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Abstract This paper proposes a heuristic method based on
ant colony optimization to determine the suboptimal alloca-
tion of dynamic multi-attribute dispatching rules to maxi-
mize job shop system performance (four measures were
analyzed: mean flow time, max flow time, mean tardiness,
and max tardiness). In order to assure high adequacy of the
job shop system representation, modeling is carried out
using discrete-event simulation. The proposed methodology
constitutes a framework of integration of simulation and
heuristic optimization. Simulation is used for evaluation of
the local fitness function for ants. A case study is used in
this paper to illustrate how performance of a job shop
production system could be affected by dynamic multi-
attribute dispatching rule assignment.

Keywords Ant colony optimization . Multi-attribute
dispatching rules . Discrete-event simulation .

Dynamic job shop

1 Introduction

In this paper, a scheduling approach is proposed using a
non-preemptive method for machine dispatching rules in a
dynamic job shop environment. The dispatching rule is

selected through a series of computations and evaluations
of the system performance measures.

The problem of scheduling in dynamic job shops has
been extensively studied for many years and attracts the
attention of researchers and practitioners equally. The prob-
lem is usually characterized as one in which a set of jobs is
to be processed over a period of time, each job consisting of
one or more operations to be performed in a specified
sequence on specified machines and requiring some pro-
cessing time. The objective is to determine the job schedules
that minimize a measure (or multiple measures) of perfor-
mance [1].

A dispatching rule is a dynamic scheduling tool. It is used
to select the next job to be processed from the set of jobs
waiting at a free workstation. Dynamic dispatching rules are
the most used scheduling algorithms for due date-related
real-time scheduling [2]. Dispatching rules are normally
intended to minimize the inventory and/or tardiness costs.
It has been observed that no single rule performs well for all
important criteria related to flow time, job tardiness, and
other system performance measures.

The job shop scheduling problem is well-known as
one of the hardest combinatorial optimization problems.
In the case of m operations and k dispatching rules,
there are km possibilities of rule selection. When there
are also many waiting jobs in the queues at worksta-
tions, the scheduling problem becomes even more com-
plex. Application of dispatching rules arises therefore
from two main motivations. The scheduling problem in
large-scale manufacturing systems involves very difficult
combinatorial problems that would be difficult or even
impossible to solve with analytical approaches in a short
or acceptable time. Furthermore, the production environ-
ment in which we operate is characterized by many
dynamic and disturbing operational conditions with
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unforeseen incidents, consequently offline optimal
scheduling becomes useless. Exact algorithms within a
reasonable time frame may only solve small problems.
Thus, heuristic and metaheuristic algorithms have been
widely applied to solve the issue.

In this article, an ant colony optimization (ACO) ap-
proach is evaluated in solving scheduling problems in a
dynamic job shop environment. The most common ap-
proach is to assign one dispatching rule for an entire, usually
linear, system. ACO is to be used as a search mechanism for
the proposed simulation–optimization method in order to
find a suboptimal allocation of multi-attribute dispatching
rules, assuming that each workstation can be governed by
one of a several dispatching rules. The aim is to increase the
efficiency of the large-scale production system through the
selection of dispatching rules. Simulation results will be
provided to show the feasibility and effectiveness of the
proposed ACO strategy.

The remainder of this paper is organized as follows: The
second section summarizes relevant literature on dynamic
scheduling using dispatching rules. The third section
describes the proposed methodology based on ACO and
introduces multi-attribute dispatching rules. The fourth sec-
tion describes a case study of a commercial offset printing
system and the simulation model. The fifth section presents
the results from the proposed methodology. Our conclusions
and directions for future study are presented in the final
section.

2 Literature review

Over the recent years in literature, there have been a lot of papers
with respect to scheduling problems both for non-preemptive
[3–5] and preemptive disciplines [6–8]. Dispatching rules are
widely accepted in the industry because of the ease of imple-
mentation, satisfactory performance, low computational require-
ments, and the flexibility to incorporate domain knowledge and
expertise [9]. Yang [10] remarked that effective scheduling is
one of the key factors in improving the efficiency of wire-
bonding operations, which is a bottleneck in the manufac-
ture of integrated-circuit packaging. Scheduling using
dispatching rules was applied to semiconductor wafer fab
production [11, 12] and flexible manufacturing systems
[13–15]. It has been generally observed that no single rule
performs well for all important criteria related to flow time,
job tardiness, and other regular and non-regular performance
measures [16, 17], particularly in the dynamic environment
of job shop scheduling.

The earliest due date rule (EDD) is a good algorithm
for minimizing the maximum lateness [18]. The shortest
processing time (SPT) rule has been found to be very
effective in minimizing mean flow time and also

minimizing mean tardiness, while the first in first out
(FIFO) rule has been quite effective in minimizing the
maximum flow time and variance of flow time in many
cases. In recent years, studies have therefore been car-
ried out to find new dispatching rules that improve most
of the regular tardiness-related performance measures,
such as slack processing time and work in next queue
(PT + WINQ + SL), slack per remaining processing
time and shortest processing time (S/RPT + SPT), slack
time per remaining operation (S/OPN), earliest modified
operational due date (EMODD), and others [1, 9,
19–21]. These rules use a combination of dispatching
rules which result in a better improvement than rules
using a single job attribute like SPT, EDD, or FIFO.
Due to the complexity of the job shop scheduling prob-
lem, authors generally use heuristic and metaheuristic
algorithms to solve the problem, including simulated
annealing [22], tabu search method [23, 24], beam
search heuristic [25], and also ACO algorithms [26–29].

ACO was inspired by the pheromone trail-laying behav-
ior of ants and their following of this trail. Artificial ants in
ACO are stochastic solution construction procedures that
build candidate solutions for the problem instance under
concern, by exploiting artificial pheromone information that
is adapted based on the ant search experience and possibly
available heuristic information [30]. ACO was successfully
applied to many problems such as the traveling salesman
problem [31–34] and mentioned earlier job shop scheduling
[26–29].

Variants of the ACO algorithm generally differ in the
applied pheromone update rule. Dorgio and Blumb [35]
pointed out the three main types of ACO algorithm: ant
system (AS), max–min ant system (MMAS), ant colony
system (ACS). ACS and MMAS are regarded as the
most successful ACO variants in practice. AS was in-
troduced by Dorgio et al. [34]. In this algorithm, each
ant reinforces the value of the pheromone on their path.
There are three methods for calculating the pheromone
update: ant cycle, ant density, and ant quantity. MMAS
was introduced in [33] and differs from AS in several
important aspects. Only the best solution from a popu-
lation is used to update the pheromone values and a
mechanism is added to limit the strengths of phero-
mones in order to avoid premature convergence. In the
case of ACS, the state transition rule provides a direct
way to balance the exploration of new edges and the
exploitation of accumulated knowledge. ACS uses a
global updating rule and local pheromone updating rule.

The novelty in this article lies in the assumption that any
workstation may run a different dispatching rule, rather than
the one rule for a whole manufacturing system as in most
literature. In our approach, an allocation of dispatching rules
for job assignment, but not a schedule, is encoded and the
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ACO algorithm is used. In this paper, it has modified genetic
operations as the search mechanism for the proposed simula-
tion–optimization method, in order to find a better allocation
of dispatching rules. Each dispatching rule can be interpreted
as an edge in the route of ant. The aim is to increase the
efficiency of large-scale production systems through the se-
lection of multi-attribute dispatching rules. We study the in-
fluence of proper selection of dispatching rules on four
performance measures related to tardiness and flow time.

3 Ant colony optimization algorithm

In ACO, we use agents called ants. The set of ants is
called a population. Ants from the population are
searching for the solution. The pheromone value
depends on the quality of the current solution (value
of a fitness function). Ants travel through a graph where
nodes are dispatching rules at workstations and edges
are production itineraries.

A general overview of the proposed methodology for solv-
ing the problem of dispatching rule allocation is shown below.

Step 1 Initialization
Step 2 Solution construction
Step 3 Fitness function evaluation (simulation)
Step 4 Local pheromone update (if current ant number≤

total number of ants, go to step 2)
Step 5 Global pheromone update
Step 6 Stop condition (if current iteration≤ total number of

iterations, then go to step 2)

3.1 Initialization phase

Most ACO algorithms set t0 ¼ 1
n�Z , where Z is the

objective value of a solution obtained either randomly
or using some simple heuristic. Sometimes, in order to
avoid premature convergence, n is removed from the
denominator. We propose initializing the algorithm by
assigning to all workstations:

t0 ¼ Q

fi
ð1Þ

where Q is a constant
fi is the value of fitness function, evaluated using a

simulation applying the same dispatching rules to all
workstations.

3.1.1 Characteristics of analyzed dispatching rules

In this paper, nine both single-attribute and multi-attribute
dispatching rules are examined. The selected rules were
deemed to have the best potential for offering a solution to

the problem under consideration. We apply the following
notation:

i Index of a job
j Index of an operation carried out for job i
p Index of a workstation
r Index of a dispatching rule in a workstation
m Number of workstations
ni Number of operations for job i
k Number of considered dispatching rules
wi Expected waiting time per operation for job i
Ai

m Arrival time of job i to the queue at workstation m
Oi Order arrival date for job i
Pi

m Processing time of job i at workstation m
Pi Total processing time of job i
Ri

m Remaining processing time of the job i after
workstation m

Qi
m Queuing time of job i at workstation m

t Time at which the priority index is calculated (present
time)

Di Due date for job i, calculated according to dynamic
processing plus waiting time method, proposed by
Enns [36]:

Di ¼ oi þ
Xni
m¼1

Pm
i þ ni � wi ð2Þ

Si Slack of job i, Si=Di−t–Ri
m

Lm Total processing time of the operations at the next
workstation m+1

K Parameter of the cost over time (COVERT) rule

The highest priority is given to the job i with minimum
value of priority index Zi at the time of decision of dispatch-
ing. Analyzed dispatching rules are as follows:

1. FIFO: Rule selects the first job to enter the queue at a
workstation buffer.

Zi ¼ Am
i ð3Þ

2. EMODD: Rule chooses the next job to be processed
from the input buffer which has the earliest operational
due date.

Zi ¼ MaxfSi; t þ Pm
i g ð4Þ

3. SPT: Rule selects the job which has the shortest pro-
cessing time at the workstation.

Zi ¼ Pm
i ð5Þ

4. ALL + CR + SPT (the combination of the critical ratio
(CR) and the SPT; ALL stands for allowance): For this
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rule, two separate queues are created for each worksta-
tion. The queue of the already overdue jobs has priority
over the other. For this queue, the SPT rule is employed,
but if this queue is empty, the CR + SPT rule is used for
the secondary queue.

Zi ¼ Maxft þ Di � t

Rm
i

� Pm
i ; t þ Pm

i g ð6Þ

5. Minimum S/OPN: Rule selects the job with the least
slack per remaining number of operations.

Zi ¼
Si

ni�jþ1 if si � 0
Si � ðni � jþ 1Þ if si < 0

�
ð7Þ

6 S/RPT + SPT: This is combination of the slack per
remaining processing time and the shortest processing
time.

Zi ¼ Maxf Si
Rm
i
� Pm

i ;P
m
i g ð8Þ

7. PT + WINQ + SL (combination of the slack processing
time and work in next queue). WINQ selects the part

from the current queue whose next process workstation
has the shortest queue.

Zi ¼ Si þ Pm
i þ Lm ð9Þ

8. PT + PW (combination of the processing time and
waiting time in a given queue): Rule can achieve good
performance on minimizing both mean tardiness and
tardy rate.

Zi ¼ Pm
i þ Qm

i ð10Þ
9. COVERT rule: This is a more complicated combination

of processing time-related and due date-related informa-
tion. The COVERT rule is a popular benchmark rule
when the mean and maximum tardiness are considered
and has been shown to perform well [1].

Zi ¼ � 1

Pm
i
� 1� Si

KðRm
i � Pm

i Þ
� �

ð11Þ

3.2 Construction of solution

An individual ant constructs solutions by iteratively add-
ing dispatching rules for workstations until a complete
candidate is generated (i.e., technological itinerary is

Table 1 Product characteristics

Parameter name Product class

Leaflet Poster Box Brochure Book

Number of copies Normal (30,000; 10,000) Normal (5,000; 1,000) Normal (8,000; 2,000) Normal (5,000; 1,500) Normal (1,000; 300)

Page format A4, A5, A6 A2, A3 A1, A2 A4, A5, A6 A4, A5

Number of pages 1–2 1 1 Normal (30; 10) Normal (350; 150)

Arrival rate Expo (9) Expo (12) Expo (15) Expo (10) Expo (14)
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Fig. 1 Ant movement graph
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finished). To construct a solution, ACO uses a state tran-
sition rule, which is the same as in the ACS algorithm.
The state transition (Eqs. (12) and (14)) is called a
pseudo-random-proportional rule. This state transition rule,
as with the previous random-proportional rule, favors
transitions with a large amount of pheromone [31]. An
ant positioned in a workstation chooses the dispatching
rule by applying the rule given by Eq (12), a simplified
model of the problem.

s ¼ argmaxf½tpr�g; if q � q0
S

�
ð12Þ

where q is a uniformly distributed random number [0, 1],
and q0 is a parameter (0≤q0≤1) which determines the
relative importance of exploitation versus exploration. If
q≤q0, then k− ant takes the dispatching rule which

maximizes workstation τ (exploitation); otherwise, a dis-
patching rule is chosen according to a random variable S
(biased exploration) which is selected according to a prob-
ability distribution given by a simplified model:

Ppr ¼ tprPk
r¼1

Pm
p¼1 tpr

: ð13Þ

3.3 Fitness function evaluation

An individual ant keeps a set of dispatching rules (set
size is equal to the number of workstations in the sys-
tem). The edge at each position represents dispatching
rules for the corresponding workstation. There are nine
candidate dispatching rules. Each dispatching rule can be
interpreted as an edge in the route of an ant. A discrete-
event simulator is used to evaluate the performance of
the modeled system, or in other words, the fitness

Table 2 Technological operation parameters

Workstation Mean setup time
per job

Standard deviation of
setup time

Mean operation
time

Standard deviation of
operation time

Time
unit

1 RIP 0 0 20·Si 0.2 min

2 CTP 0 0 0.5·Si 0 min

3 Printing 40 10 0.005·Si 0 min

4 Reversing 0 0 15 2 min

5 Drying 0 0 60 15 min

6 Folding 15 3 0.0075·Si 0 min

7 3-knife trimmer 20 5 0.0075·Si 0 min

8 Sticking cover 30 8 0.006·Si 0 min

9 Guillotine 8 2 0.002·Si 0.0002·Si min

10 Die cutting 30 8 0.0067·Si 0 min

11 Collating 10 1 0.0034·Si 0 min

12 Binding 15 3 0.005·Si 0 min

14 Folding carton gluing 45 12 0.0003·Si 0 min

Where Si is the lot-size parameter for job i depending on random parameters for each product shown in Table 1

Fig. 2 Mean tardiness against
number of ACO iterations
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function value for each ant. The fitness function is cal-
culated as a mean value obtained from running a set of
replications of simulation runs (Fig. 1).

3.3.1 Characteristics of analyzed dispatching rules

Fitness function in job shop manufacturing system will be
adopted as one of the four measures:

1. Mean flow time—average time a job spends in the system
2. Maximum flow time—maximum time a job spends in

the system
3. Mean tardiness—average tardiness of a job
4. Maximum tardiness—maximum tardiness of a job

3.4 Local search pheromone update

Local updating was introduced to the algorithm in order to
dynamically change the attractiveness of edges (dispatching
rules): every time an ant uses an edge, it becomes slightly less
desirable. In this way, ants use pheromone information better.
Without local updating, all ants would search in a narrow
neighborhood of the previously best dispatching rule. In other
words, the pheromone associated with the edge is modified

each time the ant chooses dispatching rule r for workstation p.
To locally update the pheromone value, we use Eq. (14) [37]:

tpr ¼ 1� ρð Þ � tpr þ ρ � t0 ð14Þ
where:

p is index of workstation, p∈(1,…,m)
r is index of dispatching rules in the workstation, r∈(1,

…,k)
t0 is initial pheromone value
ρ is evaporation rate

3.5 Global pheromone update

The aim of the global pheromone update is to increase
pheromone values on solution components that have been
found better in the sense of the fitness function value. In this
case, we calculate the new value using Eq. (15):

tpr ¼ 1� ρð Þ � tpr þΔtpr ð15Þ
The pheromone evaporation rate ρ [0, 1] is uniformly

decreasing all pheromone values over time. Pheromone
evaporation is needed to avoid a too rapid convergence of
the algorithm toward a suboptimal region. It implements a
useful form of forgetting, favoring the exploration of new
areas in the search space [35]. We should avoid a situation
where the ants construct the same solution over and over
again and exploration stops while all ants are choosing the
same dispatching rules at a particular workstation. MMAS
imposes explicit limits on the minimum tmin and maximum
tmax pheromone value and tmin≤tpr≤tmax. The algorithm
after each iteration has to ensure that the pheromone trail
respects the limits [29], and the probability of choosing a
specific solution component is never 0 if fprtmin > 0. We
calculate this in the following way:

tpr ¼
If tpr � tmaxthen tpr ¼ tmax

If tpr < tmaxandtpr > tminthen tpr ¼ tpr
If tpr � tminthen tpr ¼ tmin

8<
: ð16Þ

Table 3 Best results from each dispatching rule for all workstations
compared to ACO and MC results

Dispatching rule Mean
tardiness

Mean
flow

Max
tardiness

Max
flow

FIFO 165.77 256.86 492.85 546.01

EMODD 94.26 159.99 396.42 430.06

SOP/N 112.35 167.77 1,689.72 1,464.61

SPT 353.95 535.21 3,447.65 3,482.18

PT + WINQ + SL 111.38 167.51 1,633.87 1,490.19

S/RPT + SPT 139.74 207.37 1,657.32 1,098.14

ALL + CR + SPT 139.74 207.37 1,657.32 1,098.14

PT + PW 80.67 131.53 1,702.6 1,310.93

COVERT 163.05 242.64 2,838.65 2,640.66

ACO 40.21 69.34 310.52 413.91

Monte Carlo 42.98 82.23 414.79 474.87

Fig. 3 Mean flow time against
number of ACO iterations
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After the search, the pheromone trail value of the new
solution is updated proportionally to the improvement of the
fitness function value. Moreover, in order to converge in a
reasonable time, we additionally introduce iteration-best (IB)
solution and best so far (BS) solution update rules. These
amplify pheromone values on the ant path that led to the best
in the last iteration or the best so far solution, i.e., it attracts
more ants in the following iteration. The IB-update and BS-
update rules introduce a strong bias towards the good solu-
tions. This does however increase the danger of premature
convergence. This is the reason why we used a modified
construct solution model from ACS and pheromone update
model from MMAS to avoid premature convergence:

If pr 2 IB thenΔtpr ¼ QIB

fpr

If pr 2 BS thenΔtpr ¼ Δtpr þ QBS

fpr

where fpr is the value of fitness function for solution, IB is the
best solution in last iteration, and BS is the best so far solution.

3.6 Stop condition

In literature [30, 34, 35], two stopping criteria are common:
the process is iterated until the tour counter reaches the user-
defined maximum number of cycles NCMAX, or all ants
make the same tour. The last case is called stagnation
behavior as it denotes a situation in which the algorithm

stops searching for alternative solutions. In this paper, we
use the first of these stopping criteria, the maximum number
of iterations.

4 Case study: commercial offset printing system

To illustrate the methodology of evaluation and optimization
of the dispatching rules, a discrete-event simulationmodel of a
commercial offset printing system was built and is summa-
rized as follows. There were three work areas (prepress, press,
finishing), including 14 workstations consisting of single or
multiple identical machines. There were five different pro-
cessing flows for five different product types: softcover books,
booklets, posters, leaflets, and boxes.

The commercial offset printing system was derived
from a real-life company. Five types of products using
different technical flows as shown in Table 1 were as-
sumed to be processing simultaneously. Processing and
setup times as shown in Table 2 are randomly distributed
with known first- and second-order parameters (i.e., mean
and standard deviation). In all the experiments below, the
length of each simulation is 15,480,000 time units, with
the first 57,600 time units being the warm up period. We
ran the simulation seven times and used the average as
the simulation result.

Analysis of large and complex stochastic systems is a
difficult task due to the complexities that arise when

Fig. 4 Maximum tardiness
against number of ACO
iterations

Fig. 5 Maximum flow time
against number of ACO
iterations
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randomness is embedded within a system. Since testing pri-
ority rules in real-world production is absolutely impossible,
discrete-event simulation has often been adopted to evaluate
the performance of dispatching rules for rule selection.
Simulation modeling as an evaluative tool for stochastic sys-
tems has facilitated the ability to obtain performance measure
estimates under any given system configuration. Simulation
experiments were conducted to determine a suboptimal allo-
cation of dispatching rules in the meaning of minimizing
performance measures (mean flow time, mean tardiness, and
max tardiness) for a typical commercial offset printing facility.
ARENA simulation software from Rockwell Software was
used for modeling the manufacturing system.

5 Results

In this section, simulation results and comparisons are pro-
vided to show the feasibility and effectiveness of the pro-
posed ACO strategy. Experiments were carried out for four

performance measures: (1) mean tardiness, (2) maximum
tardiness, (3) mean flow time, and (4) maximum flow time.
In each experiment, 100 iterations were performed of the
ACO algorithm which gave 280,000 replications (100 iter-
ations×100 ants in each iteration×7 replications of each
simulation run×4 performance measures).

Figure 2 presents the results of the ACO algorithm for
mean tardiness (in hours). Already, in the first iteration, the
created allocation of dispatching rules has given better
results both for mean tardiness and mean flow time than.
In Table 3, it can be seen that ACO gave better results for all
performance measures than one rule for the entire system. In
the case of mean tardiness, it is better than the best single-
attribute dispatching rule (75 % better than FIFO) and best
multi-attribute dispatching rule (50 % better than PT + PW).
For validation, we have compared the results from a Monte
Carlo simulation (20,000 instances). Validation showed that
ACO is capable of finding the best suboptimal solution
among the tested strategies (Table 3). On a typical PC
(Intel Core i5 2.3 GHz, 4 GB Ram), ACO needed about

Table 5 Derived allocation of dispatching rule for all performance criteria

Mean tardiness Mean flow Max tardiness Max flow

Workstation Edge
number

Dispatching rules Edge
number

Dispatching rules Edge
number

Dispatching
rules

Edge
number

Dispatching
rules

RIP 7 PT + PW 4 PT + WINQ + SL 0 FIFO 1 EMODD

CTP 7 PT + PW 7 PT + PW 0 FIFO 1 EMODD

Offset 1 4 PT + WINQ + SL 7 PT + PW 0 FIFO 1 EMODD

Offset 2 7 PT + PW 7 PT + PW 0 FIFO 1 EMODD

Reversing 7 PT + PW 8 COVERT 0 FIFO 1 EMODD

Folding 7 PT + PW 2 SOP/N 1 EMODD 1 EMODD

3-knife trimmer 7 PT + PW 0 FIFO 0 FIFO 1 EMODD

Binding 1 EMODD 2 SOP/N 5 S/RPT + SPT 8 COVERT

Guillotine 8 COVERT 8 COVERT 2 SOP/N 1 EMODD

Die cutting 2 SOP/N 0 FIFO 1 EMODD 7 PT + PW

Folding carton 5 S/RPT + SPT 1 EMODD 1 EMODD 8 COVERT

Collating 2 SOP/N 1 EMODD 0 FIFO 1 EMODD

Table 4 ACO improvement for all performance criteria

Mean tardiness Mean flow time Maximum tardiness Maximum flow time

Iterations IB BS BS % IB BS BS % IB BS BS % IB BS BS %

1 62.7 62.7 0 118.4 118.4 0 435.1 435.1 0 527.2 527.2 0

25 57.91 40.2 35.9 96.50 90.61 23.5 311.4 310.5 28.6 418.9 418.9 20.5

50 45.5 40.2 0 86.5 81.02 31.6 319.7 310.5 0 488.2 413.9 21.5

75 40.2 40.2 0 72.9 72.87 38.4 310.5 310.5 0 413.9 413.9 0

100 40.2 40.2 0 69.3 69.3 41.5 421.4 310.5 0 413.9 0

Improvement 22.6 35.9 49.1 41.5 124.5 28.6 21.5
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23.5 h to find a suboptimal solution while Monte Carlo (for
20,000 scenarios) needed more than 46 h, without finding a
better solution.

Figure 3 presents the results of the ACO algorithm for mean
flow time (in hours). It can be seen that during the operation of
the algorithm, it significantly improves (minimizes) the value
of this performance measure. When we compare results from
the first and last iteration, the improvement was 41.5 %.

Figures 4 and 5 show the effect of the ACO algorithm for
maximum tardiness and maximum flow time (in hours),
respectively. Results for both performance measures dem-
onstrate proper operation of the developed ACO algorithm
to minimize each of these measures. The algorithm signifi-
cantly improved results in subsequent iterations, up to 18
iterations (for maximum tardiness) and up to 30 iterations
(for maximum flow time). For all presented figures, the
process of the IB values indicates that the ants in each
population do not always go exactly the same way, which
means a search for more possible solutions. After about 30
iterations, a notable increase in IB value can be seen. This is
caused by the pheromone reset mechanism used in the
algorithm in the case where there is no improvement over
a given number of iterations. The algorithm thus converges
again to a minimum.

Table 4 shows IB results, BS results, and percentage
improvement of BS (BS%) for each performance criterion.
Each performance criterion gained significant improvement.
Results are shown for every 25th ACO iteration. For mean
tardiness and maximum tardiness, the suboptimal solution
was obtained after just 25 iterations.

Table 5 contains allocations of dispatching rules for each
performance criterion. It can be seen that for minimizing
mean tardiness and mean flow time, the best rules are multi-
attribute rules like PT + WINQ + SL and PT + PW—rules
which take into account the situation at the next workstation,
especially for workstations that are the most loaded and
arise as bottlenecks in the system, like offset machines.

Figure 6 presents the movement of the first 10 ants from a
sample population. It can be seen how ants move among

Fig. 6 Movement of the first
10 ants from sample population

Table 6 Sample population of ants for mean flow time

Mean flow
time

Ant
number

Mean flow
time

Ant
number

Mean flow
time

Ant
number

72.87332 0 197.022 34 307.1297 67

167.8445 1 149.7544 35 191.2246 68

132.2747 2 219.1308 36 143.8165 69

110.0193 3 164.4793 37 203.6097 70

229.2289 4 207.0687 38 231.7816 71

72.87332 5 165.0864 39 312.9008 72

120.0487 6 72.87239 40 292.3497 73

165.1896 7 173.6926 41 250.2933 74

158.5814 8 162.8692 42 148.8748 75

173.2637 9 315.1846 43 239.669 76

154.5076 10 242.0819 44 219.0832 77

272.4236 11 292.6162 45 179.6459 78

291.6677 12 122.3642 46 154.0787 79

153.2452 13 168.773 47 139.6005 80

205.0173 14 241.3758 48 256.8527 81

173.9866 15 171.705 49 137.2193 82

196.924 16 137.0676 50 148.8225 83

138.6102 17 231.2122 51 96.69304 84

212.7054 18 324.2665 52 195.2554 85

76.42042 19 147.6645 53 180.172 86

196.8091 20 123.93 54 163.7891 87

118.6621 21 152.6104 55 165.7132 88

212.5578 22 221.7794 56 165.285 89

231.4182 23 191.6432 57 154.3732 90

315.9376 24 208.8572 58 149.5411 91

80.34066 25 249.4601 59 263.5935 92

146.6493 26 168.3177 60 271.1757 93

176.4914 27 155.9873 61 208.1513 94

189.5219 28 147.571 62 128.5893 95

174.1748 29 140.4601 63 205.6723 96

207.8188 30 167.042 64 123.469 97

219.1089 31 271.8226 65 311.853 98

181.3684 32 187.4176 66 132.9907 99

170.6405 33
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dispatching rules in workstations. One color stands for one
ant. Results presented in the legend show mean flow time
for each ant after passing the path.

In Table 6, the sample population of 100 ants is presented
for mean flow time criterion, presenting the differentiation
of one population. The large dispersion of results proves the
effect of the local pheromone update and also the scale of
how dispatching rules may change the results of a perfor-
mance measure. When we combine results from Fig. 6 with
data from Table 6, it is clear that the ACO algorithm works
well in combing the vast searching area.

6 Conclusion

The conducted experiments and analyses show that proper
management of the allocation of orders in the system can
improve the efficiency by several percent. Optimization of
the job processing order does not entail the need for addi-
tional investment in machinery or equipment.

The simulation model works well and answers many
important questions. It proves firstly that the dispatching
rules do change the results: flow time tardiness, size of
queues, amount of finished products, etc.

The presented ACO algorithm worked well and found an
allocation of dispatching rules that gave better results for all
criteria than for just one rule in an entire system. For all
performance criteria, the ACO algorithm converged and gave,
in an acceptable time, good results for the scheduling problem.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.
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