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Abstract

This paper presents an attempt to solve the problem of choosing the best combination

among the M combinations of shortest paths in optical translucent networks. Fixed rout-

ing algorithms demands a single route to each pair of nodes. The existence of multiple

shortest paths to some pairs of nodes originates the problem of choose the shortest path

which fits better the network requests. The algorithm proposed in this paper is an adap-

tation of Ant Colony Optimization (ACO) metaheuristic and attempt to define the set of

routes that fits in an optimized way the network conditions, resulting in reduced number

of blocked requests and better adjusted justice in route distribution. A performance eval-

uation is conducted in real topologies by simulations, and the proposed algorithm shows

better performance between the compared algorithms.
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1 Introduction

The emergence of new technologies for audio

and video services on demand, such as teleconfer-

ences and smart TVs, has led to a considerable in-

crease in the demand for bandwidth in transport

networks, which are the backbone components of

telecommunication service providers. Optical net-

work technology is a solution to this demand that

is capable of reaching high transmission rates [1].

The optical transport networks use wavelength di-

vision multiplexing (WDM) [1], which allows the

establishment of different parallel optical circuits in

the same optical fiber.

Circuit-switched WDM optical networks al-

low for the establishment of an optical circuit for

communication between the origin and destination

nodes [2]. To establish an optical circuit in an

WDM network, route selection and wavelength al-

location are required. In a network under dynamic

traffic in which there is no knowledge of the num-

ber of circuits that will be required, the routing and

wavelength allocation algorithms focus on meeting

the requests of the circuits by minimizing the block-

ing probability (BP) of future requests [3].

The BP is a commonly used metric to define the

quality of service (QoS) of a network [3, 4]. Many

of the connection requests of networks with high BP

rates are blocked, which prevents data from being

transferred between nodes. The main factor causing

such blockages is the lack of available wavelength
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to establish the circuit. The load balance between

the network links should be provided by the routing

algorithms because they define the links that will be

used to establish the circuit between the origin and

destination of a request. An improper routing solu-

tion can lead to the overload of network links.

Different routing solutions are used to deter-

mine the shortest route between the origin and des-

tination nodes [5, 6, 3]. For certain network topolo-

gies, there is more than one shortest route between

a given pair of nodes. Hence, the selection of the

shortest route can influence link congestion, which

can represent a higher BP. The need to select the

best existing shortest route between two nodes (ori-

gin and destination) is defined as the Problem of

Choosing the Best Combination among M Combi-

nations of Shortest Paths (MCSP) [5]. Solve this

problem implies finding the best combination of

routes which minimize the network blocking prob-

ability.

In transparent optical network, optical-

electrical-optical (OEO) converters, which converts

data from the optical to the electronic domain, are

not used during transmission; therefore, signal con-

version does not occur. The total transmission time

is reduced because there is no delay related to sig-

nal processing between the origin and destination

[7]. Futhermore, the financial cost associated with

OEO converters is reduced in transparent optical

networks.

Fixed routing algorithms provide lower com-

plexity for the Control Planes protocols because the

route computation for each sourcepair is not made

online, i.e., it is made during a networks planning

phase [1]. Thus, the complexity of fixed routing al-

gorithms do not interfere in network performance,

once their execution occur before network opera-

tional phase. According to the authors in [5], the

majority of studies in the literature that address the

routing and wavelength assignment (RWA) prob-

lem in transparent optical networks are based on

the fixed routing class. These studies considered

the use of shortest path algorithms to define a

fixed route for each pair of origin-destination nodes.

Among the shortest path algorithms, the Dijkstra al-

gorithm (DJK) [6] is one of the most cited. In this

study, the terminology shortest path will be used

to indicate the shortest path in terms of number of

loops in the route.

Authors [5] have defined the MCSP and pro-

posed the best among the shortest routes (BSR) al-

gorithm as a solution for the MCSP. Additionally, a

comparison is made in [5] among the BSR, RRT

(Resttricted Routing Algorithm) [4] and DJK [6]

algorithms. The RRT algorithm creates a routing

table for each pair of nodes, and critical links are

temporarily removed from the search space, forcing

the search for other routes disjoint from these links.

The results showed a better performance of the BSR

related to the BP for different network topologies.

The Best among the Shortest Routes using Decision

by Similarity (BSR-DS) algorithm is proposed in

[3] to solve the MCSP. BSR-DS assesses the simi-

larity between the shortest-path routes to perform a

better load balancing. This characteristic of BSR-

DS results in better performance compared with the

BSR in terms of the BP.

Acquire results for some computational prob-

lems require high processing power and large time

availability, making it infeasible to use traditional

methods. Thus, emerges the need to use another

ways to obtain results which are near of an opti-

mum point. Consequently, several studies apply

metaheuristics as attempt to obtain satisfactory re-

sults for their optimization problems [8, 9, 10]. The

ACO (Ant Colony Optimization) metaheuristic is

constantly present in current researches: in [8], is

used to find a fiber-optic online solution for mixed-

line-rate (MLR) networks, in [9], is used to min-

imize the total number of wavelength links used

in the whole physical topology, and [10], used to

solve the problem of routing and spectrum alloca-

tion (RSA) for elastic optical networks.

This study proposes the Ant Colony Optimiza-

tion (ACO) BSR (ACO-BSR) algorithm to solve the

MCSP. This algorithm is used to define the set of

best routes between all the pairs of nodes accord-

ing to important metrics to enhance load balancing,

as the frequency of use for each link and similarity

between routes. The route solution is obtained by

applying and adapting a version of the ACO meta-

heuristics [11]. Furthermore, a comparative analy-

sis between the proposed technique and DJK, BSR

and BSR-DS algorithms is performed to real situa-

tions of transparent optical network topologies.

This study is organized as follows. Section 2

describes the problem related to the selection of

the best combination among the M combinations of
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shortest paths, and Section 3 presents the adapted

model of ACO meta-heuristic. An evaluation study

is presented in Section 4 that compares the perfor-

mance of the proposed algorithm with the perfor-

mance of other existing algorithms in terms of BP,

Fairness and Standard Deviation and Section 5 dis-

cusses the process of defining the parameters used

in the proposed algorithm to maximize the perfor-

mance. Finally, conclusions are presented in Sec-

tion 6.

2 Problem of Selection the Best

Combination Among M Combi-

nations of Shortest Path

In this Section, the problem of selecting the best

combination among the M combinations of short-

est paths (MCSP) is presented [5]. Given an opti-

cal network topology with N nodes, the number of

pairs of origin-destination nodes is N · (N −1). The

pair(o,d) notation is used to represent an ordered

pair of nodes with its origin in node o and desti-

nation in node d. To perform the fixed routing, it

is necessary to define a route for each pair(o,d).
In this study, pair(o,d) is assumed to use the same

route as pair(d,o), with only the direction of the

route changed; therefore, only routes in a single di-

rection must be determined. Hence, R = (N · (N −
1))/2 routes are required for a given topology of N

nodes, one for each pair(o,d).

In this study, it is also assumed that the short-

est path to a given pair(o,d) is the route with the

least amount of links between origin o and destina-

tion d, which results in a smaller number of hops.

Each link in the route is also called a hop. There-

fore, the cost of the path considers the number of

hops in the route. Each pair(o,d) can have more

than one shortest path. In this study, such routes are

called Candidate Routes (CR), and the set of CRs for

a pair(o,d) is represented by CRpair(o,d). The route

selected for pair(o,d) is named rpair(o,d). Figure 1

illustrates the CRpair(1,4) set for the R6NTL (Ring

With 6 Nodes and a Transversal Link) topology.

Figure 1. Candidate routes for pair(1,4).

Because each pair(o,d) can have more than one

shortest route (CR), there are M different solutions

for planning the fixed routes in a specific network

topology [5]. If only the shortest-path routes are

considered, the calculation of M, which represents

the number of possible solutions, is given by Eq.

(1).

M = Π
N,N
i=1, j=1|CRpair(i, j)|, (1)

where CRpair(i, j) is the amount of candidate routes

for pair(i, j) and i ̸= j. Table 1 shows the pairs

of nodes in the R6NTL topology according to their

numbers of shortest paths.

Table 1. Pair of nodes in the R6NTL topology

separated according to the number of candidate

routes

N. of Shortest

Paths

(Candidate Routes) 1 2 3

Pairs (1,2) (2,3) (1,5) (2,4) (1,4) (3,6)

(3,4) (4,5) (3,5) (2,6)

(5,6) (6,1)

(1,3) (1,5)

(4,6)

According to Eq. (1), the number of possible

solutions, represented by M, can be found through

the combination of all candidate routes. Thus, the

value of M is given by M = 19 ·24 ·32 = 144. For a

smaller topology, such as R6NTL, successive simu-

lations can be performed to determine the best solu-

tion among the 144 possible route solutions. How-

ever, real topologies usually exhibit a greater num-

ber of nodes and links, leading to a significant in-

crease in the value of M. Table 2 list the value of M

for some topologies.
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Table 2. Value of M for different topologies

Topology Nodes M

R6NTL 6 144

Abilene 11 9216

EON 19 1.2∗1032

USA 24 7.14∗1068

TORUS 25 4.7∗10101

The MCSP is used to identify a solution that

includes the shortest-path routes (Sk) that satisfies

1 ≤ k ≤ M and provides a combination of Sk that

results in better load distribution and smaller value

in terms of network BP. Therefore, defining the

Sk combination requires a definition of the short-

est path to be used by each pair(o,d) to establish a

circuit during the network operation phase.

3 Ant Colony Optimization

Ant algorithms [12] are computational models

inspired in the behavior of real ant colonies. Among

the studied behaviors of ants (task division, nest

building, foraging for food, etc.), the foraging for

food behavior is particularly relevant. Such behav-

ior allow the ants to find the shortest path between

the nest and food source [13]. This allows faster

food foraging, once the time spent on the route be-

tween the nest and food source is minimized, allow-

ing a faster gatering, and it also increase the qual-

ity of the food source [14]. ACO algorithms were

developed through studies on the food foraging be-

havior of ants. Initially, ACO algorithms were pro-

posed to address discrete (or combinatorial) op-

timization problems. Thus, a population of arti-

ficial ants cooperates to solve search/optimization

problems by exchanging information on the search

space through depositing artificial pheromone. As

an optimization technique based on intelligent (or

computational intelligence) systems, the applica-

tion of ACO algorithms has the following charac-

teristics:

– It does not require special properties for the

search space (objective function and equal-

ity/inequality constraints) such as convexity, ex-

istence of derivatives, continuity and unimodal-

ity;

– It is population-based, so the ACO algorithm

evolves a population of candidate solutions that

allows for sharing of information on the search

space to improve convergence and the quality of

the solutions;

– It includes stochastic (random) components to

update solutions among the iterations, so the

population evolution follows rules of probabilis-

tic (stochastic) transition that reduce its depen-

dence on the initial solution and the likelihood

of the search process stagnating at local minima.

An ACO algorithm alternates the application of

two basic principles:

– a procedure for creating solutions for the prob-

lem, where a set of n ants builds in parallel n

solutions;

– a procedure for updating the pheromone trail, in

which the pheromone concentration is changed

(updated).

The main characteristics of the ACO algorithms

are based on the following [15]:

– a colony of cooperative agents (artificial ants) to

build solutions for the problem;

– a pheromone trail for indirect local communica-

tion;

– heuristic information that is dependent on the

problem and influences the building of solu-

tions;

– probabilistic decision (transition) rules to deter-

mine the next move of the ant.

Before presenting the ACO meta-heuristic in

its adapted form, the concept of similarity between

routes, which is used in the BSR-DS and ACO-BSR

algorithms, must be clarified.

For the analysis of similarity, the shortest-path

routes are analyzed in pairs. The calculation of the

similarity between two routes a and b, which are

CRs for a given pair(o,d), is performed using Eq.

(2).

Sml(a,b) =
NEcommon(a,b)

H
, (2)
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where H is the number of links in route a and

NEcommon(a,b) is the number of common links be-

tween routes a and b. It is important to highlight

that the number of hops in route a is the same as in

route b because both routes are shortest-path routes.

Based on the concept of similarity between two

routes, the similarity between all CRs for a given

pair(o,d) is provided by Eq. (3),

Smlpair(o,d) =
γ

C2
|CRpair(o,d)|

, (3)

where γ is the sum of similarity (Sml(a,b)) of all of

the combinations of CRs for pair(o,d); and C is the

number of CR combinations for pair(o,d).

Figure 2 shows the calculation of similarity be-

tween the CRs for pair(1,4).

Figure 2. Candidate routes for pair(1,4).

As observed in Figure 2, pair(1,4) is composed

of three alternative shortest-path routes: route a =

nodes 1, 2, 3 and 4; route b = nodes 1, 2, 5 and

4; route c = nodes 1, 6, 5 and 4. In Figure 2,

Sml(a,b) = 1/3 because routes a and b have only

one link in common (from node 1 to node 2) and

both have three hops; Sml(a,c) = 0/3 because the

routes do not have links in common; Sml(b,c) =
1/3 because routes b and c only have one common

link (from node 5 to node 4). Hence, the example

of Figure 2 shows Smlpair(1,4) = ((1/3) + (0/3) +
(1/3))/3 = 2/9.

To apply the ACO meta-heuristic, the MCSP

was modeled similarly to the travelling salesman

problem [12]. Figure 3 shows an example of a graph

(topology) for finding a solution to the MCSP. Ini-

tially, for each pair of nodes, the set of correspond-

ing shortest paths is identified. Table 3 lists the set

of shortest paths for the graph in Figure 3 (a).

Figure 3. (a) Graph used to exemplify the

application of the modified ACO meta-heuristics

which generates graph in (b).

Table 3. Set of shortest routes for each pair of

nodes in the topology

Pair 1-2 1-3 1-4 2-3 2-4 3-4

Shortest 1-2 1-2-3 1-4 2-3 2-1-4 3-4

route 1-4-3 2-3-4

Next, a new graph is created with vertices that

represent each pair(o,d) of the topology. Addition-

ally, an initial vertex S is inserted from which all

ants start. Therefore, this artificial vertex plays the

role of a starting node. The generated graph has

edges between all vertices that are identified as the

shortest-path routes in the table for pair(o,d), to-

wards which the edge is oriented. For example, be-

tween node S and node 1-3 the edges are 1,2,3 and

1,4,3, which are both possible shortest-path routes

for pair(1,3). Both edges are oriented towards

node 1-3. Arcs 2,1,4 and 2,3,4 between S and node

2-4 represent the existing shortest routes between

pair(2,4) in the original graph (must be oriented to-

wards node 2-4 in the generated graph). Figure 3(b)

illustrates the new graph generated for the graph

shown in Figure 3(a). In Figure 3(b), although the

edges representing paths with single hops are not

inserted (to provide a better visualization), they are

considered (nodes 1-2, 1-4, 2-3 and 3-4).

Therefore, the graph that represents the search

space that will be covered by the artificial ants is

the graph generated from the topology under study;

therefore, a solution for the travelling salesman

problem in this graph is equivalent to a route so-

lution for the topology in Figure 3. For instance, an

ant positioned at the initial node S can go through

the graph using the links 1;2;3 and 2;1;4. Along

with the single-hop paths, which are not illustrated

in the graph of Figure 3(b), such CRs will form a

viable solution for the problem.
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The application of the ACO meta-heuristics is

based on [12]; when the ACO meta-heuristics are

applied to the travelling salesman problem, it fol-

lows the steps, which are displayed in Figure 4.

Step 1: Initialization. The following values

are defined: initial pheromone concentration; pa-

rameters (α, β and γ, explained in this Section);

pheromone evaporation rate ρ, maximum t num-

ber of iterations to be performed; and n amount of

ants. The n ants are positioned on the initial node S,

which is representative of the starting point for the

ant movement.

Step 2: Iterative process.

1. Building the solution. Step by step, the n ants

select the next node to visit based on the follow-

ing:

– Pheromone concentration (τ);

– Similarity (Sml), which is an important met-

ric because it defines the routes that have

the lowest degree of similarity and exhibit a

lower probability of simultaneously compos-

ing two different circuits;

– Link Utilization(u), which is a value that in-

dicates the amount of routes that cross a link.

Each link has a counter, which is increased

by 1 everytime it is selected by a new route.

The counter is reset to 0 in each colony iter-

ation.

Determining the node to visit at iteration t re-

quires the use of a selection method. Hence,

each ant performs a selection based on the

roulette wheel method [16] among the existing

elements of the routing table Ai= [ai j(t)] in each

network node, which stores the values of ai j for

each neighbor j of the current node i:

ai j =
[τi j(t)]

α[1/ui j(t)]
β[Slmi j]

γ

∑l∈Ni
[τil(t)]

α[1/iil(t)]
β[Smlil]

γ
,∀ j ∈ Ni, (4)

where τi j indicates the amount of pheromones

present in the arc i- j during iteration t; ui j value

indicates the use of the link, which has an in-

verse value, so lower ui j values can have a higher

chance on the roulette wheel; Smli j is the simi-

larity between the candidate routes for pair(i, j);

and parameters α, β and γ are the weights used

in the ants’ decision-making process when de-

termining the different levels of influence for the

pheromone, frequency of use and similarity, re-

spectively.

2. Pheromone updating

After building the solution, each artificial ant

sends its route solution to the analytical model

[17], which calculates, through matematical for-

mulations, the BP value for each of the solu-

tions. The BP values return to the ants, which

use them as parameter for the calculation of

pheromone deposition. Each ant returns to the

origin through the path found, depositing on

each link an amount of pheromone (∆τi j) that

is inversely proportional to the BP of that route.

Thus, a route with high BP will have a smaller

amount of pheromone deposited on its links,

which reduces the probability of being drawn in

the roulette wheel (during step 2).

It should be emphasized that pheromone evap-

oration occurs simultaneously with pheromone

deposition, and it is mathematically represented

as follows:

τi j(t +1) = (1−ρ)∗ τi j +∆τi j(t), (5)

where ρ represents the pheromone evaporation

rate.

Step 3: Stop criteria. The route building (search

for a solution) and pheromone concentration updat-

ing processes are performed until the stop criterion

is met. If the stop criterion is met, the iterative pro-

cess is interrupted and the best obtained route solu-

tion up to that moment is defined as the final solu-

tion.

In ACO-BSR, the stop criterion is defined by

the establishment of a maximum number of itera-

tions. If a new set of routes with a better perfor-

mance is found in any iteration, this set should be

maintained because it will be a partial solution that

will then be compared to future solutions or consid-

ered a final solution if results with a better perfor-

mance are not found. Figure 4 displays the ACO-

BSR operation flow.
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Figure 4. ACO-BSR application flow.

4 Performance Evaluation

This Section presents an evaluation that com-

pares the performance of routing solutions obtained

with the ACO (ACO-BSR) heuristic and three fixed

routing algorithms: the DJK, BSR and BSR-DS al-

gorithms. To apply the ACO-BSR, 20 ants and 400

iterations were used, and the determination of such

values is explained in next Section. The presented

analytical model [17] was used to obtain the net-

work BP, which was used as an evaluation function

(objective function) in the process of searching for

the MCSP solution. Then, all four routing solutions

obtained with the DJK, BSR, BSR-DS and ACO-

BSR strategies were simulated using the TONetS

(Transparent Optical Network Simulator), a simu-

ation tool developed to study RWA algorithms,

survivability techniques and wavelength converter

placement in all-optical networks [3, 5, 7, 18]. The

traffic load was uniformly distributed among all of

the pairs(o,d), and the requests were generated

following a Poisson process with mean λ and an

exponentially distributed time retention with mean

1/µ. The network traffic intensity was given by ρ =

λ/µ. All of the network links were two-directional

and had 40 wavelengths in each direction. The

Random algorithm was used for the wavelength al-

location. For each simulation, 10 replications were

performed with different seeds for the creation of

random variables. For each replication, 100,000 op-

tical circuit requests were generated. The topolo-

gies selected for the performance of the experiment

were Abilene and USA, ilustrated in Figure 5. Both

are real topologies located in US territory. Because

the topologies occupy an extensive area and have an

increasing number of users spread all around the US

territory, both are frequently used in studies [2, 4, 5,

18]. Table 4 shows the values used for ACO-BSR

parameters.

Figure 5. Abilene and USA topologies.

Table 4. Set of values used by the meta-heuristics

parameters

Number of Ants 20

Number of Iterations 400

Evaporation Rate 0.25

α 1

β 0.1

γ 0.1

Figure 6 illustrates the variation of BP as a func-

tion of the increase in total network load for the

Abilene and USA topologies. The results exhibit

a confidence interval of 95%.
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Figure 6. Variation of the BP for (a) USA and (b)

Abilene topologies, with an increasing network

load (in Erlangs).

The results for the Abilene topology show an

inferior performance of the BSR compared with

the results of the BSR-DS and ACO-BSR. There is

a similarity between the graphical behavior of the

BSR-DS and ACO-BSR. Because the Abilne topol-

ogy displays a less robust structure, the quality of

the solution obtained by the two algorithms can be

close to a point where no significant improvement

is possible, suggesting that the BSR-DS and ACO-

BSR are the most indicated solutions for application

in real scenarios of transparent optical networks.

For the USA topology, the ACO-BSR showed

a better performance than the BSR-DS BSR and

DJK, with the latter showing the worst perfor-

mance. These results were related to the higher

complexity of the USA topology and greater num-

ber of nodes and links, compared with the Abi-

lene topology. Thus, the greater number of pos-

sible solutions was best analyzed by ACO-BSR,

which had a Pb value 74.61% lower than that of

the BSR and 39.48% lower than that of the BSR-

DS. Another metric used to measure the quality

of the route solution is fairness (Fr), which is de-

fined in [7]. Considering BP(o,d), which is the

BP for a pair of nodes pair(o,d), the value indi-

cated by 1−BP(o,d) represents the probability that

a pair(o,d) will not suffer blocking. The Fr for a

given topology is the proximity of a given value to

the lowest and highest probability of not suffering

blocking between all pairs of nodes. Reduction in

Fairness value implies in more difficult to attend all

users with similar BP rate. Equation (6) defines the

Fr value.

Fr =
1− (maxBP(o,d))

1− (minBPo,d)
(6)

Figure 7 illustrates the variation of the Fr value

with an increase in the network load for the USA(a)

and Abilene(b) topologies.

Figure 7. Fairness (Fr) as a function of the total

network load (in Erlangs) to (a) USA and (b)

Abilene topologies.

An analysis of the Fr value shows that the

ACO-BSR has a better performance than the other

three algorithms for both topologies. The algo-

rithms DJK, BSR-DS and BSR do not provide si-

multaneous analyses of links similarity and fre-

quency of use. Considering both heuristics, the

ACO-BSR displays a more refined ability to select

the lowest-cost route.

Although the BP values of the ACO-BSR are

close to the values of the BSR-DS for the Abilene

topology, the ACO-BSR has the advantage of ex-

hibiting a more fair behavior, so it is more suitable

for application in this topology.

Finally, a study based on the standard deviation

values was also conducted. After calculating the

average value of blocking probability for each load

point, the standard deviation of the blocking proba-

bility value of all pairs was observed for each load

point. Figure 8 shows the standard deviation values

for USA and Abilene topologies.

Figure 8. Standard Deviation values to (a) USA

and (b) Abilene topologies.
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For the USA topology, it is noted that the ACO-

BSR presents a lower deviation between the aver-

age value and the blocking probability value of each

pair, representing more uniform load distribution

on the network. For the Abilene topology, there is

a closeness of deviation values between the ACO-

BSR and BSR-DS, demonstrating that both may ex-

hibit similar behavior when evaluated in less com-

plex topologies.

5 Impact of the ACO-BSR Heuris-

tics Parameters in the MCSP

Problem

To apply the ACO-BSR meta-heuristic, it is

necessary to establish the values of certain pa-

rameters: weights of α (pheromone), heuristics β

(frequency of use) and γ (similarity), total num-

ber of ants, maximum amount of iterations and

pheromone evaporation rate. The performance

achieved with variations of parameters is presented

next and is based on the USA topology.

5.1 Number of Ants

Figure 9. Variation of the BP with an increasing

number of ants.

It is necessary to define the number of ants to be

considered in the ACO-BSR algorithm. A greater

number of ants tends to determine better results be-

cause it implies a better analysis of the set of routes

(search space). Inversely, a great number of ants

leads to an increase in the consumption of compu-

tational resources and execution time of the ACO

meta-heuristic. Figure 9 shows the variation in the

BP as a function of the number of ants. Notice that

the value of BP tends to decrease with an increas-

ing number of ants. The reduction of BP value does

not occur linearly due to complexity of the problem.

Additionally, the BP value tends to stabilize, sug-

gesting that an increase in the number of ants does

not provide further improvement of the solution.

The number of ants should vary according to the

network size. For topologies with a greater number

of nodes and links, a more refined analysis of all

possible routes is required. During the experiment,

20 ants were used, which is a value that does not

require great computational cost and has a BP value

close to the value found by simulations with greater

numbers of ants. Furthermore, an analysis of other

studies that have employed the ACO algorithm sug-

gests that 20 ants is an low cost number.

5.2 Number of Iterations

A greater number of iterations increases the

chances of finding best-solution routes, although it

implies a longer execution time. The BP exhibits

greater variations in executions with less iterations

(50, 100 and 150) because the BP is not as stable

as it is in executions with more iterations (400, 450

and 500). Figure 10 shows the effect of the num-

ber of iterations on the BP value. Notice that af-

ter a maximum number of iterations, approximately

250, the optimization process stabilizes; therefore,

400 is a valid number for the maximum number of

iterations.

Figure 10. Variation of the BP with an increasing

number of iterations.

5.3 Vary the weights of α, β and γ

The values of the weights (α for pheromone, β

for frequency of use and γ for similarity) are nor-

malized; therefore, to associate α, β or γ with a

greater influence, an exponent with a value close to
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zero should be used. Providing the pheromone pa-

rameter with a high weight increases its influence

on the value of Ai j and reduces the participation of

both heuristics the constitution of the value for Ai j.

This results in an improved probability of select-

ing routes with a greater frequency of use or sim-

ilarity, which can affect the final result. To avoid

such a scenario, the value of 1 is associated with

the weight of the pheromone parameter. Figures 11

and 12 display the BP values when the weights of

the other two heuristics (frequency of use and simi-

larity, respectively) are changed. It is clear that the

variation in the weight of the parameters does not

exhibit a behavioral pattern. Therefore, to define the

values that implies better performance, it is neces-

sary to conduct initial experiments, which reaffirms

the importance of the analytical model.

Figure 11. Variation of the BP caused by variation

in the weights of frequency of use.

Figure 12. Variation of the BP caused by variation

in the weights of similarity.

The plots in Figs. 13 and 14 compare the results

(in BP) when the algorithms ACO-BSR and BSR-

DS were applied to the USA and Abilene topolo-

gies, respectively. They also show the difference

between the worst and best results found with vari-

ations of the weight for frequency of use (weight

0.05 for the worst and 0.1 for the best) and simi-

larity (weight 1 for the worst and 0.1 for the best).

The difference between the worst and best case is

smaller compared to the variation of both parame-

ters produced by the BSR-DS for the two topolo-

gies.

Figure 13. Best case, worst case and results of the

BSR-DS obtained by the application of the

analytical method to the USA topology.

Figure 14. Best case, worst case and results of the

BSR-DS obtained by the application of the

analytical method to the Abilene topology.

6 Conclusions

Currently, the number of electronic devices

with access to the internet has grown consider-

ably. The popularity of such devices, along with

the widespread use of robust applications, has cre-

ated the need for greater bandwidth in transport

networks. Hence, it is necessary to establish re-

source optimization strategies to guarantee a min-

imum level of QoS for the network users and avoid

a greater number of blocked requests.

With the emergence of optical networks, new

problems have occurred that must be addressed to

optimize the network resources. One problem con-

sists of selecting the best set of routes to estab-

lish circuits during network transmissions and de-

termining the shortest route for a pair(o,d) when

more than one shortest route is presented. Consid-

ering the MCSP problem, this study proposes an al-
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gorithmic solution based on the Ant Colony Opti-

mization, denominated ACO-BSR.

The search for the best combination of the

shortest routes performed by the ACO-BSR consid-

ers three parameters that are essential for the proper

functioning of the network: similarity, frequency

of use and pheromone. The value of the similar-

ity parameter depends on the degree of similarity

between different shortest-path routes for the same

pair of links. The value for the frequency of use pa-

rameter for a link is defined by the number of routes

that cross it. Finally, the parameter pheromone has

its value defined during the iterations of the ACO-

BSR algorithm, and it exhibits higher results for the

routes that provide better performance in terms of

BP.

The ACO-BSR algorithm was applied to USA

and Abilene topologies, and its performance was

compared with the results obtained by the BSR-DS

and BSR algorithms. For the USA topology, the

ACO-BSR displayed better performance compared

to the other two algorithms and provided a better

mean value of network BP. The analysis of the Abi-

lene topology showed that there was a similarity in

BP values between the performance of the ACO-

BSR and BSR-DS algorithms. However, the analy-

sis of the Fairness parameter showed that there was

more fair behavior when the ACO-BSR algorithm

was used, implying that its use results in a better

network load balance. A network with better load

balance displays well-distributed routes among its

links and allows for a better use of the networks ca-

pacity.

The use of the ACO-BSR algorithm does not

require special properties for the search space; in

addition, it is population-based and uses stochastic

components for updating the solutions among its it-

erations. These main characteristics, along with the

results of experiments performed for a scenario of

transparent optical networks, show that the ACO-

BSR algorithm can be as an alternative for fixed

routing algorithms and indicate that it is adequate

and efficient at solving the MCSP; therefore, it can

be used and applied for real scenarios of transparent

optical networks.
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