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Abstract—In this paper, we introduce ACOMV, an ant colony
optimization (ACO) algorithm that extends the ACOR algorithm
for continuous optimization to tackle mixed-variable optimization
problems. In ACOMV, the decision variables of an optimization
problem can be explicitly declared as continuous, ordinal, or
categorical, which allows the algorithm to treat them adequately.
ACOMV includes three solution generation mechanisms: a con-
tinuous optimization mechanism (ACOR), a continuous relaxation
mechanism (ACOMV-o) for ordinal variables, and a categorical
optimization mechanism (ACOMV-c) for categorical variables.
Together, these mechanisms allow ACOMV to tackle mixed-
variable optimization problems.

We also define a novel procedure to generate artificial, mixed-
variable benchmark functions and we use it to automatically
tune ACOMV’s parameters. The tuned ACOMV is tested on
various real-world continuous and mixed-variable engineering
optimization problems. Comparisons with results from the liter-
ature demonstrate the effectiveness and robustness of ACOMV

on mixed-variable optimization problems.

Index Terms—Ant colony optimization, mixed-variable opti-
mization problems, artificial mixed-variable benchmark func-
tions, automatic parameter tuning, engineering optimization

I. INTRODUCTION

Many real-world optimization problems can be modeled

using combinations of continuous and discrete variables. Due

to the practical relevance of these mixed-variable problems,

a number of optimization algorithms for tackling them have

been proposed. These algorithms are mainly based on Genetic

Algorithms [1], Differential Evolution [2], Particle Swarm

Optimization [3] and Pattern Search [4]. The discrete variables

in these problems can be ordinal or categorical. Ordinal vari-

ables exhibit a natural ordering relation (e.g., integers) and are

usually handled using a continuous relaxation approach [5],

[6], [7], [8], [9], [10], [11], [12]. Categorical variables take

their values from a finite set of categories [13], which often

identify non-numeric elements of an unordered set (e.g., col-

ors, shapes or types of material). Categorical variables do not

have a natural ordering relation and therefore require the use

of a categorical optimization approach [14], [15], [16], [17],

[18], [19], [13] that does not assume any ordering relation. To

the best of our knowledge, the approaches to mixed-variable
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problems available in the literature are targeted to either handle

mixtures of continuous and ordinal variables or mixtures of

continuous and categorical variables. In other words, they do

not consider the possibility that the formulation of a problem

may involve at the same time the three types of variables.

Hence, there is a need for algorithms that allow the explicit

declaration of each variable as either continuous, ordinal or

categorical.

In this paper, we extend an ant colony optimization al-

gorithm for continuous optimization (called ACOR) [20] to

tackle mixed-variable optimization problems. Ant colony op-

timization (ACO) was originally introduced to solve discrete

optimization problems [21], [22], [23] and its adaptation to

solve continuous or integer optimization problems enjoys an

increasing attention [20], [24], [25], [26], [27], [28], [29]. Our

ACO algorithm, called ACOMV, allows the user to explicitly

declare each variable of a mixed-variable optimization prob-

lem as continuous, ordinal or categorical. Continuous variables

are handled with a continuous optimization approach (ACOR),

ordinal variables are handled with a continuous relaxation

approach (ACOMV-o), and categorical variables are handled

with a categorical optimization approach (ACOMV-c).

We also introduce a new set of artificial, mixed-variable

benchmark functions and describe the method to construct

them. These benchmark functions provide a flexible envi-

ronment for investigating the performance of mixed-variable

optimization algorithms and the effect of different parameter

settings on their performance. They are also useful as a training

set for deriving high-performance parameter settings through

the usage of automatic configuration methods. Here, we use

Iterated F-Race [30], [31] to automatically tune the parameters

of ACOMV on a set of artificial, mixed-variable benchmark

functions.

As a final step, we compare the performance of ACOMV

with results from the literature on eight mixed-variable engi-

neering optimization problems. Our results show that ACOMV

reaches a very high performance: it improves over the best

known solutions for two of the eight engineering problems,

and in the remaining six it finds the best-known solutions using

fewer objective function evaluations than most algorithms

from the literature.

The paper is organized as follows. Section II introduces

mixed-variable optimization problems and Section III de-

scribes ACOMV. Section IV presents the proposed artificial

mixed-variable benchmark functions and the tuning of the

parameters of ACOMV on these benchmark functions. In

Section V, we compare the results obtained with ACOMV on
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real-world problems to those obtained by other algorithms.

In Section VI we conclude and give directions for future

work. The Appendix contains further experimental results and

a mathematical formulation of the engineering benchmark

problems we tackle.

II. MIXED-VARIABLE OPTIMIZATION PROBLEMS

A model for a mixed-variable optimization problem

(MVOP) may be formally defined as follows:

Definition A model R = (S,Ω, f) of a MVOP consists of

• a search space S defined over a finite set of both

discrete and continuous decision variables and a set Ω

of constraints among the variables;

• an objective function f : S→ R
+
0 to be minimized.

The search space S is defined by a set of n = d+ r variables

xi, i = 1, . . . , n, of which d are discrete and r are continuous.

The discrete variables include o ordinal variables and c

categorical ones, d = o + c. A solution S ∈ S is a complete

value assignment, that is, each decision variable is assigned

a value. A feasible solution is a solution that satisfies all

constraints in the set Ω. A global optimum S∗ ∈ S is a

feasible solution that satisfies f(S∗) ≤ f(S) ∀S ∈ S. The set

of all globally optimal solutions is denoted by S
∗,S∗ ⊆ S.

Solving an MVOP requires finding at least one S∗ ∈ S
∗.

The methods proposed in the literature to tackle MVOPs

may be divided into three groups:

• The first group is based on a two-partition approach,

in which the variables are partitioned into continuous

variables and discrete variables. Variables of one partition

are optimized separately for fixed values of the variables

of the other partition [32], [33]. This approach often leads

to a large number of objective function evaluations [34].

Additionally, since the dependency between variables

belonging to different partitions is not explicitly handled,

algorithms using this approach are prone to finding sub-

optimal solutions.

• The second group takes a continuous relaxation ap-

proach. In this group, all variables are handled as con-

tinuous variables. Ordinal variables are relaxed to con-

tinuous variables, and are repaired when evaluating the

objective function. The repair mechanism is used to return

a discrete value in each iteration. The simplest repair

mechanisms are truncation and rounding [5], [8]. It is also

possible to treat categorical variables using continuous

relaxations [35]. However, in this case the performance

of continuous relaxation may decline when the number of

categories increases, as we also show in Section A of the

Appendix to this paper. In general, the performance of

algorithms based on the continuous relaxation approach

depends on the continuous solvers and on the repair

mechanism.

• The third group uses a categorical optimization approach

to directly handle discrete variables without a continuous

relaxation. Thus, any possible ordering relations that may

exist between discrete variables are ignored and, thus, all

discrete variables, ordinal and categorical, are treated as

categorical ones.1 In this group, continuous variables are

handled by a continuous optimization method. Genetic

adaptive search [14], pattern search [15], and mixed

Bayesian optimization [17] are among the approaches that

have been proposed.

Researchers often take one specific group of approaches

to develop mixed-variable optimization algorithms and to test

them on MVOPs with either categorical or ordinal variables.

In our study, we combine a continuous relaxation and a

categorical optimization approach.

III. ACOMV FOR MIXED-VARIABLE OPTIMIZATION

PROBLEMS

We start by describing the structure of ACOMV. Then, we

describe the probabilistic solution construction for continuous

variables, ordinal variables and categorical variables, respec-

tively.

A. ACOMV structure

ACO algorithms for combinatorial optimization problems

make use of a so-called pheromone model in order to proba-

bilistically construct solutions. A pheromone model consists of

a set of numerical values, called pheromones, that are a func-

tion of the search experience of the algorithm. The pheromone

model is used to bias the solution construction towards regions

of the search space containing high quality solutions. As such,

ACO algorithms follow a model-based search paradigm [36]

as, for example, also estimation of distribution algorithms [37]

do; the similarities and differences between ACO algorithms

and estimation of distribution algorithms have been discussed

by Zlochin et al. [36]. In ACO for combinatorial optimization

problems, the pheromone values are associated with a finite

set of discrete components. This is not possible if continuous

variables are involved. Therefore, ACOMV uses a solution

archive, SA, as a form of pheromone model for the derivation

of a probability distribution over the search space, following

in this way the principle of population-based ACO [38]. The

solution archive contains k complete solutions of the problem.

While a pheromone model in combinatorial optimization can

be seen as an implicit memory of the search history, a solution

archive is an explicit memory.

Given an n-dimensional MVOP and k solutions, ACOMV

stores the value of the n variables and the objective function

value of each solution in the solution archive. Fig. 1 shows the

structure of the solution archive. It is divided into three groups

of columns, one for continuous variables, one for ordinal

variables and one for categorical variables.

The basic flow of the ACOMV algorithm is as follows.

The solution archive is initialized with k randomly generated

solutions. Then, these k solutions are sorted according to

their quality (from best to worst). A weight ωj is associated

with solution Sj . This weight is calculated using a Gaussian

function defined by:

1Note that the special case of MVOPs, where the variables can be either
continuous or categorical, is also called mixed-variable programming problem
[15], [18].
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Fig. 1. The structure of the solution archive used by ACOMV . The solutions
in the archive are sorted according to their quality (i.e., the value of the
objective function f(Sj)); hence, the position of a solution in the archive
always corresponds to its rank.

ωj =
1

qk
√
2π

e
−(rank(j)−1)2

2q2k2 , (1)

where rank(j) is a function that returns the rank of solution

Sj , and q is a parameter of the algorithm. By computing

rank(j) − 1, which corresponds to setting the mean of the

Gaussian function to 1, the best solution receives the highest

weight, while the weight of the other solutions decreases ex-

ponentially with their rank. At each iteration of the algorithm,

m new solutions are probabilistically constructed by m ants,

where an ant is a probabilistic solution construction procedure.

The weight of a solution determines the level of attractiveness

of that solution during the solution construction process. A

higher weight means a higher probability of sampling around

that solution. Once the m solutions have been generated, they

are added into the solution archive. The k+m solutions in the

archive are then sorted and the m worst ones are removed. The

remaining k solutions constitute the new solution archive. In

this way, the search process is biased towards the best solutions

found during the search. During the probabilistic solution

construction process, an ant applies the construction mech-

anisms of ACOR, ACOMV-o and ACOMV-c. ACOR handles

continuous variables, while ACOMV-o and ACOMV-c handle

ordinal variables and categorical variables, respectively. Their

detailed description is given in the following subsection. An

outline of the ACOMV algorithm is given in Algorithm 1. The

functions Best and Sort in Algorithm 1 implement the sorting

of the archive and the selection of the k best solutions.

B. Probabilistic Solution Construction for Continuous Vari-

ables

Continuous variables are handled by ACOR [20]. In ACOR,

the construction of new solutions by the ants is accomplished

in an incremental manner, variable by variable. First, an ant

chooses probabilistically one of the solutions in the archive.

The probability of choosing solution j is given by:

pj =
ωj

∑k
l=1 ωl

, (2)

Algorithm 1 Outline of ACOMV

Initialize decision variables

Initialize and evaluate k solutions

{Sort solutions and store them in the archive SA}
SA← Sort(S1 · · ·Sk)
while termination criterion is not satisfied do

{ConstructAntSolution}
for 1 to m do

Probabilistic Solution Construction for ACOR

Probabilistic Solution Construction for ACOMV-o

Probabilistic Solution Construction for ACOMV-c

Store and evaluate newly generated solutions

end for

{Sort solutions and select the best k solutions}
SA← Best(Sort(S1 · · ·Sk+m), k)

end while

where ωj is calculated according to Equation (1).

An ant then constructs a new continuous variable solution

around the chosen solution j. It assigns values to variables

in a fixed variable order, that is, at the i-th construction step,

1 ≤ i ≤ r, an ant assigns a value to continuous variable i. To

assign a value to variable i, the ant samples the neighborhood

around the value Ri
j of the chosen j-th solution. The sampling

is done using a normal probability density function with mean

µ and standard deviation σ:

g(x, µ, σ) =
1

σ
√
2π

e−
(x−µ)2

2σ2 . (3)

When considering continuous variable i of solution j, we

set µ = Ri
j . Furthermore, we set

σ = ξ

k
∑

l=1

|Ri
l −Ri

j |
k − 1

, (4)

which is the average distance between the values of the i-th

continuous variable of the solution j and the values of the

i-th continuous variables of the other solutions in the archive,

multiplied by a parameter ξ. This parameter has an effect

similar to that of the pheromone persistence in ACO. The

higher the value of ξ, the lower the convergence speed of the

algorithm. This process is repeated for each dimension by each

of the m ants.

Thanks to the pheromone representation used in ACOR

(that is, the solution archive), it is possible to take into

account the correlation between the decision variables. A non-

deterministic adaptive method for doing so is presented in [20].

It is effective on the rotated benchmark functions proposed in

Table I and it is also used to handle the variable dependencies

of MVOP engineering problems in Section V.

C. Probabilistic Solution Construction for Ordinal Variables

If the considered optimization problem includes ordinal

variables, the continuous relaxation approach, ACOMV-o, is

used. ACOMV-o does not operate on the actual values of the

ordinal variables but on their indices in an array. The values of

the indices for the new solutions are generated as real numbers,
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as it is the case for the continuous variables. However, before

the objective function is evaluated, the continuous values are

rounded to the nearest valid index, and the value at that index

is then used for the objective function evaluation. The reason

for this choice is that ordinal variables do not necessarily have

numerical values; for example, an ordered variable may take as

possible values {small,medium, large}. ACOMV-o otherwise

works exactly as ACOR.

D. Probabilistic Solution Construction for Categorical Vari-

ables

While ordinal variables are relaxed and treated by the

original ACOR, categorical variables are treated differently by

ACOMV-c as this type of variables has no predefined ordering.

At each step of ACOMV-c, an ant assigns a value to one

variable at a time. For each categorical variable i, 1 ≤ i ≤ c,

an ant chooses probabilistically one of the ti available values

vil ∈ {vi1, . . . , viti}. The probability of choosing the l-th value

is given by

pil =
wl

∑ti
j=1 wj

, (5)

where wl is the weight associated to the l-th available value.

The weight wl is calculated as

wl =























ωjl

ui
l

+
q

η
, if (η > 0, ui

l > 0),

ωjl

ui
l

, if (η = 0, ui
l > 0),

q

η
, if (η > 0, ui

l = 0),

(6)

where ωjl is calculated according to Equation (1) with jl being

the index of the highest quality solution that uses value vil for

the categorical variable i. ui
l is the number of solutions that

use value vil for the categorical variable i in the archive (hence,

the more common the value vil is, the lower is its final weight);

thus, ui
l is a variable whose value is adapted at run-time and

that controls the weight of choosing the l-th available value.

ui
l = 0 corresponds to the case in which the l-th available

value is not used by the solutions in the archive; in this case

the weight of the l-th value is equal to
q

η
. η is the number

of values from the ti available ones that are not used by the

solutions in the archive; η = 0 (that is, all values are used)

corresponds to the case in which
q

η
is discarded. Again, η is a

variable that is adapted at run-time and, if η = 0, it is natural

to discard the second component in Equation (6). Note that

ui
l and η are nonnegative numbers, and their values are never

equal to zero at the same time. q is the same parameter of the

algorithm that was used in Equation (1).

The weight wl is therefore a sum of two components.

The first component biases the choice towards values that are

chosen in the best solutions but do not occur very frequently

among all solutions in the archive. The second component

plays the role of exploring values of the categorical decision

variable i that are currently not used by any solution in the

archive; in fact, the weight of such values according to the

first component would be zero and, thus, this mechanism helps

to avoid premature convergence (in other words, to increase

diversification).

In Appendix D, we experimentally explore different options

for the shape of Equation (6); the details of the experimental

setup used in Appendix D is explained in Section IV, which

should therefore be consulted before reading the appendix.

E. Restart strategy

ACOMV uses a simple restart strategy for fighting stagna-

tion. This strategy consists in restarting the algorithm without

forgetting the best-so-far solution in the archive. A restart is

triggered if the number of consecutive iterations with a relative

solution improvement lower than a certain threshold ε is larger

than MaxStagIter. Since this is a component that can be used

with any algorithm and not only with ACOMV, we compare

the performance of ACOMV with and without this restart

mechanism to that of other algorithm.

IV. ARTIFICIAL MIXED-VARIABLE BENCHMARK

FUNCTIONS AND PARAMETER TUNING OF ACOMV

A. Artificial mixed-variable benchmark functions

The real world mixed-variable benchmark problems found

in the literature often originate from the mechanical engi-

neering field. Unfortunately, these problems cannot be easily

parametrized and flexibly manipulated for investigating the

performance of mixed-variable optimization algorithms in a

systematic way. In this section, we propose a set of new,

artificial mixed-variable benchmark functions that allow the

definition of a controlled environment for the investigation

of algorithm performance and automatic tuning of algorithm

parameters [31], [39]. Our proposed artificial mixed-variable

benchmark functions are defined in Table I. These func-

tions originate from some typical continuous functions of the

CEC’05 benchmark set [40]. The decision variables consist

of continuous and discrete variables; n is the total number

of variables and M is a random, normalized, n × n rotation

matrix. The problems’ global optima ~S∗ are shifted in order

not to give an advantage to population-based methods that

may have a bias towards the origin of the search space [41].

The proposed benchmarks allow three settings for discrete

variables. The first setting consists of only ordinal variables;

the second setting consists of only categorical variables; the

third setting consists of both ordinal and categorical variables.

MinRange and MaxRange denote the lower and upper bound

of variable domains, respectively.

We use the two-dimensional, not shifted, randomly rotated

Ellipsoid mixed-variable function as an example of how to

construct artificial mixed-variable benchmark functions. We

start with a two-dimensional, continuous, not shifted, ran-

domly rotated Ellipsoid function:

fEL(~x) =

2
∑

i=1

(β
i−1
2−1 zi)

2,







x1, x2 ∈ [−3, 7],
~z = M~x,

β = 5.
(7)

In order to transform this continuous function into a mixed-

variable one, we discretize the continuous domain of variable

x1 ∈ [−3, 7] into a set of discrete values, T = {θ1, θ2, ..., θt} :
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TABLE I
ARTIFICIAL MIXED-VARIABLE BENCHMARK FUNCTIONS. IN THE UPPER PART THE OBJECTIVE FUNCTIONS ARE DEFINED; THE VARIABLES ARE DEFINED

IN THE LOWER PART OF THE TABLE.

Objective functions

fEllipsoidMV
(~x) =

∑n
i=1(β

i−1
n−1 zi)

2,

fAckleyMV
(~x) = −20e

−0.2
√

1
n

∑

n
i=1(z

2
i
) − e

1
n

∑n
i=1(cos(2πzi)) + 20 + e,

fRastriginMV
(~x) = 10n+

∑n
i=1(z

2
i − 10 cos(2πz2i )),

fRosenbrockMV
(~x) =

∑n−1
i=1 [100(zi+1 − z2i )

2 + (zi − 1)2],

fSphereMV
(~x) =

∑n
i=1 z

2
i ,

fGriewankMV
(~x) = 1

4 000

∑n
i=1 z

2
i −∏n

i=1 cos(
zi√
i
) + 1,

Definition of mixed variables

1st setting:























































~z = M(~x− ~S∗) : ~S∗ = (R1
∗ R

2
∗ . . . Rr

∗ O
1
∗ O2

∗ . . . Oo
∗)

t,

if (fRosenbrockMV
), ~z = ~z + 1,

~S∗ is a shift vector, n = o+ r,

~x = (R1 R2 . . . Rr O1 O2 . . . Oo)t,

Ri ∈ (MinRangei,MaxRangei), i = 1, . . . , r

Oi ∈ T,T = {θ1, θ2, ..., θti} : ∀l θtl ∈ (MinRangei,MaxRangei) i = 1, . . . , o

2nd setting:























































~z = M(~x− ~S∗) : ~S∗ = (R1
∗ R

2
∗ . . . Rr

∗ C
1
∗ C2

∗ . . . Cc
∗, )

t,

if (fRosenbrockMV
), ~z = ~z + 1,

~S∗ is a shift vector, n = c+ r,

~x = (R1 R2 . . . Rr C1 C2 . . . Cc)t,

Ri ∈ (MinRangei,MaxRangei), i = 1, . . . , r

Ci ∈ T,T = {θ1, θ2, ..., θti} : ∀l θtl ∈ (MinRangei,MaxRangei) i = 1, . . . , c

3rd setting:



































































~z = M(~x− ~S∗) : ~S∗ = (R1
∗ R2

∗ . . . Rr
∗ O1

∗ O2
∗ . . . Oo

∗ C1
∗ C2

∗ . . . Cc
∗)

t,

if (fRosenbrockMV
), ~z = ~z + 1,

~S∗ is a shift vector, n = o+ c+ r,

~x = (R1 R2 . . . Rr O1 O2 . . . Oo C1 C2 . . . Cc)t,

Ri ∈ (MinRangei,MaxRangei), i = 1, . . . , r

Oi ∈ T,T = {θ1, θ2, ..., θti} : ∀l θtl ∈ (MinRangei,MaxRangei) i = 1, . . . , o

Ci ∈ T,T = {θ1, θ2, ..., θti} : ∀l θtl ∈ (MinRangei,MaxRangei) i = 1, . . . , c

θi ∈ [−3, 7]. This results in the following mixed-variable test

function:

fELMV
(x1, x2) = z21 + β · z22 ,















x1 ∈ T,

x2 ∈ [−3, 7],
~z = M~x,

β = 5.

(8)

The set T is created by choosing t uniformly spaced values

from the original domain [−3, 7] so that ∃i=1,...,t θi = 0.

In this way, it is always possible to find the optimum value

fELMV
(0, 0)t = 0, regardless of the chosen t discrete values.

Problems that involve ordinal variables are easy to simulate

with the aforementioned procedure because the discrete points

in the discretization for variable x1 are naturally ordered. The

left plot in Fig. 2 shows how the algorithm “sees” such a

naturally ordered rotated ellipsoid function, with variable x1

being the discrete variable. The test function is presented as a

set of points representing different solutions. To simulate prob-

lems involving categorical variables only, the discrete points

are ordered randomly. In this setting, a different ordering is

generated for each run of the algorithm. This setting allows us

to investigate how the algorithm performs when the ordering

of the discrete points is not well defined or unknown. The

right plot of Fig. 2 shows how the algorithm “sees” such a

modified problem for a given single random ordering.

The artificial mixed-variable benchmark functions have

characteristics such as non-separability, ill-conditioning and

multi-modality. Non-separable functions often exhibit complex

dependencies between decision variables. Ill-conditioned func-

tions often lead to premature convergence. Multi-modal func-

tions have multiple local optima and require an efficient global

search. Therefore, these characteristics are expected to be a

challenge for different mixed-variable optimization algorithms.

The flexibility in defining functions with different numbers

of discrete points and the possible mixing of ordered and

categorical variables enables systematic experimental studies

addressing the impact of function features on algorithm per-

formance. In fact, using these benchmark functions we verified

that ACOMV-o is more effective than ACOMV-c on problems

that have ordinal variables while the opposite is true on

problems with categorical variables. A detailed experimental

analysis that corroborates this statement is given in Section A
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Fig. 2. Randomly rotated ellipsoid function (β = 5) with discrete variable
x1 ∈ T. The left plot presents the case in which the natural ordering of the
intervals is used, while the right one presents the case in which a random
ordering is used. The darker the point, the higher the quality of the solution.

of the Appendix. This result also validates our design choice

for combining these two approaches in ACOMV.

B. Parameter tuning of ACOMV

Besides serving for experimenal studies, the new benchmark

functions can be used to generate a training set of problems for

the automatic parameter tuning of mixed-variable optimization

algorithms. The tuning of an algorithm on a training set that

is different from the test set is important to allow for an

unbiased assessment of the algorithm’s performance on (by the

algorithm unseen) test problems [42]. We therefore generate

a training set of benchmark functions across all six mixed-

variable benchmark functions, across various dimensions [43]

(taken from the set n ∈{2, 4, 6, 8, 10, 12, 14}), and across

various ratios of ordinal and categorical variables. As tuning

method we use Iterated F-Race [30], [31]. In Iterated F-

Race, the training benchmark functions are sampled in a

random order. The performance measure for tuning is the

objective function value of each instance after 10 000 function

evaluations. The maximum tuning budget for Iterated F-Race

is set to 5 000 runs of ACOMV. We use the default settings

of Iterated F-Race [31].

The obtained parameter settings after tuning are given in

Table II. We first use these parameter settings (i) to analyze

the effectiveness of ACOMV’s restart mechanism and (ii)

to obtain numerical results of ACOMV on artificial mixed-

variable benchmark problems, which can serve as a benchmark

for future developments of algorithms for mixed-variable

optimization problems. The corresponding results are given

in Sections B and C of the Appendix, respectively. Finally, as

mentioned before, we also analyzed the influence alternative

choices for Equation (6) would have on the performance of

ACOMV. In particular, we study three alternative choices and

we report the results in Section D of the Appendix. These

experimental results confirm the advantage of our original

choice of Equation (6).

Next, we use these parameter settings for a final validation

of ACOMV’s performance, namely for solving real world

engineering optimization problems; these results are reported

in the next section.

TABLE II
PARAMETER SETTINGS FOR ACOMV TUNED BY ITERATED F-RACE.

Parameter Symbol Value

Number of ants m 5
Influence of best quality solutions q 0.05099

Width of the search ξ 0.6795
Archive size k 90

Stagnating iterations before restart MaxStagIter 650
Relative improvement threshold ε 10−5

V. APPLICATION TO ENGINEERING OPTIMIZATION

PROBLEMS

Here, we conduct experiments on mixed-variable engineer-

ing benchmark problems and compare the results of ACOMV

with those found in the literature. Since the algorithms pre-

sented in the literature do not use restarts, we additionally

present computational results of a variant ACOnoR
MV

, where

we switched off the restart in ACOMV. This was done to

examine whether possible advantages of ACOMV over other

algorithms may be due to this particular algorithm feature. For

reducing the variability of the results, we used the method of

common random numbers as a variance reduction technique,

so that if a problem is actually solved without restart, the

reported results for ACOnoR
MV

and ACOMV are identical. In

fact, our experimental results show that only on three of the

eight problems tested the algorithm restarts actually contribute

to improved performance; we will highlight these cases in the

text.

Note that our experiments comprise a larger set of bench-

mark problems than in the papers found in the literature,

since these latter are often limited to a specific type of

discrete variables (either ordinal or categorical). First, we

classify the available engineering optimization problems in

the literature into four groups according to the types of the

decision variables used (see Table III).

TABLE III
THE CLASSIFICATION OF ENGINEERING OPTIMIZATION

PROBLEMS.

Groups The type of decision variables

Group I Continuous variables†

Group II Continuous and ordinal variables
Group III Continuous and categorical variables
Group IV Continuous, ordinal and categorical variables

† Problems with only continuous variables are considered as
a particular class of mixed variables with an empty set of
discrete variables, since ACOMV is also capable to solve
pure continuous optimization problems.

Group I includes the welded beam design problem case

A [44]; Group II the pressure vessel design problem [45] and

the coil spring design problem [45]; Group III the thermal

insulation systems design problem [16]; and Group IV the

welded beam design problem case B [46]. The mathematical

formulations of the problems are given in Section E of the

Appendix. In this section, we compare the results obtained by

ACOMV to those reported in the literature for these problems.

We also show the run-time behavior of ACOMV by using

run-length distributions (RLDs, for short) [47]. An (empirical)

RLD provides a graphical view of the development of the
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empirical frequency of finding a solution of a certain quality

as a function of the number of objective function evaluations. It

is important to note that NM-PSO [48] and PSOLVER [49] re-

port infeasible solutions that violate the problems’ constraints;

C̆repins̆ek et al. [50] pointed out that the authors of TLBO

[51] used an incorrect formula for computing the number of

objective function evaluations. Therefore, we did not include

these three algorithms in our comparison. For our experiments,

the tuned parameter configuration from Table II was used.

For simplifying the algorithm and giving prominence to the

role of the ACOMV heuristic itself, the most fundamental

constraint handling technique was used, which consists in

rejecting all infeasible solutions in the optimization process

(also called “death penalty”). 100 independent runs were

performed for each engineering problem. In the comparisons,

fBest, fMean and fWorst are the abbreviations used to indicate

the best, average and worst objective function values obtained,

respectively. SRB denotes the success rate of reaching the

best known solution value. Sd gives the standard deviation

of the mean objective function value; a value of Sd lower

than 1.00E−10 is reported as 0. FEs gives the maximum

number of objective function evaluations in each algorithm

run. Note that the value of FEs may vary from algorithm

to algorithm. To define the value of FEs for ACOMV, we

first checked which is the smallest value of FEs across all

competing algorithms; let this value be denoted by FEsmin.

Then the value of FEs for ACOMV is set to FEsmin. Often,

however, ACOMV reached the best known solution values for

the particular problem under concern in all runs (that is, with

a 100% success rate) much faster than its competitors. In such

cases, for ACOMV we give, instead of the value FEsmin,

in parenthesis the maximum number of objective function

evaluations we observed across the 100 independent runs.

The best solutions obtained by ACOMV for each engineering

problem are available in the supplementary information page

http://iridia.ulb.ac.be/supp/IridiaSupp2011-022; there we also

report details on the run time of ACOMV on the engineering

problems, which generally lies in the range of few seconds

and, thus, shows that ACOMV is a feasible alternative to other

algorithms in practice.

A. Group I : Welded beam design problem case A

Recently, many methods have been applied to the welded

beam design problem case A. Table IV shows basic summary

statistics of the results obtained by nine other algorithms and

ACOMV. Most other algorithms do not reach a success rate

of 100% within a maximum number of objective function

evaluations ranging from 30 000 (for (µ + λ)ES [52]) to

200 000 (for CPSO [53]), while ACOMV finds the best-known

solution value in every run using at most 2 303 objective

function evaluations (measured across 100 independent trials).

The only other algorithm that reaches the best-known solution

value in every run is DELC [54]; it does so using in every run

at most 20 000 objective function evaluations (measured across

30 independent trials). Hence, ACOMV is a very efficient and

robust algorithm for this problem. The run-time behavior of

ACOMV on this problems is illustrated also in Fig. 3, where

TABLE IV
BASIC SUMMARY STATISTICS FOR THE WELDED BEAM DESIGN PROBLEM

CASE A. THE BEST-KNOWN SOLUTION VALUE IS 1.724852. fBest , fMean

AND fWorst DENOTE THE BEST, MEAN AND WORST OBJECTIVE FUNCTION

VALUES, RESPECTIVELY. SD DENOTES THE STANDARD DEVIATION OF THE

MEAN OBJECTIVE FUNCTION VALUE. FES DENOTES THE MAXIMUM

NUMBER OF OBJECTIVE FUNCTION EVALUATIONS IN EACH ALGORITHM

RUN. FOR ACOMV WE REPORT IN PARENTHESIS THE LARGEST NUMBER

OF OBJECTIVE FUNCTION EVALUATIONS IT REQUIRED IN ANY OF THE 100
INDEPENDENT RUNS (ACOMV REACHED IN EACH RUN OF AT MOST

20 000 EVALUATIONS THE BEST KNOWN SOLUTION VALUE). “-” MEANS

THAT THE INFORMATION IS NOT AVAILABLE.

Methods fBest fMean fWorst Sd FEs

GA1 [44] 1.748309 1.771973 1.785835 1.12E−02 -

GA2 [55] 1.728226 1.792654 1.993408 7.47E−02 80 000

EP [56] 1.724852 1.971809 3.179709 4.43E−01 -

(µ + λ)ES [52] 1.724852 1.777692 - 8.80E−02 30 000

CPSO [53] 1.728024 1.748831 1.782143 1.29E−02 200 000

HPSO [57] 1.724852 1.749040 1.814295 4.01E−02 81 000

CLPSO [11] 1.724852 1.728180 - 5.32E−03 60 000

DELC [54] 1.724852 1.724852 1.724852 0 20 000

ABC [58] 1.724852 1.741913 - 3.10E−02 30 000

ACOnoR
MV

1.724852 1.724852 1.724852 0 (2 303)

ACOMV 1.724852 1.724852 1.724852 0 (2 303)

Fig. 3. The RLDs of ACOMV for the welded beam design problem case A
and the pressure vessel design problem case A, B and C (wbdA, pvdA, pvdB
and pvdC are the abbreviations of those problems, respectively).

the RLD for this problem is given. The average and minimum

number of objective function evaluations for ACOMV are

2 122 and 1 888, respectively.

B. Group II: Pressure vessel design problem case A, B, C and

D

There are four distinct cases (A, B, C and D) of the pressure

vessel design problem defined in the literature. These cases

differ by the constraints posed on the thickness of the steel

used for the heads and the main cylinder. In case A, B and C

(see Table V), ACOMV reaches the best-known solution value

with a 100% success rate in a maximum of 1 737, 1 764 and

1 666 objective function evaluations, respectively, while other

algorithms do not reach a success rate of 100% with respect to

the best-known solution value even after many more objective

function evaluations. The run-time behavior of ACOMV is

illustrated in Fig. 3, where the RLDs for these problems are

given.

Case D is more difficult to solve due to the larger range of

side constraints for decision variables. Therefore, Case D was

analyzed in more detail in recent literature. We limit ACOMV

to use a maximum number of 30 000 objective function

evaluations, the same as done for several other approaches

from the literature. Table VI shows clearly the second best per-

forming algorithm for what concerns the average and the worst
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TABLE V
RESULTS FOR CASE A, B AND C OF THE PRESSURE VESSEL DESIGN

PROBLEM. fBest DENOTES THE BEST OBJECTIVE FUNCTION VALUE. SRB

DENOTES THE SUCCESS RATE OF REACHING THE BEST KNOWN SOLUTION

VALUE. FES DENOTES THE MAXIMUM NUMBER OF OBJECTIVE FUNCTION

EVALUATIONS IN EACH ALGORITHM RUN. FOR ACOMV WE REPORT IN

PARENTHESIS THE LARGEST NUMBER OF OBJECTIVE FUNCTION

EVALUATIONS IT REQUIRED IN ANY OF THE 100 INDEPENDENT RUNS

(ACOMV REACHED IN EACH RUN THE BEST KNOWN SOLUTION VALUE).
GIVEN IS ALSO THE AVERAGE NUMBER OF OBJECTIVE FUNCTION

EVALUATIONS OF THE SUCCESSFUL RUNS. “-” MEANS THAT THE

INFORMATION IS NOT AVAILABLE.

Case A
NLIDP MIDCP DE

ACOnoR
MV

ACOMV[45] [59] [60]

fBest 7 867.0 7 790.588 7 019.031 7 019.031 7 019.031

SRB - - 89.2% 100% 100%

FEs - - 10 000 (1 737)

(1 500.0)
(1 737)

(1 500.0)

Case B
NLIDP SLA GA DE HSIA

ACOnoR
MV

ACOMV[45] [61] [62] [60] [8]

fBest 7 982.5 7 197.734 7 207.497 7 197.729 7 197.9 7 197.729 7 197.729

SRB - - - 90.2% - 100% 100%

FEs - - - 10 000 - (1 764)

(1 470.48)
(1 764)

(1 470.48)

Case C
NLMDP EP ES DE CHOPA

ACOnoR
MV

ACOMV[63] [64] [65] [60] [66]

fBest 7 127.3 7 108.616 7 006.9 7 006.358 7 006.51 7 006.358 7 006.358

SRB - - - 98.3% - 100% 100%

FEs - - 4 800 10 000 10 000 (1 666)

(1 433.42)
(1 666)

(1 433.42)

TABLE VI
BASIC SUMMARY STATISTICS FOR THE PRESSURE VESSEL DESIGN

PROBLEM CASE D. THE BEST-KNOWN OBJECTIVE FUNCTION VALUE IS

6059.7143. fBest , fMean AND fWorst DENOTES THE BEST, MEAN AND

WORST OBJECTIVE FUNCTION VALUES, RESPECTIVELY. SD DENOTES THE

STANDARD DEVIATION OF THE MEAN OBJECTIVE FUNCTION VALUE. FES

DENOTES THE MAXIMUM NUMBER OF OBJECTIVE FUNCTION

EVALUATIONS IN EACH ALGORITHM RUN.“-” MEANS THAT THE

INFORMATION IS NOT AVAILABLE.

Methods fBest fMean fWorst Sd FEs

GA1 [44] 6 288.7445 6 293.8432 6 308.1497 7.413E+00 -

GA2 [55] 6 059.9463 6 177.2533 6 469.3220 1.309E+02 80 000

(µ + λ)ES [52] 6 059.7143 6 379.9380 - 2.10E+02 30 000

CPSO [53] 6 061.0777 6 147.1332 6 363.8041 8.645E+01 200 000

HPSO [57] 6 059.7143 6 099.9323 6 288.6770 8.620E+01 81 000

RSPSO [67] 6 059.7143 6 066.2032 6 100.3196 1.33E+01 30 000

CLPSO [11] 6 059.7143 6 066.0311 - 1.23E+01 60 000

DELC [54] 6 059.7143 6 059.7143 6 059.7143 0 30 000

ABC [58] 6 059.7143 6 245.3081 - 2.05E+02 30 000

ACOnoR
MV

6 059.7143 6 065.7923 6 089.9893 1.22E+01 30 000

ACOMV 6 059.7143 6 059.7164 6 059.9143 1.94E−02 30 000

objective function values. In fact, ACOMV reaches a 100%
success rate (measured over 100 independent runs) at 30 717

objective function evaluations, while at 30 000 evaluations it

reached a success rate of 98%, which is slightly lower than the

success rate of 100% reported by DELC [54]. In fact, on this

problem, ACOMV actually profits from the possible restarts

of the algorithm, as the slightly worse results of ACOnoR
MV

show. The run-time behavior of ACOMV is illustrated in Fig.

4, where the RLD for this problem is given. The average and

minimum number of objective function evaluations is 9 448

and 1 726, respectively.

It is noteworthy that DELC [54] reaches the aforementioned

performance using parameter settings that are specific for each

test problem, while we use a same parameter setting for all

test problems. Using instance specific parameter settings po-

tentially biases the results in favor of the DELC algorithm. In a

practical setting, one would not know a priori which parameter

Fig. 4. The RLDs of ACOMV for the pressure vessel design problem case
D and the coil spring design problem (pvdD and csd are the abbreviations of
those problems, respectively).

setting to apply before actually solving the problem. Thus,

there are methodological problems in the results presented for

DELC [54].

C. Group II: Coil spring design problem

Most of the research reported in the literature considering

the coil spring design problem focused on reaching the best-

known solution or improving the best-known one. Only recent

work [60], [68] gave some attention to the number of objec-

tive functions evaluations necessary to reach the best-known

solution. A comparison of the obtained results is presented

in Table VII. Only a differential evolution algorithm [60] and

ACOMV obtained the best-known objective function value,

2.65856. At 8 000 evaluations ACOMV reached a success rate

of 74%, which is lower than the success rate of 95% reported

by the DE algorithm of [60]; However, ACOMV reaches a

100% success rate with 19 588 objective function evaluations

because it can profit from the possibility of algorithm restarts,

which generally occur after the stopping criterion of 8 000

algorithm evaluations. The run-time behavior of ACOMV is

illustrated in Fig. 4, where the RLD for this problem is

given. The average and minimum number of objective function

evaluations of ACOMV are 9 948 and 1 726, respectively.

It is important to note that the DE algorithm of [60] was

not designed to handle categorical variables. Another DE

algorithm proposed in [68] did not report a success rate, but the

corresponding objective function values were reported to be in

the range of [2.658565, 2.658790] and the number of objective

function evaluations varies in the range [539 960, 3 711 560],
thus, showing a clearly worse performance than ACOMV.

D. Group III: Thermal insulation systems design problem

The thermal insulation systems design problem is one of

the engineering problems used in the literature that deals

with categorical variables. In previous studies, the categorical

variables describing the type of insulators used in different

layers were not considered as optimization variables, but rather

as parameters. Only the more recent work of Kokkolaras et

al. [16] and Abramson et al. [19], which are able to handle

such categorical variables properly, consider these variables for

optimization. Research focuses on improving the best-known

solution value for this difficult engineering problem. ACOMV

reaches a better solution than MVP [16] and FMGPS [19];
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TABLE VII
RESULTS FOR THE COIL SPRING DESIGN PROBLEM. fBest DENOTES THE

BEST OBJECTIVE FUNCTION VALUE. SRB DENOTES THE SUCCESS RATE

OF REACHING THE BEST KNOWN SOLUTION VALUE. FES DENOTES THE

MAXIMUM NUMBER OF OBJECTIVE FUNCTION EVALUATIONS IN EACH

ALGORITHM RUN. FOR ACOMV WE REPORT IN PARENTHESIS THE

LARGEST NUMBER OF OBJECTIVE FUNCTION EVALUATIONS IT REQUIRED

IN ANY OF THE 100 INDEPENDENT RUNS (ACOMV REACHED IN EACH

RUN THE BEST KNOWN SOLUTION VALUE). “-” MEANS THAT THE

INFORMATION IS NOT AVAILABLE.

Algs
NLIDP GA GA DE HSIA DE

ACOnoR
MV

ACOMV[45] [69] [62] [60] [8] [68]

N 10 9 9 9 9 9 9 9

D [inch] 1.180701 1.2287 1.227411 1.223041 1.223 1.223044 1.223041 1.223041

d [inch] 0.283 0.283 0.283 0.283 0.283 0.283 0.283 0.283

fBest 2.7995 2.6709 2.6681 2.65856 2.659 2.658565 2.65856 2.65856

SRB - - - 95.0% - - 74% 74% (100%)

FEs - - - 8 000 - - 8 000 8 000 (19 588)

TABLE VIII
COMPARISON OF THE BEST FITNESS VALUE FOR THE THERMAL

INSULATION SYSTEMS DESIGN PROBLEM.

Objective function MVP [16] FMGPS [19] ACOnoR
MV

ACOMV

Power( PL
A

( W
cm

)) 25.294 25.58 24.148 24.148

Table VIII presents a new best-known objective function value,

24.148, obtained by ACOMV. The corresponding solution,

which has 22 continuous variable values and 11 categorical

variable values, is given in the supplementary information

page mentioned above. The evolution of the best solution

as a function of number of objective function evaluations of

ACOMV is shown in Fig.5. In fact, as the number of objective

function evaluations increases, the solution quality continues

to improve. At 50 000 objective function evaluations, ACOMV

reaches the new best-known solution value 24.148.

E. Group IV: Welded beam design problem case B

The welded beam design problem case B is taken from Deb

and Goyal [46] and Dimopoulos [10]. It is a variation of case

A and it includes ordinal and categorical variables. Table IX

shows that ACOMV reaches a new best-known solution value

with a 100% success rate. Additionally, the average number

of objective function evaluations required by ACOMV is also

fewer than that of PSOA [10]. If restarts are not used, as done

in version ACOnoR
MV

, then slightly worse average results are

obtained, which, however, are still much better than those of

the other algorithms. The run-time behavior of ACOMV is

illustrated in Fig. 6.

Fig. 5. The development of the best solution quality over the number of
function evaluations for ACOMV on the thermal insulation systems design
problem.

TABLE IX
BASIC SUMMARY STATISTICS FOR WELDED BEAM DESIGN PROBLEM CASE

B. fBest AND fMean DENOTES THE BEST AND MEAN OBJECTIVE

FUNCTION VALUES, RESPECTIVELY. SD DENOTES THE STANDARD

DEVIATION OF THE MEAN OBJECTIVE FUNCTION VALUE.
MEAN-FES-SUCCESS DENOTES THE AVERAGE NUMBER OF EVALUATIONS

OF THE SUCCESSFUL RUNS. “-” MEANS THAT THE INFORMATION IS NOT

AVAILABLE.

Methods fBest fMean Sd Mean-FEs-Success

GeneAS [46] 1.9422 - - -

RSPSO [67] 1.9421 - - -

PSOA[10] 1.7631 1.7631 0 6 570

CLPSO [11] 1.5809 1.7405 2.11E−01 -

ACOnoR
MV

1.5029 1.52 4.69E−02 985

ACOMV 1.5029 1.5029 0 1 436

Fig. 6. The RLDs of ACOMV for the welded beam design problem case
B (wbdB is its abbreviation).

VI. CONCLUSIONS

In this paper, we have introduced ACOMV, an ant colony

optimization algorithm for tackling mixed-variable optimiza-

tion problems. ACOMV integrates a continuous optimization

solver (ACOR), a continuous relaxation approach (ACOMV-o)

and a categorical optimization approach (ACOMV-c) to solve

continuous and mixed-variable optimization problems.

We also proposed artificial mixed-variable benchmark func-

tions. These provide a sufficiently controlled environment

for the investigation of the performance of mixed-variable

optimization algorithms, and a training environment for auto-

matic parameter tuning. Based on the benchmark functions, a

rigorous comparison between ACOMV-o and ACOMV-c was

conducted, which confirmed our expectation that ACOMV-o is

better than ACOMV-c for ordinal variables while ACOMV-c

is better than ACOMV-o for categorical variables.

The experimental results for real-world engineering prob-

lems illustrate that ACOMV not only can tackle various classes

of decision variables robustly, but also that it is efficient in

finding high-quality solutions. In the welded beam design case

A, ACOMV is the one of the two available algorithms that

reach the best-known solution with a 100% success rate; in

the pressure vessel design problem case A, B and C, ACOMV

is the only available algorithm that reaches the best-known

solution with a 100% success rate. In these four problems,

ACOMV does so using fewer objective function evaluations

than those used by the competing algorithms. In the pressure

vessel design problem case D, ACOMV is one of the two

available algorithms that reach the best-known solution with

a 100% success rate, and it does so using only slightly more

objective function evaluations than the other algorithm, which
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uses problem specific parameter tuning to boost algorithm

performance. In the coil spring design problem, ACOMV

is the only available algorithm that reaches the best-known

solution with a 100% success rate. In the thermal insulation

systems design problem, ACOMV obtains a new best solution,

and in the welded beam design problem case B, ACOMV

obtains a new best solution with a 100% success rate in fewer

evaluations than those used by the other algorithms.

The ACOMV solution archive provides a flexible framework

for resizing the population size and hybridization with a local

search procedure to improve solutions in the archive. Thus, it

would be interesting to use mechanisms such as an incremental

population size and local search to further boost performance

[70], [27]. We also intend to integrate or develop an effective

constraint-handling technique for ACOMV in order to tackle

constrained mixed-variable optimization problems [71], [72].

A promising application for ACOMV are algorithm configura-

tion problems [31], in which typically not only the setting of

numerical parameters but also that of categorical parameters

needs to be determined. To do so, we will integrate ACOMV

into the irace framework [73].
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APPENDIX

A. Analysis of ACOMV-o and ACOMV-c

In this section, we verify the relevance of the design choice

we have taken in ACOMV, namely combining a continuous

relaxation approach, ACOMV-o, and a native categorical op-

timization approach, ACOMV-c, in one single algorithm. We

analyze the performance of ACOMV-o and ACOMV-c on

two sets of the mixed-variable benchmark functions that were

proposed in Section IV. The first set of benchmark functions

involves continuous and ordinal variables. The second set

of benchmark functions involves continuous and categorical

variables.

1) Experimental Setup: For the two settings described

in Section IV, we evaluate the performance of ACOMV-

o and ACOMV-c on six benchmark functions with dif-

ferent numbers t of discrete points in the discretization,

t ∈ {2, 5, 10, 20, 30, ..., 90, 100, 200, 300, ..., 900, 1 000}, and

dimensions 2, 6 and 10; this results in 18 groups of exper-

iments (six benchmark functions and three dimensions) for

the first and the second set of benchmark functions. In this

study, half of the dimensions are continuous variables and the

other half are discrete variables. The continuous variables in

these benchmark functions are handled by ACOR, while the

discrete variables are handled by ACOMV-o and ACOMV-c,

respectively.

To ensure a fair comparison in every group of ex-

periments, we tuned the parameters of ACOMV-o and

ACOMV-c using Iterated F-Race [30], [31] with the same

tuning budget on a training set of benchmark functions.

The training set involves ordinal and categorical vari-

ables with a random number of t discrete points, t ∈
{2, 5, 10, 20, 30, ..., 90, 100, 200, 300, ..., 900, 1 000}. In a test

phase, we conducted experiments with benchmark functions

different from those used in the training phase. The com-

parisons for each possible number t of discrete points were

performed independently in each experiment group (defined

by benchmark function and dimension). In total, we conducted

378 = 21×6×3 comparisons for ordinal and categorical vari-

ables, respectively. In each experiment, we compare ACOMV-

o and ACOMV-c without restart mechanism by measuring the

solution quality obtained by 50 independent runs. A uniform

random search (URS) method [74] is included as a baseline for

comparison. It consists in sampling search points uniformly at

random in the search domain and keeping the best solution

found.

2) Comparison results: Table X summarizes the results of

the comparison between ACOMV-o, ACOMV-c and URS for

ordinal and categorical variables. The Wilcoxon rank-sum test

at the 0.05 α-level is used to test the statistical significance

of the differences in each of the 378 comparisons. In the case

of ordinal variables, the statistical analysis revealed that in

63% of the 378 comparisons ACOMV-o reaches statistically

significantly better solutions than ACOMV-c, in 2% of the

experiments ACOMV-c is statistically significantly better than

ACOMV-o, and in the remaining 35% of the cases there

was no statistically significant difference. As expected, both

ACOMV-o and ACOMV-c outperform URS: they perform

significantly better in 98% and 93% of the cases, respec-

tively, and they never obtain statistically significantly worse

results than URS. In the case of categorical variables, the

statistical analysis revealed that in 93% of the 378 com-

parisons ACOMV-c reaches statistically significantly better

solutions than ACOMV-o and in 7% of the experiments

ACOMV-o is statistically significantly better than ACOMV-

c. Again, both ACOMV-o and ACOMV-c outperform URS.

They perform better in 96% and 78% of the cases, respectively,

and ACOMV-c never obtains statistically significantly worse

results than URS.

These experiments confirm our expectation that ACOMV-o

is more effective than ACOMV-c on problems with ordinal

variables, while ACOMV-c is more effective than ACOMV-

o on problems with categorical variables. In Fig. 7, the

comparisons on fRastriginMV
are shown. As seen in the figure,

the categorical optimization approach, ACOMV-c, reaches

approximately the same objective function values no matter

whether the discrete variables are ordinal or categorical. The

continuous relaxation approach ACOMV-o performs better

than ACOMV-c in the case of ordinal variables, but its

performance is not as good when applied to the categorical

case.
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TABLE X
COMPARISON BETWEEN ACOMV -O, ACOMV -C AND UNIFORM

RANDOM SEARCH (URS) FOR TWO SETUPS OF DISCRETE VARIABLES. FOR

EACH COMPARISON, WE GIVE THE FREQUENCY WITH WHICH THE FIRST

MENTIONED ALGORITHM IS STATISTICALLY SIGNIFICANTLY BETTER,
INDISTINGUISHABLE, OR WORSE THAN THE SECOND ONE.

1st setup 2nd setup
Ordinal variables Categorical variables

ACOMV-o vs. ACOMV-c 0.63, 0.35, 0.02 0.07, 0.00, 0.93
ACOMV-o vs. URS 0.98, 0.02, 0.00 0.78, 0.12, 0.10
ACOMV-c vs. URS 0.93, 0.07, 0.00 0.96, 0.04, 0.00

Fig. 7. The plot shows the average objective function values obtained by
ACOMV-o and ACOMV-c on the 6 dimensional function fRastriginMV

after 10 000 evaluations, with the number t of discrete points in the discretiza-
tion t ∈ {2, 5, 10, 20, 30, ..., 90, 100, 200, 300, ..., 900, 1 000}.

B. Effectiveness of the restart mechanism

Here we show that ACOMV’s restart mechanism really

helps in improving its performance. We conducted 50 inde-

pendent runs using a maximum of 1 000 000 evaluations in

each run. In Fig.8, we show ACOMV’s run-length distributions

(RLDs, for short) on two multi-modal functions fAckleyMV
and

fGriewankMV
with continuous and categorical variables with

t = 100 discrete points. An empirical RLD gives the estimated

cumulative probability distribution for finding a solution of

a certain quality as a function of the number of objective

function evaluations. (For more information about RLDs, we

refer the reader to [47].) As expected, ACOMV’s performance

is strongly improved by the restart mechanism. For example, in

the case of fAckleyMV
in two, six and ten dimensions ACOMV

reaches a solution whose objective function value is equal to or

less than 1.00E−10 with probability 1 or 100% success rate,

and in the case of fGriewankMV
in two, six and ten dimensions

ACOMV reaches a solution whose objective function value is

equal to or less than 1.00E−10 with probability 1, 0.82 and

0.85 respectively. Without restart, ACOMV stagnates at much

lower success rates.

C. Performance on benchmark functions

We evaluate ACOMV on the two setups of artificial mixed-

variable benchmark functions with dimensions two, six and

ten. Half of the dimensions are discrete variables and the other

half are continuous variables. Table XI gives the numerical

results of ACOMV. The results are again measured across 50

independent runs of 1 000 000 objective function evaluations

for instances with t = 100 discrete points. ACOMV found

a solution whose objective function value is equal to or

less than 1.00E−10 with 100% success rate in all the two

Fig. 8. The RLDs obtained by ACOMV with and without restarts. The
solution quality threshold is 1.00E−10. Dim indicates the dimensionality of
the benchmark problem. Half of the dimensions are categorical variables and
the other half are continuous variables.

dimensional benchmark functions. ACOMV found solutions

of the same quality (function value equal to 1.00E−10) for

each of the six dimensional benchmark function at least once.

On the ten dimensional benchmark functions with ordinal

variables, ACOMV found the optimal solution of fAckleyMV
,

fRosenbrockMV
, fSphereMV

and fGriewankMV
. On the ten

dimensional benchmark functions with categorical variables,

ACOMV found the optimal solution of fAckleyMV
, fSphereMV

and fGriewankMV
. Over dimension two, six and ten, ACOMV

obtained 100% success rate when applied to solve fAckleyMV

and fSphereMV
with both setups, and obtained more than 80%

success rate when applied to fGriewankMV
with both setups.

TABLE XI
EXPERIMENTAL RESULTS OF ACOMV WITH DIMENSIONS D = 2, 6, 10.

F1− F6 REPRESENT fEllipsoidMV
, fAckleyMV

, fRastriginMV
,

fRosenbrockMV
, fSphereMV

AND fGriewankMV
, RESPECTIVELY. THE

VALUES BELOW 1.00E−10 ARE APPROXIMATED TO 0.00E+00, AND ARE

HIGHLIGHTED IN BOLDFACE.

D Functions

Two setups of discrete variables

Ordinal variables Categorical variables

Avg. Median Max. Min. Avg. Median Max. Min.

2

F1 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

F2 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

F3 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

F4 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

F5 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

F6 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

6

F1 8.47e−03 0.00e+00 1.65e−01 0.00e+00 1.31e+00 4.13e−01 1.26e+01 0.00e+00

F2 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

F3 1.91+00 1.78e+00 4.38e+00 0.00e+00 2.10e+00 2.29e+00 4.38e+00 0.00e+00

F4 7.82e−01 0.00e+00 1.04e+01 0.00e+00 1.00e+01 6.90e+00 5.95e+01 0.00e+00

F5 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

F6 2.43e−07 0.00e+00 1.22e−05 0.00e+00 8.41e−04 0.00e+00 1.26e−02 0.00e+00

10

F1 1.99e+00 1.40e+00 1.10e+01 1.17e−01 1.20e+01 7.32e+00 5.48e+01 5.84e−01

F2 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

F3 1.37e+01 1.48e+01 2.46e+01 2.93e+00 1.03e+01 9.65e+00 2.03e+01 3.77e+00

F4 1.23e+01 1.32e+01 3.74e+01 0.00e+00 4.37e+01 1.91e+01 1.80e+02 1.03e+01

F5 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

F6 2.54e−03 0.00e+00 4.67e−02 0.00e+00 4.52e−03 0.00e+00 4.67e−02 0.00e+00

D. Analysis of Equation (6)

To illustrate the influence of alternative choices for Equa-

tion (6) and its parameter settings, we perform three ex-

periments on two multi-modal functions fAckleyMV
and

fGriewankMV
with continuous and categorical variables with

t = 100 discrete points. The three experiments are based

on the following alternative choices for Equation (6) and its

parameter settings.

(1) We modify Equation (6) to

wl =

{

ωjl , if (ui
l > 0),

0, if (ui
l = 0).

(9)
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That is, we omit the terms ui
l and

q

η
in Equation (6).

(2) We modify Equation (6) to

wl =

{ ωjl

ui
l

, if (ui
l > 0),

0, if (ui
l = 0).

(10)

That is, we omit the term
q

η
in Equation (6).

(3) We use five different values of parameter q in Equation (6);

in particular, we choose q ∈ {0.01, 0.1, 1, 10, 100} ×
0.05099, where 0.05099 is the setting obtained in the param-

eter tuning (see Table II).

We tuned the parameters of two versions of ACOMV that

use the two alternative Equations (9) and (10), respectively,

by the same automatic tuning procedure used for tuning

the original ACOMV with Equation (6) to ensure a fair

comparison; for the experiments with alternative settings of

parameter q, the other parameters were kept to the values

shown in Table II. The detailed experimental results of the

comparisons of the resulting comparisons are given in the

supplementary information page http://iridia.ulb.ac.be/supp/

IridiaSupp2011-022. Summary information based on RLDs

are given in Fig. 9 and 10. The results of experiment (1)

show that the RLDs obtained by using Equation (6) clearly

dominate those obtained by using Equation (9). In fact,

the success rates obtained by Equation (9) in dimensions

six and ten are zero and therefore not shown in Figure 9.

The same conclusions hold for experiment (2): the RLDs

obtained by using Equation (6) dominate those obtained by

using Equation (10) in all cases, illustrating in this way

the benefit of Equation (6). Similar results are obtained in

experiment (3), that is, the setting q = 0.05099 outperforms

the other settings. The only exception is for the problems

in dimension two, where a setting of q = 10 × 0.05099 is

competitive to q = 0.05099. Detailed results are available at

http://iridia.ulb.ac.be/supp/IridiaSupp2011-022.

Fig. 9. The RLDs obtained by the two ACOMV variants with Equation (6)
and (9) in 50 independent runs. The solution quality threshold is 1.00E−10.
Dim indicates the dimensionality of the benchmark problem. Half of the di-
mensions are categorical variables and the other half are continuous variables.

E. Mathematical formulation of engineering benchmark prob-

lems

1) Welded beam design problem case A: The mathematical

formulation of the welded beam design problem is given in

Table XII. The schematic view of this problem is shown in

Fig. 11

Fig. 10. The RLDs obtained by the two ACOMV variants with Equation (6)
and (10) in 50 independent runs. The solution quality threshold is 1.00E−10.
Dim indicates the dimensionality of the benchmark problem. Half of the di-
mensions are categorical variables and the other half are continuous variables.
The RLDs obtained by ACOMV with Equation (10) in dimensions two, six
and ten are correspond to the left-most, the middle and the right-most RLDs
for label ”Equation (10)”.

TABLE XII
THE MATHEMATICAL FORMULATION OF WELDED BEAM DESIGN PROBLEM

CASE A.

min f(~x) = 1.10471 x2
1x2 + 0.04811 x3x4 (14 + x2)

g1 τ(~x) − τmax ≤ 0
g2 σ(~x) − σmax ≤ 0
g3 x1 − x4 ≤ 0

g4 0.10471 x2
1 + 0.04811 x3x4 (14 + x2) − 5 ≤ 0

g5 0.125 − x1 ≤ 0
g6 δ(~x) − δmax ≤ 0
g7 P − Pc(~x) ≤ 0
g8 0.1 ≤ x1, x4 ≤ 2.0
g9 0.1 ≤ x2, x3 ≤ 10.0

where τ(~x) =
√

(τ ′)2 + 2τ ′τ ′′ x2
2R + (τ ′′)2

τ ′ = P√
2x1x2

, τ ′′ = MR
J

,M = P (L +
x2
2 )

R =

√

x2
2
4 + (

x1+x3
2 )2

J = 2

{√
2x1x2

[

x2
2

12 +
(

x1+x3
2

)2
]}

σ(~x) = 6PL

x4x2
3
, δ(~x) = 4PL3

Ex3
3x4

Pc(~x) =
4.013E

√

x2
3x6

4
36

L2

(

1 − x3
2L

√

E
4G

)

P = 6 000lb, L = 14in., E = 30 × 106psi, G = 12 × 106psi
τmax = 1 360psi, σmax = 30 000psi, δmax = 0.25in.

2) Welded beam design problem case B: The welded beam

design problem case B is a variation of case A. It is extended

to include two types of welded joint configuration and four

possible beam materials. The changed places are shown in

Equation 11 and Table XIII.

Fig. 11. Schematic view of welded beam design problem case A [49].
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min f(~x) = (1 + c1)x2
1x2 + c2 x3x4 (14 + x2)

σ(~x)− S ≤ 0

J = 2

{√
2x1x2

[

x2
2

12
+

(

x1+x3
2

)2
]}

, if x6 : twoside

J = 2
{√

2x1

[

(x1+x2+x3)
3

12

]}

, if x6 : fourside

τmax = 0.577 · S

(11)

TABLE XIII
MATERIAL PROPERTIES FOR THE WELDED BEAM DESIGN PROBLEM CASE

B

Methods x5 S(103psi) E(106psi) G(106psi) c1 c2
Steel 30 30 12 0.1047 0.0481

Cast iron 8 14 6 0.0489 0.0224

Aluminum 5 10 4 0.5235 0.2405

Brass 8 16 6 0.5584 0.2566

3) Pressure vessel design problem: The pressure vessel de-

sign problem requires designing a pressure vessel consisting of

a cylindrical body and two hemispherical heads such that the

manufacturing cost is minimized subject to certain constraints.

The schematic picture of the vessel is presented in Fig. 12.

There are four variables for which values must be chosen: the

thickness of the main cylinder Ts, the thickness of the heads

Th, the inner radius of the main cylinder R, and the length of

the main cylinder L. While variables R and L are continuous,

the thickness for variables Ts and Th may be chosen only from

a set of allowed values, these being the integer multiples of

0.0625 inch. The mathematical formulation of the four cases

A, B, C and D is given in Table XIV.

4) Coil spring design problem: The problem consists in

designing a helical compression spring that holds an axial and

constant load. The objective is to minimize the volume of

the spring wire used to manufacture the spring. A schematic

of the coil spring to be designed is shown in Fig. 13. The

decision variables are the number of spring coils N , the

outside diameter of the spring D, and the spring wire diameter

d. The number of coils N is an integer variable, the outside

diameter of the spring D is a continuous one, and finally, the

spring wire diameter d is a discrete variable, whose possible

Fig. 12. Schematic view of the pressure vessel to be designed.

TABLE XIV
THE MATHEMATICAL FORMULATION THE CASES (A, B, C AND D) OF THE

PRESSURE VESSEL DESIGN PROBLEM.

No Case A Case B Case C Case D

min f = 0.6224TsRL + 1.7781ThR
2 + 3.1611T 2

s L + 19.84T 2
s R

g1 −Ts + 0.0193R ≤ 0
g2 −Th + 0.00954R ≤ 0

g3 −π R2L − 4
3π R3 + 750 · 1728 ≤ 0

g4 L − 240 ≤ 0
g5 1.1 ≤ Ts ≤ 12.51.125 ≤ Ts ≤ 12.51 ≤ Ts ≤ 12.5 0 ≤ Ts ≤ 100
g6 0.6 ≤ Th ≤ 12.5 0.625 ≤ Th ≤ 12.5 0 ≤ Th ≤ 100
g7 0.0 ≤ R ≤ 240 10 ≤ R ≤ 200
g8 0.0 ≤ L ≤ 240 10 ≤ L ≤ 200

Fig. 13. Schematic view of the coil spring to be designed.

values are given in Table XV. The mathematical formulation

is in Table XVI.

TABLE XV
STANDARD WIRE DIAMETERS AVAILABLE FOR THE SPRING COIL.

Allowed wire diameters [inch]

0.0090 0.0095 0.0104 0.0118 0.0128 0.0132

0.0140 0.0150 0.0162 0.0173 0.0180 0.0200

0.0230 0.0250 0.0280 0.0320 0.0350 0.0410

0.0470 0.0540 0.0630 0.0720 0.0800 0.0920

0.1050 0.1200 0.1350 0.1480 0.1620 0.1770

0.1920 0.2070 0.2250 0.2440 0.2630 0.2830

0.3070 0.3310 0.3620 0.3940 0.4375 0.5000

TABLE XVI
THE MATHEMATICAL FORMULATION FOR THE COIL SPRING DESIGN

PROBLEM.

min fc(N,D, d) =
π2 Dd2(N+2)

4
Constraint

g1
8CfFmaxD

π d3
− S ≤ 0

g2 lf − lmax ≤ 0
g3 dmin − d ≤ 0
g4 D −Dmax ≤ 0

g5 3.0− D
d

≤ 0
g6 σp − σpm ≤ 0

g7 σp +
Fmax−Fp

K
+ 1.05(N + 2)d− lf ≤ 0

g8 σw − Fmax−Fp

K
≤ 0

where Cf =
4D

d
−1

4D
d
−4

+ 0.615 d
D

K = Gd4

8ND3

σp =
Fp

K

lf = Fmax

K
+ 1.05(N + 2)d

Fig. 14. Schematic view of the thermal insulation system.

5) Thermal insulation systems design problem: The schema

of a thermal insulation system is shown in Fig. 14. Such a

thermal insulation system is characterized by the number of

intercepts, the locations and temperatures of the intercepts,

and the types of insulators allocated between each pair of

neighboring intercepts. In the thermal insulation system, heat

intercepts are used to minimize the heat flow from a hot to

a cold surface. The heat is intercepted by imposing a cooling

temperature Ti at locations xi, i = 1, 2, ..., n.
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The basic mathematical formulation of the classic model

of thermal insulation systems is defined in Table XVII. The

effective thermal conductivity k of all these insulators varies

with the temperature and does so differently for different

materials. Considering that the number of intercepts n is

defined in advance, and based on the model presented (n=10),

we may define the following problem variables:

• Ii ∈ M, i = 1, ..., n + 1 — the material used for the

insulation between the (i − 1)-th and the i-th intercepts

(from a set of M materials).

• ∆xi ∈ R+, i = 1, ..., n + 1 — the thickness of the

insulation between the (i− 1)-th and the i-th intercepts.

• ∆Ti ∈ R+, i = 1, ..., n+1 — the temperature difference

of the insulation between the (i − 1)-th and the i-th

intercepts.

This way, there are n+1 categorical variables chosen from a

set of M of available materials. The remaining 2n+2 variables

are continuous.

TABLE XVII
THE MATHEMATICAL FORMULATION FOR THE THERMAL INSULATION

SYSTEMS DESIGN PROBLEM.

f(x,T) =
∑n

i=1 Pi

=
∑n

i=1 ACi

(

Thot
Ti

− 1
)





∫Ti+1
Ti

kdT

∆xi
−

∫Ti

Ti−1
kdT

∆xi−1





Constraint

g1 ∆xi ≥ 0, i = 1, ..., n + 1
g2 Tcold ≤ T1 ≤ T2 ≤ ... ≤ Tn−1 ≤ Tn ≤ Thot

g3
∑n+1

i=1 ∆xi = L

where C = 2.5 if T ≥ 71 K

C = 4 if 71 K > T > 4.2 K

C = 5 if T ≤ 4.2 K

REFERENCES

[1] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Ma-

chine Learning, 1st ed. Boston, MA, USA: Addison-Wesley, 1989.

[2] R. Storn and K. Price, “Differential evolution - a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of

Global Optimization, vol. 11, pp. 341–359, 1997.

[3] J. Kennedy and R. C. Eberhart, Swarm intelligence. San Francisco,
CA, USA: Morgan Kaufmann, 2001.

[4] V. Torczon, “On the convergence of pattern search algorithms,” SIAM

Journal on Optimization, vol. 7, pp. 1–25, 1997.

[5] J. Lampinen and I. Zelinka, “Mixed integer-discrete-continuous opti-
mization by differential evolution - part 1: the optimization method,” in
Proceedings of 5th International Mendel Conference of Soft Computing,
P. Os̆mera, Ed. Brno University of Technology, Brno, Czech Republic,
1999, pp. 71–76.

[6] ——, “Mixed integer-discrete-continuous optimization by differential
evolution. Part 2: a practical example,” in Proceedigns of 5th Inter-

national Mendel Conference of Soft Computing, P. Os̆mera, Ed. Brno
University of Technology, Brno, Czech Republic, 1999, pp. 77–81.

[7] N. Turkkan, “Discrete optimization of structures using a floating point
genetic algorithm,” in Proceedings of the Annual Conference of the

Canadian Society for Civil Engineering. Moncton, N.B., Canada, 2003,
pp. 4–7.

[8] C. Guo, J. Hu, B. Ye, and Y. Cao, “Swarm intelligence for mixed-
variable design optimization,” Journal of Zhejiang University Science,
vol. 5, no. 7, pp. 851–860, 2004.

[9] S. S. Rao and Y. Xiong, “A hybrid genetic algorithm for mixed-discrete
design optimization,” Journal of Mechanical Design, vol. 127, no. 6, pp.
1100–1112, 2005.

[10] G. G. Dimopoulos, “Mixed-variable engineering optimization based
on evolutionary and social metaphors,” Computer Methods in Applied

Mechanics and Engineering, vol. 196, no. 4-6, pp. 803 – 817, 2007.

[11] L. Gao and A. Hailu, “Comprehensive learning particle swarm optimizer
for constrained mixed-variable optimization problems,” International

Journal of Computational Intelligence Systems, vol. 3, no. 6, pp. 832–
842, 2010.

[12] M. H. Mashinchi, M. A. Orgun, and W. Pedrycz, “Hybrid optimization
with improved tabu search,” Applied Soft Computing, vol. 11, no. 2, pp.
1993–2006, 2011.

[13] M. A. Abramson, C. Audet, J. W. Chrissis, and J. G. Walston, “Mesh
adaptive direct search algorithms for mixed variable optimization,”
Optimization Letters, vol. 3, no. 1, pp. 35–47, 2009.

[14] K. Deb and M. Goyal, “A flexible optimization procedure for mechan-
ical component design based on genetic adaptive search,” Journal of

Mechanical Design, vol. 120, no. 2, pp. 162–164, 1998.

[15] C. Audet and J. E. Dennis, Jr., “Pattern search algorithms for mixed
variable programming,” SIAM Journal on Optimization, vol. 11, no. 3,
pp. 573–594, 2001.

[16] M. Kokkolaras, C. Audet, and J. Dennis Jr., “Mixed variable optimiza-
tion of the number and composition of heat intercepts in a thermal
insulation system,” Optimization and Engineering, vol. 2, no. 1, pp. 5–
29, 2001.

[17] J. Ocenasek and J. Schwarz, “Estimation distribution algorithm for
mixed continuous-discrete optimization problems,” in Proceedings of

the 2nd Euro-International Symposium on Computational Intelligence.
IOS Press, Amsterdam, The Netherlands, 2002, pp. 227–232.

[18] M. A. Abramson, “Pattern search algorithms for mixed variable general
constrained optimization problems,” Ph.D. dissertation, École Polytech-
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[47] H. Hoos and T. Stützle, Stochastic Local Search: Foundations &

Applications. San Francisco, CA, USA: Morgan Kaufmann, 2004.
[48] E. Zahara and Y. Kao, “Hybrid Nelder-Mead simplex search and par-

ticle swarm optimization for constrained engineering design problems,”
Expert Systems with Applications, vol. 36, no. 2, pp. 3880–3886, 2009.

[49] A. Kayhan, H. Ceylan, M. Ayvaz, and G. Gurarslan, “PSOLVER: A new
hybrid particle swarm optimization algorithm for solving continuous
optimization problems,” Expert Systems with Applications, vol. 37,
no. 10, pp. 6798–6808, 2010.

[50] M. C̆repins̆ek, S.-H. Liu, and L. Mernik, “A note on teaching-learning-
based optimization algorithm,” Information Sciences, vol. 212, no. 0,
pp. 79–93, 2012.

[51] R. V. Rao, V. J. Savsani, and D. P. Vakharia, “Teaching-learning-
based optimization: A novel method for constrained mechanical design
optimization problems,” Computer-Aided Design, vol. 43, no. 3, pp. 303–
315, 2011.

[52] E. Mezura Montes and C. A. Coello Coello, “Useful infeasible solutions
in engineering optimization with evolutionary algorithms,” in MICAI

2005: Advances in Artificial Intelligence, ser. LNCS, A. Gelbukh,
. de Albornoz, and H. Terashima-Marn, Eds. Springer, Berlin, Germany,
2005, vol. 3789, pp. 652–662.

[53] Q. He and L. Wang, “An effective co-evolutionary particle swarm
optimization for constrained engineering design problems,” Engineering

Applications of Artificial Intelligence, vol. 20, no. 1, pp. 89–99, 2007.
[54] L. Wang and L.-p. Li, “An effective differential evolution with level

comparison for constrained engineering design,” Structural and Multi-

disciplinary Optimization, vol. 41, no. 6, pp. 947–963, 2010.

[55] C. A. Coello Coello and E. Mezura Montes, “Constraint-handling in
genetic algorithms through the use of dominance-based tournament
selection,” Advanced Engineering Informatics, vol. 16, no. 3, pp. 193–
203, 2002.

[56] C. A. Coello Coello and R. L. Becerra, “Efficient evolutionary optimiza-
tion through the use of a cultural algorithm,” Engineering Optimization,
vol. 36, no. 2, pp. 219–236, 2004.

[57] Q. He and L. Wang, “A hybrid particle swarm optimization with a
feasibility-based rule for constrained optimization,” Applied Mathemat-

ics and Computation, vol. 186, no. 2, pp. 1407–1422, 2007.
[58] B. Akay and D. Karaboga, “Artificial bee colony algorithm for large-

scale problems and engineering design optimization,” Journal of Intel-

ligent Manufacturing, In press.
[59] J.-F. Fu, R. Fenton, and W. Cleghorn, “A mixed integer-discrete-

continuous programming method and its application to engineering
design optimization,” Engineering Optimization, vol. 17, no. 4, pp. 263–
280, 1991.

[60] J. Lampinen and I. Zelinka, “Mechanical engineering design optimiza-
tion by differential evolution,” in New Ideas in Optimization, D. Corne,
M. Dorigo, and F. Glover, Eds. McGraw-Hill, London, UK, 1999, pp.
127–146.

[61] H. Loh and P. Papalambros, “Computation implementation and test of
a sequential linearization approach for solving mixed-discrete nonlinear
design optimization,” Journal of Mechanical Design, vol. 113, no. 3, pp.
335–345, 1991.

[62] S.-J. Wu and P.-T. Chow, “Genetic algorithms for nonlinear mixed
discrete-integer optimization problems via meta-genetic parameter opti-
mization,” Engineering Optimization, vol. 24, no. 2, pp. 137–159, 1995.

[63] H.-L. Li and C.-T. Chou, “A global approach for nonlinear mixed
discrete programing in design optimization,” Engineering Optimization,
vol. 22, pp. 109–122, 1994.

[64] Y. Cao and Q. Wu, “Mechanical design optimization by mixed-variable
evolutionary programming,” in Proceedings of the IEEE Conference on

Evolutionary Computation. IEEE Press, Piscataway, NJ, 1997, pp.
443–446.

[65] G. Thierauf and J. Cai, “Evolution strategies—parallelization and appli-
cation in engineering optimization,” in Parallel and distributed process-

ing for computational mechanics: systems and tools, B. Topping, Ed.
Saxe-Coburg Publications, Edinburgh, UK, 2000, pp. 329–349.

[66] H. Schmidt and G. Thierauf, “A combined heuristic optimization tech-
nique,” Advances in Engineering Software, vol. 36, pp. 11–19, 2005.

[67] J. Wang and Z. Yin, “A ranking selection-based particle swarm optimizer
for engineering design optimization problems,” Structural and Multidis-

ciplinary Optimization, vol. 37, pp. 131–147, 2008.
[68] D. Datta and J. Figueira, “A real-integer-discrete-coded differential

evolution algorithm: A preliminary study,” in Evolutionary Computation

in Combinatorial Optimization, ser. LNCS, P. Cowling and P. Merz, Eds.
Springer, Berlin, Germany, 2010, vol. 6022, pp. 35–46.

[69] J. Chen and Y. Tsao, “Optimal design of machine elements using genetic
algorithms.” Journal of the Chinese Society of Mechanical Engineers,
vol. 14, no. 2, pp. 193–199, 1993.
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