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Abstract: Problem statement: The Capacitated Vehicle Routing Problem (CVRP) is a well-known 
combinatorial optimization problem which is concerned with the distribution of goods between the depot 
and customers. It is of economic importance to businesses as approximately 10-20% of the final cost of 
the goods is contributed by the transportation process. Approach: This problem was tackled using an 
Ant Colony Optimization (ACO) combined with heuristic approaches that act as the route 
improvement strategies. The proposed ACO utilized a pheromone evaporation procedure of standard 
ant algorithm in order to introduce an evaporation rate that depends on the solutions found by the 
artificial ants. Results: Computational experiments were conducted on benchmark data set and the 
results obtained from the proposed algorithms shown that the application of combination of two different 
heuristics in the ACO had the capability to improve the ants’ solutions better than ACO embedded with 
only one heuristic. Conclusion: ACO with swap and 3-opt heuristic has the capability to tackle the 
CVRP with satisfactory solution quality and run time. It is a viable alternative for solving the CVRP. 
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INTRODUCTION 

 
 The Capacitated Vehicle Routing Problem (CVRP) 
concerns the design of a set of minimum cost routes, 
starting and ending at a single depot, for a fleet of 
vehicles to service a number of customers with known 
demands. Mathematically, it can be represented by a 
weighted graph G = (V, A) with V = {0,1, 2,…, n} as 
the vertex set and A = {(i, j) | i, j∈ V} as the edge set. 
The depot is denoted as vertex 0 and the total of n cities 
or customers to be served are represented by the other 
vertices. For each edge (i,j), i≠j, there is a nonnegative 
distance dij  each measured using Euclidean 
computations. Each customer i, i=1,2,…,n, is 
associated with a nonnegative demand qi and a service 
time δi which have to be satisfied. The demand at the 
depot is set to q0 = 0 and its service time is set to δ0 = 
0. Each vehicle is given a capacity constraint, Q. 
Consequently, the objective of the CVRP is to find a 
set of minimum cost routes to serve all the customers 
by satisfying the following constraints which are listed 
in Voss (1999): (i) each customer is visited exactly 
once by exactly one vehicle, (ii) all vehicle routes start 
and end at the depot, (iii) for each vehicle route, the total 
demand does not exceed the vehicle capacity Q and (iv) 

for each vehicle route, the total route length (including 
service times) does not exceed a given bound L. 
 Since the CVRP is a NP-hard problem, only 
instances of small sizes can be solved to optimality 
using exact solution methods (Toth and Vigo, 2002; 
Baldacci et al., 2010). As a result, heuristic methods are 
used to find good, but not necessarily guaranteed 
optimal solutions using reasonable amount of 
computing time. Starting with the simple constructive 
approaches such as the savings algorithm proposed by 
Clarke and Wright (1964) or basic improvement 
methods such as the 2-opt heuristic, the general-purpose 
heuristic methods (which are called metaheuristics) 
have then been developed to guide subordinate 
heuristics to avoid or overcome local optimality. During 
the past two decades, an increasing number of 
literatures on heuristic approaches have been developed 
to tackle the CVRP. The summary and discussion of 
several important and state-of-the-art modern heuristics 
for the problem can be found in the study by Cordeau et 
al. (2002) and Szeto et al. (2011). 
 The Ant Colony Optimization (ACO) was first 
introduced by Dorigo and Stutzle (2004). It is inspired 
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by the real life behavior of ants foraging for food. 
During the search for food from their nest to the food 
source, it was found that a moving ant will lay a 
chemical substance called pheromone on the trail. The 
pheromone trail is a form of communication among the 
ants which will attract the other ants to use the same 
path to travel. Thus, higher amount of pheromone will 
enhance the probability of the next ant selecting that 
path to travel. With times, as more ants are able to 
complete the shorter path, the pheromone will 
accumulate faster on shorter path compared to the 
longer path. Consequently, majority of the ants would 
have travelled on the shortest path. Detailed 
descriptions of the ACO can be found in the book by 
Dorigo and Stutzle (2004). Recent applications of 
ACO can be found in Naganathan and Rajagopalan 
(2011) and Yap et al. (2012). 
 To apply the ACO for solving the CVRP, Voss 
(1999) first developed an ACO algorithm which is 
called Ant System (AS) for the problem and then 
presented an improved AS in Bullnheimer et al. (1999). 
Since then, many researchers have proposed new 
methods to improve the original ACO especially by 
applying other algorithms into the ACO to tackle the 
large-scaled CVRP. For instance, Doerner et al. (2002) 
proposed a hybrid approach for solving the CVRP by 
combining the AS with the savings algorithm. After that, 
Reimann et al. (2002) improved on the method in Doerner 
et al. (2002) by presenting a Savings based Ant System 
(SbAS) and then Reimann et al. (2004) proposed an 
approach called D-Ants which is competitive with the best 
Tabu Search (TS) algorithm in terms of solution quality 
and computation time. Also, Mazzeo and Loiseau (2004); 
Bell and McMullen (2004); Yu et al. (2009) and Zhang 
and Tang (2009), have made major contributions to the 
development of ACO to tackle the CVRP. This study aims 
to compare the solution quality of different basic heuristics 
combined with an original ACO in solving the problem.  
 

MATERIALS AND METHODS 
 
 The main tasks considered in an ACO algorithm 
consist of the solution construction, the management of 
the pheromone trails and the additional techniques such 
as heuristic. Overall, the main procedures of the 
proposed ACO for solving the CVRP are summarized 
in a flowchart illustrated in Fig. 1. 
 
Solution construction: In an ACO, each artificial ant 
simulates a vehicle and its complete set of routes is 
constructed by successively choosing customers to visit 
until all the customers have been visited. A new route 
will be started from the depot whenever the choice of 
the next customer to be visited leads to an infeasible 
solution due to the vehicle capacity or the total route 

length constraint. Consequently, there are a total of m 
solutions constructed sequentially by the total of m 
artificial ants in one run of iteration.  
 Initially, each ant is assigned to a randomly chosen 
customer as its first city to visit from the depot. Then, at 
each construction step, an ant k at current city i will 
select the next city j to visit from a feasible 
neighborhood k

iN according to a probability distribution 

as in Eq. 1: 
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where,  ηij = 1/dij is a heuristic value,  τij denotes the 
pheromone concentration on the edge connecting cities 
i and j while µij = di0 + d0j – dij is the savings of 
combining two cities i and j on one tour as opposed to 
visiting them on two different tours. The parameters  α, 
 β and γ bias the relative influence of the pheromone 
concentration, the heuristic value and the savings value. 
With the above probability in Eq. 1, the selection of a 
city that has not yet been visited would depend on the 
following criteria: 
 
• Pheromone concentration, τij which indicates how 

good the choice of the next city j from the current 
city i from the past 

• Attractiveness, ηij which indicates how promising 
the choice of the next city j is from current city i 

• Savings, µij which measures the favorability of 
combining two cities i and j to a tour where high 
savings indicate that visiting the next city j from 
current city i is a good choice 

• Feasible neighborhood, kiN  which is also called the 

candidate list where it includes only the closest 
cities for the current city i to be available for 
selection as the next city to be visited in the route 

 
 The probability of choosing a particular edge (i, j) 
will increase with the addition in the value of the 
corresponding pheromone concentration τij whereas the 
values of the heuristic information ηij and savings µij 

will not dynamically change over time. However, when 
all the cities in the candidate list have already been visited 
by the ants, one city out of those not in the candidate list 
will be chosen. 
 In this case, an ant k will select the city (among the 
remaining cities) with maximum value of [τij]

α [ηij]
β [µij]

γ 
as the next to move to. The use of the candidate list has the 
ability to significantly reduce the computation time 
necessary for the ants to construct solutions since the ants 
choose among a much smaller set of cities. 
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Fig. 1: Flowchart of ACO for the CVRP 
 
But it should be noted that the use of a truncated candidate 
list can lead to not finding the optimal solution. During the 
routes construction process, an ant k returns to the depot 
when the carried quantity of demands meets the vehicle 
capacity constraint or the total route length constraint is 
violated. After that, the same ant k which represents a 
vehicle will start a new route again to serve the customers 
that have not yet been visited. This process will be 
repeated until all the customers have been visited.  
 
Heuristics: After an artificial ant has finished 
constructing a solution but before the following ants 
start to build their solutions, the pheromone is updated 
and the ant’s solution will be improved by applying a 
heuristic. There are four basic heuristics which are of 
interest to us: 
 
Swap: This heuristic aims at improving the clustering 
of the solution by exchanging two customers from 
different routes, i.e., a customer i from route a is 
exchanged with a customer j from route b if there is an 
improvement of solution quality. In the proposed ACO, 

the swap heuristic will stop once there is a successful 
exchange of two cities between two different routes or 
there is no improvement found for the solution built. 
 
Subtour reversal: This heuristic adjusts a sequence of 
cities to be visited in the current solution by selecting a 
subsequence of the cities and reversing the order. In 
detail, for an n-city situation, this heuristic starts with a 
feasible route and then tries to improve on it by reversing 
2-city subtours, followed by 3-city subtours and 
continuing until reaching subtour of size n-1. The 
improvement is based on the largest decrease in travelled 
distance and the ties will be solved randomly. The 
stopping rule is subjected to when there is no subtour 
reversal improving the vehicle routes in the solution. 
 
2-opt: This heuristic is applied separately to each of the 
vehicle routes built by an ant. Starting from a feasible 
route, it modifies the current route by deleting two edges, 
reversing one of the resulting paths and then 
reconnecting the route with two new edges. In the 
proposed ACO, the 2-opt is implemented to each vehicle 
route by using the best-improvement stopping rule. 
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Fig. 2: All possible 3-opt recombination cases 
 
3-opt: Three edges of a tour are removed in a 3-opt move 
and a new tour is obtained by replacing at most three of its 
arcs. In this context, the removal of three edges will result 
in three paths that can then be recombined into a full tour 
in eight different ways as shown in Fig. 2. However, only 
four (e, f, g, h) of the eight ways actually introduce three 
new edges while the other four ways (a, b, c, d) can be 
obtained by the 2-opt move. 
 Different combination of the above mentioned 
four heuristics would be applied to the original ACO 
during the computational experiments to determine 
the best combination of the heuristics with ACO in 
solving the CVRP.  
 
Pheromone update: After all the artificial ants have 
improved the solutions through the heuristics, the 
pheromone trails will be updated. This is the main 
feature of an ACO algorithm which assists at improving 
future solutions since the updated pheromone trails 
would reflect the ants’ performance and the quality of 
their solutions found. In this context, there are two main 
phases of the pheromone update in an AS algorithm 
(Dorigo and Stutzle, 2004), which are the pheromone 
evaporation and the pheromone deposition. In the 
proposed ACO, modifications would be made to the 
usual pheromone evaporation whereas the pheromone 
deposition would be referred to Bullnheimer et al. 
(1999) which comprises of the elitist strategy and also 
the concept of ranking. The details of the pheromone 
update procedures implemented in the proposed ACO 
are described as follows: 
 
Pheromone evaporation: First of all, the pheromone 
concentration on all edges will be lowered by a constant 
factor with the following Eq. 2: 
 

 
ij ijavg
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L
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 0 ρ < 1≤  is the trail persistence, θ is a constant, 

k
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m
∑  is the average total distance found by m 

artificial ants per iteration and Lk is the total distance 
obtained by the solution of an artificial ant k. The ACO 

utilizes 
avg

θ
ρ+

L
 
 
 

 as the evaporation factor as opposed 

to the pheromone evaporation in an AS algorithm from 
Dorigo and Stutzle (2004) which uses only the ρ as the 
trail persistence. The idea is to simulate the evaporation 
process of the pheromone trail in nature which depends 
on the length of the path travelled by an ant. The longer 
the path is, the more pheromone evaporates. 
Consequently, it favors the exploration of not yet 
visited edges by making the edges already visited by 
the ants less attractive. Furthermore, this process can 
avoid early or quick convergence of all the ants toward 
a suboptimal solution. 
 
Pheromone deposition: After the pheromone 
evaporation process, only the best ants and the elitist 
ants will deposit pheromone on the edges that they have 
travelled following the Eq. 3 below: 
 

1 *
ij ij ij ij1
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0,                                         otherwise
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 Following Bullnheimer et al. (1999), two types of 
pheromone trails are laid during the pheromone update 
process with the Eq. 3. Firstly, the best-so-far solution 
(objective value L*) found since the start of the ACO 
algorithm will be updated as if σ elitist ants had 
traversed it. The quantity of the pheromone deposited 
by the elitist ants is *

ij∆τ . Secondly, only the σ-1 best 

ants out of m ants of the current iteration are allowed to 
lay pheromone on the edges that they have traversed. 
The amounts of pheromone laid by these ants depend 
on their rank λ and also their solution quality Lλ, where 
the λth best ant lays an amount of pheromone equals 
to λ

ij∆τ . In short, the idea of the elitist strategy is to 

provide strong additional reinforcement to the edges 
belonging to the best solution found so far after every 
run of iteration. The aim is to guide the search in 
succeeding iterations as it is likely that some edges of 
the best-so-far solution are part of the optimal solution. 
On the other hand, the concept of ranking which is 
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suggested in Bullnheimer et al. (1997) aims to avoid the 
danger of over-emphasized pheromone trails caused by 
many ants using suboptimal routes. 
 

RESULTS 
 
 The computational experiments were performed on a 
set of benchmark problems which are publicly available at 
the VRPWeb at: http://neo.lcc.uma.es/radi-aeb/WebVRP/. 
 
Table 1: Characteristics of the benchmark problem instances 
Problem n Q L δ Vehicle used Best published 
Random problem 
C1 50 160 ∞ 0 5 524.61 
C2 75 140 ∞ 0 10 835.26 
C3 100 200 ∞ 0 8 826.14 
C4 150 200 ∞ 0 12 1028.42 
C5 199 200 ∞ 0 17 1291.29 
C6 50 160 10 200 6 555.43 
C7 75 140 10 160 11 909.68 
C8 100 200 10 230 9 865.94 
C9 150 200 10 200 14 1162.55 
C10 199 200 10 200 18 1395.85 
Clustered problem 
C11 120 200 ∞ 0 7 1042.11 
C12 100 200 ∞ 0 10 819.56 
C13 120 200 50 720 11 1541.14 
C14 100 200 90 1040 11 866.37 
n: number of customers δ: service time  L: maximum tour length Q: 
vehicle capacity 

These fourteen vehicle routing test problems have been 
widely used as benchmarks and their characteristics are 
summarized in Table 1. 
 From the initial investigation, we observed that the 
following parameter settings give a good compromise 
between the computation time and the solution quality 
for the proposed ACO: 
 
• m = n artificial ants  
• α= 2, β = 5, γ = 9  
• ρ = 0.80, θ = 80  
• candidate list size of  3n  

• σ = 3 elitist ants 
 
 Besides, with the suggestion from Dorigo and 
Stutzle (2004), the initial pheromone concentration was 
set as τ0 = m/Lnn, where Lnn is the total length of the 
solution generated by the nearest-neighbor heuristic. This 
is due to the fact that it is a good practice to set the initial 
pheromone concentration to a value that is slightly higher 
than the expected amount of pheromone deposited by the 
ants in one iteration. For all the problems tested, we set 
the maximum iteration to 50000.  

 
Table 2: Computational results of original ACO and ACOs with one heuristic 
    ACO with heuristic 
    -------------------------------------------------------------------------------------------------------------------------------------------------------- 
 Original ACO  Swap   Subtour Reversal  2-opt   3-opt 
 --------------------------------- ------------------------------------- ----------------------------------- ------------------------------- ---------------------------------- 
 Best Avg  Best Avg.  Best Avg  Best Avg  Best Avg 
Prob. RPD RPD Time (sec) RPD RPD Time (sec) RPD RPD Time (sec) RPD RPD Time (sec) RPD RPD Time (sec) 
C1 0.20 4.61 4.03 0.64 3.07 10.83 0.04 3.77 7.51 0.00 1.01 25.55 0.00 0.87 114.04 
C2 4.09 6.32 8.15 4.79 6.33 18.40 3.31 4.99 9.78 2.69 3.53 7.83 1.44 2.68 38.91 
C3 6.48 7.79 15.32 6.11 7.77 43.17 5.72 6.94 15.98 3.19 4.65 21.71 2.34 3.94 282.87 
C4 10.04 12.30 38.01 10.43 11.88 107.97 8.74 10.63 53.70 7.44 9.00 49.09 6.17 7.63 546.61 
C5 13.12 14.88 87.03 12.67 14.06 183.79 12.41 13.74 94.86 10.65 11.99 108.12 9.57 10.49 863.89 
C6 0.85 3.48 5.92 1.22 3.24 9.66 1.34 3.36 7.46 1.39 2.91 7.65 0.77 2.22 24.43 
C7 6.32 8.16 10.20 4.81 7.57 16.43 5.19 7.14 9.21 4.15 5.01 10.31 4.08 5.24 17.97 
C8 7.76 10.09 16.16 6.36 8.36 31.02 5.16 7.32 22.38 4.52 6.15 18.54 1.29 3.63 139.46 
C9 10.85 13.07 47.93 11.31 13.75 72.15 11.12 12.27 62.02 9.44 11.17 47.12 6.58 8.73 334.98 
C10 12.76 15.90 122.63 14.59 16.24 182.06 13.39 14.65 119.96 11.68 12.99 104.36 10.50 11.56 688.65 
C11 5.00 6.07 20.92 3.63 5.35 77.62 3.95 4.90 26.94 1.83 2.51 32.01 1.09 1.35 750.10 
C12 6.22 8.43 17.47 7.16 8.60 28.38 6.23 7.24 18.15 3.23 5.06 15.69 3.44 3.88 204.36 
C13 3.34 5.33 22.70 4.93 5.28 52.12 3.68 4.74 25.19 3.02 3.59 23.14 1.98 2.53 301.19 
C14 1.42 2.45 15.89 1.41 2.54 38.30 1.60 1.97 16.94 0.43 0.64 14.43 0.28 0.36 116.27 
Avg.  6.32 8.49 30.88 6.43 8.15 62.28 5.85 7.40 35.01 4.55 5.73 34.68 3.54 4.65 315.98 
 
Table 3: Computational results of ACOs with two heuristics 
  ACO with heurisitc 
 -------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 Swap and Subtour Reversal Swap and 2-opt   Swap and 3-opt 
 -------------------------------------------- ------------------------------------------------- -------------------------------------------------- 
Prob. Best RPD Avg. RPD Time (sec) Best RPD Avg. RPD Time (sec) Best RPD Avg. RPD Time (sec) 
C1 0.04 2.49 18.96 0.00 0.76 40.45 0.00 0.48 412.74 
C2 4.16 5.17 15.09 2.48 3.27 16.27 1.27 2.12 55.80 
C3 4.88 6.46 38.35 3.36 4.84 40.73 1.47 3.43 285.53 
C4 9.64 10.77 98.94 7.99 8.90 121.75 4.94 6.64 630.57 
C5 11.81 13.27 205.50 9.86 11.23 177.26 8.17 9.71 1148.17 
C6 1.16 2.84 8.03 1.37 2.50 19.49 0.00 1.32 41.34 
C7 4.10 6.14 19.33 3.46 5.05 12.68 2.21 4.04 34.35 
C8 4.52 7.18 43.92 1.98 4.07 42.17 1.07 2.94 163.13 
C9 10.99 12.33 80.41 8.58 10.57 79.73 5.46 8.65 336.35 
C10 13.24 15.12 173.49 11.51 12.58 167.33 9.25 11.25 747.34 
C11 3.26 4.24 63.50 1.31 2.41 84.62 0.77 1.29 787.97 
C12 5.69 7.12 31.93 4.54 5.35 34.24 2.05 3.55 242.51 
C13 3.51 4.09 58.29 2.34 3.14 50.03 1.90 2.51 269.98 
C14 1.38 1.81 39.28 0.26 0.62 30.67 0.15 0.30 143.68 
Avg. 5.60 7.07 63.93 4.22 5.38 65.53 2.77 4.16 378.53 
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The computational experiments were conducted on a 
desktop computer of Intel (R) Core2 Duo processor with 
3GB RAM and 3GHz CPU speed. The algorithms were 
coded in ANSI-C using Microsoft Visual C++ Version 6 
as the compiler. Each algorithm was run 10 times on 
each instance tested. The results which are reported for 
each instance are computed according to the Eq. 4 below: 
 

sol sol

sol

Method Best
RPD 100%

Best

−= ×                                  (4) 

 
where, RPD is the relative percentage deviation of the 
solution obtained (denoted as Methodsol) from the best 
published solution (denoted as Bestsol).  
 The computational results are presented in Table 2 
and Table 3. For each instance in both Table 2 and 3, the 
results are presented in the form of RPD (both for best 
solution obtained and on average) and the average run 
time is shown in CPU seconds. A RPD value of 0.00% 
indicates that the best published solution of the total 
distance is obtained. The last row of both of the tables 
shows the average RPD and average run time over all 
instances tested for different approaches. 
 

DISCUSSION 
 
 Table 2 shows the results obtained by an original 
ACO algorithm and those ACO algorithms combined 
with one heuristic. In addition, we further extended the 
investigation on ACOs by combining two heuristics 
into the original ACO algorithm with the results in 
Table 3. There are a total of three combinations of two 
different heuristics considered in our study since only 
the swap algorithm functions at improving the 
clustering with the modification among different 
vehicle routes whereas the other three heuristics 
function at improving the routing with the alteration 
within one vehicle route.  
 All the ACOs with heuristic perform better than 
the original ACO with respect to the solution quality. 
However, ACOs with heuristic consume more run time 
compared to the original ACO especially for the ACOs 
involving the application of 3-opt heuristic. 
Nevertheless, the ACO with 3-opt heuristic performs 
the best in Table 2 with an average RPD of 4.65% and 
the ACO with swap and 3-opt heuristics also 
outperform other ACOs in Table 3 with an average 
RPD of 4.16%. From Table 2, it could be observed that 
the performance of the ACOs could be summarized as 
the application of 3-opt performs the best, followed by 
2-opt, subtour reversal and then the swap heuristic. The 
same case for the results shown in Table 3 where the 
ACO with swap and 3-opt performs better than the 

ACO with swap and 2-opt following by the ACO with 
swap and subtour reversal. Besides, it is shown in Table 
2 and Table 3 that the application of two different 
heuristics in the ACO has the capability to improve the 
ants’ solutions better than the ACO embedded with 
only one heuristic. For instance, the ACO with swap 
and 2-opt obtains an average RPD of 5.38% whereas 
ACO with swap and ACO with 2-opt only reach the 
average RPD of 8.15% and 5.73% respectively.  
 

CONCLUSION 
 
 The CVRP has been an attractive issue in the field 
of distribution and logistics which is motivated by both 
its practical relevance and its considerable difficulty. In 
this study, we have compared the solution quality of 
different basic heuristics combined with an original 
ACO in solving the problem. The computational results 
of fourteen benchmark problems shown that the ACO 
combined with the swap and 3-opt heuristic has the 
capability to tackle the CVRP with satisfactory solution 
quality and run time. Therefore it is a viable alternative 
for solving the CVRP. 
 

ACKNOWLEDGEMENT 
 
 This research is supported by Fundamental Research 
Grant Scheme (FRGS) 01-04-10-886FR (Ministry of 
Higher Education, Malaysia) The authors are also grateful 
to Universiti Putra Malaysia for providing the excellent 
research facilities. 
 

REFERENCES 
 
Baldacci, R., P. Toth and D. Vigo, 2010. Exact 

algorithms for routing problems under vehicle 
capacity constraints. Ann. Oper. Res., 175: 213-
245. DOI: 10.1007/s10479-009-0650-0 

Bell, J.E. and P.R. McMullen, 2004. Ant colony 
optimization techniques for the vehicle routing 
problem. Adv. Eng. Inform., 18: 41-48. DOI: 
10.1016/j.aei.2004.07.001 

Bullnheimer, B., R.F. Hartl and C. Strauss, 1997. A 
new rank based version of the Ant System. A 
computational study. University of Economics and 
Business, Vienna.  

Bullnheimer, B., R.F. Hartl and C. Strauss, 1999. An 
improved Ant System algorithm for theVehicle 
Routing Problem. Ann. Oper. Res., 89: 319-328. 
DOI: 10.1023/A:1018940026670  

Clarke, G. and J.W. Wright, 1964. Scheduling of 
vehicles from a central depot to a number of 
delivery points. Oper. Res., 12: 568-581.  



J. Computer Sci., 8 (6): 846-852, 2012 
 

852 

Cordeau, J.F., M. Gendreau, G. Laporte, J.Y. Potvin 
and F. Semet, 2002. A guide to vehicle routing 
heuristics. J. Oper. Res. Soc., 53: 512-522. DOI: 
10.1057/palgrave/jors/2601319  

Doerner, K., M. Gronalt, R.F. Hartl, M. Reimann and 
C. Strauss et al., 2002. SavingsAnts for the vehicle 
routing problem. Lecture Notes Comput. Sci., 
2279: 73-109. DOI: 10.1007/3-540-46004-7_2 

Dorigo, M. and T. Stutzle, 2004. Ant Colony 
Optimization. 1st Edn., MIT Press, Cambridge, 
ISBN-10: 0262042193, pp: 305. 

Mazzeo, S. and I. Loiseau, 2004. An ant colony 
algorithm for the capacitated vehicle routing. Elect. 
Notes Dis. Math., 18: 181-186. DOI: 
10.1016/j.endm.2004.06.029 

Naganathan, E.R. and S. Rajagopalan, 2011. Hybrid 
traffic management model for multi-protocol label 
switching network. Am. J. Applied Sci., 8: 1322-
1327. DOI: 10.3844/ajassp.2011.1322.1327 

Reimann, M., K. Doerner and R.F. Hartl, 2004. D-ants: 
Savings based ants divide and conquer the vehicle 
routing problem. Comput. Oper. Res., 31: 563-591. 
DOI: 10.1016/S0305-0548(03)00014-5 

Reimann, M., M. Stummer and K. Doerner, 2002. A 
savings based ant system for the vehicle routing 
problem. Proceedings of the Genetic and 
Evolutionary Computation Conference (GECCO’ 
02), ACM, San Francisco, pp: 1317-1325.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Szeto, W.Y., Y. Wu and S.C. Ho, 2011. An artificial 
bee colony algorithm for the capacitated vehicle 
routing problem. Eur. J. Oper. Res., 215: 126-135. 
DOI: 10.1016/j.ejor.2011.06.006  

Toth, P. and D. Vigo, 2002. The Vehicle Routing 
Problem. 1st Edn., Society for Industrial and 
Applied Mathematics, Philadelphia, ISBN-10: 
0898715792, pp: 385.  

Voss, S., 1999. Meta-Heuristics: Advances and Trends 
in Local Search Paradigms for Optimization. 1st 
Edn., Kluwer, Boston, ISBN-10: 0792383699, pp: 511. 

Yap, C.N., L.S. Lee, Z.A. Majid and H.V. Seow, 2012. 
Ant colony optimization for container loading 
problem. J. Math. Stat., 7: 165-171. DOI: 
10.3844/jmssp.2012.165.171 

Yu, B., Z.Z. Yang and B.Z. Yao, 2009. An improved 
ant colony optimization for vehicle routing 
problem. Eur. J. Oper. Res., 196: 171-176. DOI: 
10.1016/j.ejor.2008.02.028  

Zhang, X. and L. Tang, 2009. A new hybrid ant colony 
optimization algorithm for the vehicle routing 
problem. Patt. Rec. Let., 30: 848-855. DOI: 
10.1016/j.patrec.2008.06.001 

 


