protocol. This causes many difficulties for researchers to analyze the strengths

and weaknesses of algorithms in DTSPs. Consequently, the following important questions arise:

Which ACO algorithm performs best under which dynamic settings and why? Which ACO features

are important when addressing dynamic environments? We strongly believe that it would be

beneficial to have a unified dynamic benchmark framework to evaluate algorithms in DTSPs

with common dynamic settings [21], [22].

This paper aims to provide insights concerning the behavior of ACO using the DTSP as a

case study. In order to achieve this aim, we set out the following two objectives. First, the

existing ACO algorithms designed for DTSPs are classified according to their framework (i.e.,

evaporation-based or population-based). Second, a unified dynamic benchmark framework is

proposed to systematically carry out a critical evaluation of the most important features of ACO

algorithms (i.e., the decision rule for constructing solutions, the policy for updating pheromone

trails and the dynamic strategy for enhancing adaptation capabilities) on different test cases. In

fact, this benchmark framework will also be able to serve as an initial proving ground for new

algorithmic ideas in dynamic environments.

The rest of this paper is organized as follows. Section II describes the generation of dynamic

test cases utilizing the unified dynamic benchmark framework with the TSP as the base problem.

Section III classifies the ACO algorithms from the literature that have been designed for DTSPs.

Section IV outlines the experimental setup of our study. Next, Section V presents and analyzes

the experimental results. Finally, concluding remarks are presented in Section VI.

II. DYNAMIC TRAVELLING SALESPERSON PROBLEM

In this section, we describe how dynamic test cases can be generated from a static problem

instance. TSP is used as the base problem to generate the dynamic test cases in this paper

because it is a problem without too many technicalities (e.g., hard constraints). Hence, it is

more convenient to evaluate algorithms because their behaviors will not be obscured by the

technicalities of the problem [23]. Additionally, the TSP is an important NP-hard combinatorial

optimization problem arising in several applications [24]. Finally, the best ACO algorithms for

the TSP very often perform well when applied to more complex problems. For example, the Ant

Colony System [1], which is one of the best performing ACO algorithms on the TSP, is used to

solve world-scale instances of vehicle routing problems [25].

A. TSP Formulation

The TSP can be described as follows: given a collection of cities, the objective of a salesperson

is to find the shortest Hamiltonian cycle of visiting all of the cities once before finally returning

to the starting city. More formally, a TSP problem instance is modeled by a complete directed

weighted graph G = (N,A), where N is a set of n nodes and A is a set of arcs fully connecting

the nodes. For the classical TSP, nodes and arcs represent respectively the cities and the links

between the cities. Each arc (i, j) ∈ A is associated with a non-negative value wij ∈ R
+,

which represents the distance between nodes i and j. In this paper, we will use symmetric TSP

problem instances to generate dynamic test cases and, hence, these distances are independent of

the direction of traversing the arcs, that is, wij = wji for every pair of nodes.

B. Generating Dynamic Test Environments

Every TSP problem instance consists of a weight matrix that contains all the weights associated

with the arcs of the corresponding graph G. In order to generate dynamic test cases the weight

matrix of the problem is subject to changes as follows:

W(T)={wij(T)}n×n, (1)

where W(·) is the weight matrix and T is the environmental period index which is synchronized

with the algorithm during the optimization process. Therefore, the environmental period index

is defined as T = ⌈t/f⌉, where f is the frequency of change and t is the evaluation counter of

the algorithm.

A particular TSP solution π = [π1, . . . , πn] is a permutation of node indices, and for the

dynamic TSP, it is evaluated as follows:

φ(π, t) = wπnπ1
(T) +

n−1
∑

i=1

wπiπi+1
(T). (2)

Mainly, there are two components of the graph G representing the problem that can change: 1)

the set of nodes, and 2) the weights on the arcs. A change to any of these problem components

will also cause a change to the weight matrix defined in Equation 1 and, thus, it may affect

the algorithm’s output: the best output before a change may not be the best (or even feasible)

after the change. Real-world applications that encompass the aforementioned types of dynamic

changes can be found in many fields, including transportation. For example, changes in the traffic

situation (i.e., weight changes) or changes in the visiting locations (i.e., node changes).

1) DTSP with Node Changes: The key idea to generate a dynamic test case with this type

of changes is to replace nodes from the current working node set Nin(T), where Nin(0) = N ,

with newly introduced nodes drawn from another set Nout(T). The latter set Nout(T) is initially

generated with n new random nodes in the range of the N set. A dynamic change of this type

occurs as follows. Every f evaluations exactly ⌈mn⌉ nodes are randomly selected from Nout(T)

to replace exactly ⌈mn⌉ randomly selected nodes from Nin(T), where m (m ∈ (0, 1]) defines

the magnitude of change. The higher the value of m, the more nodes will be replaced. In this

way, the weight matrix will be affected because the weights on the arcs connecting the replaced

nodes will be modified.

2) DTSP with Weight Changes: A dynamic test case with this type of changes can be generated

by assigning an increasing/decreasing factor value to the arc connecting nodes i and j as follows:

wij(T + 1) =

wij(0) +Rij, if arc (i, j) ∈ AS(T),

wij(T), otherwise,
(3)

where wij(0) is the initial weight of arc (i, j) (from the static TSP instance when T = 0), Rij is

a normally distributed random number (with zero mean and standard deviation set proportional

to wij(0) as in [21]) that defines the modified factor value to arc (i, j), and AS(T) ⊂ A defines

the set of arcs randomly selected for the change at that period. Consider that the size of the set

A is defined by the number of arcs as follows: n(n − 1). Then, the size of AS(T) is defined

by the magnitude of change (i.e., m ∈ (0, 1]) and the size of A. Therefore, every f evaluations

exactly ⌈mn(n− 1)⌉ arcs will be selected to change their weights. The higher the value of m,

the more arcs will be selected for changes.

C. Some Additional Remarks

It must be noted that there are some ACO algorithms that benefit from the use of less ants

(e.g., the Ant Colony System [1]), resulting in less evaluations per algorithmic iteration, and

some other ACO algorithms that benefit from the use of more ants (e.g., the hyper-populated

ant colonies [26], [27]), resulting in more evaluations per algorithmic iteration. Therefore, the

frequency of change is expressed in evaluations in the described dynamic benchmark framework.

In this way, a fair comparison between the competing algorithms is ensured with the generated

DTSP test cases because the dynamic changes occur at exactly the same period of time (i.e.,

.

.

.

node changes

1 . . . n

1

n

(a)

weight changes

. . .1 n

1

.

.

.

n

(b)

Fig. 1: Illustration of the weight matrix when node (a) and weight (b) dynamic changes (with

m = 0.2 in this example) occur. Gray boxes denote a change to the weight. Note that the

symmetry with respect to the main diagonal line is due to the fact that symmetric problem

instances are used to generate DTSPs.

all algorithms have exactly the same number of evaluations available between the environmental

changes). Also, the period of change is restricted either at the start or at the end of an algorithmic

iteration [28].

From the way the magnitude of change is defined for both DTSP types, there exists an

interesting observation: the weights of the same number of arcs, but not necessarily the same

arcs, are modified when the same value of m is selected for DTSPs that utilize symmetric

problem instances. For example, in Figure 1 the dynamic change with magnitude set to m = 0.2

will change one node for a problem of size five (i.e., ⌈0.2× 5⌉) when node changes occur and

four arcs for the same problem (i.e., ⌈0.2×5(5−1)⌉) when weight changes occur. Consider that

there are two arcs connecting two nodes and their weights are the same in symmetric problem

instances. For a problem of size five in a fully connected graph, each node is connected with

the remaining four nodes. Therefore, when one node is replaced, the weights of eight arcs in

total will be modified as shown in Figure 1(a). For the same problem, the weights of the four

selected arcs will be modified when weight changes occur, but, due to the symmetric property of

the problem instance, each time the weight of an arc (i, j) changes, the weight of the arc (j, i)

changes to the same value. As a result, the weights of eight arcs in total will actually change

(as in the case of node changes) as shown in Figure 1(b).

III. CLASSIFICATION OF ACO ALGORITHMS

A. ACO for the Dynamic Travelling Salesperson Problem

In the ACO metaheuristic, a colony of ω artificial ants constructs solutions by incrementally

selecting feasible solution components. Each solution component is associated with a pheromone

value which is used to guide artificial ants when selecting the next solution component. Since

the TSP is considered as the base problem to generate dynamic test cases, it is used as a concrete

example to describe the ACO metaheuristic in this section.

With probability 1 − q0 (q0 ∈ [0, 1]) each ant chooses the next node probabilistically. The

probability with which ant k chooses node j from node i is defined as follows:

pkij =

[τij]
α[ηij]

β

∑
l∈Nk

i
[τil]

α[ηil]
β , if j ∈ N k

i ,

0, otherwise,

(4)

while with probability q0 each ant k chooses the next node j with the highest probability as

follows:

j = argmax
l∈N k

i

{[τil]
α[ηil]

β}, (5)

where τij and ηij = 1/wij(T) are, respectively, the pheromone trail value (which is initialized

with a value τ0) and the heuristic value (which is available a priori) of the arc connecting node

i to node j, α and β are two parameters that control the relative influence of the pheromone

versus the heuristic information, and N k
i is the set of nodes that ant k has not selected yet when

being at node i.

When q0 = 0.0, we have the normal random proportional decision rule in which ants

make moves probabilistically using only Equation 4. When q0 > 0.0, we have the so-called

pseudorandom proportional decision rule, introduced in the Ant Colony System [1], in which

ants make the best possible moves as indicated by the existing pheromone trails and heuristic

information using Equation 5, in combination with the probabilistic moves defined in Equation 4.

B. ACO Framework Types

There are two framework types of the ACO metaheuristic. First, the evaporation-based frame-

work that typically utilizes the random proportional decision rule as shown in Algorithm 1.

Second, the population-based framework that typically utilizes the pseudorandom proportional

decision rule as shown in Algorithm 2. These two frameworks also differ in the way their

pheromone trails are updated and, consequently, in the way they adapt to dynamic changes.

Algorithm 1 Evaporation-Based Framework

1: I ← 0 and t← 0

2: initialize all pheromone trails τij uniformly with a value τ0

3: while termination condition is not satisfied do

4: construct ω solutions using the random proportional rule in Equation 4

5: evaluate all solutions using Equation 2

6: t← t+ ω

7: find the best solution πib from the I–th iteration

8: if φ(πib, t) is better than φ(πbs, t) then

9: πbs ← πib

10: end if

11: reduce all pheromone trails τij using Equation 6

12: increase the pheromone trails τij using Equation 7

13: I ← I + 1

14: end while

15: OUTPUT: the best-so-far solution πbs

1) Adapting via Pheromone Evaporation: The evaporation-based framework used in this paper

adopts the pheromone update policy of the MAX -MIN Ant System (MMAS) [29], which

is one of the best performing evaporation-based algorithms. The pheromone trails are updated

by applying evaporation as follows:

τij ← (1− ρ)τij, ∀(i, j) ∈ A, (6)

where ρ (ρ ∈ (0, 1]) is the evaporation rate. After evaporation, the best ant deposits pheromone

on the arcs belonging to its constructed solution (i.e., πbest) with an amount proportional to the

quality of that solution as follows:

τij ← τij +∆τ bestij , ∀(i, j) ∈ πbest, (7)

where ∆τ bestij = 1/φ(πbest, t) is the proportional amount of pheromone to be deposited. The

best ant may be either the best ant found in the current iteration (iteration-best), in which case

πbest = πib, or the best ant found since the start of the algorithm (best-so-far), in which case

πbest = πbs, or a combination of both [30]. The lower and upper limits τmin and τmax of the

Algorithm 2 Population-Based Framework

1: I ← 0 and t← 0

2: initialize all pheromone trails τij uniformly with a value τ0

3: set the population-list M(I)← ∅

4: while termination condition is not satisfied do

5: construct ω solutions using the pseudorandom proportional rule in Equations 4 and 5

6: evaluate all solutions using Equation 2

7: t← t+ ω

8: find the best solution πib from the I–th iteration

9: if population-list M(I) is full then

10: select the oldest solution πout to leave the population-list M(I)

11: reduce the pheromone trails τij using Equation 9

12: end if

13: πin ← πib

14: insert πin in the population-list M(I)

15: increase the pheromone trails τij using Equation 8

16: if φ(πib, t) is better than φ(πbs, t) then

17: πbs ← πib

18: end if

19: I ← I + 1

20: end while

21: OUTPUT: the best-so-far solution πbs

pheromone trail values are imposed such that ∀(i, j) : τmin ≤ τij ≤ τmax. The τmin and τmax

values are always updated proportionally to the solution quality of the current best-so-far ant.

When a dynamic change occurs, the current pheromone trails will contain mixed information

that can either guide the search towards promising areas of the search space containing high-

quality solutions or misguide the search towards poor areas of the search space containing low-

quality solutions. Hence, some previously generated pheromone trails may lead to a possibly

poor solution for the new environment. Therefore, pheromone evaporation is responsible for the

gradual reduction of these pheromone trails.

2) Adapting via Population-list: The population-based framework uses a population-listM(I)

(i.e., an archive of solutions) of size pop, in which at each iteration I the solution of the iteration-

best ant is stored in the population-list [12]. The population-list is directly associated with the

pheromone trails, that is, whenever an ant in enters the population-list, a positive pheromone

update is performed as follows:

τij ← τij +∆τ, ∀(i, j) ∈ πin, (8)

where ∆τ is the constant pheromone amount to be deposited and πin is the solution of the ant

entering the population-list (i.e., πin = πib). Whenever an ant out leaves the population-list, due

to the limited size of M(I), a negative pheromone update is performed as follows:

τij ← τij −∆τ, ∀(i, j) ∈ πout, (9)

where ∆τ is the constant pheromone amount to be removed and πout is the solution of the ant

leaving the population-list. In this way, outdated pheromone trails are reduced directly when a

dynamic change occurs.

There exists an interesting relationship between the evaporation-based and population-based

frameworks: they both use pheromone trail limits, which is an important feature to avoid early

search stagnation [30], although these are explicit, as discussed earlier, in the evaporation-based

framework and implicit in the population-based framework. In particular, the pheromone trail

values in the population-based framework can never drop below the initial pheromone value

τ0 because a constant amount of pheromone ∆τ will always be added to the trails when the

ant enters the population-list and the same constant amount of pheromone ∆τ will always be

removed from the same trails when the ant leaves the population-list. On the contrary, the

additional pheromone value a trail can receive can be at most pop, which is the size of the

population-list, times the constant amount of pheromone ∆τ . Hence, in the population-based

framework is implicitly guaranteed that ∀(i, j) : τ0 ≤ τij ≤ τ0 + pop∆τ .

It must be also noted that the pheromone trail limits (i.e., τmin = τ0 and τmax = τ0+pop∆τ) in

the population-based framework are fixed, whereas the pheromone trail limits in the evaporation-

based framework are variable (they change whenever a new best solution is discovered).

C. ACO Variants for the DTSP

As discussed earlier, both ACO frameworks can successfully address DTSPs using their

pheromone trails to utilize previous experience and adapt to the newly generated environments,

either via pheromone evaporation in the case of the evaporation-based framework (denoted as

MMAS in Table I) or via the population-list in the case of the population-based framework

(denoted as P-ACO in Table II). However, these adaptation mechanisms often become ineffective

once ACO shows a stagnation behavior (i.e., when all the ants follow the same path and construct

the same solution over and over again). This is because excessive growth of pheromone trails

will be generated on the arcs of a single solution. Therefore, in case a dynamic change occurs,

it will be difficult for the ants to escape from this solution (which could be optimal previously)

in order to search for the new optimal solution. Since both frameworks focus their search on a

specific area of the search space, there is a consequent danger of getting trapped in a stagnation

situation. Although the pheromone trail limit feature, discussed in Section III-B, is designed

to counteract this situation, both ACO frameworks need to be further endowed with additional

features when addressing dynamic environments [14].

Several dynamic strategies have been designed to balance the knowledge transferred and diver-

sity maintained in ACO, and, consequently, improve ACO’s adaptation capabilities in dynamic

environments [7]. Achieving a good balance between these two factors is not a trivial task. On one

hand, increasing the diversity of the constructed solutions resolves the issue of search stagnation.

On the other hand, it may disturb the optimization process because of too much randomization.

Additionally, transferring knowledge is essential for faster recovery when dynamic changes occur.

However, if too much knowledge is transferred or utilized from previous environments, then the

reoptimization process may start near a (possibly poor-quality) local optimum and get stuck

there. In fact, these two factors are also conflicting because if the diversity maintained is not

enough, then it will be difficult for ACO to utilize any knowledge transferred.

Existing ACO variants for the DTSP are classified into evaporation-based and population-

based framework variants in Tables I and II, respectively. The main common feature of all these

ACO variants is that they prevent the concentration of large amounts of pheromone trails on the

arcs of a single solution. In the evaporation-based variants, this is typically achieved by reducing

these pheromone trails much faster than the remaining pheromone trails and/or increasing some

pheromone trails on arcs of other promising solutions in the search space. On the contrary,

the population-based variants typically introduce newly generated solutions, that do not belong

in the constructing colony, in the population-list. In this way, the population-list is unlikely to

maintain identical solutions that will result in stagnation of the search. It must be noted that

the dynamic strategies of most variants are based on explicit actions when a change occurs. For

TABLE I: Dynamic strategies of evaporation-based variants

ACO Algorithm Reference Dynamic Strategy Explicit Action

MMAS† [29] Adapt via pheromone evaporation –

Restart-Strategy [16] Reinitialize all pheromone trails by the same degree Modify pheromone values

τ -Strategy [16] Utilize the location of dynamic changes Modify pheromone values

η-Strategy [16] Utilize the location of dynamic changes Modify pheromone values

Shake-Strategy [11] Reduce trails with higher pheromone amount more Modify pheromone values

Max-Strategy [31] Reinitialize all trails proportional to the maximum pheromone value Modify pheromone values

MMAScaste [32] Multiple colonies with different decision rules –

MMASR [33] Reinitialize all pheromone trails to the initial value Modify pheromone values

MMASA [34] Adapt the pheromone evaporation rate Increase the evaporation rate

MMASS [35] Self-adapt the pheromone evaporation rate –

MC-MMAS [36] Multiple colonies with independent pheromone trails –

† Conventional evaporation-based framework

TABLE II: Dynamic strategies of population-based variants

ACO Algorithm Reference Dynamic Strategy Explicit Action

P-ACO† [12] Adapt via population-list –

RIACO [37] Generate random immigrants –

EIACO [37] Generate elitism-based immigrants Update previous best solution

HIACO [37] Generate both random and elitism-based immigrants Update previous best solution

M-PACO [33] Population-list with triggered random immigrants –

MIACO [38] Generate memory-based immigrants Update memory structure

EIIACO [39] Generate environmental-information based immigrants Update previous population-list

HIACO-II [40] Generate either random or elitism-based immigrants Update previous best solution

† Conventional population-based framework

detailed descriptions of these variants, refer to their original references listed in Tables I and II.

IV. EXPERIMENTAL SETUP

A. Dynamic Test Cases

TSP instances were obtained from the TSPLIB benchmark library [41], which is available at

https://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/, to generate dynamic test

cases as described in Section II. Specifically, the frequency of change was set proportionally

to the size of the problem instance as follows: f = 2.5n and f = 25n, indicating quickly

(e.g., before the algorithm converges, denoted as fast) and slowly (e.g., after the algorithm has

converged, denoted as slow) changing environments, respectively. The magnitude of change

was set to m = 0.1, m = 0.25, m = 0.5, and m = 0.75, indicating small, to medium, to large

dynamic changes, respectively. The dynamic settings for each DTSP test case are selected to

systematically analyze the dynamic behavior of ACO algorithms (i.e., their ability to recover

fast and produce the best output). Note that usually as the frequency of change is faster and the

magnitude of change is increasing the DTSP test case becomes harder to address [14], [22].

B. Parameter Settings

The common parameters of all ACO algorithms were set to typical values (i.e., α = 1 and

β = 5) for all the experiments [4]. The colony size ω for DTSPs with node changes was set to

ω = 5 and for DTSPs with weight changes was set to ω = 25. The remaining parameters were

set to ρ = 0.8 and pop = 3 for ACO algorithms using these parameters.

Note that these parameters were found to yield reasonable performance in most DTSPs. In

general, the best results on both types of DTSPs are obtained when setting the evaporation-based

variants with a high pheromone evaporation rate and the population-based variants with a small

population-list size. On the contrary, the colony size varies for the two types of DTSPs: a smaller

colony size performs better in DTSPs with node changes, whereas a larger colony size performs

better in DTSPs with weight changes.

For each ACO algorithm on each DTSP test case, 30 independent runs were executed on the

same set of random seed numbers. For each run, 100 environmental changes were allowed and

the value of the best-so-far ant since the last change of the environment was recorded.

C. Performance Measures

Five metrics for evaluating the performance of ACO algorithms were considered: 1) offline

performance, 2) best before change, 3) robustness, 4) diversity, and 5) λ-branching factor. The

first three metrics are classified as performance metrics, whereas the last two metrics are classified

as behavior metrics. The set of metrics is described in the following:

• Offline performance (P̄offline) measures how well the algorithm performs until it finds

a high-quality solution. It is one of the most frequently used performance metrics for

dynamic optimization, which is basically the average value of the best-so-far solution from

all evaluations. This metric is defined as follows:

P̄offline =
1

E

E
∑

t=1

φ(πbs, t), (10)

where φ(πbs, t) is the value of the best-so-far solution since the last change of the environ-

ment and E is the total number of evaluations, which is calculated as E = Kf , where K

and f are the total number of environmental changes and frequency of change, respectively.

• Best before change (P̄change) measures how good the final outcome of an algorithm is. It

is another useful performance metric, which is the average value of the best-so-far solution

found for each environmental period. This metric is defined as follows:

P̄change =
1

K

K
∑

T=1

φ(πbs, T f − 1), (11)

where φ(πbs, T f − 1) is the value of the best-so-far solution achieved just before the T–th

environmental change.

• Robustness (P̄robust) measures how stable an algorithm is when a change occurs (i.e., the

output’s degradation) [33], [42]. Suppose that at evaluation count t a change occurs, then

the robustness of an algorithm is calculated by considering the output just before the change

(i.e., at evaluation count t − 1) and the output when a change occurs (i.e., at evaluation

count t) as follows:

P̄robust =
1

K − 1

K−1
∑

T=1

1, if
φ(πbs,T f−1)
φ(πbs,T f)

> 1,

φ(πbs,T f−1)
φ(πbs,T f)

, otherwise.
(12)

The values of P̄robust are normalized and range over the interval [0, 1], where a value closer

to 1 indicates better robustness because the outputs will have less degradation.

• Diversity (D̄) is one of the most common behavior metrics for dynamic optimization, which

is calculated as follows:

D̄ =
1

ω(ω − 1)

ω
∑

p=1

ω
∑

q 6=p

(

1−
CA(p, q)

n

)

, (13)

where CA(p, q) is the total number of common arcs between the solutions constructed by

the p–th and q–th ants. As the D̄ value decreases, it indicates that ants started following

similar paths, and when the value becomes zero, it indicates that the colony has reached

search stagnation.

• λ-Branching factor (λ̄) measures the distribution of the pheromone trail values [43]. The

λ-branching factor is given by the number of arcs incident to node i satisfying the following

condition: τij ≥ τ imin+λ(τ imax−τ imin), where τ imax and τ imin are, respectively, the maximum

and minimum pheromone values on arcs incident to node i, and λ ∈ [0, 1] is a constant. The

average λ-branching factor (i.e., λ̄) from all nodes’ λ-branching factors gives an indication

of the level of search space exploration generated by the ants. The values of λ̄ range over

the interval [2, n− 1], where a value of 2 indicates stagnation behavior.

Finally, in order to support our comparisons, pairwise Wilcoxon rank sum statistical tests with

a significance level of 0.05 were performed. In the case of multiple comparisons, Kruskal–Wallis

statistical tests were performed, followed by posthoc pairwise comparisons using Wilcoxon rank

sum statistical tests with p–values adjusted by Bonferroni correction.

V. EXPERIMENTAL RESULTS AND THEIR ANALYSIS

This section presents representative examples of the results obtained in our experimental

studies and analyzes them1.

A. Comparison between Evaporation-Based and Population-Based Frameworks

In this study, the evaporation-based framework is compared with the population-based frame-

work. The experiments were carried out using three TSPLIB instances to generate the dynamic

test cases: kroA200, rd400 and u1060, in which the number in the instance name identifies

the problem size, and they are considered as small, medium and large instances, respectively.

Table III shows the P̄offline, P̄change, and P̄robust results obtained by the two frameworks for

DTSPs with m = 0.25. To better understand their behavior, Figure 2 shows plots of the λ̄ (with

λ = 0.05) and D̄ results against the last ten node changes on the TSPLIB instance rd400. From

the experimental results, the following observations can be drawn.

First, in terms of P̄offline, the population-based framework performs significantly better than

the evaporation-based framework in most quickly changing DTSPs. This is because the pseudo-

random proportional decision rule used in the population-based framework is more greedy than

the random proportional decision rule used in the evaporation-based framework and, thus, it di-

rects the search towards high-quality solutions quickly. On the contrary, the random proportional

decision rule requires sufficient time to explore the search space (and most probably discover

better-quality solutions). Hence, the evaporation-based framework performs significantly better, in

terms of both P̄offline and P̄change, than the population-based framework in most slowly changing

DTSPs. Another reason is that the evaporation-based framework requires some time to make

significant changes to the pheromone trails, because the pheromone evaporation will gradually

decrease outdated pheromone trails down to the explicit τmin value, whereas the population-

based framework decreases outdated pheromone trails much faster, because the pheromone on

1The detailed results of each experimental study are provided as supplementary material. The supplementary material is

available at https://github.com/Mavrovouniotis/ACODTSP.

TABLE III: P̄offline, P̄change, and P̄robust (averaged over 30 runs)

results of evaporation-based and population-based frameworks

(i.e., MMAS and P-ACO, respectively) for DTSPs with m =

0.25.

Metric ACO Framework kroA200 rd400 u1060

weights nodes weights nodes weights nodes

fast

P̄offline

Evaporation 30140 34620 16361 17322 254703 325217

Population 30552 34430 16276 17203 252955 321851

P̄change

Evaporation 29620 33021 15992 16602 249219 314794

Population 30101 33118 15983 16594 247801 312261

P̄robust

Evaporation 0.95 0.77 0.93 0.76 0.92 0.76

Population 0.96 0.82 0.95 0.82 0.92 0.82

slow

P̄offline

Evaporation 28300 31635 14947 15892 241128 306628

Population 28745 31887 15154 15952 239814 304820

P̄change

Evaporation 27964 30771 14641 15403 236858 300317

Population 28363 31113 14870 15527 235303 299506

P̄robust

Evaporation 0.94 0.72 0.93 0.71 0.91 0.73

Population 0.94 0.78 0.93 0.77 0.91 0.79

Bold values indicate statistical significance.

the arcs belonging to the solutions to be removed from the population-list will be directly set

to the τ0 value (which is also the implicit τmin value). Nevertheless, it appears that the time

required for the random proportional decision rule to express its effect is affected by the scale

of the problem. For example, on the TSPLIB instance u1060, the population-based framework

significantly outperforms the evaporation-based framework even in slowly changing DTSPs. This

is natural because in large problem instances with huge search spaces the random proportional

decision rule will spend an enormous amount of exploration time until it discovers areas in the

search space containing high-quality solutions.

Second, the population-based framework usually maintains a higher λ-branching factor than

the evaporation-based framework [see Figure 2(b)]. This is because the pheromone trails of the

evaporation-based framework are more likely to represent a single solution (i.e., the solution of

the best ant). In particular, the pheromone on the arcs corresponding to this solution will rise up

to the explicit τmax value, while on all the other arcs the pheromone will decrease down to the

explicit τmin value. On the contrary, the pheromone trails of the population-based framework,

are more likely to represent multiple solutions (i.e., the solutions stored in the population-list).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

90 91 92 93 94 95 96 97 98 99 100

A
v
e
ra

g
e
 D

iv
e
rs

it
y

Environmental Change T

rd400 (with node changes) - fast, m = 0.25

Evaporation
Population

(a)

 2

 2.1

 2.2

 2.3

 2.4

 2.5

90 91 92 93 94 95 96 97 98 99 100

A
v
e
rg

a
e
 λ

 -
 B

ra
n
c
h
in

g
 F

a
c
to

r

Environmental Change T

rd400 (with node changes) - fast, m = 0.25

Evaporation
Population

(b)

Fig. 2: D̄ (a) and λ̄ (b) (averaged over 30 runs) results of evaporation-based and population-based

frameworks against the last ten environmental changes.

Hence, the pheromone on the arcs corresponding to these solutions will increase (and most

probably have the same value), while on all the other arcs the pheromone will remain equal to

the implicit τmin value.

Third, in terms of P̄robust, the population-based framework significantly outperforms the other

framework in almost all DTSPs. For DTSPs with weight changes, the robustness of both frame-

works is very high. This is because the environmental changes generated by the weight changes

may not affect the current best-so-far solution (the arcs in which their weights change may

not necessarily belong to that solution). On the contrary, if a dynamic change occurs to the

nodes, it will always affect the current best-so-far solution and, consequently, affect the current

optimization process. Recall from Figure 1 that all arcs incident to the affected node will be

modified. Therefore, it is guaranteed that at least one affected arc will belong to the current

best-so-far solution.

Fourth, it is interesting to observe that although the average λ-branching factor of the population-

based framework suggests more exploration than the evaporation-based framework [see Fig-

ure 2(b)], the average diversity the former framework generates is usually lower than the latter

framework [see Figure 2(a)]. This is because the pseudorandom proportional decision rule

exploits the search experience accumulated by the colony more strongly than the random pro-

portional decision rule as discussed previously. Consequently, the solutions constructed will have

a relatively large number of common arcs, resulting in lower D̄ results.

B. Effect of Main Framework Features

In this study, the two main features of the evaporation-based and population-based frameworks

are investigated: 1) decision rule (i.e., random denoted as R or pseudorandom denoted as

P), and 2) pheromone update policy (i.e., proportional denoted as P or constant denoted as

C). Specifically, the two ACO frameworks with their default decision rule and pheromone

update policy are compared with alternative feature combinations (in the format “ACO frame-

work” “decision rule” “pheromone policy”). For example, the default feature com-

binations of the evaporation-based and population-based frameworks are denoted as Evapora-

tion R P and Population P C, respectively. The experiments were carried out using the same

set of TSPLIB instances as in the previous study. Figure 3 shows the P̄offline results obtained by

the two frameworks with all possible feature combinations on the TSPLIB instance kroA200.

From Figure 3(a) it can be observed that the constant amount of pheromone has no effect

on the performance of the evaporation-based framework. This is because only a single ant is

allowed to add pheromones in each iteration. Also, from Figure 3(b) it can be observed that the

proportional amount of pheromone degrades the performance of the population-based framework.

This is because the resulting amount of pheromone representing the population-list solutions is

very small to bias the search. Furthermore, the use of the random proportional decision rule

has a negative effect on the performance of the population-based framework. As we have seen

previously, the way pheromones are distributed on the arcs of the constructing graph promote

search space exploration. This is reflected by a higher λ-branching factor for the population-based

framework [see Figure 2(b)]. Therefore, a decision rule that further promotes the exploration may

result in too much randomization. Similarly, the use of the pseudorandom proportional decision

rule has a negative effect on the performance of the evaporation-based framework. This shows

that the two main ACO framework features often complement each other.

C. Effect of Dynamic Strategies

In this study, the dynamic strategies integrated with the evaporation-based and population-

based frameworks are investigated. The experiments were carried out using a wider set of TSPLIB

instances than in the previous studies. From the statistical comparisons of the evaporation-based

 28000

 28500

 29000

 29500

 30000

 30500

 31000

 31500

 32000

 32500

 33000

0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

fast slow
A

v
e
ra

g
e
 O

ff
lin

e
 P

e
rf

o
rm

a
n
c
e

m

kroA200 (with weight changes)

Evaporation_R_P*
Evaporation_P_P
Evaporation_P_C
Evaporation_R_C

(a)

 28000

 30000

 32000

 34000

 36000

 38000

0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

fast slow

A
v
e
ra

g
e
 O

ff
lin

e
 P

e
rf

o
rm

a
n
c
e

m

kroA200 (with weight changes)

Population_R_P
Population_P_P
Population_P_C*
Population_R_C

(b)

Fig. 3: P̄offline (averaged over 30 runs) results of evaporation-based (a) and population-based (b)

frameworks with alternative decision rules and pheromone update policies. *These combinations

are the default ones.

and population-based frameworks against their variants, listed in Tables I and II, respectively,

the following observations can be highlighted.

First, evaporation-based variants performing severe explicit actions, such as MMASR and

Max-Strategy variants, are not effective for DTSPs with weight changes. As discussed earlier,

the environmental changes generated by weight changes usually affect the current best-so-far

solution less than when the environmental changes are generated by node changes. Hence, a

reinitialization of the pheromone trails (either to the initial pheromone value with MMASR or

to the maximum pheromone value with Max-Strategy) may destroy useful previous knowledge.

On the contrary, these variants perform significantly better than the evaporation-based framework

in most DTSPs with node changes (except when m = 0.1, in which the changing environments

are more likely to be similar).

Second, MC-MMAS andMMAScaste variants perform significantly better than the evaporation-

based framework in several DTSPs with node changes, while they maintain a competitive

performance in DTSPs with weight changes. These variants focus their search on multiple areas

of the search space (either using multiple colonies with MC-MMAS or multiple castes with

MMAScaste). Therefore, the past experience available to be utilized is broadened when a change

occurs.

Third, EIACO, MIACO and HIACO-II variants perform significantly better than the population-

based framework in most DTSPs, both with node and weight changes. It is interesting to note that

these variants have a common feature: their dynamic strategy generates elitism-based immigrants.

This shows that this dynamic strategy is responsible for the performance improvement. Elitism-

based immigrants are generated via transferring knowledge from the previous environment and

replace solutions in the population-list to maintain diversity. Therefore, when the changing

environments are similar (e.g., when m = 0.1), the utilization of this knowledge will guide

the search process to promising areas faster.

Fourth, RIACO and EIIACO variants are effective only for a few extreme DTSP test cases

(i.e., when f is fast and m = 0.75). Otherwise, they perform significantly worse than the

population-based framework in most DTSPs. This is due to the fact that the diversity generated

is very high and therefore the ongoing optimization process is disturbed.

D. Effect of Utilizing Change-Related Information

From a practical perspective, change-related information may be available in real time to

the optimizer (e.g., using advances in information and communication technologies or related

technologies, in the case of transportation systems). In this study, the outdated solutions are

repaired using change-related information: the affected nodes are removed and the newly intro-

duced nodes are placed in the best possible position when a change occurs [12]. The experiments

were carried out on the same set of TSPLIB instances as in the previous study. Figure 4 shows

the P̄offline results obtained by the evaporation-based and population-based frameworks when

change-related information is utilized and when it is not, on the TSPLIB instance kroA150. In

addition, these results are compared with the results obtained by the Restart-Strategy, η-Strategy

and τ -Strategy variants that were specifically designed to utilize change-related information as

listed in Table I.

From Figure 4, the following observations can be drawn. First, the performance of both ACO

frameworks is significantly improved when change-related information is utilized in all DTSPs.

Second, the three competing strategies outperform the two ACO frameworks only when they

do not utilize change-related information. This shows the effectiveness of utilizing such kind of

information to explore and/or exploit the affected areas in the search space faster.

25000

26000

27000

28000

29000

30000

31000

0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

fast slow

A
v
e
ra

g
e
 O

ff
lin

e
 P

e
rf

o
rm

a
n
c
e

m

kroA150 (with node changes)

Evaporation
Population
Restart-Strategy*
η-Strategy*
τ-Strategy*

25000

26000

27000

28000

29000

30000

31000

0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

fast slow

A
v
e
ra

g
e
 O

ff
lin

e
 P

e
rf

o
rm

a
n
c
e

m

kroA150 (with node changes)

Evaporation
Population
Restart-Strategy*
η-Strategy*
τ-Strategy*

Fig. 4: P̄offline (averaged over 30 runs) results of evaporation-based and population-based

frameworks, and three evaporation-based variants. Each bar is divided into two parts that

represent the results when utilizing change-related information (darker) or not (lighter). ∗These

variants have been designed to utilize change-related information and, thus, the values when

information is not utilized do not exist.

E. Comparisons with Evolutionary Algorithms

In this study, the two ACO frameworks (i.e., MMAS and P-ACO) and two of the best

performing variants (i.e., MC-MMAS and EIACO) are compared with a state-of-the-art evo-

lutionary algorithm that utilizes one of the best performing TSP search operators (i.e., the

generalized partitioned crossover (GPX) [44]) and the elitism-based immigrant genetic algorithm

(EIGA), which is one of the best performing algorithms in evolutionary dynamic optimization

[21], [45], and also the evolutionary counterpart of EIACO.

Since we compare algorithms which are structurally different, the frequency of change is set

to f = 100n (which is considered as slow) to allow sufficient evaluations between the dynamic

changes for all types of algorithms. The magnitude of change is randomly chosen from a uniform

distribution in (0.0, 0.5] (which is considered small to medium) for every dynamic change. The

experiments were carried out on a different set of TSPLIB instances from the previous studies.

Table IV shows the P̄offline results obtained by the aforementioned algorithms for DTSPs with

weight changes.

From Table IV, it can be observed that the two ACO frameworks outperform the evolutionary

algorithms in almost all DTSPs. This is because for this class of problems (i.e., with a network

TABLE IV: P̄offline results (averaged over 30 runs) of ACO

algorithms compared with evolutionary algorithms for DTSPs

with weight changes.

TSPLIB Instance P-ACO MMAS EIGA GPX EIACO MC-MMAS

berlin52 7261 7195 7414 7392 7177 7191

eil101 572 568 581 578 569 567

kroB200 28481 28261 29161 29026 28231 28345

lin318 40154 39957 41543 41054 40456 39932

pr439 105376 104591 105904 106193 104633 103918

p654 49138 49415 48178 47921 49127 49533

rat783 8434 8521 8515 8509 8436 8444

pr1002 270701 274370 281952 279321 268532 274301

u1432 158822 160881 163427 161203 157503 161244

Bold values indicate statistical significance.

Underline values indicate no statistical difference with the bold value.

environment) the pheromone structure of ACO algorithms is built across the solution search

space as a weighted graph and it can be taken as the natural representation of past environmental

information. Therefore, there is a larger capacity of information that ACO can utilize from its

pheromone structure when a dynamic change occurs in comparison to evolutionary algorithms

(which are restricted only to the information of their evolving populations).

Also, it is interesting to observe that EIACO outperforms EIGA although both algorithms

utilize the same dynamic strategy. Once again, it can be observed that: 1) EIACO outperforms P-

ACO in most DTSPs, 2) MC-MMAS is competitive withMMAS, and 3) P-ACO outperforms

MMAS as the size of the problem increases. These comparisons are consistent with the

observations found in our previous studies.

VI. CONCLUSIONS

This paper investigates the behavior of the ACO metaheuristic in dynamic environments.

Several ACO algorithms are classified according to their framework (i.e., evaporation-based and

population-based). The travelling salesperson problem is used as the base problem to generate

dynamic test cases using a proposed dynamic benchmark framework. Experimental studies were

systematically conducted to investigate the effect of different features on the performance of

ACO in dynamic environments.

From the experimental results, the following concluding remarks can be drawn. First, the

effect on the performance of the proportional decision rule used to construct solutions strongly

depends on the pheromone update policy of the ACO framework. Second, the dynamic strategies

further enhance the adaptation capabilities of the two ACO frameworks, but their effect on the

performance strongly depends on the dynamic settings of the problem. And third, the utilization

of change-related information is always effective for both ACO frameworks.

Finally, the source code of the dynamic benchmark framework together with the perfor-

mance measures and the ACO algorithms used in this paper is available at https://github.com/

Mavrovouniotis/ACODTSP. The source code can be useful to researchers who are interested

in generating the same or different dynamic test cases to compare their own algorithms (not

necessarily ACO) in dynamic environments.

ACKNOWLEDGMENTS

This work was supported in part by the European Union’s Horizon 2020 research and innova-

tion programme under grant agreement No. 739551 (KIOS CoE) and from the Government of

the Republic of Cyprus through the Directorate General for European Programmes, Coordination

and Development, and in part by the National Natural Science Foundation of China under Grants

61673331 and 61673355.

REFERENCES

[1] M. Dorigo and L. M. Gambardella, “Ant colony system: A cooperative learning approach to the traveling salesman problem,”

IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 53–66, Apr. 1997.

[2] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: Optimization by a colony of cooperating agents,” IEEE Trans.

Syst., Man, and Cybern., Part B: Cybern., vol. 26, no. 1, pp. 29–41, Feb. 1996.

[3] S. Goss, S. Aron, J. L. Deneubourg, and J. M. Pasteels, “Self-organized shortcuts in the Argentine ant,” Naturwissenschaften,

vol. 76, no. 12, pp. 579–581, Dec. 1989.

[4] M. Dorigo, M. Birattari, and T. Stützle, “Ant colony optimization,” IEEE Comput. Intell. Mag., vol. 1, no. 4, pp. 28–39,

Nov. 2006.

[5] Y. Jin and J. Branke, “Evolutionary optimization in uncertain environments–A survey,” IEEE Trans. Evol. Comput., vol. 9,

no. 3, pp. 303–317, June 2005.

[6] G. Leguizamón and E. Alba, “Ant colony based algorithms for dynamic optimization problems,” in Metaheuristics for

Dynamic Optimization, E. Alba, A. Nakib, and P. Siarry, Eds. Berlin, Heidelberg: Springer, 2013, pp. 189–210.

[7] M. Mavrovouniotis, C. Li, and S. Yang, “A survey of swarm intelligence for dynamic optimization: Algorithms and

applications,” Swarm Evol. Comput., vol. 33, pp. 1–17, Apr. 2017.

[8] G. Di Caro and M. Dorigo, “AntNet: Distributed stigmergetic control for communications networks,” J. Artif. Intell. Res.,

vol. 9, pp. 317–365, Dec. 1998.

[9] R. Montemanni, L. M. Gambardella, A. E. Rizzoli, and A. V. Donati, “Ant colony system for a dynamic vehicle routing

problem,” J. Combinatorial Optimization, vol. 10, no. 4, pp. 327–343, Dec. 2005.

[10] J. Eaton, S. Yang, and M. Mavrovouniotis, “Ant colony optimization with immigrants schemes for the dynamic railway

junction rescheduling problem with multiple delays,” Soft Comput., vol. 20, no. 8, pp. 2951–2966, Aug. 2016.

[11] C. Eyckelhof and M. Snoek, “Ant systems for a dynamic TSP,” in Ant Algorithms, LNCS, vol. 2463, M. Dorigo, G. Di Caro,

and M. Sampels, Eds. Berlin, Heidelberg: Springer, 2002, pp. 88–99.

[12] M. Guntsch and M. Middendorf, “Applying population based ACO to dynamic optimization problems,” in Ant Algorithms,

LNCS, vol. 2463, M. Dorigo, G. Di Caro, and M. Sampels, Eds. Berlin, Heidelberg: Springer, 2002, pp. 111–122.

[13] M. Guntsch, M. Middendorf, and H. Schmeck, “An ant colony optimization approach to dynamic TSP,” in Proc. 3rd

Annu. Conf. Genetic and Evolutionary Computation, GECCO’01, San Francisco, CA, USA: Morgan Kaufmann, 2001, pp.

860–867.

[14] M. Mavrovouniotis and S. Yang, “Ant colony optimization with immigrants schemes for the dynamic travelling salesman

problem with traffic factors,” Appl. Soft Comput., vol. 13, no. 10, pp. 4023–4037, Oct. 2013.

[15] J. Liu, “Rank-based ant colony optimization applied to dynamic traveling salesman problems,” Eng. Optimization, vol. 37,

no. 8, pp. 831–847, 2005.

[16] M. Guntsch and M. Middendorf, “Pheromone modification strategies for ant algorithms applied to dynamic TSP,” in

Applications of Evolutionary Computation, LNCS, vol. 2037, E. J. W. Boers, Ed. Berlin, Heidelberg: Springer, 2001, pp.

213–222.

[17] C. Silva and T. Runkler, “Ant colony optimization for dynamic traveling salesman problems,” in ARCS Workshops, 2004,

pp. 259–266.

[18] L. Kang, A. Zhou, B. McKay, Y. Li, and Z. Kang, “Benchmarking algorithms for dynamic travelling salesman problems,”

in Proc. 2004 IEEE Congr. Evolutionary Computation, Portland, OR, 2004, pp. 1286–1292.

[19] A. Siemiński, “Ant colony optimization parameter evaluation,” in Multimedia and Internet Systems: Theory and Practice,

vol. 183, A. Zgrzywa, K. Choroś, and A. Siemiński, Eds. Berlin, Heidelberg: Springer, 2013, pp. 143–153.

[20] A. Siemiński, “Using ACS for dynamic traveling salesman problem,” in New Research in Multimedia and Internet Systems,

vol. 314, A. Zgrzywa, K. Choroś, and A. Siemiński, Eds. Cham: Springer, 2015, pp. 145–155.

[21] R. Tinós, D. Whitley, and A. Howe, “Use of explicit memory in the dynamic traveling salesman problem,” in Proc. 2014

Annu. Conf. Genetic and Evolutionary Computation, GECCO’14, New York, NY: ACM, 2014, pp. 999–1006.

[22] M. Mavrovouniotis, S. Yang, and X. Yao, “A benchmark generator for dynamic permutation-encoded problems,” in Parallel

Problem Solving from Nature, PPSN XII, LNCS, vol. 7492, C. Coello, V. Cutello, K. Deb, S. Forrest, G. Nicosia, and

M. Pavone, Eds. Berlin, Heidelberg: Springer, 2012, pp. 508–517.

[23] T. Weise, R. Chiong, J. Lassig, K. Tang, S. Tsutsui, W. Chen, Z. Michalewicz, and X. Yao, “Benchmarking optimization

algorithms: An open source framework for the traveling salesman problem,” IEEE Comput. Intell. Mag., vol. 9, no. 3, pp.

40–52, Aug. 2014.

[24] H. Handa, L. Chapman, and X. Yao, “Robust route optimization for gritting/salting trucks: A CERCIA experience,” IEEE

Comput. Intell. Mag., vol. 1, no. 1, pp. 6–9, Feb. 2006.

[25] A. E. Rizzoli, R. Montemanni, E. Lucibello, and L. M. Gambardella, “Ant colony optimization for real-world vehicle

routing problems,” Swarm Intell., vol. 1, no. 2, pp. 135–151, Dec. 2007.

[26] A. Siemiński, “Using hyper populated ant colonies for solving the TSP,” Vietnam J. Comput. Sci., vol. 3, no. 2, pp.

103–117, May 2016.

[27] A. Prakasam and N. Savarimuthu, “Novel local restart strategies with hyper-populated ant colonies for dynamic optimization

problems,” Neural Comput. Appl., vol. 31, no. 1, pp. 63–76, Jan. 2019.

[28] M. Mavrovouniotis, F. M. Müller, and S. Yang, “Ant colony optimization with local search for dynamic travelling salesman

problems,” IEEE Trans. Cybern., vol. 47, no. 7, pp. 1743–1756, July 2017.

[29] T. Stützle and H. Hoos, “MAX–MIN ant system and local search for the traveling salesman problem,” in Proc. 1997

IEEE Int. Conf. Evol. Comput., Indianapolis, IN, 1997, pp. 309–314.

[30] T. Stützle and H. H. Hoos, “MAX–MIN ant system,” Future Gener. Comput. Syst., vol. 16, no. 8, pp. 889–914, June

2000.

[31] D. Angus and T. Hendtlass, “Ant colony optimisation applied to a dynamically changing problem,” in Developments in

Applied Artificial Intelligence, LNCS, vol. 2358, T. Hendtlass and M. Ali, Eds. Berlin, Heidelberg: Springer, 2002, pp.

618–627.

[32] L. Melo, F. Pereira, and E. Costa, “Multi-caste ant colony algorithm for the dynamic traveling salesperson problem,” in

Adaptive and Natural Computing Algorithms, LNCS, vol. 7824, M. Tomassini, A. Antonioni, F. Daolio, and P. Buesser,

Eds. Berlin, Heidelberg: Springer, 2013, pp. 179–188.

[33] M. Mavrovouniotis and S. Yang, “A memetic ant colony optimization algorithm for the dynamic travelling salesman

problem,” Soft Comput., vol. 15, no. 7, pp. 1405–1425, July 2011.

[34] M. Mavrovouniotis and S. Yang, “Adapting the pheromone evaporation rate in dynamic routing problems,” in Applications

of Evolutionary Computation, LNCS, vol. 7835, A. Esparcia-Alcázar, Ed. Berlin, Heidelberg: Springer, 2013, pp. 606–615.

[35] M. Mavrovouniotis and S. Yang, “Ant colony optimization with self-adaptive evaporation rate in dynamic environments,” in

2014 IEEE Symp. Computational Intelligence Dynamic and Uncertain Environments, Orlando, FL, USA, 2014, pp. 47–54.

[36] M. Mavrovouniotis and S. Yang, “Multi-colony ant algorithms for the dynamic travelling salesman problem,” in 2014

IEEE Symp. Computational Intelligence Dynamic and Uncertain Environments, Orlando, FL, USA, 2014, pp. 9–16.

[37] M. Mavrovouniotis and S. Yang, “Ant colony optimization with immigrants schemes for dynamic environments,” in Parallel

Problem Solving from Nature, PPSN XI, LNCS, vol. 6239, R. Schaefer, C. Cotta, J. Kołodziej, and G. Rudolph, Eds. Berlin,

Heidelberg: Springer, 2010, pp. 371–380.

[38] M. Mavrovouniotis and S. Yang, “Memory-based immigrants for ant colony optimization in changing environments,” in

Applications of Evolutionary Computation, LNCS, vol. 6624, C. Di Chio, S. Cagnoni, C. Cotta, M. Ebner, A. Ekárt,

A. Esparcia-Alcázar, J. Merelo, F. Neri, M. Preuss, H. Richter, J. Togelius, and G. Yannakakis, Eds. Berlin, Heidelberg:

Springer, 2011, pp. 324–333.

[39] M. Mavrovouniotis and S. Yang, “An immigrants scheme based on environmental information for ant colony optimization

for the dynamic travelling salesman problem,” in Artificial Evolution, LNCS, vol. 7401, J.-K. Hao, P. Legrand, P. Collet,

N. Monmarché, E. Lutton, and M. Schoenauer, Eds. Berlin, Heidelberg: Springer, 2012, pp. 1–12.

[40] M. Mavrovouniotis and S. Yang, “Interactive and non-interactive hybrid immigrants schemes for ant algorithms in dynamic

environments,” in Proc. 2014 IEEE Congr. Evolutionary Computation, Beijing, China, 2014, pp. 1542–1549.

[41] G. Reinelt, “TSPLIB–A traveling salesman problem library,” ORSA J. Comput., vol. 3, no. 4, pp. 376–384, Nov. 1991.

[42] Y. Jin, K. Tang, X. Yu, B. Sendhoff, and X. Yao, “A framework for finding robust optimal solutions over time,” Memetic

Computing, vol. 5, no. 1, pp. 3–18, Mar. 2013.

[43] L. M. Gambardella and M. Dorigo, “Ant-Q: A reinforcement learning approach to the traveling salesman problem,” in

Proc. 12th Int. Conf. Machine Learning, A. Prieditis and S. Russell, Eds. San Francisco, CA, USA: Morgan Kaufmann,

1995, pp. 252–260.

[44] D. Whitley, D. Hains, and A. Howe, “Tunneling between optima: Partition crossover for the traveling salesman problem,”

in Proc. 11th Annu. Conf. Genetic and Evolutionary Computation, GECCO’09, New York, NY: ACM, 2009, pp. 915–922.

[45] S. Yang, “Genetic algorithms with memory- and elitism-based immigrants in dynamic environments”, Evol. Comput., vol.

16, no. 3, pp. 385–416, 2008.

