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Abstract: Problem statement: The Capacitated Vehicle Routing Problem (CVRP# iwell-known
combinatorial optimization problem which is conaatrwith the distribution of goods between the depot
and customers. It is of economic importance toriessies as approximately 10-20% of the final cost of
the goods is contributed by the transportation gge@ pproach: This problem was tackled using an
Ant Colony Optimization (ACO) combined with heurtstapproaches that act as the route
improvement strategies. The proposed ACO utilizpth@romone evaporation procedure of standard
ant algorithm in order to introduce an evaporatiate that depends on the solutions found by the
artificial ants.Results: Computational experiments were conducted on beadhmata set and the
results obtained from the proposed algorithms shitnanhthe application of combination of two diffete
heuristics in the ACO had the capability to impralie ants’ solutions better than ACO embedded with
only one heuristicConclusion: ACO with swap and 3-opt heuristic has the capgbit tackle the
CVRP with satisfactory solution quality and run¢init is a viable alternative for solving the CVRP.
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INTRODUCTION for each vehicle route, the total route length l{iding

. ) ] service times) does not exceed a given bound L.
The Capacitated Vehicle Routing Problem (CVRP) Since the CVRP is a NP-hard problem, only

c;)ngerns tr('je dzslgn otf a set cl)f r(;nnm;urp COStﬂ;%litesmstances of small sizes can be solved to optignalit
starting and ending at a singie depot, for a using exact solution methods (Toth and Vigo, 2002;

vehicles to service a number of customers with kmow . L
demands. Mathematically, it can be represented by galdacmet al., 2010). As a result, heuristic methods are

weighted graph G = (V, A) with VV = {0,1, 2,..., n} as usgd to find .good, bgt not necessarily guaranteed
the vertex set and A = {(i, j) | ifjV} as the edge set. Optimal solutions using reasonable amount of
The depot is denoted as vertex 0 and the totalaities ~ computing time. Starting with the simple construeti

or customers to be served are represented by biee ot approaches such as the savings algorithm propoged b
vertices. For each edge (i,j3ji there is a nonnegative Clarke and Wright (1964) or basic improvement
distance ¢ each measured using Euclideanmethods such as the 2-opt heuristic, the generglege
computations. Each customer i, i=1,2,...,n, isheuristic methods (which are called metaheuristics)
associated with a nonnegative demandrgl a servicé phaye then been developed to guide subordinate
time & which have to be satisfied. The demand at thg,qristics to avoid or overcome local optimalityridg
depot is set o= 0 an_d Its service time IS set&g_)= the past two decades, an increasing number of
0. Each vehicle is given a capacity constraint, Qliteratures on heuristic approaches have been dlesél

Consequently, the objective of the CVRP is to fand , ,
set of minimum cost routes to serve all the custsme (© tackle the CVRP. The summary and discussion of

by satisfying the following constraints which aigtéd several important and state-of-the-art modern k&asi
in Voss (1999): (i) each customer is visited exactl for the problem can be found in the study by Coudzta
once by exactly one vehicle, (ii) all vehicle rausart al. (2002) and Szetet al. (2011).

and end at the depot, (iii) for each vehicle rotlte,total The Ant Colony Optimization (ACO) was first
demand does not exceed the vehicle capacity Qi@nd (introduced by Dorigo and Stutzle (2004). It is iineg
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by the real life behavior of ants foraging for food length constraint. Consequently, there are a twitah
During the search for food from their nest to tbed  solutions constructed sequentially by the total nof
source, it was found that a moving ant will lay aartificial ants in one run of iteration.
chemical substance called pheromone on the trag. T Initially, each ant is assigned to a randomly efmos
pheromone trail is a form of communication among th customer as its first city to visit from the depbhen, at
ants which will attract the other ants to use tame each construction step, an ant k at current ciilli
path to travel. Thus, higher amount of pheromonié wi select the next city j to visit from a feasible
enhance the probability of the next ant selectinat t neighborhoodN! according to a probability distribution
path to travel. With times, as more ants are able tyqin Eq. 1:
complete the shorter path, the pheromone will
accumulate faster on shorter path compared to the AKGLIE
longer path. Consequently, majority of the ants Mou p; = BT
have travelled on the shortest path. Detailed Zluwﬁ[T‘i] (1 Tl
descriptions of the ACO can be found in the book by
Dorigo and Stutzle (2004). Recent applications ofwhere, n; = 1/d; is a heuristic valuet; denotes the
ACO can be found in Naganathan and Rajagopalapheromone concentration on the edge connectingsciti
(2011) and Yagt al. (2012). i and j whiley; = do + dyj — dj is the savings of
To apply the ACO for solving the CVRP, Voss combining two cities i and j on one tour as oppoked
(1999) first developed an ACO algorithm which is yisiting them on two different tours. The paramste
called Ant System (AS) for the problem and then g anqy pias the relative influence of the pheromone
presented an improved AS in Bullnheineeal. (1999).  concentration, the heuristic value and the savirmgse.

Since then, many researchers have proposed Néjy the ahove probability in Eq. 1, the selectmina

methods to improve the original ACO especially by . e
applying other algorithms into the ACO to tacklee th %ﬁ?’o\tlmgiﬁecg yet been visited would dependhen

large-scaled CVRP. For instance, Doergeal. (2002)
proposed a hybrid approach for solving the CVRP by,
combining the AS with the savings algorithm. Afteat, . L
Reimanret al. (2002) improved on the method in Doerner g_ooq the choice of the next city | from the current
et al. (2002) by presenting a Savings based Ant System city | frpm the past o .
(SbAS) and then Reimane al. (2004) proposed an * Attractivenessy; which indicates how promising

| if jONE @)

Pheromone concentrationy which indicates how

approach called D-Ants which is competitive with thest the choice of the next city j is from current dity
Tabu Search (TS) algorithm in terms of solutionligua *  Savings, w; which measures the favorability of
and computation time. Also, Mazzeo and Loiseau4200 combining two cities i and j to a tour where high
Bell and McMullen (2004); Ywet al. (2009) and Zhang savings indicate that visiting the next city j from
and Tang (2009), have made major contributiondéo t current city i is a good choice

development of ACO to tackle the CVRP. This studysa  «  Feasible neighborhoody} which is also called the
to compare the solution quality of different bassuristics candidate list where it includes only the closest
combined with an original ACO in solving the proble cities for the current city i to be available for

selection as the next city to be visited in theteou
MATERIALSAND METHODS

) _ . . The probability of choosing a particular edggj)(i,
Tr}{e f”:ﬁ'” t""ISl:_S con5|dteref[j_ In &n ACO aL?rggthmwill increase with the addition in the value of the
consist of the solution construction, the manag n : -
the pheromone trails and the additional technicues$ corresponding pher-or.no.ne concgntratrg;rwhergas the
alues of the heuristic informatiom; and savinggy;

as heuristic. Overall, the main procedures of the’® ) !
proposed ACO for solving the CVRP are summarized’v'” not dynamically change over time. However, whe
in a flowchart illustrated in Fig. 1. all the cities in the candidate list have alreaegrbvisited

by the ants, one city out of those not in the cdertdi list

Solution construction: In an ACO, each artificial ant Will P& chosen. , _
simulates a vehicle and its complete set of roiges In this case, an ant k will select the city (amaing

constructed by successively choosing customerssto v remaining cities) with maximum value of[* [ﬂile m
until all the customers have been visited. A newteo as the next to move tdhe use of the candidate list has the
will be started from the depot whenever the chaite ability to significantly reduce the computation &m
the next customer to be visited leads to an infdasi necessary for the ants to construct solutions shreeants
solution due to the vehicle capacity or the totaite = choose among a much smaller set of cities.
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Fig. 1: Flowchart of ACO for the CVRP

But it should be noted that the use of a truncedeuidate  the swap heuristic will stop once there is a susfoés
list can lead to not finding the optimal soluti®uring the  exchange of two cities between two different roudes
routes construction process, an ant k returnsgalépot  there is no improvement found for the solution touil
when the carried quantity of demands meets thecleehi
capacity constraint or the total route length a@imst is
violated. After that, the same ant k which repréesen
vehicle will start a new route again to serve thstamers
that have not yet been visited. This process wdl
repeated until all the customers have been visited.

Subtour reversal: This heuristic adjusts a sequence of
cities to be visited in the current solution byestihg a
subsequence of the cities and reversing the otder.
b detalil, for an n-city situation, this heuristic rssawith a
feasible route and then tries to improve on itdyersing
2-city subtours, followed by 3-city subtours and
- o - continuing until reaching subtour of size n-1. The
Heurlst|c§: After an artificial ant has f|_n|shed improven?ent is based ongthe largest decreasevielled
constructing a solution but before the followingtsan yistance and the ties will be solved randomly. The
start to bUIld their SO|uti0nS, the pheromone |dalpd Stopping ru|e is Subjected to When there is nomu'bt
and the ant's solution will be improved by applyiag reversal improving the vehicle routes in the sohuti
heuristic. There are four basic heuristics whica af
interest to us: 2-opt: This heuristic is applied separately to each ef th
vehicle routes built by an ant. Starting from asfbke
Swap: This heuristic aims at improving the clustering route, it modifies the current route by deleting tedges,
of the solution by exchanging two customers fromreversing one of the resulting paths and then
different routes, i.e., a customer i from route sa i reconnecting the route with two new edges. In the
exchanged with a customer j from route b if theran  proposed ACO, the 2-opt is implemented to eachclehi
improvement of solution quality. In the proposed@C route by using the best-improvement stopping rule.
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k
ol Lo=>" L s the average total distance found by m

k=1

Kj Ksj O\dcj Kn‘j artificial ar:ts per iteration and“lis the total distance

@ ® © @) obtained by the solution of an artificial ant k.eTACO

utilizes (p+ 0 J as the evaporation factor as opposed
Lavg

« > < » ¢ v«

&j K’j ch ij to the pheromone evaporation in an AS algorithnmfro
o T ' Dorigo and Stutzle (2004) which uses only thas the
© © ® ® trail persistence. The idea is to simulate the exaon

process of the pheromone trail in nature which ddpe
on the length of the path travelled by an ant. [Dinger

3-opt: Three edges of a tour are removed in a 3-opt movi’® path is, the more pheromone evaporates.

and a new tour is obtained by replacing at mosetbf its ~ Consequently, it favors the exploration of not yet

arcs. In this context, the removal of three edgégesgult visited edges by mqklng the edges alregdy visited b

in three paths that can then be recombined intdl #ofir the ants less attractive. Furthermore, this process

in eight different ways as shown in Fig. 2. Howewsly avoid ea_rly or qqu convergence of all the antsa

four (e, f, g, h) of the eight ways actually intnog three a suboptimal solution.

new edges while the other four ways (a, b, ¢, d)lwd@ Pheromone deposition: After the pheromone

obtained by the 2-opt move. evaporation process, only the best ants and thisteli
Different combination of the above mentioned ants will deposit pheromone on the edges that tias

four heuristics would be applied to the original ®@C travelled following the Eq. 3 below:

during the computational experiments to determine o .

the best combination of the heuristics with ACO in T, =5 +Z‘::1AEA +A147 , (3)

solving the CVRP.

Fig. 2: All possible 3-opt recombination cases

Pheromone update: After all the artificial ants have Where:

improved the solutions through the heuristics, the

. . . . . (oh) .
pheromone trails will be updated. This is the main Ak =)0 1T theath best ant travels on edga
feature of an ACO algorithm which assists at imjmgv ! 0, otherwise
future solutions since the updated pheromone trails . [=.if edge (i, ) is part of the best stian
would reflect the ants’ performance and the quadity Aty = 0 therwi
their solutions found. In this context, there ave main : otherwise

phases of the pheromone update in an AS algorithm . ,
(Dorigo and Stutzle, 2004), which are the pheromone Following Bulinheimeret al. (1999), two types of
evaporation and the pheromone deposition. In th@heromone trails are laid during the pheromone tgpda

proposed ACO, modifications would be made to theProcess with the Eq. 3. Firstly, the best-so-fdutimn
usual pheromone evaporation whereas the pheromor@bjective value [) found since the start of the ACO
deposition would be referred to Bullnheimer al.  algorithm will be updated as it elitist ants had
(1999) which comprises of the elitist strategy agb  traversed it. The quantity of the pheromone depdsit
the concept of ranking. The details of the pheroenonby the elitist ants iat;. Secondly, only thes-1 best
;FgZESfrrgggd;Srign'ompsl_emented in the proposed Acgnts out of m ants of the current iteration arevedid to

' ws: lay pheromone on the edges that they have traversed
Pheromone evaporation: First of all, the pheromone The amounts of pheromone laid by these ants depend
concentration on all edges will be lowered by astant 0N their rank\ and also their solution quality’L.where

factor with the following Eq. 2: the Ath best ant lays an amount of pheromone equals
toAt;. In short, the idea of the elitist strategy is to
T =(p+%]r‘i, ag, ) OA 2 provide strong additional reinforcement to the edge

belonging to the best solution found so far aftezrg

run of iteration. The aim is to guide the search in
where, 05(p+i)<1 is an evaporation factor, succeeding iterations as it is likely that someesdgf
L™ the best-so-far solution are part of the optimalitsan.

O0<p<1 is the trail persistencef is a constant, On the other hand, the concept of ranking which is
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suggested in Bullnheimet al. (1997) aims to avoid the These fourteen vehicle routing test problems haanb
danger of over-emphasized pheromone trails cauged lwidely used as benchmarks and their characteriaties

many ants using suboptimal routes. summarized in Table 1.
From the initial investigation, we observed tHat t
RESULTS following parameter settings give a good compromise

) _ between the computation time and the solution guali
The computational experiments were performed on fr the proposed ACO:

set of benchmark problems which are publicly atséelat
the VRPWeb at: http://neo.lcc.uma.es/radi-aeb/WebVR * m = n artificial ants
e a=2,=5,y=9

Fable 11 Characerstis o te bepchmark pobiemnces noq * P = 0.80.9= 80

Random probiem 5 « candidate list size dfn/3]

c1 50 160 o« 0 5 524.61 _ -

C2 75 140 « 0 10 835.26 * o =3elitistants

c3 100 200 ® 0 8 826.14

c4 150 200 ® O 12 1028.42 i i i i

o 199 500 =9 12 190555 Besides, with _thg suggestion from Dorlgo and
C6 50 160 10 200 6 55543  Stutzle (2004), the initial pheromone concentraticas
& 1o 340 10 180 i 0oe8  set asto = m/L™, where " is the total length of the
8?0 igg %88 ig %88 %81 %g%gg solution generated by the nearest-neighbor hewrigtiis
Clustered problem ' is due to the fact that it is a good practice tatse initial
c11 120 200 o 0 7 1042.11 i is slidhi

<o 100 500 = 9 10 81556 pheromone concentration to a value that is sllgm_tj[jner
C13 120 200 50 720 11 1541.14  than the expected amount of pheromone depositéaeby
c14 100 _200 90 1040 11 866.37  ants in one iteration. For all the problems testeel set
n: number of customers service time L: maximum tour length  Q:

vehicle capacity the maximum iteration to 50000.

Table 2: Computational results of original ACO &f@Os with one heuristic
ACO with heuristic

Original ACO Swap Subtour Reversal 2-opt p3-0

Best Avg Best Avg. Best Avg Best  Avg Best Avg
Prob. RPD RPD Time (sec) RPD RPD Time (sec) RPD RPD Tsee) RPD RPD Time (sec) RPD RPD Time (sec)
C1 0.20 4.61 4.03 0.64 3.07 10.83 0.04 3.77 7.51 000. 1.01 25.55 0.00 0.87 114.04
c2 4.09 6.32 8.15 4.79 6.33 18.40 3.31 4.99 9.78 69 2. 3.53 7.83 1.44 2.68 38.91
C3 6.48 7.79 1532 6.11 7.77 43.17 5.72 6.94 1598 3.19 4.65 21.71 2.34 3.94 282.87
C4 10.04 12.30 38.01 10.43 11.88 107.97 8.74 10.6353.70 7.44  9.00 49.09 6.17 7.63 546.61
C5 13.12 14.88 87.03 12.67 14.06 183.79 12.41 13.7494.86 10.65 11.99 108.12 9.57 10.49 863.89
C6 0.85 3.48 5.92 1.22 3.24 9.66 1.34 3.36 7.46 91.32.91 7.65 0.77 2.22 24.43
Cc7 6.32 8.16 10.20 4.81 7.57 16.43 5.19 7.14 9.21 .154 5.01 10.31 4.08 5.24 17.97
c8 7.76 10.09 16.16 6.36 8.36 31.02 5.16 7.32 22.38 452 6.15 18.54 1.29 3.63 139.46
Cc9 10.85 13.07 47.93 11.31 13.75 72.15 1112 12.2762.02 9.44 11.17 47.12 6.58 8.73 334.98
C10 12.76 15.90 122.63 14.59 16.24 182.06  13.39 6514. 119.96 11.68 12.99 104.36 10.50 11.56 688.65
C11 5.00 6.07 20.92 3.63 5.35 77.62 3.95 4.90 26.94 183 251 32.01 1.09 1.35 750.10
C12 6.22 8.43 17.47 7.16 8.60 28.38 6.23 7.24 18.15 3.23 5.06 15.69 3.44 3.88 204.36
C13 3.34 5.33 22.70 4.93 5.28 52.12 3.68 4.74 25.19 3.02 3.59 23.14 1.98 2.53 301.19
C14 1.42 2.45 15.89 1.41 2.54 38.30 1.60 1.97 16.94 0.43 0.64 14.43 0.28 0.36 116.27
Avg. 6.32 8.49 30.88 6.43 8.15 62.28 5.85 7.40 35.01 455 573 34.68 435 4.65 315.98

Table 3: Computational results of ACOs with two tigtics
ACO with heurisitc

Swap and Subtour Reversal Swap and 2-opt SweéB-apt
Prob. Best RPD Avg. RPD Time (sec) Best RPD AvgDRP Time (sec) Best RPD Avg. RPD  Time (sec)
C1 0.04 2.49 18.96 0.00 0.76 40.45 0.00 0.48 412.74
C2 4.16 5.17 15.09 2.48 3.27 16.27 1.27 2.12 55.80
C3 4.88 6.46 38.35 3.36 4.84 40.73 1.47 3.43 285.53
C4 9.64 10.77 98.94 7.99 8.90 121.75 4.94 6.64 5530
C5 11.81 13.27 205.50 9.86 11.23 177.26 8.17 9.71 14817
C6 1.16 2.84 8.03 1.37 2.50 19.49 0.00 1.32 41.34
C7 4.10 6.14 19.33 3.46 5.05 12.68 2.21 4.04 34.35
Cc8 4.52 7.18 43.92 1.98 4.07 42.17 1.07 2.94 163.13
C9 10.99 12.33 80.41 8.58 10.57 79.73 5.46 8.6
C10 13.24 15.12 173.49 11.51 12.58 167.33 9.25 511.2 747.34
Ci11 3.26 424 63.50 1.31 241 84.62 0.77 1.29 787.9
C12 5.69 7.12 31.93 4.54 5.35 34.24 2.05 3.55 242.5
C13 3.51 4.09 58.29 2.34 3.14 50.03 1.90 2.51 369.9
Ci4 1.38 181 39.28 0.26 0.62 30.67 0.15 0.30 BA3.6
Avg 5.60 7.07 63.93 4.22 5.38 65.53 2.77 4.16 2¥8.
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The computational experiments were conducted on ACO with swap and 2-opt following by the ACO with
desktop computer of Intel (R) Core2 Duo processtt w swap and subtour reversal. Besides, it is shovirabie
3GB RAM and 3GHz CPU speed. The algorithms were2 and Table 3 that the application of two different
coded in ANSI-C using Microsoft Visual C++ Versién heuristics in the ACO has the capability to improve

as the compiler. Each algorithm was run 10 times omnts’ solutions better than the ACO embedded with
each instance tested. The results which are repéste only one heuristic. For instance, the ACO with swap

each instance are computed according to the Eglovb ~ and 2-opt obtains an average RPD of 5.38% whereas
ACO with swap and ACO with 2-opt only reach the

_ average RPD of 8.15% and 5.73% respectively.
RPD= l\/lethoseoIS Best 100 @) g p y
o CONCLUSION

where, RPD is the relative percentage deviatiothef
solution obtained (denoted as Metkgdfrom the best
published solution (denoted as Bgkt

The CVRP has been an attractive issue in the field
of distribution and logistics which is motivated bgth

. . its practical relevance and its considerable diffic In
The computational results are presented in Table g ;o study, we have compared the solution quality o

and ITabIe 3. For ea%h .ins';]an(;e in b(f)th Tablg Z?]ab'g“:[ different basic heuristics combined with an origina
reTu ts ar% pfesg"“ed In the form o RgDh( ot ACO in solving the problem. The computational resul
solution ﬁ tained and on avgrage) and t (Ia avinage Y of fourteen benchmark problems shown that the ACO
.t'rg.e IS S or\]/vn I?] CEU secot?l_ Sh 'g‘ RPID va uef OmgiOO/‘bombined with the swap and 3-opt heuristic has the
'(;]. icates t aE)t_e desthpul IShe S? Et'or? c; ol U capability to tackle the CVRP with satisfactoryusin

istance is obtained. The last row of bot ol ds uality and run time. Therefore it is a viable altgive
shows the average RPD and average run time over "%r solving the CVRP
instances tested for different approaches. '
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