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Abstract

This paper deals with a general choice that one faces when developing an al-
gorithm for a stochastic optimization problem: either design problem-specific
algorithms that exploit the exact objective function, or to consider algorithms
that only use estimated values of the objective function, which are very general
and for which simple non-sophisticated versions can be quite easily designed.
The Probabilistic Traveling Salesman Problem and the Ant Colony Optimiza-
tion metaheuristic are used as a case study for this general issue. We consider
four Ant Colony Optimization algorithms with different characteristics. Two al-
gorithms exploit the exact objective function of the problem, and the other two
use only estimated values of the objective function by Monte Carlo sampling.
For each of these two groups, we consider both hybrid and non-hybrid versions
(that is, with and without the application of a local search procedure). Com-
putational experiments show that the hybrid version based on exact objective
values outperforms the other variants and other state-of-the-art metaheuristics
from the literature. Experimental analysis on a benchmark of instances designed
on purpose let us identify in which conditions the performance of estimation-
based variants can be competitive with the others.

1 Introduction

The Probabilistic Traveling Salesman Problem (PTSP) can be seen as the prototype of
stochastic combinatorial optimization problems. It consists in finding a Hamiltonian
a priori tour visiting a set of customers of minimal expected length, given that each
customer has a known probability of actually requiring a visit, and that a customer
is skipped by the traveling salesman if it is revealed that it does not require a visit.

The similarity of the PTSP with the classical, deterministic Traveling Salesman
Problem (TSP), makes it a natural choice when extending an algorithm from the
domain of deterministic to that of stochastic problems. Among the key differences
between stochastic and deterministic problems there are the fact that the objective
function in stochastic problems is usually much more computationally expensive than
in deterministic ones, and in some cases the stochastic problem is so complex that no
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analytical closed-form expression exists for the objective function. These two features
of stochastic problems makes it a common choice to integrate in optimization algo-
rithms in general, and in heuristics and metaheuristics in particular, approximations
of the objective function. In particular, three different situations may arise when
computing the objective function of a stochastic problem: (1) closed-form expressions
for the expected values are available, and the objective function is computed exactly
based on these objective values; (2) as in case 1, closed-form expressions for the ex-
pected values are available, but the objective function is considered to be too time
consuming to be always computed during optimization. Therefore, ad-hoc and fast
approximations of the objective are designed and used during optimization (possi-
bly alternating exact and approximated evaluations); (3) the problem is so complex
in terms of decision variables and/or in terms of probabilistic dependences, that no
closed-form expression exists for the expected values, therefore, the objective function
is estimated by simulation or by Monte Carlo sampling. All the three above situations
have been addressed by the PTSP literature, with a varying number of papers. Let
us now review the main contributions of each type.

The main contributions making use of the exact PTSP objective function are
the following. Rossi and Gavioli [29] adapt to the PTSP two well known TSP tour
construction heuristics, the Nearest Neighbor and the Clarke-Wright algorithms, by
explicitly including the customers probability in the evaluation and selection of new
portions of the tour to construct. Rossi and Gavioli experimentally evaluate the two
heuristics on homogeneous PTSP instances with up to 100 uniformly distributed cus-
tomers, and compare their performance to that of the classical deterministic Nearest
Neighbor and Clarke-Wright heuristics that solve a TSP. Their conclusion is that for
the tested instance it is important to use the techniques specifically designed for the
PTSP only for instances with more than 50 customers, and customers probability less
than 0.6. In [1], Bertsimas proposes two local search procedures for homogeneous
PTSP instances, the 2-p-opt and the 1-shift, and applies them to the solution pro-
duced by the TSP heuristic called the Space Filling curve. For the two local search
procedures, the author gives recursive equations that efficiently compute the change
of the homogeneous PTSP expected cost of two neighboring solutions. The efficiency
is comparable to that of similar local search procedures for the (deterministic) TSP.
Subsequently, other authors have verified that the recursive equations proposed in
[1] are not correct, and derive correct expressions both for the homogeneous PTSP
(Bianchi et al. [6]) and for the heterogeneous PTSP (Bianchi and Campbell [3]).

Ad hoc approximations are surrogates of the exact objective function that are
faster to be computed, and that are used to speed up the optimization process. Ex-
amples of ad hoc approximations include: mathematical approximations of the exact
objective function, such as truncated expressions neglecting terms estimated to be
small; the use of the objective function of some deterministic combinatorial optimiza-
tion problem related to the stochastic one; the use of scenarios, instead of considering
the true probabilistic model. In the context of the PTSP, ad hoc approximations
have been used by several authors. Bianchi et al. [4, 5] use an ACO algorithm origi-
nally developed for the TSP, ACS, to solve homogeneous PTSP instances, and show
that for high customers probability, ACS performs better than using the exact PTSP
objective function. Branke and Guntsch [10, 11] consider an ad hoc approximation,
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called ‘depth-approximation’, based on neglecting some terms estimated to be small.
They integrate it in an ACO algorithm, and show that computation times can be
significantly reduced, without worsening the solution quality. Tang and Miller-Hooks
[31] propose approximated expressions for the cost of adding and inserting a customer
in a PTSP solution. These approximations, combined with the 2-opt and Or-opt local
search, obtain results which are competitive with those obtained with the exact ob-
jective function. Liu [27] integrates one of the local search algorithms proposed in [31]
into a scatter search framework, and obtains better results. Campbell [12] focuses on
PTSP instances with very small average customer probability, and develops approxi-
mations based on aggregating customers together. Aggregation is used to obtain fast
solutions that are then improved by local search, obtaining better results than not
using aggregation.

The idea behind the second type of approximations, that is, sampling approxi-
mations, is the following. Since in most stochastic problems the objective function
(or a part of it) consists in computing an expected value of a quantity, it is possible
to estimate expectations, and thus the objective function, by sampling or by Monte
Carlo-type simulations. This type of approximation is interesting because, first of all,
it is applicable to stochastic problems where a closed-form expression for the expected
value(s) is not available (for example, due to complicated dependencies among ran-
dom variables), secondly, the sampling-approximation is quite general, and is not tied
to the particular analytical form of the objective function, like ad-hoc approximations
are. Thus, any knowledge acquired on a given problem could be in principle exploited
in any other one. The PTSP is used in the literature also as a test problem to in-
vestigate the performance of algorithms that exploit sampling-based approximations,
since solutions obtained by such techniques can be eventually assessed by the exact
objective function. Thus, the primal goal of applying algorithms using sampling-based
approximations to the PTSP, is not to find state-of-the art solutions, but to investi-
gate the behavior and the performance of such algorithms in a controlled environment.
Papers that investigate sampling-based algorithms for the PTSP include [9], [24], and
[8]. In [9], Bowler et al. analyze experimentally by a stochastic Simulated Annealing
algorithm the asymptotic behavior of (sub) optimal homogeneous PTSP solutions, in
the limit of pn (customers probability times number of customers) going to infinity.
The PTSP objective function is estimated by sampling, and the sampling estimation
error is used as a sort of temperature regulated during the annealing process. Gutjahr
[24] proposes an Ant Colony Optimization metaheuristic called S-ACO, and exper-
imentally tests it on the PTSP and on the TSP with time windows and stochastic
service times. S-ACO implements the sampling approximation by considering vari-
able numbers of samples, increasing with the iteration counter of the algorithm. The
precise number of samples is decided on the base of a statistical parametric test. Fi-
nally, Birattari et al. [8] propose the ACO/F-Race algorithm, where at each iteration
the selection of the new best solution is done with a procedure called F-Race, which
is more sophisticated than the simple parametric test of S-ACO. As explained in [7],
F-Race consists in a series of steps at each of which a new scenario ω is sampled
and is used for evaluating the solutions that are still in the race (at the beginning,
all solutions generated by ants in a given iteration, together with the current best
solution, are in the race). At each step, a Friedman test is performed and solutions
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that are statistically dominated by at least another one are discarded from the race.
The solution that wins the race is stored as the new current best solution. Prelimi-
nary experiments on homogeneous instances of the PTSP problem have shown that
ACO/F-Race improves over the parametric procedure adopted by S-ACO.

Given the current state of research on the PTSP, there is still space for at least
two interesting issues, that are the ones addressed by this paper: first of all, the
design of high performance algorithms for the PTSP, exploiting the already available
efficient 1-shift and 2-p-opt local search developed in [6] and [3]. Up to now, only
simple heuristics exploited these efficient local searches, but their integration with
metaheuristics is a promising area. In this paper, we consider the Ant Colony Opti-
mization metaheuristic (ACO) and the 1-shift local search, with the goal to obtain a
state-of-the-art algorithm for the PTSP. The second issue which is still open in the
literature is the is the design of sampling-based local search algorithms, that could
be used to hybridize sampling-based metaheuristics possibly enhancing their perfor-
mance. In this paper, we thus consider also a sampling-based version of ACO with a
sampling-based version of 1-shift.

The interest in considering exact versus estimation-based algorithms for the PTSP
lies also in the fact that these two approaches have very different features: on the
one hand, algorithms exploiting the exact objective function are in principle more
efficient, since there is no uncertainty when comparing solutions; on the other hand,
they are tailored to the specific problem, and they cannot be easily extended to others;
moreover, a lot of effort might be necessary in order to design efficient algorithms such
as the 1-shift and the 2-p-opt local search, which exploit rather complicated recursive
expressions for the cost of a local search move. On the contrary, methods based on the
sampling approximation can be very general, and implementations of varying degrees
of sophistication can be designed.

The remainder of the paper is organized as follows. Section 2 formally defines the
PTSP and the notation used. Section 3 explains the working principles of the ACO
metaheuristic, and describes in detail the four ACO variants that we propose (hybrid
and non-hybrid, and based on exact and estimated objective function values). Section
4 is devoted to the computational experiments performed for the assessment of our
proposed ACO algorithms, and for comparisons with other methods. This section
also describes the test instances used and the tuning of ACO parameters. Finally,
section 5 summarizes the main results achieved by this paper.

2 Statement of the problem

For many delivery companies, only a subset of the customers require a pickup or
delivery each day. Information may be not available far enough in advance to create
optimal schedules each day for those customers that do require a visit or the cost to
acquire sufficient computational power to find such solutions may be prohibitive. For
these reasons, it is not unusual to design a tour containing all customers (called a
priori tour), and each day to follow the ordering of this a priori tour to visit only the
customers requiring a visit that day (see Figure 1). The tour actually traveled each
day when the customers requiring a visit are revealed is called a posteriori tour. The
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Figure 1: An a priori tour (left), and a possible a posteriori tour (right) obtained from
the a priori tour by visiting only the customers requiring a visit on a given random
realization of customers, and by keeping the same order of visit as in the a priori tour.
In this example, a random realization where only customers number 1, 2, 4, 5, 6, 9,
10 require a visits is shown.

problem of finding an a priori tour of minimum expected cost, given a set of customers
each with a given probability of requiring a visit, defines the PTSP. In the remainder
of this paper, the terms a priori tour tour, and solution, will be used interchangeably.

More formally, let N = {i | i = 1, 2, . . . , n} be a set of n customers. For each
pair of customers i, j ∈ N , d(i, j) represents the distance between i and j. Here,
we assume that the distances are symmetric, that is, d(i, j) = d(j, i). In the re-
mainder of the thesis, distances will also be referred to as costs. An a priori tour
λ = (λ(1), λ(2), . . . , λ(n)) is a permutation over N , that is, a tour visiting all cus-
tomers exactly once. Given the independent probability pi that customer i requires
a visit, qi = 1 − pi is the probability that i does not require a visit. The general
case where customers probabilities pi may be different, is referred to as heterogeneous
PTSP, while if probabilities are all equal (pi = p for every customer i), the problem
is called homogeneous PTSP. We will use the following convention for any customer
index i:

i :=
{
i(modn) iff i 6= 0 and i 6= n
n otherwise, (1)

where i(modn) is the remainder of the division of i by n. The reason for defining
the above convention is that we want to use as customer indices numbers from 1 to
n (and not from 0 to n− 1), and we need to make computations with the ‘modulus’
operator. The expected length of an a priori tour λ can be computed in O(n2) time
with the following expression derived by Jaillet [25]

E[L(λ)] =
n∑
i=1

n−1∑
r=1

d(λ(i), λ(i+ r))pλ(i)pλ(i+r)

i+r−1∏
i+1

qλ. (2)

We use the following notation for any i, j ∈ {1, 2, . . . , n}

j∏
i

qλ :=


∏j
t=i qλ(t) if 0 ≤ j − i < n− 1∏n
t=i qλ(t)

∏j
u=1 qλ(u) if i− j > 1

1 otherwise.
(3)
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The expression for the objective function (equation (2)) has the following intuitive
explanation: each term in the summation represents the distance between the ith

customer and the (i+r)th customer weighted by the probability that the two customers
require a visit (pλ(i)pλ(i+r)) while the r− 1 customers between them do not require a
visit (

∏i+r−1
i+1 qλ).

In the homogeneous PTSP, where pi = p and qi = q for every customer i, the
expression for the objective function still requires O(n2) computation time, but it is
a bit simpler than equation (2):

E[L(λ)] =
n∑
i=1

n−1∑
r=1

p2qr−1d(λ(i), λ(i+ r)). (4)

3 Description of ACO and local search algorithms

In this section we first describe the general working principles of ACO and local
search algorithms, and we then concentrate on the specific algorithms studied in this
paper, that are: pACS with its hybrid version pACS+1-shift which are based on exact
objective function evaluations, and pACS-S with is hybrid version pACS-S+1-shift-S
which are based on sampling-estimated objective function evaluations.

3.1 General working principles

The inspiring concept that links optimization with biological ants is based on the
observation of their foraging behavior: when walking on routes from the nest to a
source of food, ants seem to find not simply a random route, but a quite ‘good’ one,
in terms of shortness, or, equivalently, in terms of time of travel; thus, their behavior
allows them to solve an optimization problem. This kind of success of biological ants is
entirely explained by their type of communication and by their way of deciding where
to go: While walking, ants deposit a chemical called pheromone on the ground, and
they tend to choose routes marked by strong pheromone concentrations. Given two
initially unexplored routes, a short and a long one, between the nest and the source of
food, ants choose at first randomly which one to walk. Ants that have chosen, at first
by chance, the shorter route are the first to reach the food and to start their return
to the nest. Therefore, pheromone starts to accumulate faster on the shorter route
than on the longer one. Subsequent ants tend to follow the shorter route because it
has more pheromone, thus reinforcing it more and more, and further attracting other
ants on the good route.

Combinatorial problems addressed by ACO are usually encoded by a construction
graph G = (V,A), a completely connected graph whose nodes V are components of
solutions, and arcs A are connections between components. Finding a solution means
constructing a feasible walk in G. For example, in the TSP nodes correspond to
customers, arcs correspond to streets connecting customers, and a feasible solution is
a Hamiltonian path on the graph. Some other examples are described in [19].

The ACO algorithm is essentially the interplay of three procedures [15]: Construc-
tAntsSolutions, UpdatePheromones, and DeamonActions, as represented by Algorithm
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1.
ConstructAntsSolutions is the process by which artificial ants construct walks on the

construction graph incrementally and stochastically. For a given ant, the probability
pkl to go from a node k to a feasible successor node l is an increasing function of τkl
and ηkl(u), where τkl is the pheromone on arc (k, l), and ηkl(u) is the heuristic value
of arc (k, l), which should be a reasonable guess of how good arc (k, l) is (for example,
in the TSP ηkl is the reciprocal of the distance between customer k and customer l).
The heuristic value may depend on the partial walk u.

UpdatePheromones is the process by which pheromone is modified on arcs. Pheromone
may be both increased and decreased. Pheromone is modified (decreased) by each
ant on each arc as soon as it is added to a partial walk on the construction graph, this
operation is called local update. Moreover, pheromone is further modified (increased)
on selected good solutions to more strongly bias the search in future iterations, and
this operation is called global update. Decreasing pheromone on selected arcs is impor-
tant, in order to avoid too rapid convergence of the algorithm to suboptimal solutions.
Interestingly, pheromone decreases also in the biological environment, due to evapo-
ration.

DeamonActions are centralized operations, such as comparing solution values among
ants in order to find the best solution, or running a local search procedure. In this
last case, the ACO algorithm is also referred to as ‘hybrid’, since it exploits a pro-
cedure that is itself another, in principle sophisticated, algorithm. In its simplest
form, a local search algorithm works as follows. Consider a starting current solution,
evaluate its neighboring solutions (according to a given neighborhood structure), and
set the best or the first found neighbor which is better than the current solution as
new current solution. Iterate this process until an improving solution is found in the
neighborhood of a current solution. The local search stops when the current solution
is better than all its neighbors, that is, when the current solution is a local optimum.

Algorithm 1 Ant Colony Optimization (ACO)
while termination condition not met do

ScheduleActivities
ConstructAntsSolutions
UpdatePheromone
DeamonActions

end ScheduleActivities
end while

The first algorithms based on the ant colony analogy appeared at the beginning
of the nineties in a paper by Dorigo et al. [17] later published as [18]. ACO is
now a widely studied metaheuristic for combinatorial optimization problems, as the
recent book by Dorigo and Stützle [19] testifies. Several convergence proofs have
been provided for the ACO metaheuristic. Convergence in value, which, informally,
means that the algorithm will find at least once the optimal solution, has been given
by Gutjahr [21] and by Stützle and Dorigo [30]. Convergence in solution, which,
informally, means that the algorithm will generate over and over the optimal solution,
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has been given by Gutjahr [22]. For details and for a comprehensive discussion, see
Dorigo and Stützle [19].

3.2 Algorithms based on exact objective function evaluations

3.2.1 The pACS and pACS+1-shift algorithms

Because of the structural similarity between the PTSP and the TSP (the solution
structure is the same, only the cost of a solution is different), as a first implementation
of the ACO algorithm for the PTSP, we consider an adaptation to the PTSP of the
ACS algorithm by Dorigo and Gambardella [16] which was successfully applied to the
TSP. We call this algorithm probabilistic ACS, or pACS. We call pACS+1-shift the
hybridized version of pACS obtained by inserting in pACS the 1-shift local search (this
local search will be described in detail in Section 3.2.2). Preliminary experiments that
compare pACS with ACS on homogeneous PTSP instances are reported in [4, 5]. The
skeleton of pACS (and of pACS+1-shift) is shown by Algorithm 2. The procedures

Algorithm 2 pACS [and pACS+1-shift]
1: Initialization
2: for iteration k = 1, 2, . . . do
3: Initialize best ant solution λBA
4: for ant a = 1, 2, . . . ,m do
5: ConstructAntSolution [each ant constructs its solution λa]
6: if E[L(λa)] < E[L(λBA)] then
7: set λBA = λa
8: end if
9: end for

10: if E[L(λBA)] < E[L(λBSF )] then
11: set λBSF = λBA
12: end if
13: [Apply 1-shift(λBA, λBSF ) (Algorithm 4)] % only in pACS+1-shift
14: GlobalPheromoneUpdate
15: end for

Initialization, ConstructAntSolution, and GlobalPheromoneUpdate work as follows.
Initialization consists of four operations: the positioning of m ants on their starting

customers, the initialization of the best-so-far-solution λBSF , the computation and
initialization of the heuristic information η, and the initialization of pheromone τ .
Note that η and τ are bidimensional matrices of information, where ηij and τij are
the values of the heuristic information, respectively pheromone, on the arc (i, j) that
goes from customer i to customer j. Initialization is done as follows in pACS: the
starting customer of each ant is chosen randomly; heuristic information is so that
ηij = 1/dij , where dij is the distance between i and j; pheromone values are set all
equal to τ0, which is computed according to

τ0 =
1

n · E[L(λFI)]
, (5)
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where E[L(λFI)] is the expected length of the tour constructed by the Farthest In-
sertion heuristic [26]. As noted in [16], in the denominator of equation (5) any very
rough approximation of the optimal solution value would suffice, therefore, the ex-
pected cost of other heuristics could be used for the initialization of τ0. Observe that,
in this simple pACS version, η is a static information that is computed just once
during the initialization phase.

ConstructAntSolution is the procedure by which each ant probabilistically builds
a tour by choosing the next customer to move to on the basis of the two types of
information: the pheromone τ and the heuristic information η. When an ant a is on
city i, the next city is chosen as follows.

• With probability q0 (a parameter), a city j that maximizes τij · ηβij is chosen in
the set Ja(i) of the cities not yet visited by ant a. Here, β is a parameter which
determines the relative influence of the heuristic information.

• With probability 1− q0, a city j is chosen randomly with a probability given by

pa(i, j) =


τij ·ηβijP

r∈Ja(i) τir·η
β
ir

, if j ∈ Ja(i)

0, otherwise.
(6)

Hence, with probability q0 the ant chooses the best city according to the pheromone
trail and to the distance between cities, while with probability 1− q0 it explores the
search space in a biased way.

The procedure ConstructAntSolution also takes care of local pheromone updates,
where each ant, after it has chosen the next city to move to, applies the following
local update rule:

τij ← (1− ρ) · τij + ρ · τ0, (7)

where τ0 is the initial pheromone parameter, and ρ, 0 < ρ ≤ 1, is another parameter.
The effect of the local updating rule is to make less desirable an arc which has already
been chosen by an ant, so that the exploration of different tours is favored during one
iteration of the algorithm.

After each ant has built its solution, the best ant solution λBA is updated and
stored (steps 6 to 8 of Algorithm 2) for future comparison with the best-so-far-solution
λBSF (steps 10 to 12 of Algorithm 2). After λBSF has also been updated, the Glob-
alPheromoneUpdate function is applied to modify pheromone on arcs belonging to
λBSF with the following global updating rule

τij ← (1− α) · τij + α ·∆τij , (8)

where
∆τij =

1
E[L(λBSF )]

(9)

with 0 < α ≤ 1 being the pheromone decay parameter, and E[L(λBSF )] is the
expected cost of the best-so-far solution.

As we have already pointed out, pACS is a straightforward adaptation of the ACS
algorithm originally designed for the TSP [16]. Basically, if in the above description
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of pACS (in equations (5) and (9), and in steps 6 to 10 of Algorithm 2) we substitute
the expected length of a solution with the length of it, we obtain ACS. Thus, from
the point of view of code, pACS is very similar to ACS. Note, however, that from
the complexity point of view there are more important differences, since the expected
length of a solution needs O(n2) time to be computed, while the length of a solution
only requires O(n) time. It is useful here to consider in more detail what is the
asymptotic time complexity of each iteration of pACS, as a function of the number
of customers n and of the number of ants m:

t(one iteration of pACS or ACS) = m · t(ConstructAntSolution)
+m · t(computation of the objective value)
+ t(GlobalPheromoneUpdate).

(10)

Procedures ConstructAntSolution and GlobalPheromoneUpdate require respectivelyO(n2)
and O(n) time both in pACS and ACS. Thus, we have

t(one iteration of pACS) = 2m ·O(n2) +O(n) = O(n2), (11)
t(one iteration of ACS) = m ·O(n2) + (m+ 1)O(n) = O(n2). (12)

The asymptotic time complexity is the same in the two algorithms (O(n2)), but the
constant involved are different. In practice, given the same computation time is
allowed, pACS will be able to perform far fewer iterations than ACS.

The hybrid version of pACS, pACS+1-shift, is obtained very simply by applying
the 1-shift local search to the best ant solution after each iteration, as shown in step
13 of Algorithm 2.

3.2.2 The 1-shift local search

The 1-shift neighborhood of an a priori tour is the set of tours obtained by moving a
node which is at position i to position j of the tour, with the intervening nodes being
shifted backwards one space accordingly, as in Figure 2. The number of neighbors
generated by 1-shift moves applied to one a priori tour is O(n2). When the order
in which the 1-shift neighborhood is explored is lexicographic, the cost of a 1-shift
move can be evaluated exactly and recursively in constant time. For the derivation of
these expression in the homogeneous and heterogeneous PTSP, see, respectively, [6]
and [3]. Here, we just illustrate the final recursive expressions in case of homogeneous
and heterogeneous PTSP instances.

Consider, without loss of generality, a tour ζ = (1, 2, . . . , i, i+1, . . . , j, j+1, . . . , n),
and denote by ζi,j a tour obtained from ζ by moving node i to position j and shifting
backwards one space the nodes i+1, ..., j, where i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , n}, and
i 6= j (see Figure 2). Let ∆Ei,j denote the change in the expected length E[L(ζi,j)]−
E[L(ζ)]. Let j = i + k, with 1 ≤ k ≤ n − 1 (we are using the notation expressed by
equation (1)).
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Figure 2: A tour ζ = (1, 2, ..., i, i+ 1, ..., j, j + 1, ..., n) (left) and a tour ζi,j belonging
to its 1-shift neighborhood (right) obtained from ζ by moving node i to position j
and shifting backwards the nodes (i+ 1, ..., j), with n = 10, i = 3, j = 7.

Move cost for homogeneous PTSP instances Given the two-dimensional ma-
trices of partial results A and B

Ai,k =
n−1∑
r=k

qr−1d(i, i+ r) and Bi,k =
n−1∑
r=k

qr−1d(i− r, i), (13)

for k = 1, the move cost is

∆Ei,i+1 = p3[q−1Ai,2 − (Bi,1 −Bi,n−1)− (Ai+1,1 −Ai+1,n−1) + q−1Bi+1,2], (14)

and for k ≥ 2, the move cost is

∆Ei,j = ∆Ei,j−1 + p2[(qn−k − q−k)(qAi,k −Ai,k+1)

+(qk−n − qk−1)(qBi,n−k −Bi,n−k+1)

+(1− q−1)(qkBi,1 −Bj,k+1)

+(q−1 − 1)(qn−kAi,1 −Aj,n−k+1)
+(q − 1)(Aj,1 −Aj,n−k)
+(1− q)(Bj,1 −Bj,k)].

(15)

Move cost for heterogeneous PTSP instances Let us first define the following
products

Qi,j =
j∏
i

q, Qi,j =
i+n−1∏
j+1

q, (16)
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then, we re-define the matrices A and B in terms of Q and Q:

Ai,k =
n−1∑
r=k

d(i, i+ r)pipi+rQi+1,i+r−1 (17)

Bi,k =
n−1∑
r=k

d(i− r, i)pi−rpiQi−r+1,i−1. (18)

Now, for heterogeneous PTSP instances with k = 1, the move cost is

∆Ei,i+1 =
(

1
qi+1

− 1
)
Ai,2 + (qi+1 − 1)(Bi,1 −Bi,n−1)

+ (qi − 1) (Ai+1,1 −Ai+1,n−1) +
(

1
qi
− 1
)
Bi+1,2,

(19)

and for k ≥ 2, the move cost is

∆Ei,j = ∆Ei,j−1 + (Qi,j −
1
Qi,j

)(qjAi,k −Ai,k+1)

+ (
1
Qi,j

−Qi,j)(Bi,n−k −
1
qj
Bi,n−k+1)

+ (1− 1
qj

)Q′i,jBi,1 + (
1
qi
− 1)Bj,k+1

+ (1− qj)Qi,jAi,1 + (1− 1
qi

)Aj,n−k+1

+ (qi − 1)(Aj,1 −Aj,n−k)
+ (1− qi)(Bj,1 −Bj,k).

(20)

Pseudocode of the 1-shift local search The 1-shift local search proceeds in
two phases. The first phase consists of only exploring the moves that swap two
consecutive nodes λ(i) and λ(i+1) of the current tour λ, as represented in pseudocode
by Algorithm 3, named Swapping local search. The costs ∆Ei,i+1 are computed for
every value of i (by means of equation (14) or (19)), and each time a negative ∆Ei,i+1

is encountered, one immediately swaps the two nodes involved. Note that since the
computation of ∆Ei,i+1 only involves two rows of A and B, one can proceed to the
next pair of nodes without recomputing each entire matrix. The local search has, as
second argument, a tour λBSF which is the best-so-far tour known by the algorithm
calling the Swapping local search function. At the end of the first phase of the local
search, an a priori tour is reached for which every ∆Ei,i+1 is positive, and the matrices
A and B are complete and correct for that tour.

The second phase of the local search consists of computing ∆Ei,j with j = i + k
and k ≥ 2 recursively by means of equation 15 or 20. The 1-shift local search is
represented in pseudocode by Algorithm 4. It is implemented as a ‘best-improvement’
local search, that is, the whole neighborhood is explored and the current solution is
updated with the best (improving) neighbor solution. When there are not improving
solutions in the neighborhood, or when the time is over, the search stops.
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Algorithm 3 Swapping local search(λ, λBSF )

for (i = 1, 2, . . . , n) do
compute rows i and i+ 1 of matrices A and B relative to the current solution λ
compute ∆Ei,i+1 according to equation (19)
if (∆Ei,i+1 < 0) then
λ := the tour obtained from λ by switching node λ(i) with node λ(i+ 1)
if E[L(λ)] < E[L(λBSF )] then
λBSF := λ

end if
end if

end for
if (the starting solution has changed) then

re-compute the full matrices A and B
end if

Algorithm 4 1-shift(λ, λBSF )
(1) Swapping local search(λ, λBSF )
while (locally optimal tour not found and time is not over) do

for (i = 1, 2, . . . , n) do
for (k = 2, . . . , n− 2) do

compute ∆Ei,i+k according to equation (15)
end for

end for
if (arg mini,k ∆Ei,i+k < 0) then
λ := tour obtained from λ by inserting λ(i) after λ(i+ k)
if E[L(λ)] < E[L(λBSF )] then
λBSF := λ

end if
go to (1)

else
return locally optimal tour λ

end if
end while
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3.3 Algorithms based on sampling-estimated objective func-
tion evaluations

Here, we describe an extension of pACS and of 1-shift where the algorithms do not
use the exact objective function, but instead evaluate solutions and local search moves
by the ‘sampling approximation’ of the objective function.

The sampling approximation is based on the observation that the PTSP objective
function computes an expected value of a random quantity, and therefore it may be
estimated by a sample average. More precisely, given an a priori tour λ, the objective
function may be written as

E[L(λ)] =
∑
ω⊆V

p(ω)L(λ|ω ). (21)

In the above expression, ω is a subset of the set of customers V , L(λ|ω ) is the length
of the tour λ, pruned in such a way as to only visit the customers in ω, skipping the
others, and p(ω) is the probability for the subset of customers ω to require a visit:

p(ω) =
∏
i∈ω

pi
∏

i∈V \ω

qi. (22)

The objective function, as expressed by equation (21), computes the expected length
of the tour λ, over all possible random subsets of customers.

The idea, in sampling approximation, is to estimate the exact expected cost (21)
through sampling in the following way. The length L(λ) is a discrete random variable,
taking the value L(λ|ω ) with probability p(ω). Let ωi, i ∈ 1, 3, ..., N be subsets of
the original set V of n customers sampled independently with probability p(ωi). The
sampling approximation to E[L(λ)] is the following

ESN [L(λ)] =
1
N

N∑
i=1

L(λ|ωi ). (23)

The time complexity of sampling approximation is O(Nn), therefore, the smaller the
sample size N , the bigger the time gain of sampling approximation with respect to the
O(n2) exact objective function. Nevertheless, the smaller N , the bigger the difference,
or error, between approximated and exact computation. Thanks to the strong law of
large number, we can say that the error of sampling approximation is O(1/

√
N).

3.3.1 The pACS-S and pACS-S+1-shift-S algorithm

We call our ACO algorithm based on the sampling approximation pACS-S, and pACS-
S+1-shift-S the hybridized version of pACS-S obtained by inserting in pACS-S the
1-shift-S local search (this local search will be described in detail in Section 3.3.2).
The pseudocode is shown in Algorithm 5. pACS-S uses a variable number of samples
N , linear in the iteration counter k, and quadratic in the number of customers n,
similarly to what has been done by Gutjahr in [24]. Using a variable instead of a
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Algorithm 5 pACS-S [and pACS-S+1-shift-S]
1: Initialization [like in pACS]
2: for iteration k = 1, 2, . . . do
3: Initialize best ant solution λBA
4: Set N = NumberOfSamples(k) [apply Equation (24)]
5: for ant a = 1, 2, . . . ,m do
6: ConstructAntSolution [each ant constructs its solution λa]
7: GenerateSamples(N)
8: Compute ESN [L(λa)] and re-compute ESN [L(λBA)] using the last generated

samples
9: if ESN [L(λa)] < ESN [L(λBA)] then

10: set λBA = λa
11: end if
12: end for
13: GenerateSamples(N)
14: Re-compute ESN [L(λBA)] and ESN [L(λBSF )] using the last generated samples
15: if ESN [L(λBA)] < ESN [L(λBSF )] then
16: set λBSF = λBA
17: end if
18: [Apply 1-shift-S(λBA, λBSF ) (Algorithm ??)] % only in pACS-S+1-shift-S
19: GlobalPheromoneUpdate [using ∆τij = (ESN [L(λBSF )])−1]
20: end for
21: Compute E[L(λBSF )]

fixed number of samples seems appropriate also from a theoretical point of view, as
shown in [23]. Here, N is computed according to the following rule

N = c+ bb · n2 · kc, (24)

where c and b are two parameters.
In pACS-S, after each solution has been constructed, it is evaluated by the sam-

pling approximation with a freshly generated set of samples (step 8 of Algorithm 5).
The same set of samples is used to re-evaluate the best-ant solution λBA. After the
ants construction phase is over, at each iteration a new set of samples is generated, in
order to update the best-so-far solution λBSF (step 13 to 17 of Algorithm 5). Only
at the end of the algorithm the final best-so-far solution is evaluated once with the
exact objective function (step 21 of Algorithm 5).

Similarly to the hybridization of pACS, the hybrid version of pACS-S, pACS-
S+1-shift-S, is obtained very simply by applying the 1-shift-S local search to the
(estimated) best ant solution after each iteration, as shown in step 18 of Algorithm
2.

3.3.2 The 1-shift-S local search

Sampling approximation of the move cost The 1-shift-S local search is based on
the sampling based approximation ∆SNEi,j of the exact move cost ∆Ei,j , as defined in
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section 3.2.2. More precisely, given a set ofN samples of customers ω1, . . . , ωk, . . . , ωN ,
sampled independently according to probability p(ωk) (see Equation (22)), the Sam-
pling approximation for the 1-shift is defined as follows

∆SNEi,j = ESN [L(ζi,j)]− ESN [L(ζ)], (25)

where

ESN [L(ζi,j)] =
1
N

N∑
k=1

L(ζi,j|ωk ) and ESN [L(ζ)] =
1
N

N∑
k=1

L(ζ|ωk ). (26)

Equation (25) can be rewritten as a sample average over length differences, each one
corresponding to a sample ωk of customers. For this purpose, let us introduce the
following definitions

Definition 1 Given a subset of customers ω ⊆ V , and a node i ∈ V ,

predω(i) =
{
i, if i ∈ ω,
the first-met node r ∈ ω going backward from i along ζ, otherwise.

(27)

Definition 2 Given a subset of customers ω ⊆ V , and a node i ∈ V ,

succω(i) =
{
i, if i ∈ ω,
the first-met node r ∈ ω going onward from i along ζ, otherwise.

(28)

Equipped with the above definitions, the length difference of the two a posteriori tours
induced by ζ and ζi,j on a given subset of customers ωk is the following

∆ωkLi,j =



0, if i /∈ ωk,
d(predωk(i− 1), succωk(i+ 1))

+d(predωk(j), i) + d(i, succωk(j + 1))
−d(predωk(j), succωk(j + 1))
−d(predωk(i− 1), i)− d(i, succωk(i+ 1)),

otherwise, (29)

and the sampling approximation of 1-shift can be computed with the following ex-
pression

∆SNEi,j =
1
N

N∑
k=1

∆ωkLi,j . (30)

Since the time required to compute a predecessor or a successor node is O(n) in the
worst case, the time complexity for computing ∆SNEi,j is O(Nn), which is much
higher than the constant time complexity of 1-shift. Note, however, that there is the
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possibility to decrease at least by a constant factor the complexity of ∆SNEi,j , if the
neighborhood is explored lexicographically, and if the same set of samples is kept fixed
during the neighborhood exploration. Let us see in more detail how this is done.

Suppose that the 1-shift neighborhood is explored lexicographically, such that for
each i = 1, 2, . . . , n and for each j = 1, 2, . . . , n, the value of ∆SNEi,j is computed in
this order by means of Equation (30). Suppose also that before starting the double
cycle over indexes i and j, N random samples of the subsets of customers are generated
independently, and this set is kept fixed until all ∆SNEi,j are evaluated. It is not
difficult to see that in such a situation it is possible to compute some of the successor
and predecessor nodes needed for the computation of ∆ωkLi,j (see Equation (29))
recursively. In fact, for any node i ∈ V and any subset of customers ω, one can
compute succω(i) and predω(i) recursively, and thus faster, in the following ways

succω(i) =
{
succω(i) (by Definition 2 in O(n)), if i− 1 ∈ ω
succω(i− 1) (recursively in O(1)), otherwise. (31)

predω(i) =
{
predω(i− 1) (recursively in O(1)), if i /∈ ω
i (in O(1)), otherwise. (32)

Pseudocode of the 1-shift-S local search The move cost expression ∆SNEi,j
in principle can be used inside a local search algorithm without any restriction on
the order in which the 1-shift neighbors are explored, and both in first-improvement
or best-improvement mode. However, since our goal is to compare the effectiveness
of this approximated move cost with the exact one, we have developed 1-shift-S by
keeping the same exploration strategy (best-improvement with lexicographic neigh-
borhood exploration) as the 1-shift algorithm based on the exact recursive move costs
(by keeping the lexicographic order, we are also able to speed up the computation of
the move cost, as previously explained). The pseudocode of 1-shift-S is very similar
to the one of the exact recursive 1-shift, except for two differences: first, the exact
move cost ∆Ei,j is substituted by ∆SNEi,j ; second, there is no distinction between
a first phase (where only single swap moves were checked) and a second phase. The
pseudocode of 1-shift-S is shown in Algorithm 6.

4 Computational experiments

This section focuses on the computational experiments done to evaluate the perfor-
mance of the four ACO algorithms proposed (that is, pACS, pACS+1-shift, pACS-S,
and pACS-S+1-shift-S). Section 4.1 describes two sets of test instances used in the
computational experiments: one generated by the authors (PTSPLIB benchmark),
and one taken from the literature (TMH benchmark). Section 4.2 describes the param-
eter tuning of the ACO algorithms. Finally, sections 4.3 and 4.4 analyze the compu-
tational results obtained, respectively, on the PTSPLIB and on the TMH benchmark.
Experiments on the TMH benchmark include comparisons with other metaheuristics
from the literature.

All experiments have been run on a machine with two processors Intel Xeon with
1.70GHz CPU and 904MB RAM, running the GNU/Linux Debian 2.4.27 operating
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Algorithm 6 1-shift-S(λ, λBSF ) with number of samples N
while (locally optimal tour not found and time is not over) do

GenerateSamples(N)
for (i = 1, 2, . . . , n) do

for (k = 1, . . . , n− 2) do
compute ∆SNEi,i+k using equation (30)

end for
end for
if (mini,k ∆SNEi,i+k < 0) then

(i, k) := arg mini,k ∆SNEi,i+k
λ := tour obtained from λ by inserting λ(i) after λ(i+ k)
GenerateSamples(N)
Compute ESN [L(λ)] and (re-)compute ESN [L(λBSF )] using the last generated
samples
if ESN [L(λ)] < ESN [L(λBSF )] then
λBSF := λ

end if
else

return locally optimal tour λ
end if

end while

system, and each ACO algorithm has been run once for a CPU time equal to n2/100.

4.1 Test instances

In this paper we have considered two benchmarks of instances, the PTSPLIB and the
TMH benchmark. These two benchmarks have very different characteristics, as we
are going to explain.

The PTSPLIB benchmark This benchmark has been designed by us with the
main goal of analyzing the behavior of optimization algorithms for different levels of
stochasticity (average customer probability, and variance of customer probability). In
general, a PTSP instance is characterized by two types of information: distances be-
tween each couple of customers, and probability for each customer of requiring a visit.
Since customer distances are what characterize instances of the TSP, we have used
instances from the well known TSPLIB benchmark [32] for this type of information
(hence, the name ‘PTSPLIB’ we gave to our benchmark). For each TSP instance,
we have then considered different customer probability configurations. Homogeneous
PTSP instances have been generated by simply associating a TSP instance one single
probability value, corresponding to all customers probabilities. For heterogeneous
PTSP instances different sets of customer probability values have been randomly
generated according to a probability distribution.

We have considered 4 TSP instances, with n ranging from 100 to 198, as reported
in Table 1. For these instances we have computed Euclidean distances between cus-
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TSPLIB name [32] n
kroA100 100
eil101 101
ch150 150
d198 198

Table 1: TSPLIB instances providing customers coordinates, from which Euclidean
distances have been computed. Each of these TSP instances has been combined with
54 different customer probability configurations characterized by average probability
and variance as reported in Table 2.

tomers, on the base of the customers coordinates provided by the TSPLIB. Customers
probabilities have been generated as follows. For homogeneous PTSP instances the
customer probability has been varied from 0.1 to 0.9 with an increment of 0.1. For
heterogeneous PTSP instances, each customer probability pi, i = 1, 2, . . . , n has been
generated randomly, according to the ‘beta probability distribution’. We have chosen
this probability distribution because it is defined on the finite interval (0, 1), and it
can easily model different average and variance of customers probability values by
choosing the appropriate parameters. The ‘beta probability distribution’ βa,b(pi) is
defined as follows

βa,b(pi) =
Γ(a+ b)
Γ(a)Γ(b)

pa−1
i (1− pi)b−1, (33)

where pi ∈ (0, 1), and a, b > 0 are parameters. The a and b parameters of the
‘beta probability distribution’ determine the average customer probability p and the
variance σ2 around the average value:

p =
a

a+ b
(34)

σ2 =
ab

(a+ b)2(a+ b+ 1)
. (35)

In our benchmark we have generated different sets of customer probabilities by varying
the average customer probability p and the variance σ2. In order to have direct control
on these parameters, rather than on a and b, we have used the inverse of Equation
(34) and (35):

a =
p [p(1− p)− σ2]

σ2
, (36)

b =
(1− p) [p(1− p)− σ2]

σ2
. (37)

Note that the variance is limited by the relation σ2 < p(1 − p) ≤ 0.25. Similarly
to the homogeneous case, we have considered customer probability sets by varying
p between 0.1 and 0.9, with and increment of 0.1. For every value of p, we have
considered five different values of variance, corresponding respectively to 1/6, 2/6,
3/6, 4/6, and 5/6 of the maximum variance which is p(1 − p). More precisely, we
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p σ2

0.1 0 0.015 0.030 0.045 0.060 0.075
0.2 0 0.027 0.053 0.080 0.107 0.133
0.3 0 0.035 0.070 0.105 0.140 0.175
0.4 0 0.040 0.080 0.120 0.160 0.200
0.5 0 0.042 0.083 0.125 0.167 0.208
0.6 0 0.040 0.080 0.120 0.160 0.200
0.7 0 0.035 0.070 0.105 0.140 0.175
0.8 0 0.027 0.053 0.080 0.107 0.133
0.9 0 0.015 0.030 0.045 0.060 0.075

Table 2: Average customer probability p and variance σ2 characterize the 54 customer
probability configurations generated for our PTSPLIB benchmark. Homogeneous
PTSP instances correspond to the column with σ2 = 0. Heterogeneous probability
configurations have been obtained for each TSP instance of Table 1 by using the above
values of p and σ2(6= 0) for computing a and b parameters (Equation (36)-(37)), and
by generating sets of random customer probabilities according the ‘beta probability
distribution’ (Equation (33)).

have set σ2 ∈ {p(1 − p)/6, 2p(1 − p)/6, 3p(1 − p)/6, 4p(1 − p)/6, 5p(1 − p)/6}. For
each probability, the different σ2 values are also referred to as the 16%, 33%, 50%,
66%, and 83% of the maximum variance. In the plots that will be presented in the
remainder of this thesis, the variance values will be indicated by percentage. The
shape of the corresponding ‘beta probability distributions’ are shown in Figure 3.

Summarizing, for each of the 4 TSPLIB instances, we have considered 54 customer
probability configurations, which in total means 216 PTSP instances. Table 2 reports
all the considered values of p and σ2, including the ones corresponding to homogeneous
instances (for which σ2 = 0).

The TMH benchmark This benchmark has been generated by Tang and Miller-
Hooks [31] and subsequently used by Liu [27]. We chose to run our algorithms also on
this benchmark, in order to compare our results with the heuristics and metaheuris-
tics of the two above cited papers. In illustrating the TMH benchmark, we follow the
description given by [31]. The benchmark consists of 90 randomly generated PTSP
instances with size n′ equal to 50, 75, 100. For each problem, n′ + 1 vertex positions
(1 depot plus n′ customer vertices) (xi, yi), i ∈ V were generated on the basis of a
uniform distribution from [0, 100]2. Note that, according to how we have formalized
the PTSP in section 2, n′+1 = n. The travel distance matrix (dij) was constructed by
setting dij =

√
(xi − xj)2 + (yi − yj)2. For each problem size, three groups of prob-

lem instances were created. These tree groups of problem instances were categorized
on the basis of the different intervals from which their vertex presence probabilities
were generated. Presence probabilities of customer vertices were randomly generated
from a uniform distribution on the intervals (0, 0.2], (0, 0.5], and (0, 1], one for each
problem group. The depot (vertex 0) was always assigned a presence probability of
1.
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Figure 3: Shape of the ‘beta probability distributions’ used for generating customers
probabilities in heterogeneous instances of our PTSP benchmark. The legend in the
first plot specifies the type of line used for different values of σ2, and applies to all
plots of the figure.
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4.2 Tuning

The four ACO algorithms under study (pACS, pACS+1-shift, pACS-S, and pACS-
S+1-shift-S), have been tuned separately, so to spend the same tuning effort for
each of them. The instances for tuning have been generated as follows. Customers
coordinates correspond to the eil51.tsp instance from the TSPLIB [32], which is a TSP
instance with 51 customers where distances are computed according to the Euclidean
metric. For this TSP instance, 6 different customers probability configurations have
been generated, by considering three values of (average) customer probability p ∈
{0.2, 0.5, 0.8}, and two values of variance of the customer probability σ2 ∈ {0, 50%}.
Instances with σ2 = 0 are homogeneous PTSP instances with fixed probability, while
instances with σ2 = 50% are heterogeneous PTSP instances with randomly generated
customers probabilities according to the ‘beta probability distribution’ as described in
section 4.1. Each algorithm was run once on each PTSP instance for 26 CPU seconds,
a time corresponding to n2/100, with n = 51. The values of the tuning parameters
for each ACO algorithm are shown in Table 3. Boldface parameters are those that
led to the best average results on the tuning instances, and that have been chosen for
running the experiments on the PTSPLIB and TMH benchmarks. We have verified
empirically that the algorithms are not very sensitive to parameters ρ, α, and ψ, when
their value is equal to 0.1. Thus, we have chosen this value a priori for ρ, α, and ψ,
without performing any additional tuning.

Table 3: Parameter sets used for tuning the ACO algorithms under study. Bold
entries correspond to the final parameter choice after tuning.

Parameter Algorithm
pACS pACS+1-shift pACS-S pACS-S+1-shift-S

ρ = α = ψ 0.1 0.1 0.1 0.1

q0 {0.95,0.98, 1} {0.95, 0.98, 1} {0.95, 0.98, 1} {0.95, 0.98, 1}
β {1, 2, 3, 4} {1, 2, 3, 4} {1, 2,3, 4} {1, 2,3, 4}
m {5, 10,15, 20} {5, 10, 15, 20} {5,10, 15, 20} {5, 10, 15, 20}
N (fixed) – – {10, 50, 200} {10, 50, 200}
c (N variable) – – {1, 10, 50} {1, 10, 50}
b (N variable) – – {10−3, 10−4,10−5} {10−3, 10−4,10−5}

4.3 Experimental analysis on the PTSPLIB benchmark

This set of experiments has been designed with the goal of analyzing how the algo-
rithms performance varies with different ‘stochasticity levels’ in the PTSP instances.
Loosely speaking, ‘stochasticity levels’ are those features of a PTSP instance that
makes it different from a deterministic TSP instance. In our PTSPLIB benchmark,
these features correspond to the average customers probability p, and to its variance
σ2. In fact, when p = 1 and σ2 = 0, a PTSP instance is an instance of a deterministic
TSP. Intuitively, the smaller p and the bigger σ2, the higher the ‘stochasticity’ of the
PTSP instance.
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The main motivation for this set of experiments is the following. It is reasonable
to expect that under some level of stochasticity, the optimal TSP solution evaluated
with the PTSP objective function is a very good approximation of the optimal PTSP
solution. Since the TSP is one of the most well known problems in the operations
research literature, there are freely available algorithms, such as CONCORDE [13],
that can solve efficiently to optimality even big instances of the problem. For this
reason, it is possible that for PTSP instances with a small level of stochasticity, algo-
rithms such as CONCORDE outperform PTSP-specific heuristics or metaheuristics.
Therefore, when designing algorithms for the PTSP, it is important to identify the
range of stochaticity levels for which PTSP-specific algorithms significantly outper-
form the already available TSP solvers. This type of information would be useful also
in the real world, since an analyst could decide on the base of the stochasticity level
of its real data, wether it is more convenient to employ already available software,
or to invest in more sophisticated, problem-specific algorithms that explicitly address
data uncertainty.

Another motivation for this set of experiments is to see how stochasticity influ-
ences exact versus sampling-based, and non-hybrid versus hybrid ACO variants. The
interest in this question lies in the very different characteristics (in terms of general-
ity and design effort) of the different variants. Summarizing what we have already
pointed out, we can say that: (1) pACS and pACS+1-shift are very problem specific,
since they rely on the analytical expression of the objective function; (2) pACS+1-
shift required also a big analytical effort in deriving efficient recursive equations for
the move cost expression of the 1-shift local search; (3) pACS-S and pACS+1-shift-S
are general, since the sampling-estimation of the objective function can in princi-
ple be performed on any stochastic combinatorial optimization problem (4) pACS-S
and pACS-S+1-shift-S can be implemented at different levels of sophistication, but a
simple version like the one considered in this paper does not requires a lot of effort.
Knowing which variant performs better in which situation may be important in ad-
dressing other stochastic optimization problems or in the real world, when one could
decide in advance if it is more convenient to spend effort in designing problem-specific,
or more general sampling-based ACO algorithms, and hybrid, or non-hybrid ones.

Let us now describe our experimental results. Comparison among ACO algorithms
and the optimal TSP solution is shown in Figure 4. The optimal TSP solution for
each instance has been found by the CONCORDE algorithm [13], and then evaluated
with the PTSP objective function. Figure 4 reveals that the performance of ACO
algorithms is very different for different average customers probability. In particular,
there is a critical probability that goes from 0.4 (for pACS) to 0.6 (for pACS+1-shift),
under which it is really worth solving PTSP instances by ACO, while above the
critical probability the problem can be better treated like a TSP. Note that results
of pACS+1-shift are reported only up to p = 0.6. The reason is that, for bigger
probability values, some PTSP instances produced overflow in the 1-shift computation
of terms such as 1/Qi,j , and 1/Qi,j (see equation (20)).

We will restrict the analysis of subsequent experimental results on the PTSPLIB
benchmark to instances with p ≤ 0.5, which, as we have just seen, are the most
significant ones. Figure 4 shows the average gain of each ACO algorithm with respect
to the TSP optimal solution, but it does not allow a clear comparison among the
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the horizontal line means performing better than the optimal TSP solution.
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performance of different ACO variants. This type of comparison is more evident in
Figure 5, where a boxplot of the ranks of our algorithms, including the optimal TSP
solution, is shown. The meaning of the vertical line joining pACS and pACS-S on
the left of the plot is the following: according to the Friedman two-way analysis of
variance by ranks [14], the difference between the two algorithms is not statistically
significant at a confidence level of 95%. Thus, if two algorithms are not linked by the
vertical line, their difference is statistically significant.

Figure 5 shows that the best performing algorithm is pACS+1-shift, followed by
pACS-S+1-shift-S, and that pACS-S and pACS are significantly worse. This means,
first of all, that hybrid versions (that is, ACO algorithms using local search) perform
better than non-hybrid ones. Moreover, the fact that pACS-S+1-shift-S performs
worse than pACS+1-shift means that the analytical effort spent in developing the
efficient recursive 1-shift local search has been worth indeed. On the other hand, the
difference between the two non-hybrid versions pACS and pACS-S is not statistically
significant, and this is an indication that the more general sampling-based algorithms
may in principle achieve good quality levels. Given that our pACS-S is a very simple
implementation of a sampling-based algorithm, it is possible that more sophisticated
versions could outperform the exact-objective-based pACS algorithm, and it would
be interesting more research in this direction.

1 3 5

0.1 ! prob ! 0.5

TSPopt
pACS

pACS.S
pACS.S.1.shift.S

pACS.1.shift

Figure 5: Boxplot of the distribution of ranks of our proposed ACO algorithms,
and TSPopt (the optimal solution of the TSP evaluated with the PTSP objective
function). The vertical line on the left of the plot which joins pACS-S and pACS
means that these two algorithms are not significantly different at a confidence level
of 95%, according to the Friedman two-way analysis of variance by ranks [14]. The
interpretation of a box is the following: the solid line inside the box is the median
rank, the limits of the box are the lower and upper quartile, the ‘whiskers’ are the
smallest and largest values (outliers excepted), and the circles are the outliers.

We can have a deeper understanding of the difference among ACO variants when
we look at how their ranks varies according to the variance of the customers prob-
ability in PTSP instances (this is the second factor characterizing the ‘stochasticity
level’ of a PTSP instance, besides the average customers probability). This infor-
mation is shown in Figure 6. It is very interesting to observe that the higher the
variance, the smaller the difference among ACO variants. In particular, the perfor-
mance of pACS+1-shift seems degrade as the variance increases. This means that the
supremacy of pACS+1-shift is not absolute, but for instances with very high variance
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of the customers probability, other, simpler to implement algorithms such as non-
hybrid ACO or hybrid ACO based on estimated objective values, may be a better
alternative.
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Figure 6: Average ranks of our proposed ACO algorithms, with respect to the variance
of the customers probability in PTSP instances of the PTSPLIB benchmark, with
average probability p ≤ 0.5.

Another important type of comparison that we performed is the runtime analysis
of the four ACO variants, as shown in Figure 7. The figure reports the normalized
value of the best-so-far solution of each algorithm versus the normalized computation
time in logarithmic scale. The first observation to do is that non-hybrid versions
outperform hybrid ones at the beginning of the run. A second and interesting result is
that the sampling-based algorithm pACS-S is faster on average than pACS. Given that
at the end of the run these two algorithms are not statistically significant different (see
Figure 5), the fact that pACS-S is faster than pACS is an indication that pACS-S is the
algorithm to be preferred, in case one does not have the possibility to implement or use
a local search. Different considerations must be done for hybrid ACO versions: in fact,
in this case the sampling-based algorithm pACS-S+1-shift-S outperforms pACS+1-
shift only in a small time window situated circa in the middle of the run, and at
the end of the run the latter algorithm is statistically significant better than the
former (see Figure 5). This means that the sampling-based local search, in order to
be competitive with the recursive exact one, needs to be improved by using more
sophisticated search strategies (such as, for instance, non-lexicographic neighborhood
exploration, candidate lists, and so on).
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Figure 7: Runtime plot of our proposed ACO algorithms in PTSP instances of the
PTSPLIB benchmark, with average probability p ≤ 0.5.

4.4 Comparison with other methods on the TMH benchmark

In this section we compare the performance of our proposed ACO algorithms with
that of other heuristics and metaheuristics from the PTSP literature, namely, TMH-
EX proposed by Tang and Miller-Hooks in [31], HSS0, and HSS1 proposed by Liu in
[27]. A brief description of these three algorithms follows.

By TMH-EX we denote a simple algorithm [31], which consists in applying the
Or-opt local search [28] to a randomly generated starting solution. In [31], this algo-
rithm has been compared to others, particularly to local search algorithms based on
different types of ad-hoc approximations of the objective function. The simple Or-opt
local search is the one that obtains on average the best results (even if in a bigger
computation time than approximation-based algorithms), and this is the reason why
we select it for comparison with our ACO algorithms. We use the name ‘TMH-EX’
for consistency with Liu in [27]. HSS0 and HSS1 [27] are two variants of the scatter
search metaheuristic [20], which is a method inspired by evolutionary computation.

The performance comparison on the whole TMH benchmark is summarized by
Figure 8, where a boxplot of the average rank of each algorithm is reported, with
bars joining algorithms that are not statistically significant different according two
the Friedman wo-way analysis of variance by ranks (as previously done in Figure 5 for
comparisons on the PTSPLIB benchmark). It is confirmed here that the best perform-
ing algorithm is pACS+1-shift, immediately followed by pACS. On this benchmark
though, differently from the PTSPLIB one, the sampling-based ACO algorithms are
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worse, and they are not statistically significant different from the scatter search algo-
rithms.

1 3 5 7

Ranks on the TMH benchmark

TSPopt
pACS.S
HSS1

pACS.S.1shift.S
HSS0
pACS

pACS.1.shift

Figure 8: Boxplot of the distribution of ranks of our proposed ACO algorithms, two
scatter search algorithms (HSS0 and HSS1), a simple local search (TMH-EX), and
TSPopt (the optimal solution of the TSP evaluated with the PTSP objective func-
tion). The vertical line on the left of the plot which joins some algorithms means that
these algorithms are not significantly different at a confidence level of 95%, according
to the Friedman two-way analysis of variance by ranks [14]. The interpretation of a
box is the following: the solid line inside the box is the median rank, the limits of
the box are the lower and upper quartile, the ‘whiskers’ are the smallest and largest
values (outliers excepted), and the circles are the outliers.

Numerical results are reported in Table 4. The table confirms that pACS+1-shift
is on average the best performing algorithm. Only in the group of instances with
maximum probability equal to 0.5 and with 76 customers, the best performance has
been not achieved by this algorithm, but by pACS-S instead. TMH-EX, HSS0, and
HSS1, achieved the same performance of pACS+1-shift only in the group of instances
with smallest probability and smallest customers number (that is, maximum proba-
bility equal to 0.2, and customers number equal to 51). Unfortunately, it is difficult
to draw any conclusion on the comparison of computation times, since experiments
have been run on different machines.

5 Conclusions

In this paper we have considered four ACO algorithms with different characteristics.
Two algorithms exploit the exact objective function of the problem, and the other
two use only estimated values of the objective function by Monte Carlo sampling with
a variable number of samples. For each of these two groups, we have considered both
hybrid and non-hybrid versions (that is, with and without a local search procedure).

The local search based on the exact objective value is based on a fast and recursive
computation of the move cost that has been derived in previous studies, and to our
knowledge this is the first time it is combined with a metaheuristic. The local search
based on estimated objective values is a simple implementation, and to our knowledge
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this is also the first time this type of local search is used in combination with an
estimation based ACO.

Overall, the best performing ACO variant is the one based on exact objective
values and hybridized with the exact and fast recursive local search. This is shown to
significantly outperform also other heuristics and metaheuristics from the literature
based on the scatter search and on different types of local search algorithms. Such re-
sult suggests that, even if developing an exact and efficient local search in a stochastic
problem can be quite a difficult task, it is worth the effort, especially when this local
search can be combined with a metaheuristic such as ACO.

One of the main goal of this paper was to analyze the performance of the proposed
ACO variants by varying the degree of stochasticity of problem instances, measured in
terms of average customers probability, and variance of the customers probability. We
have observed the following: there is a critical probability that goes from 0.4 (for the
worst performing ACO) to 0.6 (for the best performing ACO), under which it is really
worth solving the PTSP by ACO, while above the critical probability the problem
can be better treated like the classical, deterministic, TSP. Moreover, the higher the
variance of the customers probability, the smaller the performance difference among
ACO variants. In particular, the performance of the best algorithm (which is the
hybrid one based on exact objective values) seems to degrade as the variance increases.
This means that for instances with very high variance of the customers probability,
other, simpler to implement algorithms such as non-hybrid ACO or hybrid ACO based
on estimated objective values, may be a better alternative.

The runtime analysis revealed that non-hybrid versions outperform hybrid ones at
the beginning of the run, but later they stagnate on worse local optima than hybrid
versions. This suggests that, in applications where one needs very fast results, it
is better to consider ACO algorithms without local search. Among the non-hybrid
versions, the one based on estimated objective values is the fastest. This is an in-
teresting indication that the estimation based approximation might be chosen also in
other stochastic problems even if the exact objective function is known, just with the
purpose of speeding up the computation and having a faster algorithm.
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