
Université Libre de Bruxelles
Faculté des Sciences Appliquées
IRIDIA - Institut de Recherches Interdisciplinaires
et de Développements en Intelligence Artificielle

Ant Colony Optimization for

the Vehicle Routing Problem

Max Manfrin

Directeur de Mémoire:

Prof. Marco Dorigo

Mémoire présentée en vue de l’obtention du Diplôme d’Etudes Approfondies
en Sciences Appliqueées

Année Académique 2003/2004

Abstract

The work presented in this thesis is part of the research carried out in the
Metaheuristics Network, a Research Training Network sponsored by the Im-
proving Human Potential Program of the European Community (HPRN-CT-
1999-00106).

This thesis consist of two parts. The first part (Chapters 1 and 2) presents an
introduction to stochastic routing problems followed by the description and the
mathematical model of the Vehicle Routing Problem with Stochastic

Demands (VRPSD). As stochastic routing problems are NP-hard combina-
torial optimization problems, quite a lot of research has been devoted to the
development of metaheuristic methods to tackle them, so a literature review is
also given. Metaheuristic methods are approximate methods which combine ba-
sic heuristic methods in a higher level framework aimed at efficiently exploring a
search space. Chapter 2 introduces the concept of metaheuristic and shows some
criteria for classification of metaheuristics. Successively it gives a description of
nowadays most important metaheuristics.

The second part of the thesis (Chapters 3 and 4) summarizes the research
results of the Metaheuristics Network on the development and comparison of
metaheuristics to tackle the VRPSD. The Metaheuristics Network aims at the
comparison of metaheuristics on different combinatorial optimization problems.
For each combinatorial optimization problem considered, five metaheuristics are
implemented by different persons in different sites involved in the Metaheuris-
tics Network. The five metaheuristics considered are: Ant Colony Optimization,
Evolutionary Computation, Iterated Local Search, Tabu Search, and Simulated
Annealing. The comparison of the experimental results of the implemented
metaheuristics [11] will be presented at the 8th International Conference on
Parallel Problem Solving from Nature (PPSN VIII) that will be held in Birm-
ingham, UK, on 18-22 September 2004 and will be published in a forthcoming
volume of the series Lecture Notes in Computer Science.

i

ii

Statement

This work was supported by the Metaheuristics Network, a Research Training
Network funded by the Improving Human Potential Program of the CEC, grant
HPRN-CT-1999-00106 and by COMP2SYS, a Marie Curie Early Stage Training
Site, funded by the the European Commission through the Human Resources
and Mobility Program, grant MEST-CT-2004-505079.

The information provided is the sole responsibility of the author and does not
reflect the Community’s opinion. The Community is not responsible for any use
that might be made of data appearing in this publication.

This work is an original research and has been done in collaboration with the
researchers of the Metaheuristics Network. Part of this work as already been
published in Bianchi et al. [14, 11] and Manfrin et al. [64, 65].

iii

iv

Acknowledgments

I wish to express my gratitude to my supervisor, Prof. Marco Dorigo, for the
opportunity to work in an environment where I had all the necessary and even
more. His confidence in me, his patience and his precision have been essential
factors to the success of this research. In this context my gratitude goes also to
Prof. Hugues Bersini , the director of IRIDIA.

Special thanks to Mauro Birattari, for his constant encouragement, his great
help in clarifying and synthesizing the results of this work, and the fruitful
collaboration we had throughout the Metaheuristics Network project.

I wish to thank all the participants to the Metaheuristics Network, with
whom I shared the entusiasm and the weight of the work, in particular I wish
to thank Leonora Bianchi, Marco Chiarandini, Olivia Rossi-Doira, Tommaso
Schiavinotto, Luis Paquete and Monaldo Mastrolilli for the fruitful discussions
and the numerous exchange of ideas.

I’m in debt with people in IRIDIA that have always demonstrated sympathy
and kindness to me: Carlotta Piscopo, Halva Labella, Shervin Nouyan, Vito
Trianni, Elio Tuci, Ampatzis Christos, Roderich Groß and Bruno Marchal.

Special thanks to my family, particularly to my sister Ester, for always having
encouraged me and supported me in following my path.

Last but not least I wish to thank Roberta Billai...words make no justice to
the love I have for her.

This work was supported by the Metaheuristics Network, a Research Train-
ing funded by the the European Commission.

v

vi

Contents

Abstract i

Statement iii

Acknowledgments v

Contents vii

List of figures ix

List of algorithms xi

Introduction 1
Original contributions . 3
Structure of the thesis . 3

1 Definition of the problem 5
1.1 Introduction to stochastic routing problems 5
1.2 A mathematical model of the VRPSD 7

1.2.1 Threshold and expected cost evaluation 8
1.3 Examples of real-world applications 9
1.4 Literature review . 10

2 Metaheuristics 13
2.1 Classification of metaheuristics 14
2.2 Trajectory methods . 16

2.2.1 Iterated Local Search . 17
2.2.2 Simulated Annealing . 19
2.2.3 Tabu Search . 21

2.3 Population-based methods . 22
2.3.1 Ant Colony Optimization 23
2.3.2 Evolutionary Computation 26

3 Preliminary experiments 29
3.1 The guidelines of the Metaheuristics Network 29

3.1.1 The Starter Kit . 31
3.2 The Algorithms . 33

3.2.1 Iterated Local Search . 33
3.2.2 Flim-Flam . 34

vii

3.2.3 Simulated Annealing . 34
3.2.4 Tabu search . 36
3.2.5 Ant Colony Optimization 37
3.2.6 Evolutionary Computation 38

3.3 Results of the preliminary experiments 39
3.3.1 How to read the tables and the graphics 40

3.4 Relation between TSP and VRPSD 51
3.4.1 Pathological cases . 51

4 Further experiments 53
4.1 Modification to the Starter Kit 53

4.1.1 The Or-Opt local search 54
4.1.2 The randomized farthest insertion heuristic 55

4.2 The Algorithms . 55
4.2.1 Iterated Local Search . 56
4.2.2 Simulated Annealing . 56
4.2.3 Tabu Search . 57
4.2.4 Ant Colony Optimization 60
4.2.5 Evolutionary Computation 60

4.3 Results of the successive experiments 60
4.4 Future works . 61

4.4.1 Homogeneous Failure and Restocking 61
4.4.2 Possible Extensions of the Problem 74

Conclusions 77

Bibliography 79

viii

List of Figures

1.1 Expected cost-to-go of the vehicle under restocking strategy . . . 9

3.1 Example of Or-Opt forward insertion 35
3.2 Preliminary experiments: results aggregated over the 4 classes of

instances. 41
3.3 Preliminary experiments: results on the rand unif n class of

instances. 43
3.4 Preliminary experiments: results on the rand unif r class of in-

stances. 45
3.5 Preliminary experiments: results on the rand clust n class of

instances. 47
3.6 Preliminary experiments: results on the rand clust r class of

instances. 49
3.7 Pathological instance for VRPSD 52

4.1 Arcs involved in the computation of the cost move in the Or-Opt-
tsp local search. 54

4.2 Example of tabu moves. 59
4.3 Results aggregated over the 4 classes of instances. 62
4.4 Results on the rand unif n class of instances. 64
4.5 Results on the rand unif r class of instances. 66
4.6 Results on the rand clust n class of instances. 68
4.7 Results on the rand clust r class of instances. 70
4.8 Cost of including an arc in the a priori tour 73

ix

x

List of Algorithms

1 Computation of the VRPSD objective function 9
2 Local Search . 17
3 Iterated Local Search . 18
4 Simulated Annealing . 20
5 Simple Tabu Search . 21
6 Tabu Search . 22
7 Ant Colony Optimization . 24
8 Evolutionary Computation . 27
9 Or-Opt Local Search . 32
10 Tabu Search - preliminary experiments 37
11 Evolutionary Computation - preliminary experiments 39
12 Or-Opt-tsp Local Search . 55
13 Tabu Search - TS-0 . 57
14 Tabu Search - TS-tsp . 58

xi

xii

Introduction

Combinatorial optimization (CO) problems are growing in importance for the
scientific and the industrial world. In many real life settings, high quality so-
lutions to CO problems such as vehicle routing are required in a very short
amount of time. In those cases, especially when large scale problems are consid-
ered, metaheuristics are one of the best alternatives. Ant Colony Optimization
is one of the newest metaheuristic approaches. It was developed in the early
’90 by Marco Dorigo and colleagues. This thesis provides contributions to the
practical applicability of Ant Colony Optimization.

The work presented in this thesis is part of the research carried out in the
Metaheuristics Network,1 a Research Training Network sponsored by the Im-
proving Human Potential Program of the European Community.2 Initially com-
posed of six participants, it now comprises five institutions:

• IRIDIA - Univeristé Libre de Bruxelles - Brussels - Belgium

• INTELLEKTIK - Technische Universität Darmstadt - Darm-
stadt - Germany

• ECRG - Napier University - Edinburgh - UK

• IDSIA - Manno - Switzerland

• ANTOPTIMA - Lugano - Switzerland (joined the network in 2001).

Two institutions have left the Network after one and two years, respectively:

• COG - Technische Universiteit Eindhoven - Eindhoven - The
Netherlands (left the Network on the 31.08.2001);

• EUROBIOS - Paris - France (left the Network on the 31.08.2002).

The Metaheuristics Network has goals of scientific, engineering and training
nature. These are explained in the following.

• Scientific goals: the main scientific goal of the Metaheuristics Network is to
improve the understanding of how metaheuristics work through theoreti-
cal and experimental research. Other scientific goals are the definition of
new high-performing hybrid metaheuristics, that is, metaheuristics that
combine components taken from existing metaheuristics, as well as the

1http://www.metaheuristics.org
2Contract number HPRN-CT-1999-00106.

1

2

definition and use of a strictly controlled, machine independent, exper-
imental methodology which allows a fair and meaningful comparison of
experimental results.

• Engineering goals: the first engineering oriented goal consists in the defini-
tion of guidelines that can be used to help choosing which metaheuristics,
or metaheuristic components, to use when a new problem is attacked. A
second engineering oriented goal of the network is the testing and valida-
tion of the developed ideas on very challenging problems taken from the
industrial world.

• Training goals: The main training goals of the network are: (i) to let
young researchers learn about metaheuristic techniques as well as about
a number of important optimization problems, (ii) to let them learn how
to design experiments in a rigorous way, and (iii) to develop their project
management skills by means of participation in a strictly co-ordinated
international team activity.

The Metaheuristics Network has spent fourteen months (from January 2003 to
February 2004) to study the Vehicle Routing Problem with Stochastic

Demands (VRPSD), a real-world problem whose study is the topic of this DEA
thesis. The interest in this problem is motivated by both its practical relevance
and its considerable difficulty.

The general Vehicle Routing Problem calls for the determination of the
optimal set of routes to be performed by a fleet of vehicles to serve a given set
of customers. The VRPSD arises in practice whenever one faces the problem
of deliveries to (or collection from) a set of customers, whose demands are
uncertain.
Unlike its deterministic equivalent, the VRPSD is ambiguously defined since
it belongs to a class of a priori optimization problems (see Bertsimas et al.
[9]) for which it is impractical to consider an a posteriori approach (such that
an optimal solution is computed each time the value of a stochastic demand
is known). Instead, an a priori solution attempts to obtain the best solution,
over all possible problem scenarios, before the realization of any single scenario.
Roberts and Hadjiconstantinou [80] evaluated the computational performance
of such a solution method and showed that an a priori solution for a Vehicle

Routing Problem where demand is uncertain lies, on average, within 8% of
the solution obtained by a reoptimization-based, a posteriori strategy.

The Metaheuristics Network has considered a particular version of the
VRPSD, and has proposed the comparison of the experimental results obtained
by five metaheuristics under the same experimental conditions, on instances of
the problem. The metaheuristics studied include: Ant Colony Optimization
(ACO), Evolutionary Computation (EC), Iterated Local Search (ILS), Simu-
lated Annealing (SA), and Tabu Search (TS). To guarantee meaningful compar-
isons and the same experimental conditions, all the implemented algorithm use
the same direct representation of the solution and of the search space (thanks to
the definition of a common neighborhood structure and a common local search
routine). Moreover, to avoid a bias due to the choice of the programming lan-
guage, all the metaheuristics have been implemented in a common programming
language (C++) using a library of common objects with the same basic data

Introduction 3

structures. All the source codes have been compiled using the same compilation
environment, and the experiments have been run on a same machine.

The time frame of fourteen months was divided into an initial phase and
a second phase. In the initial phase, which lasted three months, a “basic”
version of each metaheuristic was implemented, and a first comparison of the
basic metaheuristics was performed. The work done during the initial phase
showed that for this particular problem the important element was to find a
way to reduce the computational complexity of the procedure used to compute
the objective function. For this reason, in the remaining eleven months, the
results of the initial phase were exploited, and we proceeded with the research
of approximation schemas for the objective function

Original contributions

The original contributions are:

• Our Ant Colony System algorithm is the first implementation of an ACO
approach to the Vehicle Routing Problem with Stochastic De-

mands appeared in the literature.

• The comparison of the experimental results of the five implemented meta-
heuristics [11] will be presented at the international conference PPSN VIII
2004 and will be published in a forthcoming volume of the series Lecture
Notes in Computer Science.

Structure of the thesis

The thesis has the following structure:

• Chapter 1 presents an introduction to stochastic routing problems followed
by the description and the mathematical model of the Vehicle Routing

Problem with Stochastic Demands. As stochastic routing problems
are NP-hard combinatorial optimization problems, quite a lot of research
has been devoted to the development of metaheuristic methods to tackle
them, so a literature review is also given.

• In Chapter 2 we introduce the concept of metaheuristic, we show some
criteria for classification of metaheuristics and we give a description of
nowadays most important metaheuristics.

• In the first part of Chapter 3 we describe the guidelines given by the
Metaheuristics Network to implement the metaheuristics, and we show
the implemented algorithms. In the last part of the chapter we show the
comparison of the experimental results obtained during the preliminary
experiments, and we analyze how the Traveling Salesman Problem

and the Vehicle Routing Problem with Stochastic Demands are
related, and how we can exploit this relation to implement better algo-
rithms.

• In Chapter 4 we focus on how to exploit the similarity between the Trav-

eling Salesman Problem and the Vehicle Routing Problem with

4

Stochastic Demands. We describe the implemented metaheuristics
and the comparison of the experimental results done in the further exper-
iments.

• In the Conclusions we analyze the results that we obtained with the use
of the different studied approaches and we discuss possible future devel-
opments.

Chapter 1

Definition of the problem

The field of metaheuristics for the application to CO problems is a growing field
of research. This is due to the importance of CO problems for the scientific as
well as the industrial world. In many real life settings, high quality solutions
to CO problems such as vehicle routing or timetabling are required in a very
short amount of time. In those cases, especially when large scale problems are
considered, metaheuristics are one of the best alternatives.1

According to Papadimitriou and Steiglitz [76], a CO problem P = (S, f) is
an optimization problem in which a finite set of objects S is given along with
an objective function f : S → ℜ+ that assigns a positive cost to each of the
objects s ∈ S. The goal is to find an object of minimal cost.2 The objects are
typically integer numbers, subsets of a set of items, permutations of a set of
items, or graph structures. Due to the practical importance of CO problems,
many algorithms to tackle them have been developed. These algorithms can be
classified as either complete or approximate algorithms. Complete algorithms
are guaranteed to find for every finite size instance of a CO problem an optimal
solution in bounded time (see Papadimitriou and Steiglitz [76], Nemhauser and
Wolsey [73]). Yet, for CO problems that are NP-hard [41], no polynomial
time algorithm exists, assuming that P �= NP . Therefore, complete methods
might need exponential computation time in the worst-case. This often leads to
computation times too high for practical purposes. In approximate methods we
sacrifice the guarantee of finding optimal solutions for the sake of getting good
solutions in a significantly reduced amount of time.

1.1 Introduction to stochastic routing problems

The deterministic Vehicle Routing Problem (VRP) is well known in the
operations research literature (see Fisher [36], Bertsimas and Simchi-Levi [10],
Bramel and Simchi-Levi [17], Crainic and Laporte [23], Golden and Assad [48]
for reviews). In the classical definition of VRP it is assumed that the associ-
ated parameters, concerning factors such as cost, customer demands, and ve-

1The increasing importance of metaheuristics is underlined by the biannual Metaheuristics
International Conference (MIC). The 5th was held in Kyoto in August 2003 (http://www-
or.amp.i.kyoto-u.ac.jp/mic2003/).

2Note that minimizing over an objective function f is the same as maximizing over −f .
Therefore, every CO problem can be described as a minimization problem.

5

6 CHAPTER 1. DEFINITION OF THE PROBLEM

hicle travel times, are deterministic. The work done for this thesis within the
Metaheuristics Network deals with a variation where each customer demand
is assumed to follow a given probability distribution, instead of having a sin-
gle known value. The actual customer demand is known only upon arrival at
the customer’s location. Such a problem is known in the literature as Vehi-

cle Routing Problem with Stochastic Demands. The VRPSD arises in
practice whenever one faces the problem of deliveries to (or collections from) a
set of customers, whose demands are uncertain.

In a deterministic VRP, routes are planned in such a way that vehicles
always have enough capacity to satisfy all customers’ demands on their pre-
planned routes. When demands are stochastic, this is possible only by loosing
the concept of ‘pre-planned routes’, and by adding a set of decisions rules (a
routing strategy or routing policy). In fact, suppose a vehicle visits customers
in a certain pre-planned order. It is possible that at some customer location
the vehicle capacity is reached or exceeded, and a route failure is said to occur.
In such a situation, the following decision (or ’recourse action’) may be taken:
the vehicle returns to the depot, replenishes, and either goes back to the cus-
tomer where demand has not been fully satisfied or resumes its tour with the
next customer. Therefore, the vehicle will always be able to serve all demands
of customers on its pre-planned tour, but the distance traveled is a random
quantity, and the locations where recurse actions will be taken are not known
in advance. Indeed, the actual tour followed by the vehicle might be in general
different by the pre-planned one. The goal, in the VRPSD, is to determine a
routing policy such that demand at each customer is met, and the expected
distance traveled is minimized.

We can think about the following types of routing policies:

• off-line (or a priori, static, open-loop)

• on-line (or real-time, dynamic, closed-loop)

• mixed

Off-line policies prescribe for a vehicle a sequence τ of customers to be visited
in the sequence order. Such policy is then executed in real-time, supplemented
by simple recourse actions to accommodate failures that may occur when one
actually observes the realizations of the random variables involved in the prob-
lem. On the other extreme are on-line policies. An on-line policy tells, for each
possible state of the system, which location to visit next. In practice, the ap-
plication of an on-line policy consists in optimally re-sequencing the unvisited
customers whenever a vehicle arrives at a new customer location. Mixed policies
combine elements of both; for instance, the vehicle follows the prescribed tour,
but it is enabled with state dependent rules that allow for preventive returns to
the depot, before a route failure actually occurs.

In this DEA thesis we focus on the mixed policy of preventive restocking,
which works in the following way. After a customer has been served, we take a
decision on whether to return to the depot for replenishment, or to go on with
the next customer. The decision is taken in order to trade off the extra cost
of returning to the depot after a stock-out with the cost of returning to the
depot for reloading before an out-of-stock actually occurs at a customer. Thus,
the point at which the vehicle returns to the depot may be before a stock-out

1.2. A MATHEMATICAL MODEL OF THE VRPSD 7

actually takes place. Preventive restocking is done if the residual capacity of the
vehicle after serving a customer is below a certain threshold, which is calculated
in advance, at the moment of the routes planning.

Motivation of our approach (mixed policy) For a given VRPSD instance,
and for a given set of recourse actions, the set of off-line policies is a subset of
the set of mixed policies, that, in turn, is included in that of on-line ones. Since
all of them aim at the minimization of the same quantity (i.e., the expected
distance traveled), in principle better solution quality is achieved by on-line
policies. Secomandi [81] provided an estimation of the gap between the perfor-
mance of optimal on-line policies and optimal off-line/mixed policies. This gap
is below 3% for optimal off-line policies, and below 1% for optimal mixed poli-
cies, in small instances with up to 8 customers. Moreover, there is theoretical
evidence [10, 81] that the size of this gap tends to zero, as the number of cus-
tomers tends to infinite, and they are uniformly and independently distributed
on the unit square. Therefore, off-line, mixed and on-line policies are asymptot-
ically equivalent. Even if slightly better performing, the on-line approach has
several difficulties [7]: the dispatch company might not have the resources for
dynamically re-sequencing unvisited customers; the redesign of tours might be
not sufficiently good to justify the required effort and cost; the operator might
have other priorities, such as regularity and personalization of service. Instead,
off-line and mixed policies are preferable from a computational point of view
since they entail solving only one instance of an NP-hard problem. They also
produce a more stable and practically predictable solution, since the customer
sequence of each route is predetermined. The implication of these observations is
that algorithmic effort should be directed on computing close to optimal mixed
policies, as also noted by Secomandi [81].

1.2 A mathematical model of the VRPSD

The VRPSD is defined on a complete graph G = (V, A, C), where:

V = {0, 1, ..., n}, a set of nodes with node 0 denoting the depot.

A = {(i, j) : i, j ∈ V, i �= j}, the set of arcs joining the nodes.

C = (cij), denoting the travel cost (distance) between nodes i and j.

The cost matrix C is symmetric and satisfies the triangular inequality. Also,
all customers have stochastic demands ξi, i = 1, ..., n, which are independently
distributed with known distributions and are known only upon arriving at the
customer location. For implementation purposes, it is assumed that ξi does not
exceed the vehicles capacity Q, and follows a discrete probability distribution
pik = Prob(ξi = k), k = 0, 1, 2, ..., K ≤ Q. We assume a single vehicle. This
is equivalent to assuming that a set of customers has been assigned to receive
service by a given vehicle. The vehicle is initially located at the depot.

We adopt the mixed routing policy of preventive restocking, described in
Section 1.1. The goal is to find a vehicle route and a restocking policy at
each node (a threshold), to minimize the total expected cost. The costs under
consideration are:

• Cost of traveling from one customer to another as planned.

8 CHAPTER 1. DEFINITION OF THE PROBLEM

• Restocking cost: the cost of traveling back to the depot for restocking,
before going to the next planned customer.

• Route failure cost: the cost of returning to the depot for restocking caused
by insufficient remaining stock in the vehicle to satisfy demand upon ar-
rival at a customer location. This cost is a fixed nonnegative cost b plus
a cost of traveling to the depot and back to the route.

Let 0 → 1 → 2 → · · · → n be a particular planned vehicle route. After the
service completion at customer j, suppose the vehicle has a remaining load q,
and let fj(q) denote the total expected cost from node j onward. The expected
cost of the planned route (that is, the objective function value) is then f0(Q),
and the problem consists in finding a route with the least expected total cost.
If Sj represents the set of all possible loads that a vehicle can have after service
completion at customer j, then, fj(q) for q ∈ Sj satisfies

fj(q) = min{fp
j (q), f r

j (q)}, (1.1)

where

fp
j (q) = cj,j+1+

∑

k:k≤q

fj+1(q−k)pj+1,k+
∑

k:k>q

[b+2cj+1,0+fj+1(q+Q−k)]pj+1,k,

(1.2)
and

f r
j (q) = cj,0 + c0,j+1 +

K
∑

k=1

fj+1(Q − k)pj+1,k, (1.3)

with the boundary condition

fn(q) = cn,0, q ∈ Sn. (1.4)

In equations (1.1-1.3), fp
j (q) represents the expected cost of proceeding directly

to the next node, and f r
j (q) represents the expected cost of the restocking action.

These equations are used to recursively determine the objective value of the
planned vehicle route and the optimal sequence of decisions after customers are
served. The dynamic programming [5] recursion for the calculation of f0(Q) is
implemented in Algorithm 1 .

1.2.1 Threshold and expected cost evaluation

The expected cost-to-go in case of restocking, f r
j (q), is constant in q, since in

case of restocking the vehicle will have full capacity Q before serving the next
customer, whatever the current capacity q is. On the other hand, fp

j (q) is a
monotonically non-increasing function of q (proof in Yang et al. [93]), for every
fixed customer j. Therefore there is a capacity threshold value hj such that, if
the vehicle has more than this value of residual goods, then the best policy is to
proceed to the next planned customer, otherwise it is better to go back to the
depot for restocking (see Figure 1.1).

Algorithm 1 is an implementation of the dynamic programming recursion
(1.1-1.4) for the calculation of f0(Q) and of the thresholds. Let us assume
the customers demands may take values ξ ∈ {0, 1, ..., K}. Then, the algorithm
runs in O(nKQ) time; the memory required is O(nQ), if one is interested in
memorizing all intermediate values fj(q), for j = 1, 2, ..., n and q = 0, 1, ..., Q,
and O(Q) otherwise.

1.3. EXAMPLES OF REAL-WORLD APPLICATIONS 9

f (q)j

p

q

hj

j

fj
r

ex
p

ec
te

d
 c

o
st
−t

o
−g

o
 f

ro
m

 j

f (q)

Figure 1.1: The bold line represents the cost function fj(q), that is, the expected
cost-to-go of the vehicle from customer j on, under the restocking strategy. The
quantity q is the residual capacity of the vehicle just after having serviced cus-
tomer j. The function fp

j (q) would be the expected cost-to-go in case the vehicle
always proceeded directly to customer j + 1 without first going to de depot for
replenishment. The function (constant in q) f r

j (q) would be the expected cost-
to-go in case the vehicle always went to the depot for restocking, before going
to the customer j + 1. The figure shows that if the residual capacity q is under
the threshold hj , then it is more convenient to restock, otherwise it is more
convenient to proceed to the next customer.

Algorithm 1 Computation of the VRPSD objective function f0(Q)

for (q = Q, Q− 1, ..., 0) do
fn(q) = cn,0

for (j = n − 1, n− 3, ..., 1) do
compute f r

j using fj+1(·)
for (q = Q, Q− 1, ..., 0) do

compute fp
j (q)

compare f r
j and fp

j (q) for finding the threshold hj

compute fj(q) using fj+1(·)
end for

end for
end for
compute f0(Q)
return f0(Q)

1.3 Examples of real-world applications

The VRPSD finds application in all those cases in which the orders of the
costumers are modified upon arrival or where it is impossible to predict the
demand of the costumers. We can think of two specific cases for which an opti-
mization that keeps into account the stochasticity of the problem could help in
obtaining improved routes and to reduce costs. The pick up of garbage is one
of them: it is, indeed, impossible to know a priori how much garbage has to

10 CHAPTER 1. DEFINITION OF THE PROBLEM

be collected at each place. The delivery of petrol to petrol stations is another
case subject to stochasticity of demand. When a customer issues the order it
is still unknown how much he will sell in the time between the order and the
new delivery. Other real-world applications can certainly be found. Neverthe-
less, it appears that companies are not used to consider demands expressed as
probability distributions.

It is important to mention that in any real life VRP, besides the explicit
constraints of the problem itself, there is always a set of implicit (and some-
times not formally defined) constraints, whose handling may not be trivial. An
example is the shape of the tours in the solution: some people want them to
be circle-like, others want them to be more radial, or they don’t want to have
tours including customers of two distinct regions (even if those regions are ad-
jacent one another...). Another example of not formally defined constraint is
to have, “when this is possible”, certain customers in the last position of their
tour. Furthermore, while in academic problems the vehicle capacity constraint
is mono-dimensional, in real problems this is a multi-dimensional constraint in
the sense that each vehicle has a maximum capacity in pallets, a maximum ca-
pacity in kilograms and a maximum capacity in cubic meters. So, when building
solutions, one should check that none of the capacities are exceeded.

1.4 Literature review

One of the first approaches to stochastic routing problems are the works of Jaillet
[54, 55] on the traveling salesman problem with random customers, and recently
addressed by Bianchi et al. [12, 13]. The capacitated case is first analyzed by
Jaillet and Odoni [56]. The works of Jaillet [54, 55] and Jaillet and Odoni [56]
show how to efficiently compute the expected length of a solution. Bertsimas [7]
and Bertsimas et al. [8] further analyze the VRPSD with one vehicle. Bertsimas
[7] proposed the cyclic heuristic, by adapting to a stochastic framework one of
the heuristics presented by Haimovitch and Rinnooy Kan [49] in a deterministic
context. The algorithm proceeds in two phases. In the first phase a Traveling

Salesman Problem (TSP) is solved, without considering customers’ demands.
This phase provides a tour τ = (0, 1, ..., n, 0) starting and ending at the depot.
The second phase considers the n tours τi = (0, i, ..., n, 1, ..., i − 1, 0), for i =
1, ..., n, and computes their expected length, E[Lτi

]. Out of these n tours, the
best tour τ∗ is chosen:

τ∗ = arg min
i=1,...,n

E[Lτi
]. (1.5)

Bertsimas et al. [8] improved the cyclic heuristic by applying dynamic program-
ming, to supplement the a priori tour with rules for selecting returns trips to the
depot, thus obtaining a mixed policy. Their computational experience suggests
that the two versions of the cyclic heuristic provide good quality solutions. This
heuristic is also shown to be asymptotically optimal under a random Euclidean
model. Bertsimas [7] has also proposed a heuristic for the Vehicle Routing

Problem with Stochastic Customers and Demands (VRPSCD). This
problem is very similar to the VRPSD, but here one supposes to know whether
the next customer will require zero demand in advance, before traveling to that
customer. All these approaches fall within the a priori (and mixed) optimiza-
tion framework, discussed in Bertsimas et al. [9]. Secomandi [81, 82] focuses

1.4. LITERATURE REVIEW 11

on computing on-line policies for the VRPSD, by applying a roll-out dynamic
programming algorithm to sequentially improving a given a priori solution.

In case of a fleet of m vehicles, if balanced tours are not needed, one can
arrange to have each of the m− 1 customers that are closer to the depot served
by one of the m − 1 available vehicles. Then the remaining customers form
a single vehicle instance that can be solved by the cyclic heuristic [36]. This
adaptation of the cyclic heuristic has also shown to be asymptotically optimal
in a random Euclidean model (see Fisher [36] and references cited therein).
Nevertheless it does not seem to be a practical approach in a real situation,
because one obtains m−1 single customer routes, and one route with n−m+1
customers. Yang et al. [93] investigate more sophisticated approaches to solve
the multi vehicle problem, with a constraint on the expected distance traveled
by each vehicle. They test two heuristic algorithms, the route-first-cluster-next
and the cluster-first-route-next, which separately solve the problem of clustering
customers which must be served by different vehicles and the problem of finding
the best route for each cluster. Both algorithms seem to be efficient and robust.

Other authors have proposed different approaches to compute a priori poli-
cies for VRPSD with a fleet of vehicles. Gendreau et al. [42] present a stochastic
integer programming method for VRPSD. This is the first exact method for this
class of policies presented in the literature. By means of the integer L-shaped
method [60] they solve instances with up to 46 and 70 customers and 2 vehicles,
for the VRPSCD and VRPSD, respectively. The same authors also develop
a tabu search heuristic algorithm called TABUSTOCH, for the same problem
[43]. This algorithm is to be employed when instances become too large to be
solved exactly by the L-shaped method. They report obtaining optimal solu-
tions in 89.45% of the instances. The average deviation from optimality is only
0.38%, and in 97.8% is smaller than 5%. Computational times are considered
reasonable.

12 CHAPTER 1. DEFINITION OF THE PROBLEM

Chapter 2

Metaheuristics

The term metaheuristic comes from the composition of two greek words. Heuris-
tic, which derives from the verb heuŕısco (ǫυρίσκω) that means “to search”, and
meta (µǫτα), which means “beyond, on a higher level”.

The term metaheuristic, first proposed by Glover [45], has been used in the
literature with different meanings. Only in the last years some researcher have
proposed a general definition [75, 92]. We can cite for example the one given by
Stützle:

Metaheuristics are typically high-level strategies which guide an un-
derlying, more problem specific heuristic, to increase their perfor-
mance. The main goal is to avoid the disadvantages of iterative im-
provement and, in particular, multiple descent by allowing the local
search to escape from local optima. This is achieved by either al-
lowing worsening moves or generating new starting solutions for the
local search in a more “intelligent” way than just providing random
initial solutions. Many of the methods can be interpreted as intro-
ducing a bias such that high quality solutions are produced quickly.
This bias can be of various forms and can be cast as descent bias
(based on the objective function), memory bias (based on previously
made decisions) or experience bias (based on prior performance).
Many of the metaheuristic approaches rely on probabilistic decisions
made during the search. But, the main difference to pure random
search is that in metaheuristic algorithms randomness is not used
blindly but in an intelligent, biased form. Stützle [86]

The Metaheuristics Network has adopted the following definition:

A metaheuristic is a set of concepts that can be used to define heuris-
tic methods that can be applied to a wide set of different problems.
In other words, a metaheuristic can be seen as a general algorithmic
framework which can be applied to different optimization problems
with relatively few modifications to make them adapted to a specific
problem. Metaheuristics Network (2000)

Blum and Roli [16] have extrapolated a series of characteristic properties of
metaheuristics:

13

14 CHAPTER 2. METAHEURISTICS

• Metaheuristics are strategies that “guide” the search process. Their goal
is to efficiently explore the search space in order to find (near-)optimal
solutions.

• Metaheuristics may incorporate mechanisms to avoid getting trapped in
confined areas of the search space.

• The basic concepts of metaheuristics can be described on an abstract level
(i.e., not tied to a specific problem).

• Metaheuristics often use the experience gained in previous searches (mem-
ory) to guide new searches.

• Metaheuristics may make use of domain-specific knowledge in the form of
heuristics that are controlled by the upper level strategy. Those strategies
must be chosen in such a way to balance dynamically the exploitation of
previously gained experience, called intensification, and the exploration
of the search space, called diversification. This balancement is necessary,
on one side, to quickly identify region in the search space where good
solutions are, on the other side, to not loose to much time in searching
inside regions that have already been explored or that seem not to have
good solutions.

The rest of the chapter is organized as follows. There are several approaches
to classify metaheuristics with respect to their properties. In Section 2.1 we
briefly list and summarize different classification approaches; Sections 2.2 and
2.3 are devoted to a description of nowadays most important metaheuristics.
We first describe the most relevant trajectory methods and then we outline
population-based methods. In particular in Section 2.2.1 we analyze Iterated
Local Search, in Section 2.2.2 we analyze Simulated Annealing, in Section 2.2.3
we analyze Tabu Search, in Section 2.3.1 we analyze Ant Colony Optimization
and in Section 2.3.2 we analyze Evolutionary Computation.

2.1 Classification of metaheuristics

In the literature a great deal of criteria have been proposed to classify metahe-
uristics. Here we show the ones adopted by Stützle [86]. In our opinion none
of these criteria, if considered singly, is capable of providing a neat and clear
classification for the many methods that are present in the literature, especially
considering the many hybrid algorithms that exist, anyway we find it most natu-
ral to describe metaheuristics following the “single point vs. population-based”
search classification, which divides metaheuristics into trajectory methods and
methods based on populations. This is motivated by the fact that this cate-
gorization permits a clearer description of the algorithms. Moreover, a current
trend is the hybridization of methods in the direction of the integration of single
point search algorithms in population-based ones.

• Single point vs. population-based search. One criterion that can
be used to classify the algorithms is the number of solutions that are
used at the same time: does the algorithm work on a population or on
a single solution at any time? The algorithms that work with a single

2.1. CLASSIFICATION OF METAHEURISTICS 15

solution are called trajectory methods. Methods that belong to this family
are Tabu Search, Simulated Annealing and Local Search (LS). They all
share the property that the search process describes a trajectory in the
search space. Population-based methods, on the contrary, either perform
search processes which can be described as the evolution of a set of points
in the search space (as for example in Evolutionary Computation), or
they perform search process which can be described as the evolution of
a probability distribution over the search space (as for example in Ant
Colony Optimization).

• Dynamic vs. static objective function. Another criterion used for
the classification of metaheuristics concern the way they make use of the
objective function. On one hand there are algorithms who do not change
the objective function during run-time, on the other hand, there are meth-
ods like Guided Local Search, that modify it during the search. The idea
behind this approach is to have chances to explore new area of the search
space, even after a local optima is found. Modifications in the objec-
tive function introduce modification in the landscape of the search space,
helping the diversification process.

• One vs. various neighborhood structures. Many metaheuristics
work with a single neighborhood structure of a solution (a definition of
neighborhood structure of a solution is given in Section 2.2). In other
words, the search landscape topology does not change in the course of
the algorithm. There are metaheuristics, like the Variable Neighborhood
Search, that use a set of neighborhood structures which provides the pos-
sibility to diversify the search by swapping between different search land-
scapes.

• Memory-based vs. memory-less methods. An important criterion
used in the classification of metaheuristics is the use they make of the
search history, that is, whether they use memory or not.1 Methods that
take in consideration the part of the search already done are usually called
methods with memory. Memoryless algorithms are by definition Marko-
vian processes, since they rely only on the current solution to decide where
to search in the next iteration. Among algorithms with memory we can
make a distinction between the one with short term memory and the one
with long term memory. Short term memory algorithms keep trace of
a few visited solutions. Long term memory algorithms build indexes or
accumulate a great deal of data on the visited solutions. Nowadays, mem-
ory is considered a fundamental component for the creation of a highly
effective metaheuristic.

• Nature-inspired methods vs. non-nature inspired methods. The
origins of the algorithms is a minor criterion, but probably one of the most
intuitive to classify. Many methods takes inspiration from the natural
world. Methods like Evolutionary Computation, Simulated Annealing and
Ant Colony Optimization are clearly inspired by the natural world, while
this is not true for methods like Tabu Search or Local Search. Practical

1Here we refer to the use of adaptive memory, in contrast to rather rigid memory, as used
for instance in Branch & Bound.

16 CHAPTER 2. METAHEURISTICS

problems may arise when we need to classify hybrid methods that do not
fit either class (or, in a sense, they fit both at the same time).

It should be noticed that in the description of many nature-inspired meth-
ods the same terminology that is used for those phenomena is used for
the description of the algorithms. For example, in Evolutionary Compu-
tation, more precisely in Genetic Algorithms (GA), it’s common to call
gene the codification scheme of a solution component, and to call chro-
mosome the codification scheme of a solution. Again, the operators for
random-variation of the solutions are called with the same terms used in
the biological sciences, like cross-over and mutation. For what concern
Ant Colony Optimization, we speak of artificial ant colonies that build
solutions putting pheromone on solution components. Even though this
terminology is not rigorous, we must realize that is in broad use, also in
the literature, probably because the parallel with the natural world makes
the comprehension much more intuitive in many cases.

2.2 Trajectory methods

In this section we outline metaheuristics referred to as trajectory methods. The
term trajectory methods is used because the search process performed by these
methods is characterized by a trajectory in the search space. Let’s recall the
concept of neighborhood structure and local minimum:

Definition 2.1 A neighborhood structure is a function N : S → 2S that
assigns to every s ∈ S a set of neighbors N (s) ⊆ S. N (s) is called the neighbor-
hood of s. Often, neighborhood structures are implicitly defined by specifying the
changes that must be applied to a solution s in order to generate all its neigh-
bors. The application of such an operator that produces a neighbor s′ ∈ N (s) of
a solution s is commonly called a move.

A neighborhood structure together with a problem instance define the topology
of a so called search (or fitness) landscape [84, 85]. A search landscape can be
visualized as a labeled graph in which the nodes are solutions (labels indicate
their objective function value) and arcs represent the neighborhood relation
between solutions. A solution s∗ ∈ S is called a globally minimal solution (or
global minimum) if for all s ∈ S it holds that f(s∗) ≤ f(s). The set of all
globally minimal solutions is henceforth denoted by S∗. The introduction of
a neighborhood structure enables us to additionally define the concept of local
minimum.

Definition 2.2 A local minimum with respect to a neighborhood structure N
is a solution s∗ such that ∀s ∈ N (s∗) : f(s∗) ≤ f(s). We call s∗ a strict local
minimum if f(s∗) ≤ f(s)∀s ∈ N (s∗).

The search process of trajectory methods can be seen as the evolution of a
discrete dynamical system [4, 26]. The algorithm starts from an initial state
(the initial solution) and describes a trajectory in the state space. The system
dynamics depends on the strategy used; simple algorithms generate a trajectory
composed of two parts: a transient phase followed by an attractor (a fixed point,
a cycle or a complex attractor). Algorithms with advanced strategies generate

2.2. TRAJECTORY METHODS 17

more complex trajectories which can not be subdivided in those two phases.
The characteristics of the trajectory provide information about the behavior of
the algorithm and its effectiveness with respect to the problem instance that is
tackled.

The performance of simple Local Search procedures (as outlined in Section
2.2.1) when applied to CO problems is usually quite unsatisfactory. There-
fore, several techniques have been developed to prevent algorithms from getting
trapped in local minima, which is done by adding mechanisms that allow them
to escape from local minima. This implies the necessity of termination criteria
other than simply reaching a local minimum. Commonly used termination cri-
teria are a maximum CPU time, a maximum number of iterations, a solution
s of sufficient quality is found, or the maximum number or iterations without
improvement is reached.

2.2.1 Iterated Local Search

Local Search starts from a solution s, often randomly generated, and explores
the neighborhood N (s). The pseudo-code is shown in Algorithm 2. There are
two major ways of implementing the function ChooseImprovingNeighbor().
The first way is called first-improvement. A first-improvement function scans
the neighborhood N (s) and returns the first solution that is better than s. In
contrast, a best-improvement function exhaustively explores the neighborhood
and returns one of the solutions with the lowest objective function value. An
iterative improvement procedure that uses a first-improvement function is called
first-improvement local search, respectively best-improvement local search (or
steepest descent local search) in the case of a best-improvement function. Both
methods stop at a local minima. Therefore, their performance strongly depends
on the definition of a neighborhood structure N . A Local Search algorithm
partitions the search space S into so-called basins of attraction of local minima.
The basin of attraction of a local minimum s∗ ∈ S is the set of all solutions
s for which a deterministic iterative improvement local search terminates in s∗

when started from the initial solution s.

In practice, LS define a correspondence between the set S and the subset S∗

of globally minimal solutions.

One of the most evolved method of LS is the metaheuristic ILS [69, 66, 86,
61, 62]. In general, an explorative local search method is effective if it is able
to find high quality local minima, i.e., if it can find the basins of attraction of
high quality local minima. However, when the search space is huge or when the

Algorithm 2 Local Search

input: an instance x of a CO problem
s ← GenerateInitialSolution()
repeat

s∗ ← ChooseImprovingNeighbor(N (s))
s ← s∗

until no improvement is possible
sbest ← s
output: sbest, “candidate” to optimal solution for x

18 CHAPTER 2. METAHEURISTICS

Algorithm 3 Iterated Local Search

input: an instance x of a CO problem
s ← GenerateInitialSolution()
s∗ ← LS(s)
repeat

s′ ← Perturbation(s∗, history)
s′∗ ← LS(s′)
s∗ ← ApplyAcceptanceCriterion(s∗, s′∗, history)

until termination conditions not met
sbest ← s∗

output: sbest, “candidate” to optimal solution for x

basins of attraction of high quality local minimum are small, this goal is difficult
to reach. In these cases an effective local search method might be defined only
on the set of local minima S∗, instead of on the whole set S. Unfortunately, in
most cases there is no feasible way of introducing a neighborhood structure for
S∗. Instead, ILS algorithms perform a trajectory along local minima s∗1, s

∗
2, ·, s

∗
t

without explicitly introducing a neighborhood structure on S∗ by applying the
scheme that is shown in Algorithm 3. At each iteration the current solution
(which is a local minimum) is perturbed and a local search method is applied to
the perturbed solution. Then, the local minimum that is obtained by applying
the local search method is either accepted as the new current solution, or not.
The importance of the perturbation is obvious: too small a perturbation might
not enable the system to escape from the basin of attraction of the local mini-
mum just found. On the other side, too strong a perturbation would make the
algorithm similar to a random restart local search. Therefore, the requirement
on the perturbation method is to produce a starting point for local search such
that a local minimum different from the current solution is reached. However,
this new local minimum should be closer to the current solution than a local
minimum produced by the application of the local search to a randomly gen-
erated solution. The acceptance criterion acts as a counterbalance, as it filters
and gives feedback to the perturbation action, depending on the characteristics
of the new local minimum.

The design of ILS algorithms has several degrees of freedom in the generation
of the initial solution, the choice of the perturbation method and the acceptance
criterion. Furthermore, the history of the search process can be exploited both
in form of short and long term memory. In the following we describe the three
main algorithmic components of ILS.

GenerateInitialSolution(): The construction of initial solutions should
be fast (computationally not expensive), and initial solutions should be a good
starting point for local search. The fastest way of producing an initial solution
is to generate it at random. Another possibility is to use constructive heuristics.
It is worth underlining that an initial solution is considered a good starting point
depending on the particular local search method applied and on the structure
of the problem instance under consideration, thus the algorithm designer’s goal
is to find a good trade-off between speed and quality of solutions.

Perturbation(s∗, history): The perturbation is usually non-deterministic
in order to avoid cycling. Its most important characteristic is the strength,

2.2. TRAJECTORY METHODS 19

roughly defined as the amount of changes inflicted on the current solution. The
strength can be either fixed or variable. In the first case, the distance between s∗

and s′ is kept constant, independently of the problem size. However, a variable
strength is in general more effective, since it has been experimentally found
that, in most of the problems, the bigger the problem instance size, the larger
should be the strength. A more sophisticated mechanism consist of adaptively
changing the strength. For example, the strength might be increased when more
diversification is needed or decreased when intensification seems preferable.2A
second choice is the mechanism to perform perturbations. This may be a random
mechanism, or the perturbation may be produced by a (semi-)deterministic
method (e.g., by a local search that is based on a neighborhood different from
the one used in the main algorithm).

ApplyAcceptanceCriterion(s∗, s′∗, history): The third important compo-
nent is the acceptance criterion. Two extreme examples are (1) accepting the
new local minimum only in case of improvement and (2) always accepting the
new solutions. In-between there are several possibilities. For example, it is
possible to adopt an acceptance criterion that is similar to the one of Simu-
lated Annealing (explained in Section 2.2.2). Non-monotonic cooling schedules
might be particularly effective if they exploit the history of the search process.
For example, when the recent history of the search process indicates that in-
tensification seems no longer effective, a diversification phase is needed and the
temperature is increased.

Reference of successful applications of ILS can be found in Lourenço et al.
[62].

2.2.2 Simulated Annealing

Simulated Annealing is commonly said to be the oldest among the metaheu-
ristics and surely one of the first algorithms that had an explicit strategy to
escape from local minima. The origins of the algorithm are in statistical me-
chanics (see the Metropolis algorithm [67]). The idea of SA was provided by the
annealing process of metal and glass, which assume a low energy configuration
when cooled with an appropriate cooling schedule. SA was first presented as a
search algorithm for CO problems in Kirkpatrick et al. [59] and Cerný [20]. In
order to avoid getting trapped in local minima, the fundamental idea is to allow
moves to solutions with objective function values that are worse than the objec-
tive function value of the current solution. Such a kind of move is often called
an uphill-move. At each iteration a solution s′ ∈ N (s) is randomly chosen. If s′

is better than s (i.e., has a lower objective function value), then s′ is accepted as
new current solution. Otherwise, if the move from s to s′ is an uphill-move, s′ is
accepted with a probability which is a function of a temperature parameter Tk

and f(s′)− f(s). Usually this probability is computed following the Boltzmann
distribution:

p(s′|Tk, s) = e
− f(s′)−f(s)

Tk . (2.1)

The dynamic process described by SA is a Markov chain [35], as it follows a tra-
jectory in the state space in which the successor state is chosen depending only
on the incumbent one. This means that basic SA is memory-less. However, the

2An ILS algorithm with such a perturbation scheme is very similar to a Variable Neigh-
borhood Search (VNS) algorithm.

20 CHAPTER 2. METAHEURISTICS

Algorithm 4 Simulated Annealing

input: an instance x of a CO problem
s ← GenerateInitialSolution()
k ← 0
Tk ← SetInitialTemperature()
while termination conditions not met do

s′ ← PickNeighborAtRandom(N (s))
if f(s′) ≤ f(s) then

s ← s′;
else

accept s′ as new solution with probability p(s′|Tk, s)
end if
AdaptTemperature(Tk)

end while
sbest ← s
output: sbest, “candidate” to optimal solution for x

use of memory can be beneficial for SA approaches (see for example Chardaire
et al. [21]). The algorithmic framework of SA is described in Algorithm 4. The
components are explained in more detail in the following.

GenerateInitialSolution(): The algorithm starts by generating an initial
solution that may be randomly or heuristically constructed.

SetInitialTemperature(): The initial temperature is chosen such that the
probability for an uphill-move is quite high at the start of the algorithm.

AdaptTemperature(Tk): The temperature Tk is adapted at each iteration
according to a cooling scheme. The cooling scheme defines the value of Tk at
each iteration k. The choice of an appropriate cooling scheme is crucial for the
performance of the algorithm. At the beginning of the search the probability
of accepting uphill-moves should be high. Then, this probability should be
gradually decreased during the search. Note that this is not necessarily done in
a monotonic fashion.

Theoretical results on non-homogeneous Markov chains [1] state that un-
der particular conditions on the cooling schedule, the algorithm converges in
probability to a global minimum for k → ∞. A particular cooling scheme that
fulfills the hypothesis for the convergence is the one that follows a logarithmic
law. Hereby, Tk is determined as Tk ← r

log k+c
(where c is a constant). Unfor-

tunately, cooling scheme which guarantee the convergence to a global optimum
are not feasible in applications, because they are too slow for practical purposes.
Therefore, faster cooling scheme are adopted in applications. One of the most
popular ones follows a geometric law: Tk ← α × Tk−1, where α ∈ (0, 1), which
corresponds to an exponentially decay of the temperature.

The cooling scheme can be used for balancing between diversification and
intensification. For example, at the beginning of the search, Tk might be con-
stant or linearly decreasing in order to sample the search space; then, Tk might
follow a rule such as the geometric one in order to make the algorithm converge
to a local minimum at the end of the search. The cooling scheme and the initial
temperature should be adapted to the particular problem instance considered,
since the cost of escaping form local minima depends on the structure of the

2.2. TRAJECTORY METHODS 21

search landscape. A simple way of empirically determining the starting temper-
ature T0 is to initially sample the search space with a random walk to roughly
evaluate the average and the variance of objective function values. Based on
the samples the starting temperature can be determined such that uphill-moves
have a high probability.

Reference of successful applications of SA can be found in Fleischer [37],
Ingber [53], Aarts et al. [1].

2.2.3 Tabu Search

Tabu Search is one of the most successful metaheuristic for the application to CO
problems. The basic ideas of TS were introduced by Glover [45] in 1986, based on
his earlier ideas [44]. A description of the method and its concepts can be found
in Glover and Laguna [46]. The basic idea of TS is the explicit use of search
history, both to escape from local minima and to implement an explorative
strategy. We first describe a simple version of TS in order to introduce the
basic concepts; then, we explain a more applicable algorithm.

A simple TS algorithm (see Algorithm 5) is based on a best-improvement
local search (see Section 2.2.1) and uses a short term memory to escape from
local minima and to avoid cycles.3 The short term memory is implemented
as a tabu list that keeps track of the most recently visited solutions and ex-
cludes them from the neighborhood of the current solution. In the following
we will refer to the restricted neighborhood of a solution s as the allowed set,
which we will denote by Na(s). At each iteration the best solution from the
allowed set is chosen as the new current solution. Furthermore, in procedure
Update(TabuList, s, s′) this solution is added to the tabu list and—if the tabu
list has reached its maximum capacity—one of the solutions that were already in
the tabu list is removed. Tabu lists are usually handled in a FIFO manner. The
algorithm stops when a termination criterion is met. It might also terminate if
the allowed set is empty.

The use of a tabu list prevents from returning to recently visited solutions,
therefore it prevents from endless cycling4 and forces the search to accept even

3A cycle is a sequence of moves that constantly repeats itself.
4Since the tabu list has a finite length l which is smaller than the cardinality of the search

space, cycles of higher period than l are still possible.

Algorithm 5 Simple Tabu Search

input: an instance x of a CO problem
s ← GenerateInitialSolution()
TabuList ← ∅
while termination conditions not met do

Na(s) ← N (s) \ TabuList
s′ ← argmin{f(s”)|s” ∈ Na(s)}
Update(TabuList, s, s′)
s ← s′

end while
sbest ← s
output: sbest, “candidate” to optimal solution for x

22 CHAPTER 2. METAHEURISTICS

Algorithm 6 Tabu Search

input: an instance x of a CO problem
s ← GenerateInitialSolution()
InitializeTabuList(TabuList1, · · · , T abuListr)
while termination conditions not met do
Na(s) ← {s′ ∈ N (s)|s′ does not violate a tabu condition, or satisfies at
least one aspiration criterion
s′ ← arg min{f(s”)|s” ∈ Na(s)}
UpdateTabuList(TabuList1, · · · , T abuListr, s, s

′)
s ← s′

end while
sbest ← s
output: sbest, “candidate” to optimal solution for x

uphill-moves. The length l of the tabu list—known in the literature as the tabu
tenure—controls the memory of the search process. With small tabu tenures
the search will concentrate on small areas of the search space. On the opposite,
a large tabu tenure forces the search process to explore larger regions, because
it forbids revisiting a higher number of solutions. The tabu tenure can be varied
during the search, leading to more robust algorithms.

The implementation of short term memory in terms of a list that contains
complete solutions is not practical, because managing a list of complete solutions
is highly inefficient. Therefore, instead of the solutions themselves, the solution
components that are involved in moves are stored in the tabu list. Since different
types of moves that work on different types of solutions components can be
considered, a tabu list is usually introduced for each type of solution component.
The different types of solution components and the corresponding tabu lists
define the tabu conditions which are used to filter the neighborhood of a solution
and generate the allowed set. Storing solution components instead of complete
solutions is much more efficient, but it introduces a loss of information, as
forbidding for example the introduction of a certain solution component in a
solution means assigning the tabu status to probably more than one solution.
Thus, it is possible that unvisited solutions of high quality are excluded from
the allowed set. To overcome this problem, aspiration criteria are defined which
allow to include a solution in the allowed set even if it is forbidden by tabu
conditions. The most commonly used aspiration criterion applies to solutions
which are better than the best solution found so far. This more applicable tabu
search algorithm is shown in Algorithm 6. Reference of successful applications
of TS can be found in Glover and Laguna [46].

2.3 Population-based methods

Population-based methods deal in every iteration of the algorithm with a set
(i.e., a population) of solutions rather than with a single solution. From this set
of solutions the population of the next iteration is produced by the application
of genetic operators that generally consider two or more solutions. Therefore,
population-based algorithms provide a natural, intrinsic way for the exploration
of the search space. Yet, the final performance strongly depends on the way

2.3. POPULATION-BASED METHODS 23

the population is manipulated. The most studied population-based methods
in CO are Evolutionary Computation and Ant Colony Optimization. In EC
algorithms, a population of solutions is modified by recombination and mutation
operators, and in ACO a colony of artificial ants is used to construct solutions
guided by the pheromone trails and heuristic information.

2.3.1 Ant Colony Optimization

Ant Colony Optimization is one of the newest metaheuristic for the application
to CO problems. The basic ideas of ACO were introduced in Dorigo [27] and
successively extended in Dorigo et al. [31, 29], Stützle and Dorigo [88], Dorigo
and Stützle [32]. In this section we present the description of ACO given in
Dorigo and Di Caro [28].

ACO was inspired by the foraging behavior of real ants. This behavior—as
described by Deneubourg et al. [25]—enables ants to find shortest paths between
food sources and their nest. Initially, ants explore the area surrounding their
nest in a random manner. As soon as an ant finds a source of food, it evaluates
quantity and quality of the food and carries some of this food to the nest. During
the return trip, the ant deposits a pheromone trail on the ground. The quantity
of pheromone deposited, which may depend on the quantity and quality of the
food, will guide other ants to the food source. The indirect communication
between the ants via the pheromone trails allows them to find the shortest path
between their nest and food sources. This functionality of real ant colonies is
exploited in artificial ant colonies in order to solve CO problems.

In ACO algorithms the pheromone trails are simulated via a parametrized
probabilistic model that is called the pheromone model. The pheromone model
consists of a set of model parameters whose values are called the pheromone
values. The basic ingredient of ACO algorithm is a constructive heuristic that
is used for probabilistically constructing solutions using the pheromone values.
In general, the ACO approach attempts to solve a CO problem by iterating the
following two steps:

• Solutions are constructed using a pheromone model, that is, a parametri-
zed probability distribution over the solution space.

• The solutions that were constructed in earlier iterations are used to modify
the pheromone values in a way that is deemed to bias the search toward
high quality solutions.

The ACO metaheuristic framework is shown in Algorithm 7. It consists of
three algorithmic components that are gathered in the ScheduleActivities

construct. The ScheduleActivities construct does not specify how these three
activities are scheduled and synchronized. This is up to the algorithm designer.
In the following we explain these three algorithm components in more detail.

AntBasedSolutionConstruction(): As mentioned above, the basic ingredi-
ent of ACO algorithm is a constructive heuristic for probabilistically construct-
ing solutions. A constructive heuristic assembles solutions as sequences of solu-
tion components taken from a finite set of solution components C = {c1, · · · , cn}.
A solution construction starts with an empty partial solution sp =<>. Then,
at each construction step the current partial solution sp is extended by adding a
feasible solution component from the set N(sp) ⊆ C \sp, which is defined by the

24 CHAPTER 2. METAHEURISTICS

Algorithm 7 Ant Colony Optimization

input: an instance x of a CO problem
while termination conditions not met do

ScheduleActivities
AntBasedSolutionConstruction()
PheromoneUpdate()
DaemonActions()

end ScheduleActivities
sbest ← best solution in the population of solutions

end while
output: sbest, “candidate” to optimal solution for x

solution construction mechanism. The process of constructing solutions can be
regarded as a walk (or a path) on the so-called construction graph GC = (C,L)
whose vertexes are the solution components C and the set L are the connections.
The allowed walks on GC are hereby implicitly defined by the solution construc-
tion mechanism that defines the set N(sp) with respect to a partial solution
sp. The choice of a solution component from N(sp) is at each construction step
done probabilistically with respect to the pheromone model, which consists of
pheromone trail parameters Ti that are associated to components ci ∈ C. The
set of all pheromone trail parameters is denoted by T . The values of these
parameters—the pheromone values—are denoted by τi. In most ACO algo-
rithms the probabilities for choosing the next solution component—also called
the transition probabilities—are defined as follows:

p(ci|s
p) =

τα
i · η(ci)

β

∑

cj∈N(sp) τα
j · η(cj)β

, ∀ci ∈ N(sp), (2.2)

where η is a weighting function, which is a function that, sometimes depending
on the current partial solution, assigns at each construction step a heuristic
value η(cj) to each feasible solution component cj ∈ N(sp). The values that
are given by the weighting function are commonly called the heuristic informa-
tion. Furthermore, α and β are positive parameters whose values determine the
relation between pheromone information and heuristic information.

PheromoneUpdate(): In ACO algorithms we can find different types of phe-
romone updates. First, we outline a pheromone update that is used by basically
every ACO algorithm. This pheromone update consists of two parts. First, a
pheromone evaporation, which uniformly decreases all the pheromone values, is
performed. From a practical point of view, pheromone evaporation is needed
to avoid a too rapid convergence of the algorithm toward a sub-optimal region.
It implements a useful form of forgetting, favoring the exploration of new areas
in the search space. Then, one or more solutions from the current and/or from
earlier iterations are used to increase the values of pheromone trail parameters
on solution components that are part of these solutions. As a prominent ex-
ample, we outline in the following the pheromone update rule that was used in
Ant System (AS) [27, 31], which was the first ACO algorithm proposed. This
update rule, which we henceforth call AS-update, is defined by

τi ← (1 − ρ) · τi + ρ ·
∑

{s∈Giter |ci∈s}

F (s), (2.3)

2.3. POPULATION-BASED METHODS 25

for i = 1, · · · , n, where Giter is the set of solutions that were generated in the
current iteration. Furthermore, ρ ∈ (0, 1] is a parameter called evaporation rate,
and F : G → ℜ+ is a function such that f(s) < f(s′) ⇒ F (s) ≥ F (s′), ∀s �=
s′ ∈ G. F (·) is commonly called the quality function. Note that in Dorigo
[27], Dorigo et al. [31] the update rule in equation 2.3 was introduced without
multiplying the added amount of pheromone by ρ. Later (as for example in
Dorigo and Gambardella [30]) this was often done. However, as ρ is a constant
it does not change the qualitative behavior of the algorithm. Other types of
pheromone update are rather optional and mostly aim at the intensification or
the diversification of the search process. An example is a pheromone update in
which during the solution construction, when adding a solution component ci to
the current partial solution sp, the pheromone value τi is immediately decreased.
This kind of pheromone update aims at a diversification of the search process.

DaemonActions(): Daemon actions can be used to implement centralized
actions which cannot be performed by single ants. Examples are the application
of local search methods to the constructed solutions, or the collection of global
information that can be used to decide whether it is useful or not to deposit
additional pheromone to bias the search process from a non-local perspective.
As a practical example, the daemon may decide to deposit extra pheromone on
the solution components that belong to the best solution found so far.

In general, different versions of ACO algorithms differ in the way they
update the pheromone values. This also holds for the two currently best-
performing ACO variants in practice, which are Ant Colony System (ACS)
[30] and MAX −MIN Ant System (MMAS) [89]. In the following we briefly
outline the peculiarities of these two algorithms.

Ant Colony System. The ACS algorithm was introduced to improve
over the performance of AS. ACS is based on AS but shows some important
differences. First, after each iteration it applies a pheromone update only using
the best-so-far solution (i.e., the best solution found so far). Note that also
the pheromone evaporation is only applied to the solutions components that
are in the best-so-far solution. Second, the transition probabilities are defined
by a rule that is called pseudo-random-proportional rule. With this rule, some
construction steps are performed in a deterministic manner, whereas in others
the transition probabilities are defined as in Equation 2.2. Third, during the
solution construction the pheromone value of each added solution component is
slightly decreased.

MAX −MIN Ant System. MMAS algorithms are characterized as
follows. First, the pheromone values are limited to an interval [τmin, τmax],
with 0 < τmin < τmax. Explicit limits on the pheromone values prevent that
the probability for constructing a solution falls below a certain value greater
than 0. This means that the chance of finding a global optimum never vanishes.
Second, in case the algorithm detects that the search is too much confined to
a certain area in the search space, a restart is performed. This is done by re-
initializing all the pheromone values. Third, the pheromone update is always
performed with either the iteration-best solution, the restart-best solution (i.e.,
the best solution found since the last restart was performed), or the best-so-far
solution.

Recently, researchers have been dealing with finding similarities between
ACO algorithms and other probabilistic learning algorithms such as Estimation
of distribution algorithms (EDA) [71]. An extensive study on this subject has

26 CHAPTER 2. METAHEURISTICS

been presented in Zlochin et al. [94], where the authors present a unifying frame-
work for so-called model-based search (MBS) algorithms. An MBS algorithm
is characterized by the use of a (parametrized) probabilistic model M ∈ M
(where M is the set of all possible probabilistic models) that is used to generate
solutions to the problem under consideration.

Reference of successful applications of ACO can be found in Dorigo and
Stützle [32, 33].

2.3.2 Evolutionary Computation

Evolutionary computation algorithms are inspired by nature’s capability to
evolve living beings well adapted to their environment that cooperate or com-
pete with other members of the population. EC algorithms can be characterized
as computational models of evolutionary process that takes inspiration from the
natural genetic variety and natural selection. At each iteration a number of op-
erators is applied to the individuals of the current population to generate the
individuals of the population of the next generation (iteration). Usually, EC
algorithms use operators called recombination or crossover to recombine two or
more individuals to produce new ones. They also use mutation or modification
operators which cause a self-adaptation of individuals. The driving force in evo-
lutionary algorithms is the selection of individuals based on their fitness (which
can be based on the objective function or some other kind of quality measure).
Individuals with a higher fitness have a higher probability to be chosen as mem-
bers of the population of the next iteration (or as parents for the generation of
new individuals). This corresponds to the principle of survival of the fittest in
natural evolution. It is the capability of nature to adapt itself to a changing
environment, which gave the inspiration for EC algorithms. There has been a
variety of slightly different EC algorithms proposed over the years. Basically
they fall into three different categories which have been developed independently
of each other. These are evolutionary programming (EP) as introduced by
Fogel [39], Fogel et al. [40], evolutionary strategies (ES) proposed by Rechen-
berg [79] and genetic algorithms initiated by Holland [51]. EP arose from the
desire to generate machine intelligence. While EP originally was proposed to
operate on discrete representation of finite state machines, most of the present
variants are used for continuous optimization problems. The latter also holds
for most present variants of ES, whereas GA are mainly applied to solve CO
problems. Over the years there have been quite a few overviews and surveys
about EC methods. Among those are the ones by Bäck [2], by Fogel [38], by
Spears et al. [83] and by Michlewicz and Michalewicz [68]. In Calegari et al.
[18] a taxonomy of EC algorithms is proposed. In the following we provide a
CO-oriented introduction to EC algorithms. For doing this, we follow a work by
Hertz and Kobler [50], which gives a good overview of the different components
of EC algorithms and of the possibilities to define them. Algorithm 8 shows the
basic structure of EC algorithms. In this algorithm, P , denotes the population
of individuals. A population of offspring is generated by the application of re-
combination and mutation operators and the individuals for the next population
are selected from the union of the old population and the offspring population.
The main features of an EC algorithm are outlined in the following.

Description of the individuals: EC algorithms deal with populations of in-

2.3. POPULATION-BASED METHODS 27

Algorithm 8 Evolutionary Computation

input: an instance x of a CO problem
P ← GenerateInitialPopulation()
Evaluate(P)
while termination conditions not met do

P ′ ← Recombine(P)
P ′′ ← Mutate(P ′)
Evaluate(P ′′)
P ← Select(P ′′, P ′)
sbest ← best solution in P

end while
output: sbest, “candidate” to optimal solution for x

dividuals. These individuals are not necessarily solutions to the considered
instance. They may be partial solutions, or sets of solutions, or any object
which can be transformed into one or more solutions in a structured way.
Mos commonly used in CO is the representation of solutions as bit-strings
or as permutations of n integer numbers. Tree-structures or other complex
structures are also possible. In the context of GA, individuals are called
genotypes, whereas the solutions that are encoded by individuals are called
phenotypes. This is to differentiate between the representation of solutions
and solutions themselves. The choice of an appropriate representation is
crucial for the success of an EC algorithm. Holland’s schema analysis [51]
and Radcliffe’s generalization to formae [78] are examples of how theory
can help to guide representation choices.

Evolution process: At each iteration it has to be decided which individuals
will enter the population of the next iteration. This is done by a selection
scheme. To choose the individuals for the next population exclusively from
the offspring is called generational replacement. In some schemes, such as
elitist strategies, successive generations overlap to some degree, i.e., some
portion of the previous generation is retained in the new population. The
fraction of new individuals at each generation is called the generational
gap [24]. In a steady state selection, only a few individuals are replaced
by offspring. Most EC algorithms deal with populations of constant size.
However, it is also possible to have a variable population size. In case
of a continuously shrinking population size, the situation in which only
one individual is left in the population (or no crossover partners can be
found for any member of the population) might be one of the stopping
conditions of the algorithm.

Neighborhood function: A neighborhood function NEC : I → 2I assigns to
each individual i ∈ I a set of individuals NEC(i) ⊆ I whose members are
permitted to act as recombination partners for i to create offspring. If
an individual can be recombined with any other individual we talk about
unstructured populations, otherwise we talk about structured populations.

Information sources: The most common form of information sources to cre-
ate offspring (i.e., new individuals) is a couple of parents (two-parent
crossover). But there are also recombination operators that operate on

28 CHAPTER 2. METAHEURISTICS

more than two individuals to create a new individual (multi-parent crossover).
More recent developments even use population statistics for generating the
individuals of the next population. Examples are the recombination op-
erators called Gene Pool Recombination [72] and Bit-Simulated Crossover
[91] which make use of a probability distribution over the search space
given by the current population to generate the next population.

Infeasibility: An important characteristic of an EC algorithm is the way it
deals with infeasible individuals which might be produced by the genetic
operators. There are basically three different ways to handle such a situa-
tion. The simplest action is to reject infeasible individuals. Nevertheless,
for some highly constrained problems (e.g., for timetabling problems) it
might be very difficult to find feasible individuals. Therefore, the strategy
of penalizing infeasible individuals in the function that measure the qual-
ity of an individual is sometimes more appropriate (or even unavoidable).
The third possibility consists in trying to repair an infeasible solution (see
Eiben and Ruttkay [34] for an example).

Intensification strategy: In many applications it proved to be quite benefi-
cial to use improvement mechanisms to increase the fitness of individuals.
EC algorithms that apply a local search algorithm to each individual of
a population are often called Memetic Algorithms [69, 70]. While the use
of a population ensures an exploration of the search space, the use of lo-
cal search techniques helps to quickly identify “good” areas in the search
space.

Diversification strategy: One of the major difficulties of EC algorithms (es-
pecially when applying local search) is the premature convergence toward
sub-optimal solutions. The simplest mechanism to diversify the search
process is the use of a mutation operator. The simplest form of a muta-
tion operator just performs a small random perturbation of an individual,
introducing a kind of noise. In order to avoid premature convergence there
are also a number of other ways of maintaining the population diversity.
Probably the oldest strategies are crowding [24] and its close relative pre-
selection [19]. Newer strategies are fitness sharing [47] and niching [63]
which is a collective name, whereby the reproductive fitness allocated to
and individual in a population is reduced proportionally to the number of
other individuals that share the same region of the search space.

For an extensive collection of references to EC applications we refer to Bäck
et al. [3].

Chapter 3

Preliminary experiments

The Metaheuristics Network1 has spent fourteen months (from January 2003 to
February 2004) to study the Vehicle Routing Problem with Stochastic

Demands, a formulation of which has been given in Section 1.2. The author of
the thesis participated to the research conducted at IRIDIA, and was in charge
of implementing an algorithm of the metaheuristic ACO. In the initial three-
months phase of the research, we compared, over four classes of instances, seven
algorithms. A basic Random Restart Local Search (RRLS) that was used to
set the minimum performance level to be achieved by the other algorithms,2

an Iterated Local Search, whose implementation is described in Section 3.2.1,
a Simulated Annealing, described in Section 3.2.3, a Tabu Search, described in
Section 3.2.4, an Ant Colony Optimization, described in Section 3.2.5 and an
Evolutionary Computation, described in Section 3.2.6. Moreover, an algorithm
called Flim-Flam (FF) was also implemented (description in Section 3.2.2). All
algorithms but the last were implemented following the implementation guide-
lines provided by the Metaheuristics Network that are describe in Section 3.1.

The analysis of the experimental results showed that the best performing
algorithm was using a TSP approximation of the objective function. Hence
in Section 3.4 we analyzed the similarities between TSP and VRP in order to
exploit them for designing better algorithms.

3.1 The guidelines of the Metaheuristics Net-

work

In this section we analyze the guidelines given by the Metaheuristics Network
[87] for the production of the software to solve the Vehicle Routing Problem

with Stochastic Demands, whose formulation was given in Section 1.2.

Several studies have been published which compare metaheuristics against
each other, but sometimes it is rather difficult to interpret the results of the
computational experiments. In particular, it is very difficult to do a fair and
meaningful comparison among different metaheuristic approaches. Fairness is

1A description of the Research Training Network has been given in the Introduction
2To fail in achieve better performance than RRLS is to be considered a major failure

29

30 CHAPTER 3. PRELIMINARY EXPERIMENTS

not guaranteed, for example, when the compared approaches are not coded in
the same programming language or when their execution takes place on com-
puters with different processors or different operating systems. Even when using
the same programming language and the same platform, a comparison might
be quite meaningless, due to potentially quite different data structures that are
used to implement the different approaches.

Another big issue is reproducibility: as it is well established in natural sci-
ences, an experiment should be described in a way which easily permits to repeat
the same experiment at a different place. Yet, in computer science this approach
is rather impracticable, because this would mean that the whole computer sys-
tem on which the experiments are run is described in detail in both hardware
and software—from processor and memory types, data storage to the version of
the software: operating system, compiler, linker and libraries. And even if there
was an accurate description of a computational experiment, a reconstruction
could be impossible for example because of hardware or software which is no
more available. As a consequence of this, the reader of an experimental study
of algorithms usually has to rely on the published material.

In order to have a fair comparison of the implemented algorithms, the Meta-
heuristics Network has defined the following criteria:

• Hardware and Operating System: the experiments were performed
at IRIDIA on a cluster of 26 Linux workstations. The system consists of
1 master and 25 slave machines, 6 of which were available for the exper-
iments of the Metaheuristics Network. The configuration of the system
is as follows: the master node is equipped with a CPU AMD Athlon XP
2400+ and 768 MB of RAM, while the 6 slaves have a CPU AMD Athlon
XP 1800+ and 512 MB of RAM each. The computers are connected with
a Gigabit Ethernet network 1000Mbit/s using network interface cards In-
tel Pro 1000 and a switch D-Link DGS-1016T. All computer run Debian
GNU/Linux “Woody” with kernel 2.4.20 and DQS (distributed queuing
system) 3.3.2.

• Programming language: to avoid a bias due to the choice of the
programming language, all the metaheuristics are written in a common
programming language (C++). The executables have been generated at
IRIDIA on the cluster, in the following compilation environment: gcc 2.95.4,
glibc 2.2.4, binutils 2.10.0.18-1.

• Starter kit: all nodes of the Metaheuristics Network were provided with
the source code of the common C++ classes to manage the problem data
structure, the input-output routines, the neighborhood structure (to be
used by SA and TS) and the local search routine (to be used by ILS, ACO
and EC).

• Evaluation function: a function that returns the “quality” of a solution
is provided within the Starter Kit. The objective function value f0(Q)
(the expected cost of the planned route) is calculated according to the
equations 1.1–1.4 as explained in Section 1.2.

3.1. THE GUIDELINES OF THE METAHEURISTICS NETWORK 31

3.1.1 The Starter Kit

The Starter Kit contains the source code of some C++ classes to be used in the
implementation of the algorithms.

• Class Problem: this class implements methods and data structures to
load problem instances to be solved.

• Class Solution: this class implements methods and data structures to
manage solutions in the VRPSD with preventive restocking policy (de-
scribed in Section 1.1). Moreover it provides methods for computing the
objective value of a solution and for exploring the neighborhood structure
defined by the Or-Opt local search.

• Class Control: this class implements methods and data structures to
parse the command line and to manage stopping criterion based on time
or number of iterations. Moreover, it takes care to output solutions.

• Classes Timer, Random and Utility: these classes are service classes
that implement methods and data structures to manage time, pseudo-
random number3 and mathematical structures like matrices.

The Or-Opt Local Search

The Or-Opt algorithm [74], has been quite successfully applied to the VRPSD
in Yang et al. [93]. Given a starting tour, the basic operation of the Or-Opt
algorithm consists of moving a string of size 3, 2, or 1 from one position to
another in the tour. Checking if an Or-Opt move leads to a better tour may be
done in two stages. First compute the saving from extracting the string from
the tour, and second compute the cost of inserting it back somewhere else in
the tour, after the extraction point.

Computing these costs and savings in the deterministic case is quite simple,
since they can usually be computed in constant time. In the stochastic case,
however, it is computationally demanding, because it requires the dynamic pro-
gramming recursion of equations (1.1–1.4). This leads to an O(nKQ) time for
the computation of the cost and saving of just one Or-Opt move. In order to
reduce the computational time, the following approximation scheme suggested
in Yang et al. [93] have been used.

Given a string S of consecutive nodes in the a-priori tour, the approxi-
mate saving of extracting it from the tour is computed as follows. Let l and
t be the nodes immediately preceding, resp. following, S in the tour, and let
fbeforeExt

l (q) and fbeforeExt
t (q) be the corresponding cost vectors before the ex-

traction of S. Apply one dynamic programming recursion step starting with
cost vector fbeforeExt

t (q) at node t back to node l, without considering the string

S. Let fafterExt
l (q) be the resulting cost vector at node l, that is, after extracting

S from the tour. Then, define the approximate extraction saving as a simple
average over q of fafterExt

l (q) − fbeforeExt
l (q), that is,

Approximate Extraction Saving =

∑Q

q=0(f
afterExt
l (q) − fbeforeExt

l (q))

Q + 1
, (3.1)

3Class Random implements the algorithm ran0 from the Numerical Recipes in C [77] .

32 CHAPTER 3. PRELIMINARY EXPERIMENTS

The computation of the insertion cost of S between nodes i and j in the
tour, is done analogously, if we assume that the insertion point (node i) is after

the extraction point (node l). Let fbeforeIns
i (q) be the cost vector at node i

for the current tour, that is, before inserting S in the tour. Apply dynamic
programming recursion starting with cost vector fbeforeIns

j (q) at node j through

nodes of the inserted string, and back to node i. Let fafterIns
i (q) be the resulting

cost vector at node i, that is, after inserting the sting in the tour. Then,
define the approximate insertion cost as a simple average over q of fafterIns

i (q)−

fbeforeIns
j (q). That is,

Approximate Insertion Cost =

∑Q

q=0(f
afterIns
i (q) − fbeforeIns

j (q))

|Si|
. (3.2)

The total approximate cost of an Or-Opt move is computed by subtracting the
Approximate Extraction Saving from the Approximate Insertion Cost:

Approximate Or-Opt Move Cost = equation (3.2) - equation (3.1). (3.3)

Note that the cost vectors are assumed to be already available from the com-
putation of the expected cost for the starting tour, thus, they do not need to
be computed when evaluating the Approximate Insertion Cost. The only com-
putations that must be done here are the evaluation of cost vectors fafterExt

l (q)

and fafterIns
i (q), and the averages in equations (3.1) and (3.2). The dynamic

programming recursion for the computation of the cost vectors requires O(KQ),
while equations (3.1) and (3.2) require O(Q) time. Therefore, with the proposed
approximation, the cost of an Or-Opt move can be computed in O(KQ) time.

Algorithm 9 Or-Opt Local Search

1: input: an a-priori tour T
2: compute f0(Q) of tour T (Algorithm 1)
3: let k = 3
4: for all Sk, a set of successive nodes from T do
5: select at random a node from T after the node immediately preceding Sk

and compute the Approximate Or-Opt Move Cost (equation 3.3).
6: end for
7: if there is no negative Approximate Or-Opt Move Cost then
8: go to Step 13.
9: else

10: select the set Sk that results in the most negative Approximate Or-Opt
Move Cost, and perform the corresponding Or-Opt move

11: go to Step 4
12: end if
13: if k = 1 then
14: stop
15: else
16: decrease k by 1, and go to Step 4.
17: end if
18: outoup: an a-priori tour T ′

The proposed approximation scheme has some potential drawbacks though.
It neglects the influence of the inserted string (or deleted string) on the nodes

3.2. THE ALGORITHMS 33

before node i. In principle it is thus possible that a certain Or-Opt move
seems good, when evaluated by the approximation scheme, but it is actually
a worsening move, when evaluated by the exact objective function computa-
tion. Therefore if the approximation scheme is used to evaluate moves in the
Or-Opt algorithm (or in any other local search), there is no guarantee that a
better tour than the starting one will be found. In practice this approximation
should behave quite well since, as reported in Yang et al. [93], it should find the
same route as the one obtained if the exact costs were computed, with signif-
icantly less computational effort (less than 10%). The algorithmic framework
Or-Opt algorithm is described in Algorithm 9.

3.2 The Algorithms

In this section we give a brief description of the algorithms that were imple-
mented for the preliminary experiments on the VRPSD. We want to highlight
that for the first phase we have implemented very basic versions of the metahe-
uristics, in order to have a quick “preview” of the performance of the methods.
We follow the classification given in Section 2.1, which divides metaheuristics
into trajectory methods and methods based on populations.

3.2.1 Iterated Local Search

The ILS algorithm has been implemented by the INTELLEKTIK node4 in
Darmstadt. ILS is based on the simple yet powerful idea of improving a local
search procedure by providing new starting solutions obtained from perturba-
tions of the current solution, often leading to far better solutions than if using
random restart. The local search is applied to the perturbed solution and a lo-
cally optimal solution is reached. If it passes an acceptance criterion, it becomes
the new current solution; otherwise, one returns to the previous current solution.
The perturbation must be sufficiently strong to allow the local search to explore
new solutions, but also weak enough so that not all the good information gained
in the previous search are lost. A detailed description of ILS algorithms can be
found in Section 2.2.1, along with the pseudo-code in Algorithm 3.

Given the relations between TSP and VRPSD (analized in detail in Sec-
tion 3.4), the GenerateInitialSolution() procedure consisted in solving the
problem as a TSP, i.e., simply minimizing the distances. The algorithm used
was an ILS algorithm which is described in Stützle and Hoos [90] and is one
of the most high performance metaheuristics for the TSP. The initial solution
was the best over n

log(n) random restarts of the latter algorithm, where n is

the number of customers. The LS() procedure was fixed to be the common
Or-Opt Local Search provided with the Starter-Kit. Since only a random sam-
ple of the Or-Opt neighborhood was examined, we let LS() run for n times.
The ApplyAcceptanceCriterion(s∗, s′∗) consisted in accepting s′∗ if it is bet-
ter than s∗, i.e., the best solution found so far. The Perturbation(s∗) consisted
in a n random moves of a 2-exchange neighborhood, i.e., sub-tour inversion be-
tween two randomly chosen customers. This operator is broke if, within the n

4A description of the composition of the Metaheuristics Network is given in the Introduc-
tion.

34 CHAPTER 3. PRELIMINARY EXPERIMENTS

moves, a solution is found having an objective function smaller than the objec-
tive function of the best solution plus a certain value ε. Given the instances
tackled, ε = n

10 was empirically the best value found on some preliminary runs.

3.2.2 Flim-Flam

The FF algorithm has been implemented by the INTELLEKTIK node in Darm-
stadt. It’s main principles are similar to ones from ILS. Therefore, the same
name given to the ILS procedures are used here. However, this approach didn’t
follow the guidelines described in Section 3.1. Its purpose was to see how far we
could go by using strategies for solving the VRPSD as a TSP. In fact, it consists
in a very straightforward adaptation of the ILS described in Stützle and Hoos
[90].

In this approach, the GenerateInitialSolution() procedure consisted in
generating an initial solution by means of a Nearest Neighbor heuristic. The
LS() procedure was a typical 3-opt first improvement local search. In addition,
it applied two speed-up techniques, which are a fixed radius nearest neighbor
within candidate lists [58] of 40 nearest neighbors for each city and don’t look
bits [6].
The ApplyAcceptanceCriterion(s∗, s′∗), as in the ILS version, consisted in
accepting s′∗ if it is better than the best solution found so far. Finally, the
Perturbation(s∗) consisted in applying a double-bridge move [66] that cuts
the current tour at four appropriately chosen edges into four sub-tours and
reconnects these in a different order to yield a new starting tour for the local
search.

3.2.3 Simulated Annealing

The SA algorithm has been implemented by the INTELLEKTIK node in Darm-
stadt. A detailed description of SA algorithms can be found in Section 2.2.2,
along with the pseudo-code in Algorithm 4.

We now give a more detailed description on how the components have been
implemented.

GenerateInitialSolution() : The following alternatives were considered:

• a random sequence of customers;

• the sequence of customers generated by a constructive heuristic for VRP;

• the sequence of customers generated by constructive heuristics for TSP
(nearest neighbor heuristics, farthest insertion heuristic) [6];

• a sequence of customers obtained by solving the TSP by ILS.

From preliminary results it was noticed that the better the initial solution, the
better will be the final solution for the VRPSD. Since good solutions for the
TSP seemed to be good also for the VRPSD, it was decided to adopt the last
alternative. The ILS algorithm used to find a tour that visit all the customers
exactly once and that minimize the total length without caring of any capacity
constraints, is one of the highest performing metaheuristics for TSP and is
described in Stützle and Hoos [90]. Although it is not optimal it does provide
good quality solutions to the TSP.

3.2. THE ALGORITHMS 35

k

i j

k

i j

(a)

k

j

random

i

(b)

k

ji

(c)

Figure 3.1: (a) An Or-Opt move of length, k = 2, two. Given a position i in the
sequence of customers, the k elements after it are shifted after position j. In
our case j has to be bigger than i (forward insertion). (b) (c) Two examination
strategies. In (b), given k and i, j is selected randomly; next k and i are updated
(examination alternative 1). In (c), j is let varying in label order until the end
of the sequence is reached; next k and i are updated (examination alternative
2).

PickNeighborAtRandom(N (s)): The Or-Opt neighborhood appears particu-
larly appealing for the VRPSD mainly because an Or-Opt move does not reverse
any path in the route. Therefore its cost evaluation is relatively fast. Only Or-
Opt of length 1, 2 and 3 were considered. As for the local search provided with
the Starter Kit, backwards insertions were not considered, only forward. See
Figure 3.1(a) for an example. For the neighborhood examination strategy three
alternatives were considered. Let k be the length of the sequence to move (k
in {1, 2, 3}) and i and j respectively the index of starting position and index of
the ending position in the sequence. k, i, j are selected in the following way:

1. k looping in 3,2,1; i in label order; j randomly;

2. i in label order; j in label order; for each pair i and j k = {1, 2, 3};

3. k randomly; i randomly; j randomly;

AdaptTemperature(Tk): The temperature profile is determined by three
main features: the initial temperature, the cooling schedule and the re-heating
schedule.

Initial Temperature. A sample of 100 elements in the neighborhood of the
initial solution is used to compute the average variation in the evaluation
function. The value found is then multiplied by a given factor, f , which
is a parameter of the algorithm.

Cooling schedule. A non monotonic temperature schedule, realized by the in-
teraction of two strategies, was used: a standard geometric cooling and a
temperature re-heating. In the standard geometric cooling the tempera-
ture Tk is computed from Tk−1 as Tk = α × Tk−1 where α is a parameter
called the “cooling rate” (0 < α < 1). The number of iterations at which
the temperature remains constant is kept proportional to the size of the
neighborhood as suggested in Johnson et al. [57]. Hence, Temperature
lenght (TL) = q · |N |, where q is a parameter and |N | is the size of the
neighborhood, which depends on the examination strategy selected.

36 CHAPTER 3. PRELIMINARY EXPERIMENTS

Re-heating. When the search appears to stagnate, the temperature is in-
creased by adding a quantity T i to the current temperature. This is done
when no improvement is found for a number of steps given by r ·TL where
r is a parameter. The solution that was consider for testing improvements
is the best since the last re-heating occurred.

For selecting which neighborhood examination strategy and which move
evaluation method are better and for tuning the parameters f , α, q and r,
an experimental phase was set up. It involved 74 candidate versions of Sim-
ulated Annealing, obtained by combination of the elements described above,
and 24 heterogeneous instances of the VRPSD. The times for each run of the
algorithms were determined by 30 random restarts of the common local search
on the instance under examination. The evaluation methodology used is the
following: each algorithm was run once on each instance, the algorithms were
ranked on the instances and the ranks were averaged over the instances. The
algorithm with the best average rank was selected as representative of Simu-
lated Annealing applied to VRPSD and submitted to compete against the other
metaheuristics.

The algorithm selected uses the second neighborhood examination scheme
described above and the approximated method to evaluate a move. But, sur-
prisingly, it has temperature null. This means, that the acceptance criterion of
Simulated Annealing is merely reduced to accepting all non worsening moves.

3.2.4 Tabu search

The TS algorithm has been implemented by the IDSIA node in Manno. A
detailed description of TS algorithms can be found in Section 2.2.3, along with
the pseudo-code in Algorithm 6. Like all TS algorithms, it is composed by
three main elements: the starting solution, the neighborhood structure and the
strategy of selection of new solutions. The starting solution was generated by
the nearest neighbor traveling salesman problem heuristic. The neighborhood
structure is derived from the OrOpt algorithm described in Section 3.1.1. The
strategy of selection of new solutions is a descent-ascent method with the use
of tabu list. A high level pseudo-code description of the implemented TS can
be found in Algorithm 10. In the following some observation to explain the
algorithm. The neighborhood is explored in such a way that at the beginning
of the search, only moves with string length equal to 3 are tried. The string
length is decreased each time that no best move can be found. Each time the
string length has reached the minimum length (that is, 1), it is re-initialized to
the maximum value (that is, 3).

In this TS the notion of neighbour best move is important, because the
neighbour best move is the move that is actually performed and leads to a
new solution. Each time a new potential move is considered, the procedure
update neighbour best() evaluates it and decides if the move is a new neigh-
bour best move or not. The decision criterion differs in the case of tabu or
non-tabu moves. If the move is tabu, then, in order to be promoted to new neigh-
bour best move, the move should lead to a new global best solution (according
to the approximated evaluation done with compute proxy neighbour cost()).
If the move is not tabu, then, it’s enough that it leads to a new best solution
with respect to the the current neighborhood. Not all moves are evaluated, in

3.2. THE ALGORITHMS 37

Algorithm 10 Tabu Search - preliminary experiments

k = 3
while termination conditions not met do

if (k < 1) then
k = 3

end if
set the length of tabu list as a random number in the interval [0.8 · (n−k−
1), n− k − 1], where n is the number of customers
for all potential move among those with string length k do
compute proxy neighbour cost()
check if move is tabu()
update neighbour best()

end for
if there is a neighbour best then
currSol.shift(neighbour best move)
update true global best(start solution)
if not a new true global best then

decrease k by 1
end if
set tabu move()

else
tabu move = neighbour best move

end if
tabu list.push back(tabu move)
prune tabu list()

end while

fact, tabu moves are evaluated only with a probability of the 30%, and non-tabu
moves with a probability of the 80%. Also for this reason, sometimes no move
is selected as new neighbour best move.

Each time a new neighbour best move is selected, it is put in the tabu list, in
the following way: tabuMove[0] = currSol[i+1], tabuMove[1] = k, tabuMove[2]
= currSol[j]. Moreover, the move is performed, and the exact objective value
of the new solution is computed. In case there is no new neighbour best move,
the last selected neighbour best move is put again in the tabu list. After, the
oldest tabu move is removed from the list.

3.2.5 Ant Colony Optimization

The ACO metaheuristic has been implemented by the IRIDIA node, from the
author of the thesis, and for this preliminary phase a basic Ant Colony Sys-
tem [30] has been chosen. A detailed description of ACO algorithms can be
found in Section 2.3.1, along with the pseudo-code in Algorithm 7.

In the ACS, a set of agents, called ants, build solutions to the VRPSD
cooperating through pheromone-mediated indirect and global communication.
Here we give only a brief description of the basic principles that lie beneath the
ACS. At each iteration of the algorithm, each of the m ants constructs an a priori
tour one customer after the other so that starting with the depot all customers
are visited one and only one time, ending again with the depot. The ants

38 CHAPTER 3. PRELIMINARY EXPERIMENTS

choose the next customer to be visited probabilistically, guided by stigmergic
information. No heuristic information is used in this first implementation.
The stigmergic information is in the form of a matrix of ’pheromone’ values τ :
C × C → ℜ≥0, where C is the set of customers, which are an estimate of the
utility of going from one customer i to a second one j in the a priori tour, as
judged by previous iterations of the algorithm. In ACS at the beginning of the
algorithm the values in the matrix are initialized to a parameter τ0, except for
those elements that belong to the starting solution, generated by the farthest
insertion heuristic, who receive a “reinforcement” equal to r iterations of global
update rule. After each construction step a local update rule is applied to the
element of the matrix corresponding to the chosen customers pairs (i,j):

τ(i , j) ← (1 − ψ) · τ(i , j) + ψ · τ0 (3.4)

The parameter ψ ∈ [0,1] is the pheromone decay parameter, which controls the
diversification of the construction process. The aim of the local update rule
is to permit to the m ants to choose different customers j for the same given
customer i.
After all the customers have been visited, the Or-Opt local search described in
Section 3.1.1 is applied to the candidate solution s. At the end of the iteration
the global update rule is applied to all the entries in the pheromone matrix:

τ(i , j) ←

{

(1 − ρ) · τ(i , j) + ρ · Q
q(sbest)

if (i , j) is in sbest

(1 − ρ) · τ(i , j) otherwise
(3.5)

where Q is a parameter controlling the amount of pheromone laid down by
the update rule, and the function q measures the expected cost of a candidate
solution s.
The parameters we have used for the algorithm are the following:

m τ0 α ψ ρ Q r
5 0.5 1 0.3 0.1 107 100

3.2.6 Evolutionary Computation

The EC algorithm has been implemented by the ECRG node in Edinburgh. A
detailed description of EC algorithms can be found in Section 2.3.2, along with
the pseudo-code in Algorithm 8.

Given the relations between TSP and VRPSD with the a priori strategy, it
was decided to implement a simple memetic algorithm based on work on the
TSP, and crossover and mutation operators were chosen from permutation based
operators which work well for the TSP.

A small population size of 10 individuals is used. Initial solutions are built
with the randomized farthest insertion heuristic, which builds a solution start-
ing from a random customer and then shifts the tour to start at the depot, as
required by the problem. Or-Opt local search is than applied to each member
of the initial population. In the Steady State evolution process only one couple
of parents reproduces at each generation. Tournament selection of size 2 is used
to select which parents are going to be given the chance to reproduce. The
crossover used in the final implementation is the Edge Recombination crossover
(ER) [68] re-adapted to always start at the depot. OX crossover [68] re-adapted

3.3. RESULTS OF THE PRELIMINARY EXPERIMENTS 39

to always start from the depot, and PMX crossover [68] were also implemented
and tried, but ER crossover seems to work better. It tries to build an offspring
exclusively from the edges present in both parents, as follows: Swap-based mu-

Algorithm 11 Evolutionary Computation - preliminary experiments

1: Create an edge list from both parents, that provides for each customer all
the other customers connected to it in at least one of the parent;

2: start from the depot as current customer;
3: select the customer in the edge list of the current customer, with the smallest

number of customers left in its edge list;
4: if there is no customer left in the edge list of the current customer then
5: select a non yet visited customer;
6: end if
7: the selected customer becomes the current customer;
8: update the edge list by removing the current customer from each adjacent

customer list;
9: if the tour is complete then

10: stop.
11: else
12: go to step 3.
13: end if

tation swaps two adjacent customers, never the depot. It is applied with an
adaptive mutation rate with a maximum probability of 0.5. Order based muta-
tion that picks 2 customers at random and exchanges them, and inversion were
also tried. Or-Opt local search is again applied at each generation to improve
the quality of the offspring. The improved offspring then replaces the worst
member of the population.

3.3 Results of the preliminary experiments

The algorithms compared in the initial phase are: a basic RRLS, an ILS, whose
implementation is described in Section 3.2.1, an SA, described in Section 3.2.3,
a TS, described in Section 3.2.4, an ACO, described in Section 3.2.5, an EC,
described in Section 3.2.6, and FF, described in Section 3.2.2.

Instances

We generated a number of VRPSD instances that we classified into four classes:

(i) 45 instances were generated in which the coordinates of the customers are
random integers chosen from a uniform distribution in the interval [0, 99]
and the spread is equal to 50 (class rand unif n),

(ii) 50 instances were generated in which the coordinates of the customers are
random integers chosen from a uniform distribution in the interval [0, 99]
and the spread varies in the interval [0, 100] (class rand unif r),

(iii) 45 instances were generated in which the coordinates of the customers
are random integers chosen from a normal distribution around 2 centers

40 CHAPTER 3. PRELIMINARY EXPERIMENTS

(so we have 2 clusters) in the interval [0, 99] (so the customers can have
coordinates that are negative or bigger than 99) and the spread is equal
to 50 (class rand clust n),

(iv) 50 instances were generated in which the coordinates of the customers
are random integers chosen from a normal distribution around 2 centers
(so we have 2 clusters) in the interval [0, 99] (so the customers can have
coordinates that are negative or bigger than 99) and the spread varies in
the interval [0, 100] (class rand clust r).

All the instances are such that the probability distributions of the customers’
demand is uniform over the spread.

Each algorithm was tested once on each instance for a time equal to the time
needed by RRLS to complete 30 iterations. So the execution time varied on an
instance-by-instance basis.

Figure 3.2 illustrates the results aggregated over the four classes of in-
stances. Figures 3.3, 3.4, 3.5, and 3.6 illustrate the results obtained by the al-
gorithms under analysis on the classes of instances rand unif n, rand unif r,
rand clust n, and rand clust r, in this order.

3.3.1 How to read the tables and the graphics

For every class of instances and then for the entire set of instances we verify if
differences in solutions found by the algorithms are statistical significant. We
use the Pairwise Wilcoxon rank sum test [22] with p-values5 adjustment method
by Holm [52]. In the tables associated to the graphics we report for every pair
of algorithms (A,B) the p-values for the null hypothesis “The distributions of
the solutions generated by A and by B are the same”.

The significance level with which we reject the null hypothesis is 0.95. p-
values smaller than 0.05 are sufficient to reject the null hypothesis in favor of
the alternate hypothesis, while p-values greater than 0.05 do not allow us to
reject the null hypothesis.

The diagrams show the distribution of the solutions found by the algorithms
during independent executions. The results of all executions on the same in-
stance are ordered by quality of the solution (expected cost) to determine the
rank. Solutions are grouped by algorithm. In the box-plot the median is repre-
sented by the bar, the box represent the interval included in the quantile 25% e
75%; the whiskers extend to the more extreme points that are no more than 1,5
times the interquartile; the circles represent points who are outside this interval.

5The p-value of a test is the probability of obtaining a value more extreme than the one
that is obtained, in the direction of the alternate hypothesis, if the null hypothesis is true.

3.3. RESULTS OF THE PRELIMINARY EXPERIMENTS 41

ff ils ea sa acs ts rrls

0
2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

1
0
0
0
0

Values: all classes of instances

Metahauristics

V
a
lu
e
s

ff
ils

e
a

s
a

a
c
s

ts
rr
ls

2 4 6 8 10 12 14

Ranks: all classes of instances

Ranks

M
e
ta
h
a
u
ri
s
ti
c
s

Figure 3.2: Preliminary experiments: results aggregated over the 4 classes of
instances.

42 CHAPTER 3. PRELIMINARY EXPERIMENTS

T
a
b
le

3
.1

:
p
-va

lu
es

fo
r

th
e

n
u
ll

h
y
p
o
th

esis
“
T

h
e

d
istrib

u
tio

n
s

o
f

th
e

so
lu

tio
n
s

a
re

th
e

sa
m

e”
fo

r
a
g
g
reg

a
ted

cla
sses

o
f

in
sta

n
ces.

T
h
e

sig
n
ifi

ca
n
ce

lev
el

w
ith

w
h
ich

w
e

reject
th

e
n
u
ll

h
y
p
o
th

esis
is

0
.9

5
.
p
-va

lu
es

sm
a
ller

th
a
n

0
.0

5
a
re

su
ffi

cien
t

to
reject

th
e

n
u
ll

h
y
p
o
th

esis
in

fav
o
r

o
f
th

e
a
ltern

a
te

h
y
p
o
th

esis,
w

h
ile

p
-va

lu
es

g
rea

ter
th

a
n

0
.0

5
d
o

n
o
t

a
llow

u
s

to
reject

th
e

n
u
ll

h
y
p
o
th

esis.

ff
ils

ea
sa

a
cs

ts
ils

<
2
e
−

1
6

—
—

—
—

—
ea

<
2
e
−

1
6

<
2
e
−

1
6

—
—

—
—

sa
<

2
e
−

1
6

<
2
e
−

1
6

0
.4

5
—

—
—

a
cs

<
2
e
−

1
6

<
2
e
−

1
6

<
2
e
−

1
6

<
2
e
−

1
6

—
—

ts
<

2
e
−

1
6

<
2
e
−

1
6

<
2
e
−

1
6

<
2
e
−

1
6

<
2
e
−

1
6

—
rrls

<
2
e
−

1
6

<
2
e
−

1
6

<
2
e
−

1
6

<
2
e
−

1
6

<
2
e
−

1
6

<
2
e
−

1
6

3.3. RESULTS OF THE PRELIMINARY EXPERIMENTS 43

ff ils ea sa acs ts rrls

2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

1
0
0
0
0

Values: rand_unif_n

Metahauristics

V
a
lu
e
s

ff
ils

e
a

s
a

a
c
s

ts
rr
ls

1 2 3 4 5 6 7

Ranks: rand_unif_n

Ranks

M
e
ta
h
a
u
ri
s
ti
c
s

Figure 3.3: Preliminary experiments: results on the rand unif n class of in-
stances.

44 CHAPTER 3. PRELIMINARY EXPERIMENTS

T
a
b
le

3
.2

:
p
-va

lu
es

fo
r

th
e

n
u
ll

h
y
p
o
th

esis
“
T

h
e

d
istrib

u
tio

n
s

o
f

th
e

so
lu

tio
n
s

a
re

th
e

sa
m

e”
fo

r
ra

n
d

u
n
if

n
cla

ss
o
f

in
sta

n
ces.

T
h
e

sig
n
ifi

ca
n
ce

lev
el

w
ith

w
h
ich

w
e

reject
th

e
n
u
ll

h
y
p
o
th

esis
is

0
.9

5
.
p
-va

lu
es

sm
a
ller

th
a
n

0
.0

5
a
re

su
ffi

cien
t

to
reject

th
e

n
u
ll

h
y
p
o
th

esis
in

fav
o
r

o
f
th

e
a
ltern

a
te

h
y
p
o
th

esis,
w

h
ile

p
-va

lu
es

g
rea

ter
th

a
n

0
.0

5
d
o

n
o
t

a
llow

u
s

to
reject

th
e

n
u
ll

h
y
p
o
th

esis.

ff
ils

ea
sa

a
cs

ts
ils

8
.9

e
−

0
8

—
—

—
—

—
ea

1
.3

e
−

1
2

2
.2

e
−

0
5

—
—

—
—

sa
1
.2

e
−

1
2

3
.8

e
−

0
7

0
.4

9
—

—
—

a
cs

1
.2

e
−

1
2

1
.4

e
−

0
7

8
.4

e
−

0
6

2
.1

e
−

0
6

—
—

ts
1
.2

e
−

1
2

1
.2

e
−

1
2

4
.6

e
−

1
0

4
.0

e
−

1
1

8
.4

e
−

0
6

—
rrls

1
.2

e
−

1
2

1
.2

e
−

1
2

1
.2

e
−

1
2

1
.2

e
−

1
2

1
.2

e
−

1
2

1
.2

e
−

1
2

3.3. RESULTS OF THE PRELIMINARY EXPERIMENTS 45

ff ils sa ea acs ts rrls

8
0
0

1
0
0
0

1
2
0
0

1
4
0
0

Values: rand_unif_r

Metahauristics

V
a
lu
e
s

ff
ils

s
a

e
a

a
c
s

ts
rr
ls

1 2 3 4 5 6 7

Ranks: rand_unif_r

Ranks

M
e
ta
h
a
u
ri
s
ti
c
s

Figure 3.4: Preliminary experiments: results on the rand unif r class of in-
stances.

46 CHAPTER 3. PRELIMINARY EXPERIMENTS

T
a
b
le

3
.3

:
p
-va

lu
es

fo
r

th
e

n
u
ll

h
y
p
o
th

esis
“
T

h
e

d
istrib

u
tio

n
s

o
f

th
e

so
lu

tio
n
s

a
re

th
e

sa
m

e”
fo

r
ra

n
d

u
n
if

r
cla

ss
o
f

in
sta

n
ces.

T
h
e

sig
n
ifi

ca
n
ce

lev
el

w
ith

w
h
ich

w
e

reject
th

e
n
u
ll

h
y
p
o
th

esis
is

0
.9

5
.
p
-va

lu
es

sm
a
ller

th
a
n

0
.0

5
a
re

su
ffi

cien
t

to
reject

th
e

n
u
ll

h
y
p
o
th

esis
in

fav
o
r

o
f
th

e
a
ltern

a
te

h
y
p
o
th

esis,
w

h
ile

p
-va

lu
es

g
rea

ter
th

a
n

0
.0

5
d
o

n
o
t

a
llow

u
s

to
reject

th
e

n
u
ll

h
y
p
o
th

esis.

ff
ils

sa
ea

a
cs

ts
ils

2
.7

e
−

0
8

—
—

—
—

—
sa

1
.6

e
−

0
8

2
.6

e
−

0
8

—
—

—
—

ea
1
.6

e
−

0
8

7
.5

e
−

0
7

0
.4

6
—

—
—

a
cs

1
.6

e
−

0
8

1
.6

e
−

0
8

4
.1

e
−

0
7

1
.4

e
−

0
5

—
—

ts
1
.6

e
−

0
8

1
.6

e
−

0
8

1
.8

e
−

0
8

7
.5

e
−

0
7

6
.6

e
−

0
6

—
rrls

1
.6

e
−

0
8

1
.6

e
−

0
8

1
.6

e
−

0
8

1
.6

e
−

0
8

1
.6

e
−

0
8

1
.6

e
−

0
8

3.3. RESULTS OF THE PRELIMINARY EXPERIMENTS 47

ff ils ea sa acs ts rrls

0
2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

1
0
0
0
0

Values: rand_clust_n

Metahauristics

V
a
lu
e
s

ff
ils

e
a

s
a

a
c
s

ts
rr
ls

1 2 3 4 5 6 7

Ranks: rand_clust_n

Ranks

M
e
ta
h
a
u
ri
s
ti
c
s

Figure 3.5: Preliminary experiments: results on the rand clust n class of in-
stances.

48 CHAPTER 3. PRELIMINARY EXPERIMENTS

T
a
b
le

3
.4

:
p
-va

lu
es

fo
r

th
e

n
u
ll

h
y
p
o
th

esis
“
T

h
e

d
istrib

u
tio

n
s

o
f

th
e

so
lu

tio
n
s

a
re

th
e

sa
m

e”
fo

r
ra

n
d

c
lu

st
n

cla
ss

o
f

in
sta

n
ces.

T
h
e

sig
n
ifi

ca
n
ce

lev
el

w
ith

w
h
ich

w
e

reject
th

e
n
u
ll

h
y
p
o
th

esis
is

0
.9

5
.
p
-va

lu
es

sm
a
ller

th
a
n

0
.0

5
a
re

su
ffi

cien
t

to
reject

th
e

n
u
ll

h
y
p
o
th

esis
in

fav
o
r

o
f
th

e
a
ltern

a
te

h
y
p
o
th

esis,
w

h
ile

p
-va

lu
es

g
rea

ter
th

a
n

0
.0

5
d
o

n
o
t

a
llow

u
s

to
reject

th
e

n
u
ll

h
y
p
o
th

esis.

ff
ils

ea
sa

a
cs

ts
ils

6
.0

e
−

0
7

—
—

—
—

—
ea

1
.2

e
−

1
2

1
.7

e
−

0
6

—
—

—
—

sa
1
.2

e
−

1
2

2
.4

e
−

0
7

0
.1

4
—

—
—

a
cs

1
.2

e
−

1
2

3
.9

e
−

1
0

2
.4

e
−

0
7

9
.7

e
−

0
5

—
—

ts
1
.2

e
−

1
2

3
.4

e
−

1
1

6
.3

e
−

1
1

2
.3

e
−

0
8

1
.1

e
−

0
5

—
rrls

1
.2

e
−

1
2

1
.2

e
−

1
2

1
.2

e
−

1
2

1
.2

e
−

1
2

1
.2

e
−

1
2

1
.2

e
−

1
2

3.3. RESULTS OF THE PRELIMINARY EXPERIMENTS 49

ff ils sa ea acs ts rrls

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

Values: rand_clust_r

Metahauristics

V
a
lu
e
s

ff
ils

s
a

e
a

a
c
s

ts
rr
ls

1 2 3 4 5 6 7

Ranks: rand_clust_r

Ranks

M
e
ta
h
a
u
ri
s
ti
c
s

Figure 3.6: Preliminary experiments: results on the rand clust r class of in-
stances.

As it can be observed from the plots, FF is by far the best algorithms.
This shows that, at least on the instances considered in this research, a TSP
approximation of the cost function is particularly effective. A tentative analysis
of the reasons of the success of such approach is given in Section 3.4. On the
other hand, Section 3.4.1, discusses the limitations and possible risks of such
approach.

Another element that is worth noticing in the results is that the relative per-
formance of the algorithms under analysis is similar across the different classes
of instances: FF is always the best performing metaheuristic followed by ILS;
the distribution of the solutions generated by EC and SA over the aggregated
classes of instances is the same. Last come ACO and TS. In any case, all the
metaheuristics considered here obtain significantly better results than RRLS.

50 CHAPTER 3. PRELIMINARY EXPERIMENTS

T
a
b
le

3
.5

:
p
-va

lu
es

fo
r

th
e

n
u
ll

h
y
p
o
th

esis
“
T

h
e

d
istrib

u
tio

n
s

o
f

th
e

so
lu

tio
n
s

a
re

th
e

sa
m

e”
fo

r
ra

n
d

c
lu

st
r

cla
ss

o
f

in
sta

n
ces.

T
h
e

sig
n
ifi

ca
n
ce

lev
el

w
ith

w
h
ich

w
e

reject
th

e
n
u
ll

h
y
p
o
th

esis
is

0
.9

5
.
p
-va

lu
es

sm
a
ller

th
a
n

0
.0

5
a
re

su
ffi

cien
t

to
reject

th
e

n
u
ll

h
y
p
o
th

esis
in

fav
o
r

o
f
th

e
a
ltern

a
te

h
y
p
o
th

esis,
w

h
ile

p
-va

lu
es

g
rea

ter
th

a
n

0
.0

5
d
o

n
o
t

a
llow

u
s

to
reject

th
e

n
u
ll

h
y
p
o
th

esis.

ff
ils

sa
ea

a
cs

ts
ils

2
.9

e
−

0
8

—
—

—
—

—
sa

1
.6

e
−

0
8

5
.1

e
−

0
8

—
—

—
—

ea
1
.6

e
−

0
8

5
.6

e
−

0
6

0
.0

6
2
4
5

—
—

—
a
cs

1
.6

e
−

0
8

2
.3

e
−

0
8

0
.0

0
0
3
6

8
.6

e
−

0
7

—
—

ts
1
.6

e
−

0
8

1
.6

e
−

0
8

2
.3

e
−

0
6

2
.9

e
−

0
8

1
.6

e
−

0
6

—
rrls

1
.6

e
−

0
8

1
.6

e
−

0
8

1
.6

e
−

0
8

1
.6

e
−

0
8

1
.6

e
−

0
8

1
.6

e
−

0
8

3.4. RELATION BETWEEN TSP AND VRPSD 51

3.4 Relation between TSP and VRPSD

By definition, the TSP and the VRP are closely related, since both are con-
cerned with the determination of routes on a graph such that a certain cost is
minimized. In fact, if there is only one vehicle with infinite capacity, the VRP
can be seen as a simple TSP.

Given the fact that very fast algorithms for solving the TSP to optimality
are known, one should expect that they can also be applied in the same manner
to solve the VRP. However, the addition of a constraint on the vehicle’s capacity
makes impossible their direct usage. Therefore, when the vehicle’s capacity is
low, an optimal TSP tour can not be anymore optimal for the corresponding
VRP. Anyway, if capacity is not so extremely low when compared with the
existing demand, an optimal TSP tour can be a good starting solution for
applying a heuristic-based algorithm for solving the VRP.

In the case of the VRPSD, we observed a higher performance of the meta-
heuristics using search strategies typical for solving the TSP, i.e, minimizing
total traveling distance. This could mean that, due to the stochasticity of the
demand, the minimization of constraint violations considering the capacity of
the vehicle becomes less important than minimizing its total traveling distance.
Hence, intuitively, it would be preferable to reduce the cost of traveling between
nodes, since one is not sure when has to go back to the depot. Another sim-
pler hypothesis is concerned with the extremely fast evaluation for TSP tours
which allows far more extensive exploration of solutions than performed by the
approximation to the VRPSD objective function.

We conjecture that TSP-like strategies are the main key for tackling the
VRPSD instances that were generated. However, we also believe that not all
VRPSD instances could be tackled by a TSP approach. For instance, an instance
which has a depot far away from all customers would be hardly solved by using
such approach. More research with different kind of instances has to be done
to verify our conjecture.

3.4.1 Pathological cases

Given the similarities between the TSP and the VRPSD with the a priori strat-
egy, and the fact that the algorithms relying on TSP strategies seem to work
quite well on the VRPSD, one could wonder if an optimal solution for the TSP
can be arbitrarily far from optimal for the VRPSD. Indeed some pathological
instances can be built for which the difference between an optimal solution for
the TSP, regarded as an a priori tour for the VRPSD, and an optimal solution
for the VRSPD can be arbitrarily large.

A very simple example is shown in Figure 3.7 where we can move the depot
D far enough from the customers 1, 2, 3 and 4 as to meet any arbitrary difference
between the expected cost of the a priori tour given by an optimal solution for
the TSP represented by the continuous line, and the expected cost of an optimal
solution for the VRPSD not based on TSP, where the a priori tour is given by
the dotted line. Other more complex examples, involving a higher number of
customers and/or larger demand spread, can be thought of.

On the other hand one could question the a priori strategy for the VRPSD
and ask if the expected cost of an a priori tour is a good estimate for the cost
of an actual tour realization. Here again pathological cases can be found where

52 CHAPTER 3. PRELIMINARY EXPERIMENTS

2 3

1 4

D D

2 3

41

Figure 3.7: In this VRPSD instance the capacity Q of the vehicle is a multiple
of 6, the demand of the customers is 2/3Q, Q/2, 1/3Q and Q/2 respectively for
customers 1, 2, 3 and 4, with spread 0 for each of them. The distance between
the depot D and the other customers must be much bigger than the distance
between any two customers. On the left the optimal tour for the TSP is shown,
but under the above assumptions it is far from optimal for the VRPSD because
the vehicle has to restock twice with this a-priori tour. On the right is shown a
tour where the vehicle has to restock only once, making its expected cost as far
from the one of the tour on the right as twice the distance between the depot
and the customers.

the difference between the expected cost of an a priori tour can be arbitrarily
far from the actual cost of the tour realization once the customers’ demands
are known. An idea is that of designing an instance where the probability of
restocking at a given customer sufficiently far from the depot is very small, and
therefore the cost of restocking gives a very small contribution to the expected
cost formula, but indeed restocking can occur and when it does the cost of the
actual tour is far from the expected cost. Of course in average the expected cost
formula still gives a good estimate in this case.

Chapter 4

Further experiments

After the initial three-months phase of research, described in Chapter 3, the
results of the preliminary experiments showed that higher performances were
observed for those metaheuristics that were using search strategies typical for
solving the TSP. This suggested further research in the direction of exploiting
the similarities between TSP and VRPSD. For this purpose we modified the
original Starter Kit described in Section 3.1.1 adding new components that are
described in Section 4.1. It was decided to implement each metaheuristic using
two different approximated objective functions during the local search (the im-
plementations are described in Section 4.2), hence we compared two versions of
the “usual” five metaheuristics (ILS, SA, TS, ACO and EC) and two versions
of the RRLS . Two state-of-the-art algorithms to solve the TSP and the Ca-

pacitated Vehicle Routing Problem (CVRP) have also been used for the
comparison. The analysis of the experimental results showed that the imple-
mented algorithms performed poorly compared to the RRLS, sometimes even
worse. Even if the algorithms that were using the TSP objective function per-
formed better than those that were using the VRPSD objective function, the
TSP state-of-the-art algorithm performed quite poorly compared to the other
metaheuristics. Section 4.3 gives a tentative analysis of the reasons of this
lack of success and Section 4.4 propose a new approximation of the VRPSD
cost function called “homogeneous failure and restocking approximation” (Sec-
tion 4.4.1), and a possible formulation of the VRP with deterministic demand
(Section 4.4.2) to be used as the core of different real-world cases.

4.1 Modification to the Starter Kit

Starting from the results of the preliminary experiments, we decided to to de-
sign an experimental framework that allows us to answer the following research
questions:

• how the metaheuristics compare each other on a fair basis?

• how much exploitation of the similarities between TSP and VRPSD can
improve the algorithms performance?

• how TSP and CVRP solutions are related to VRPSD ones?

53

54 CHAPTER 4. FURTHER EXPERIMENTS

The Starter Kit was modified adding this new components:

• a method to generate solutions via the randomized farthest insertion
heuristic;

• an objective function that evaluates the solution in a TSP-like way (it
calculates tour length instead of expected tour length).

It was decided to implement every metaheuristic using the two different approx-
imated objective functions during the local search:

• VRPSD proxy objective function (Or-Opt-0);

• TSP objective function (Or-Opt-tsp).

In the following we will refer the metaheuristic of these groups as respectively
-0 and -tsp. Within each group the metaheuristics are fairly comparable. Fur-
thermore the differences in performance between the two groups for the same
metaheuristic gives information about the exploitation of TSP similarities.

4.1.1 The Or-Opt local search

The two versions of the local search, Or-Opt-0 and Or-Opt-tsp, differ in the way
the neighboring solutions are evaluated. The first version exploits the VRPSD
objective function (that is, the expected cost of the a-priori tour), while the
second version exploits the TSP objective function, that is, the length of the
a-priori tour. Or-Opt-0 has been already described in Section 3.1.1, while in the
following we give a description of Or-Opt-tsp.

The Or-Opt-tsp local search This version of the Or-Opt local search com-
putes the cost of an Or-Opt move by just making the difference between the
length of the tour after the move has been applied and the length of the original
tour. Such difference may be computed in constant time, by considering only
the arcs involved in the move. For instance, suppose we want to move a string
S of consecutive nodes to another position in the tour, like in figure 4.1.1. Let
l and t be the nodes immediately preceding, respectively following, S in the
original tour, let i and j be the nodes between whom S is to be inserted, and
let m and k be the first and the last nodes of S. Then, the move cost in the
Or-Opt-tsp sense may be computed as follows:

Move Cost = d(l, t) + d(k, j) + d(i, m) − d(l, m) − d(k, t) − d(i, j). (4.1)

l

S

k t jm i

Figure 4.1: Arcs involved in the computation of the cost move in the Or-Opt-tsp
local search.

4.2. THE ALGORITHMS 55

Algorithm 12 Or-Opt-tsp Local Search

1: input: an a-priori tour T
2: compute f0(Q) of tour T (Algorithm 1)
3: let k = 3
4: for all Sk, a set of successive nodes from T do
5: select at random a node from T after the node immediately preceding Sk

and compute the Move Cost (equation 4.1).
6: end for
7: if there is no negative Approximate Or-Opt Move Cost then
8: go to Step 13.
9: else

10: select the set Sk that results in the most negative Approximate Or-Opt
Move Cost, and perform the corresponding Or-Opt move

11: go to Step 4
12: end if
13: if k = 1 then
14: stop
15: else
16: decrease k by 1, and go to Step 4.
17: end if
18: outoup: an a-priori tour T ′

Apart from the way the move cost is evaluated, the Or-Opt-tsp explores the
neighborhood of a solution in the same way as the Or-Opt-0, as outlined in
Algorithm 12.

4.1.2 The randomized farthest insertion heuristic

The farthest insertion heuristic is a very simple heuristic for the TSP problem [6].
It builds a tour by choosing as next customer the not-yet-visited customer which
is farthest, that is, the feasible customer that corresponds to the biggest distance
from the current customer.

The randomized farthest insertion heuristic for the VRPSD builds a solution
starting from a customer chosen at random. After the tour has been completed,
it shifts the tour to start at the depot, as required by the problem.

4.2 The Algorithms

In this section we give a brief description of the algorithms that were imple-
mented for the further experiments on VRPSD. Most of the algorithms are
equal to the one implemented for the preliminary experiments (described in
Section 3.2) with the exceptions of the components to generate initial solutions
and the two local searches. In addition to the five “usual” metaheuristics (ILS,
SA, TS, ACO and EC), two state-of-the-art algorithms to solve TSP and CVRP
have also been used for the comparison. Unluckily the source codes of those last
two algorithms were not public available, so we cannot provide a description of
their internal working.

56 CHAPTER 4. FURTHER EXPERIMENTS

4.2.1 Iterated Local Search

The two ILS algorithms have been implemented by the INTELLEKTIK node
in Darmstadt. A detailed description of ILS metaheuristic can be found in
Section 2.2.1, along with the pseudo-code in Algorithm 3.

The main algorithmic components of ILS were implemented as follows:

GenerateInitialSolution(): this procedure consist in applying the far-
thest insertion heuristic described in Section 4.1.2.

LS(): this procedure was fixed to be the common Or-Opt local search (Or-
Opt-0 for ILS-0 and Or-Opt-tsp for ILS-tsp).

ApplyAcceptanceCriterion(s∗, s′∗): The acceptance criterion consisted in
accepting s′∗ if it is better than s∗, i.e., the best solution found so far, according
to the exact VRPSD objective function.

Perturbation(s∗): the perturbation consisted in a loop of n random moves
of a 2-exchange neighborhood, i.e., subtour inversion between two randomly
chosen customers. The loop is broken if, within n moves, a solution is found
having an objective value smaller than the objective value of the best solution
according to the exact VRPSD objective function, plus a certain value ε. Given
the instances tackled, ε = n

10 was empirically the best value found on some
preliminary runs. Otherwise, the best perturbed solution found is returned.

4.2.2 Simulated Annealing

The two SA algorithms have been implemented by the INTELLEKTIK node
in Darmstadt. A detailed description of SA metaheuristic can be found in
Section 2.2.2, along with the pseudo-code in Algorithm 4.

The main algorithmic components of SA were implemented as follows:

GenerateInitialSolution(): this procedure consist in applying the far-
thest insertion heuristic described in Section 4.1.2.

PickNeighborAtRandom(N (s)): the examination of the neighborhood uses
the strategy adopted in the common Or-Opt local search.

Acceptance Criterion: the acceptance criterion is the element that differ-
entiates the two version of SA. In SA-0, f(s′) − f(s) is the value given by the
the Approximate Or-Opt Move Cost as computed described in Section 3.1.1;
while in SA-tsp f(s′) − f(s) is simply the difference between the length of tour
s′ and the length of tour s.

AdaptTemperature(Tk): the same procedure used in the preliminary exper-
iments was used (see details in Section 3.2.3).

For tuning the parameters f , α, q and r the same procedure used in the
preliminary experiments was used (see details in Section 3.2.3).

For SA-tsp the tuning procedure indicated the following values: f = 0.05,
α = 0.98, q = 1 and r = 20.

For SA-0, instead, we had a surprising result. The best configuration has
temperature null. This means, that the acceptance criterion of SA is merely
reduced to accepting all non worsening moves. Hence, SA does not provide any
improvement to the common local search.

4.2. THE ALGORITHMS 57

4.2.3 Tabu Search

The two TS algorithms have been implemented by the IDSIA node in Manno.
A detailed description of TS metaheuristic can be found in Section 2.2.3, along
with the pseudo-code in Algorithm 6.

The main algorithmic components of TS were implemented as follow:
GenerateInitialSolution(): the starting solution was generated by the

randomized farthest insertion heuristic described in Section 4.1.2.
The neighborhood structure is derived from the Or-Opt local search, de-

scribed in Section 3.1.1. The strategy of selection of new solutions is a descent-
ascent method with the use of tabu list. Algorithms 13 and 14 outline the two
versions of TS that we have developed, TS-0 based exclusively on the VRPSD
objective function, and TS-tsp also exploiting the TSP objective for speeding
up the neighborhood exploration. The emphasized lines of the two procedures
correspond to instructions that are different in TS-0 and in TS-tsp. Now some

Algorithm 13 Tabu Search - TS-0

set the length k of the strings to be moved as k = 3;
while time is not over do

if (k < 1) then
set k = 3

end if
set the length of tabu list as a random number in the interval [0.8 · (n−k−
1), n− k − 1], where n is the number of customers;
for all potential moves among those with string length k do

compute the VRPSD-like approximate move cost by equation (3.3);
update the best-move-of-the-neighborhood;
check if the move is tabu;
update the best-move-of-the-neighborhood;

end for
if a best-move-of-the-neighborhood exists then

modify the current solution by performing the best-move-of-the-
neighborhood;
update the best-so-far solution since the start of the TS;
if the new current solution is not a new best-so-far solution then

decrease the string length k by 1;
else

set k = 3;
end if
set the tabu-move;

else
tabu-move = best-move-of-the-neighborhood;

end if
add the tabu-move at the end of the tabu list;
prune the tabu list from the beginning, so that its length is equal to the
tabu length set at the beginning;

end while

observations in order to explain the pseudocode.

Neighborhood exploration The neighborhood is explored in such a way that

58 CHAPTER 4. FURTHER EXPERIMENTS

Algorithm 14 Tabu Search - TS-tsp

set the length k of the strings to be moved as k = 3;
while time is not over do

if (k < 1) then
set k = 3

end if
set the length of tabu list as a random number in the interval [0.8 · (n−k−
1), n − k − 1], where n is the number of customers;
for all potential moves among those with string length k do

compute a tsp-like move cost by equation (4.1);
check if the move is tabu;
update the best-move-of-the-neighborhood;

end for
if a best-move-of-the-neighborhood exists and performing the move would
lead to a better solution in terms of the VRPSD objective function then

modify the current solution by performing the best-move-of-the-
neighborhood;
update the best-so-far solution since the start of the TS;
if the new current solution is not a new best-so-far solution then

decrease the string length k by 1;
else

set k = 3;
end if
set the tabu-move;

else
tabu-move = best-move-of-the-neighborhood;

end if
add the tabu-move at the end of the tabu list;
prune the tabu list from the beginning, so that its length is equal to the
tabu length set at the beginning;

end while

4.2. THE ALGORITHMS 59

LMNFGHI K CDE
i

tabu !

tabu !

B O P
j

LMNFGHI KCDE
i

OPB
j

S

Figure 4.2: Example of tabu moves.

at the beginning of the search, only moves with string length equal to 3
are tried. The string length is decreased each time that no best move
can be found, and reset equal to 3 each time a new best-so-far solution is
found. Each time the string length has reached the minimum length (that
is, 1), it is re-initialized to the maximum value (that is, 3).

Selection of the move to perform In TS it’s important the notion of best-
move-of-the-neighborhood because this is the move that is actually per-
formed and leads to a new solution. Each time a new potential move is
considered, it is evaluated and a decision is taken as if is a new best-move-
of-the-neighborhood or not. The decision criterion differs in the case of
tabu or non-tabu moves. If the move is tabu, then, in order to be pro-
moted to be new best-move-of-the-neighborhood, the move should lead to
a new best-so-far solution (according to the approximated move cost in
TS-0 and according to the tour-length difference in TS-tsp). If the move
is not tabu, then, it is enough that it leads to a new best solution with
respect to the the current neighborhood. Not all moves are evaluated, in
fact, tabu moves are evaluated only with a probability of the 30%, and
non-tabu moves with a probability of the 80%. Also for this reason, some-
times no move is selected as new best-move-of-the-neighborhood. Once a
new best-move-of-the-neighborhood is selected, it may be performed, but
with a different mechanism in TS-0 and in TS-tsp. in TS-0, the move is
performed, and the exact objective value of the new solution is computed.
In TS-tsp, the move is performed only if it really leads to an improving
solution with respect to the VRPSD objective function.

Tabu moves In general, there are several possibilities for defining what is a
tabu move. The aim is always to avoid going back to a solution that has
been visited in the last few iterations of the local search. In these TS, the
concept of tabu move is simple. After a string S has been extracted from
position i and re-inserted at position j, there are two moves that become
tabu: those that would re-establish the relative position of the customer
immediately preceding, respectively following S in the original tour. The
two tabu moves are exemplified in fig. 4.2.3.

Tabu list Each time a new best-move-of-the-neighborhood is selected, it is put
in the tabu list. In case there is no best-move-of-the-neighborhood, the

60 CHAPTER 4. FURTHER EXPERIMENTS

last selected best-move-of-the-neighborhood is put again in the tabu list.
After, the oldest tabu move is removed from the list.

4.2.4 Ant Colony Optimization

The two algorithms of the ACO metaheuristic has been implemented by the
IRIDIA node, from the author of the thesis. A detailed description of ACO
algorithms can be found in Section 2.3.1, along with the pseudo-code in Algo-
rithm 7.

The only difference with the ACS algorithm implemented for the preliminary
experiments (for the details see Section 3.2.5) are:

GenerateInitialSolution(): the starting solution was generated by the
randomized farthest insertion heuristic described in Section 4.1.2.

LS(): ACS-0 adopts the Or-Opt-0 local search, while ACS-tsp adopt the
Or-Opt-tsp local search.

4.2.5 Evolutionary Computation

The two EC algorithms have been implemented by the ECRG node in Edin-
burgh. A detailed description of EC metaheuristic can be found in Section 2.3.2,
along with the pseudo-code in Algorithm 8.

The only difference with the GA algorithm implemented for the preliminary
experiments (for the details see Section 3.2.6) is the local search: EA-0 adopts
Or-Opt-0 local search with approximated cost function while EA-tsp adopts the
Or-Opt-tsp local search with TSP cost function.

4.3 Results of the successive experiments

The algorithms compared in the further experiments are: a randomized far-
thest insertion Random Restart Local Search that adopts the Or-Opt-0 lo-
cal search (FR-0) that was used to set the minimum performance level to be
achieved by the other algorithms,1 a randomized farthest insertion Random
Restart Local Search that adopts the Or-Opt-tsp local search (FR-tsp), two
ILS algorithms (ILS-0 and ILS-tsp), whose implementations are described in
Section 4.2.1, two SA algorithms (SA-0 and SA-tsp), whose implementations
are described in Section 4.2.2, two TS algorithms (TS-0 and TS-tsp), whose
implementations are described in Section 4.2.3, two ACO algorithms (ACS-0
and ACS-tsp), whose implementations are described in Section 4.2.4, two EC
algorithms (EA-0 and EA-tsp), whose implementations are described in Sec-
tion 4.2.5. Moreover, a state-of-the-art algorithms for solving TSP (RUN) was
provided by the INTELLEKTIK node and a state-of-the-art algorithm to solve
the CVRP (RUN.CVRP) was provided by the IDSIA node.

Instances

We generated a number of VRPSD instances that we classified into the same
four classes described in Section 3.3.

1To fail in achieve better performance than FR-0 is to be considered a major failure.

4.4. FUTURE WORKS 61

Each algorithm was tested once on each instance for a time equal to the
time needed by the algorithm FR-0 to complete 250, 500 or 1000 iterations,
depending on the number of customers respectively 50, 100 or 200. So the
execution time varied on an instance-by-instance basis.

Figure 4.3 illustrates the results aggregated over the four classes of in-
stances. Figures 4.4, 4.5, 4.6, and 4.7 illustrate the results obtained by the al-
gorithms under analysis on the classes of instances rand unif n, rand unif r,
rand clust n, and rand clust r, in this order.

The statistical test used to verify if differences in solutions found by the
algorithms are significant is the Pairwise Wilcoxon rank sum test with p-values
adjustment method by Holm described in Section 3.3.1.

From the statistical analysis we observe the following:

1. when restricting the comparison to the -0 algorithms (the ones that only
use the VRPSD objective function), only ILS-0 is better than FR-0;

2. when restricting the comparison to the -tsp algorithms, only ILS-tsp and
EA-tsp are better than FR-tsp;

3. the -tsp version of the metaheuristics are statistically significantly better
than the -0 version, we have verified this with a Wilcoxon signed rank test
with continuity correction;

4. the TSP state-of-the-art algorithm is worse than the algorithm that has
obtained the best results in our experiments;

It seems that totally ignoring the stochasticity of the demands and trying
to solve the instances like TSP instead of VRPSD is not a good idea. The
starting solution seems to contribute in a major manner to the final results of the
algorithms, in fact as we said in Section 3.1.1, the approximation schemed used
in Or-Opt local search might judge moves as “good”, but they are worsening
moves when evaluated with the exact objective function.

For this reason in Section 4.4.1 we proposed a new approximation of the
VRPSD cost function.

4.4 Future works

Possible future works are researching different approximation of the cost func-
tion (we propose a new one in Section 4.4.1), or investigating new formulations
of the VRP in order to determine common features (we propose a new one in
Section 4.4.2).

4.4.1 Homogeneous Failure and Restocking

What follows is the result of fruitful discussions among the researchers of the
Metaheuristics Network, in particular the spark has been given by Mauro Bi-
rattari of the IRIDIA node.

The experiments have shown that the evaluation of the cost function is par-
ticularly expensive. Among the metaheuristics implemented, those that adopted

62 CHAPTER 4. FURTHER EXPERIMENTS

ils
−t
s
p

e
a
−t
s
p

fr
−0

fr
−t
s
p

ils
−0

e
a
−0

a
c
s
−t
s
p

ts
−0

ru
n
.p
y

ts
−t
s
p

ru
n
.c
v
rp
.p
y

s
a
−t
s
p

a
c
s
−0

s
a
−0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

1
4
0
0

1
6
0
0

Values: all instances

Metahauristics

V
a
lu
e
s

ils−tsp
ea−tsp
fr−0

fr−tsp
ils−0
ea−0

acs−tsp
ts−0

run.py

ts−tsp
run.cvrp.py

sa−tsp
acs−0
sa−0

0 5 10 15 20 25

Ranks: all instances

Ranks

M
e
ta
h
a
u
ri
s
ti
c
s

Figure 4.3: Results aggregated over the 4 classes of instances.

4.4. FUTURE WORKS 63

T
a
b
le

4
.1

:
p
-v

a
lu

es
fo

r
th

e
n
u
ll

h
y
p
o
th

es
is

“
T

h
e

d
is

tr
ib

u
ti
o
n
s

o
f

th
e

so
lu

ti
o
n
s

a
re

th
e

sa
m

e”
fo

r
a
g
g
re

g
a
te

d
cl

a
ss

es
o
f

in
st

a
n
ce

s.
T

h
e

si
g
n
ifi

ca
n
ce

le
v
el

w
it

h
w

h
ic

h
w

e
re

je
ct

th
e

n
u
ll

h
y
p
o
th

es
is

is
0
.9

5
.
p
-v

a
lu

es
sm

a
ll
er

th
a
n

0
.0

5
a
re

su
ffi

ci
en

t
to

re
je

ct
th

e
n
u
ll

h
y
p
o
th

es
is

in
fa

v
o
r

o
f
th

e
a
lt
er

n
a
te

h
y
p
o
th

es
is

,
w

h
il
e

p
-v

a
lu

es
g
re

a
te

r
th

a
n

0
.0

5
d
o

n
o
t

a
ll
ow

u
s

to
re

je
ct

th
e

n
u
ll

h
y
p
o
th

es
is

.

il
s-

ts
p

ea
-t

sp
fr

-0
fr

-t
sp

il
s-

0
ea

-0
a
cs

-t
sp

ts
-0

ru
n

ts
-t

sp
ru

n
.c

v
rp

sa
-t

sp
a
cs

-0
ea

-t
sp

2
e-

0
9

—
—

—
—

—
—

—
—

—
—

—
—

fr
-0

<
2
e-

1
6

1
e-

0
3

—
—

—
—

—
—

—
—

—
—

—
fr

-t
sp

1
e-

1
3

1
e-

0
1

1
e-

0
8

—
—

—
—

—
—

—
—

—
—

il
s-

0
2
e-

1
1

1
2
e-

0
1

1
—

—
—

—
—

—
—

—
—

ea
-0

8
e-

1
0

1
1

1
1

—
—

—
—

—
—

—
—

a
cs

-t
sp

<
2
e-

1
6

<
2
e-

1
6

4
e-

1
3

<
2
e-

1
6

1
e-

1
0

5
e-

1
0

—
—

—
—

—
—

—
ts

-0
<

2
e-

1
6

1
e-

4
1
e-

0
1

1
e-

0
2

1
e-

0
2

4
e-

0
2

5
e-

0
2

—
—

—
—

—
—

ru
n

<
2
e-

1
6

1
e-

1
4

7
e-

1
1

1
e-

1
3

5
e-

1
0

4
e-

1
1

1
8
e-

0
4

—
—

—
—

—
ts

-t
sp

<
2
e-

1
6

<
2
e-

1
6

1
e-

1
0

3
e-

1
3

1
e-

0
9

2
e-

1
1

1
2
e-

0
4

1
—

—
—

—
ru

n
.c

v
rp

4
e-

0
9

3
e-

0
2

7
e-

0
1

2
e-

0
1

4
e-

0
2

1
e-

0
1

1
1

1
1

—
—

—
sa

-t
sp

<
2
e-

1
6

<
2
e-

1
6

<
2
e-

1
6

<
2
e-

1
6

<
2
e-

1
6

<
2
e-

1
6

1
e-

1
4

<
2
e-

1
6

1
e-

0
8

1
e-

0
9

2
e-

0
4

—
—

a
cs

-0
<

2
e-

1
6

<
2
e-

1
6

<
2
e-

1
6

<
2
e-

1
6

<
2
e-

1
6

<
2
e-

1
6

6
e-

0
9

2
e-

1
4

2
e-

0
4

1
e-

0
4

2
e-

0
2

6
e-

0
4

—
sa

-0
<

2
e-

1
6

<
2
e-

1
6

<
2
e-

1
6

<
2
e-

1
6

<
2
e-

1
6

<
2
e-

1
6

<
2
e-

1
6

<
2
e-

1
6

<
2
e-

1
6

<
2
e-

1
6

1
e-

0
8

1
e-

0
1

5
e-

1
2

64 CHAPTER 4. FURTHER EXPERIMENTS

e
a
−0

ils
−0

ts
−0

ils
−t
s
p

fr
−0

e
a
−t
s
p

fr
−t
s
p

ru
n
.p
y

ru
n
.c
v
rp
.p
y

a
c
s
−t
s
p

ts
−t
s
p

s
a
−0

a
c
s
−0

s
a
−t
s
p

8
0
0

1
0
0
0

1
2
0
0

1
4
0
0

1
6
0
0

Values: rand_unif_n

Metahauristics

V
a
lu
e
s

ea−0
ils−0
ts−0

ils−tsp
fr−0

ea−tsp
fr−tsp
run.py

run.cvrp.py

acs−tsp
ts−tsp
sa−0
acs−0
sa−tsp

2 4 6 8 10 12 14

Ranks: rand_unif_n

Ranks

M
e
ta
h
a
u
ri
s
ti
c
s

Figure 4.4: Results on the rand unif n class of instances.

4.4. FUTURE WORKS 65

T
a
b
le

4
.2

:
p
-v

a
lu

es
fo

r
th

e
n
u
ll

h
y
p
o
th

es
is

“
T

h
e

d
is

tr
ib

u
ti

o
n
s

o
f

th
e

so
lu

ti
o
n
s

a
re

th
e

sa
m

e”
fo

r
ra

n
d

u
n
if

n
cl

a
ss

o
f

in
st

a
n
ce

s.
T

h
e

si
g
n
ifi

ca
n
ce

le
v
el

w
it

h
w

h
ic

h
w

e
re

je
ct

th
e

n
u
ll

h
y
p
o
th

es
is

is
0
.9

5
.
p
-v

a
lu

es
sm

a
ll
er

th
a
n

0
.0

5
a
re

su
ffi

ci
en

t
to

re
je

ct
th

e
n
u
ll

h
y
p
o
th

es
is

in
fa

v
o
r

o
f
th

e
a
lt
er

n
a
te

h
y
p
o
th

es
is

,
w

h
il
e

p
-v

a
lu

es
g
re

a
te

r
th

a
n

0
.0

5
d
o

n
o
t

a
ll
ow

u
s

to
re

je
ct

th
e

n
u
ll

h
y
p
o
th

es
is

.

ea
-0

il
s-

0
ts

-0
il
s-

ts
p

fr
-0

ea
-t

sp
fr

-t
sp

ru
n

ru
n
.c

v
rp

a
cs

-t
sp

ts
-t

sp
sa

-0
a
cs

-0
il
s-

0
1

—
—

—
—

—
—

—
—

—
—

—
—

ts
-0

1
e
−

0
1

1
e
−

0
1

—
—

—
—

—
—

—
—

—
—

—
il
s-

ts
p

1
7
e-

0
2

7
e-

0
4

—
—

—
—

—
—

—
—

—
—

fr
-0

1
1

8
e-

0
1

2
e-

0
2

—
—

—
—

—
—

—
—

—
ea

-t
sp

1
1

6
e-

0
2

8
e-

0
1

8
e-

0
1

—
—

—
—

—
—

—
—

fr
-t

sp
1

1
4
e-

0
1

8
e-

0
2

4
e-

0
1

1
—

—
—

—
—

—
—

ru
n

2
e-

0
2

1
e-

0
1

1
3
e-

0
5

7
e-

0
1

4
e-

0
2

3
e-

0
1

—
—

—
—

—
—

ru
n
.c

v
rp

1
1

1
1

1
1

1
1

—
—

—
—

—
a
cs

-t
sp

9
e-

0
3

2
e-

0
3

1
3
e-

0
5

3
e-

0
3

4
e-

0
4

1
e-

0
3

1
1

—
—

—
—

ts
-t

sp
4
e-

0
2

1
e0

1
1

1
e-

0
4

1
e-

0
1

1
e-

0
2

4
e-

0
2

1
1

1
—

—
—

sa
-0

9
e-

1
0

1
e-

1
1

4
e-

0
4

7
e-

1
1

7
e-

1
1

2
e-

1
0

2
e-

1
1

7
e-

0
4

6
e-

0
0
3

2
e-

0
6

7
e-

0
4

—
—

a
cs

-0
6
e-

0
6

5
e-

0
6

4
e-

0
1

1
e-

0
8

3
e-

0
6

2
e-

0
6

3
e-

0
6

3
e-

0
1

3
e-

0
1

3
e-

0
1

1
e-

0
1

5
e-

0
2

—
sa

-t
sp

3
e-

0
9

3
e-

1
0

2
e-

0
3

1
e-

1
0

3
e-

0
9

2
e-

0
9

9
e-

0
9

8
e-

0
3

6
e-

0
2

3
e-

0
4

3
e-

0
3

1
1
e-

0
1

66 CHAPTER 4. FURTHER EXPERIMENTS

ils
−0

e
a
−0

ils
−t
s
p

e
a
−t
s
p

ts
−0

fr
−t
s
p

fr
−0

ru
n
.c
v
rp
.p
y

a
c
s
−t
s
p

ru
n
.p
y

a
c
s
−0

ts
−t
s
p

s
a
−0

s
a
−t
s
p

9
0
0

1
0
0
0

1
1
0
0

1
2
0
0

1
3
0
0

Values: rand_unif_r

Metahauristics

V
a
lu
e
s

ils−0
ea−0
ils−tsp
ea−tsp
ts−0
fr−tsp
fr−0

run.cvrp.py

acs−tsp
run.py

acs−0
ts−tsp
sa−0

sa−tsp

2 4 6 8 10 12 14

Ranks: rand_unif_r

Ranks

M
e
ta
h
a
u
ri
s
ti
c
s

Figure 4.5: Results on the rand unif r class of instances.

4.4. FUTURE WORKS 67

T
a
b
le

4
.3

:
p
-v

a
lu

es
fo

r
th

e
n
u
ll

h
y
p
o
th

es
is

“
T

h
e

d
is

tr
ib

u
ti

o
n
s

o
f

th
e

so
lu

ti
o
n
s

a
re

th
e

sa
m

e”
fo

r
ra

n
d

u
n
if

r
cl

a
ss

o
f

in
st

a
n
ce

s.
T

h
e

si
g
n
ifi

ca
n
ce

le
v
el

w
it

h
w

h
ic

h
w

e
re

je
ct

th
e

n
u
ll

h
y
p
o
th

es
is

is
0
.9

5
.
p
-v

a
lu

es
sm

a
ll
er

th
a
n

0
.0

5
a
re

su
ffi

ci
en

t
to

re
je

ct
th

e
n
u
ll

h
y
p
o
th

es
is

in
fa

v
o
r

o
f
th

e
a
lt
er

n
a
te

h
y
p
o
th

es
is

,
w

h
il
e

p
-v

a
lu

es
g
re

a
te

r
th

a
n

0
.0

5
d
o

n
o
t

a
ll
ow

u
s

to
re

je
ct

th
e

n
u
ll

h
y
p
o
th

es
is

.

il
s-

0
ea

-0
il
s-

ts
p

ea
-t

sp
ts

-0
fr

-t
sp

fr
-0

ru
n
.c

v
rp

a
cs

-t
sp

ru
n

a
cs

-0
ts

-t
sp

sa
-0

ea
-0

1
—

—
—

—
—

—
—

—
—

—
—

—
il
s-

ts
p

1
1

—
—

—
—

—
—

—
—

—
—

—
ea

-t
sp

1
1

1
—

—
—

—
—

—
—

—
—

—
ts

-0
2
e-

0
1

1
1
e-

0
1

1
—

—
—

—
—

—
—

—
—

fr
-t

sp
7
e-

0
1

1
1

1
1

—
—

—
—

—
—

—
—

fr
-0

3
e-

0
1

1
4
e-

0
1

1
1

2
e-

0
2

—
—

—
—

—
—

—
ru

n
.c

v
rp

1
1

1
1

1
1

1
—

—
—

—
—

—
a
cs

-t
sp

5
e-

0
4

8
e-

0
4

2
e-

0
4

2
e-

0
4

3
e-

0
1

3
e-

0
4

5
e-

0
4

1
—

—
—

—
—

ru
n

9
e-

0
6

3
e-

0
6

6
e-

0
6

5
e-

0
6

4
e-

0
2

1
e-

0
6

2
e-

0
6

2
e-

0
1

1
—

—
—

—
a
cs

-0
2
e-

0
7

3
e-

0
6

4
e-

0
7

2
e-

0
6

4
e-

0
5

1
e-

0
7

1
e-

0
7

4
e-

0
2

2
e-

0
1

1
—

—
—

ts
-t

sp
4
e-

0
4

6
e-

0
4

2
e-

0
4

3
e-

0
4

9
e-

0
2

3
e-

0
4

1
e-

0
3

4
e-

0
1

1
1

1
—

—
sa

-0
7
e-

0
8

2
e-

0
7

7
e-

0
8

1
e-

0
7

2
e-

0
6

1
e-

0
7

1
e-

0
7

4
e-

0
4

3
e-

0
5

2
e-

0
3

2
e-

0
2

6
e-

0
4

—
sa

-t
sp

7
e-

0
8

1
e-

0
7

9
e-

0
8

2
e-

0
7

2
e-

0
7

9
e-

0
8

1
e-

0
7

2
e-

0
4

1
e-

0
5

6
e-

0
4

2
e-

0
2

6
e-

0
4

1

68 CHAPTER 4. FURTHER EXPERIMENTS

ils
−t
s
p

e
a
−t
s
p

fr
−t
s
p

fr
−0

ru
n
.c
v
rp
.p
y

ils
−0

e
a
−0

s
a
−t
s
p

a
c
s
−t
s
p

ts
−0

s
a
−0

ts
−t
s
p

ru
n
.p
y

a
c
s
−0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

1
4
0
0

Values: rand_clust_n

Metahauristics

V
a
lu
e
s

ils−tsp
ea−tsp
fr−tsp
fr−0

run.cvrp.py

ils−0
ea−0
sa−tsp
acs−tsp

ts−0
sa−0
ts−tsp
run.py

acs−0

2 4 6 8 10 12 14

Ranks: rand_clust_n

Ranks

M
e
ta
h
a
u
ri
s
ti
c
s

Figure 4.6: Results on the rand clust n class of instances.

4.4. FUTURE WORKS 69

T
a
b
le

4
.4

:
p
-v

a
lu

es
fo

r
th

e
n
u
ll

h
y
p
o
th

es
is

“
T

h
e

d
is

tr
ib

u
ti

o
n
s

o
f

th
e

so
lu

ti
o
n
s

a
re

th
e

sa
m

e”
fo

r
ra

n
d

c
lu

st
n

cl
a
ss

o
f

in
st

a
n
ce

s.
T

h
e

si
g
n
ifi

ca
n
ce

le
v
el

w
it

h
w

h
ic

h
w

e
re

je
ct

th
e

n
u
ll

h
y
p
o
th

es
is

is
0
.9

5
.
p
-v

a
lu

es
sm

a
ll
er

th
a
n

0
.0

5
a
re

su
ffi

ci
en

t
to

re
je

ct
th

e
n
u
ll

h
y
p
o
th

es
is

in
fa

v
o
r

o
f
th

e
a
lt
er

n
a
te

h
y
p
o
th

es
is

,
w

h
il
e

p
-v

a
lu

es
g
re

a
te

r
th

a
n

0
.0

5
d
o

n
o
t

a
ll
ow

u
s

to
re

je
ct

th
e

n
u
ll

h
y
p
o
th

es
is

.

il
s-

ts
p

ea
-t

sp
fr

-t
sp

fr
-0

ru
n
.c

v
rp

il
s-

0
ea

-0
sa

-t
sp

a
cs

-t
sp

ts
-0

sa
-0

ts
-t

sp
ru

n
ea

-t
sp

2
e-

0
5

—
—

—
—

—
—

—
—

—
—

—
—

fr
-t

sp
1
e-

0
7

1
—

—
—

—
—

—
—

—
—

—
—

fr
-0

4
e-

0
8

1
1

—
—

—
—

—
—

—
—

—
—

ru
n
.c

v
rp

8
e-

0
4

8
e-

0
1

1
1

—
—

—
—

—
—

—
—

—
il
s-

0
7
e-

0
8

1
1

1
1

—
—

—
—

—
—

—
—

ea
-0

1
e-

0
8

2
e-

0
1

1
1

1
1

—
—

—
—

—
—

—
sa

-t
sp

1
e-

1
1

1
e-

0
6

1
e-

0
4

1
e-

0
5

1
9
e-

0
6

1
e-

0
4

—
—

—
—

—
—

a
cs

-t
sp

2
e-

1
0

3
e-

0
4

1
e-

0
2

1
e-

0
3

1
1
e-

0
1

1
e-

0
1

5
e-

0
2

—
—

—
—

—
ts

-0
3
e-

0
7

1
1

1
1

1
1

2
e-

0
3

6
e-

0
1

—
—

—
—

sa
-0

1
e-

1
1

1
e-

1
1

6
e-

0
7

6
e-

0
7

1
5
e-

1
2

2
e-

1
0

8
e-

0
2

4
e-

0
9

1
e-

0
8

—
—

—
ts

-t
sp

4
e-

1
0

9
e-

0
6

2
e-

0
3

1
e-

0
3

1
5
e-

0
1

2
e-

0
2

7
e-

0
1

1
4
e-

0
3

2
e-

0
5

—
—

ru
n

7
e-

1
0

1
e-

0
3

3
e-

0
3

2
e-

0
2

1
1

4
e-

0
1

1
1

1
e-

0
1

4
e-

0
5

1
—

a
cs

-0
1
e-

1
1

4
e-

1
0

5
e-

1
2

5
e-

1
2

1
9
e-

0
5

2
e-

0
6

1
4
e-

0
3

1
e-

0
5

5
e-

0
3

7
e-

0
1

1
e-

0
1

70 CHAPTER 4. FURTHER EXPERIMENTS

ils
−t
s
p

e
a
−0

ils
−0

e
a
−t
s
p

ts
−0

fr
−t
s
p

fr
−0

a
c
s
−0

a
c
s
−t
s
p

ts
−t
s
p

ru
n
.p
y

ru
n
.c
v
rp
.p
y

s
a
−0

s
a
−t
s
p

6
0
0

8
0
0

1
0
0
0

1
2
0
0

Values: rand_clust_r

Metahauristics

V
a
lu
e
s

ils−tsp
ea−0
ils−0

ea−tsp
ts−0
fr−tsp
fr−0

acs−0
acs−tsp
ts−tsp
run.py

run.cvrp.py

sa−0
sa−tsp

2 4 6 8 10 12 14

Ranks: rand_clust_r

Ranks

M
e
ta
h
a
u
ri
s
ti
c
s

Figure 4.7: Results on the rand clust r class of instances.

4.4. FUTURE WORKS 71

T
a
b
le

4
.5

:
p
-v

a
lu

es
fo

r
th

e
n
u
ll

h
y
p
o
th

es
is

“
T

h
e

d
is

tr
ib

u
ti

o
n
s

o
f

th
e

so
lu

ti
o
n
s

a
re

th
e

sa
m

e”
fo

r
ra

n
d

c
lu

st
r

cl
a
ss

o
f

in
st

a
n
ce

s.
T

h
e

si
g
n
ifi

ca
n
ce

le
v
el

w
it

h
w

h
ic

h
w

e
re

je
ct

th
e

n
u
ll

h
y
p
o
th

es
is

is
0
.9

5
.
p
-v

a
lu

es
sm

a
ll
er

th
a
n

0
.0

5
a
re

su
ffi

ci
en

t
to

re
je

ct
th

e
n
u
ll

h
y
p
o
th

es
is

in
fa

v
o
r

o
f
th

e
a
lt
er

n
a
te

h
y
p
o
th

es
is

,
w

h
il
e

p
-v

a
lu

es
g
re

a
te

r
th

a
n

0
.0

5
d
o

n
o
t

a
ll
ow

u
s

to
re

je
ct

th
e

n
u
ll

h
y
p
o
th

es
is

.

il
s-

ts
p

ea
-0

il
s-

0
ea

-t
sp

ts
-0

fr
-t

sp
fr

-0
a
cs

-0
a
cs

-t
sp

ts
-t

sp
ru

n
ru

n
.c

v
rp

sa
-0

ea
-0

1
e-

0
7

—
—

—
—

—
—

—
—

—
—

—
—

il
s-

0
4
e-

0
8

1
—

—
—

—
—

—
—

—
—

—
—

ea
-t

sp
8
e-

0
7

1
1

—
—

—
—

—
—

—
—

—
—

ts
-0

1
e-

0
7

1
1

4
e-

0
1

—
—

—
—

—
—

—
—

—
fr

-t
sp

8
e-

0
8

1
1

1
5
e-

0
1

—
—

—
—

—
—

—
—

fr
-0

6
e-

0
9

1
1

2
e-

0
1

1
6
e-

0
5

—
—

—
—

—
—

—
a
cs

-0
5
e-

1
2

3
e-

0
7

1
e-

0
4

1
e-

0
9

2
e-

0
4

1
e-

1
2

2
e-

0
7

—
—

—
—

—
—

a
cs

-t
sp

3
e-

1
0

5
e-

0
1

4
e-

0
1

2
e-

0
2

1
4
e-

0
4

3
e-

0
1

1
e-

0
3

—
—

—
—

—
ts

-t
sp

1
e-

1
0

1
e-

0
2

5
e-

0
2

1
e-

0
4

4
e-

0
1

3
e-

0
4

4
e-

0
2

5
e-

0
1

1
—

—
—

—
ru

n
2
e-

0
9

5
e-

0
1

4
e-

0
1

1
e-

0
2

7
e-

0
1

2
e-

0
2

5
e-

0
1

4
e-

0
1

1
1

—
—

—
ru

n
.c

v
rp

1
e-

0
8

4
e-

0
1

2
e-

0
1

5
e-

0
2

4
e-

0
1

1
e-

0
1

4
e-

0
1

1
1

1
1

—
—

sa
-0

3
e-

1
3

1
e-

1
1

3
e-

1
3

1
e-

1
2

1
e-

0
8

2
e-

1
2

3
e-

1
2

1
e-

0
5

1
e-

1
1

1
e-

0
7

4
e-

0
7

1
—

sa
-t

sp
6
e-

1
3

1
e-

0
4

1
e-

0
5

2
e-

0
7

2
e-

0
3

9
e-

0
8

3
e-

0
6

1
8
e-

0
3

5
e-

0
1

6
e-

0
1

1
3
e-

0
3

72 CHAPTER 4. FURTHER EXPERIMENTS

an approximation of the cost function, rather than the full evaluation, obtained
significantly better results.

All implemented metaheuristics that have resorted to an approximation of
the VRPSD cost function where TSP-based: the cost of an a priori tour, rather
than being evaluated exactly, was approximated by its cost in the TSP sense.
The rationale behind such approximation is related to the apparent similarities
between VRPSD and TSP (as illustrated in Section 3.4). It could be further
noticed that the approximation becomes exact in the degenerate case in which
the truck capacity exceeds the sum of the maximum demand of all customers.

Another problem that presents similarities with VRPSD is the CVRP. In-
deed, VRPSD degenerates into CVRP if the spread in the demand of the cus-
tomers is null—in other words, if the demand is deterministic. None of the
implementations proposed within the Metaheuristics networks exploited this
similarity. The reason is that it seems quite complicated to predict with suffi-
cient accuracy the load of the truck along the a priori tour in order to define
locations at which a re-stocking will be needed.

The aim of this section is to describe a possible way to tackle this problem:
The homogeneous failure and restocking approximation of the VRPSD cost
function.

The homogeneity hypothesis

The hypothesis underlying the discussion we propose is the following:

Hphfr : The probability of failure and restocking is uniform along the
a priori tour.2

This hypothesis can be seen as a way of representing the total ignorance on the
positions along the a priori tour at which failures and restockings will occur.

Under hypothesis Hphfr , and assuming that the probabilities of failure and
restocking are known, say f and r respectively, the cost of a given a priori
tour can be expressed as the sum of individual contributions, one per each arc
composing the a priori tour itself. Namely, say that the arc 〈i, j〉 is included in
the a priori tour. Its contribution to the cost is:

Ci,j = (1 − f − r)di,j + r(di,0 + d0,j) + f(di,j + dj,0 + d0,j) (4.2)

where di,j is the distance between i and j, di,0 is the distance between i and
the depot, and dj,0 = D0,j is the distance between node j and the depot.
See Figure 4.4.1 for a graphical representation of the quantities involved in
Equation 4.2.

Possible search schemes

In this section we discuss possible search schemes based on the Hphfr hypothe-
sis. To this end, let us first notice that the restocking and failure probabilities
are clearly solution-dependent: In the general case, we should expect that two
different a priori tours, say T1 and T2, are characterized by two different sets

2Some border effect exists. For instance, for what concerns the first and last link in the tour,
i.e., depot-first customer and last customer-depot, the probability of failure and restocking are
both null. This border effect will be considered in the following.

4.4. FUTURE WORKS 73

Failure

Restocking

Successi

j

0

Figure 4.8: Inclusion on link 〈i, j〉 in the solution: The cost of including link
〈i, j〉 is a weighted average of the distance 〈i, j〉 (Success), the distance 〈i, 0, j〉
(Restocking), and the distance 〈i, j, 0, j〉 (Failure).

of restocking and failure probabilities, say r1 and f1 for the former, and r2 and
f2 for the latter.

Moreover, it should be clear that if the restocking and failure probabilities
associated with the optimal solution where known in advance, the optimal so-
lution itself could be found by solving a TSP on a graph obtained from the
original one where the cost of the generic arc 〈i, j〉 is set to Ci, j as defined in
Equation 4.2. On the other hand, when a solution is given, possibly the opti-
mal one, the corresponding restocking and failure probabilities can be obtained
either analytically or empirically through Monte Carlo sampling.

In the typical case, however, neither the optimal solution is known, nor the
associated restocking and failure probabilities. To tackle such “chicken and egg”
situations in which if one of two elements where known, the other could be easily
obtained, and vice-versa, but none is available, the typical approach is based
on an iterative procedure. In the context of our VRPSD, an iterative solution
scheme would be implemented as follows:

1. set current solution to some initial solution,

2. evaluate failure and restocking probabilities for current
solution,

3. solve problem for current probabilities, and update current
solution,

4. stop upon convergence; otherwise, go back to 2.

We expect this approach to be effective if the uncertainty is high on the positions
along an a priori tour at which restocking and failures will occur. In such a
case, the Hphfr hypothesis is not restrictive and indeed models correctly the
information available.

On the contrary, we do not expect this approach to be extremely effective in
the case in which the uncertainty is relatively low as for example if the capacity
of the truck is very large compared to the average request of the customers, and

74 CHAPTER 4. FURTHER EXPERIMENTS

if the spread of the request is relatively small. In such a case, since the number of
customers served with one single load of the truck is high, the actual realization
of the sum of the requests of the customers served between two consecutive
stops at the depot will tend to converge to its expected value (see law of large
numbers) washing out, de facto, most of the uncertainty.

In such a case, the Hphfr hypothesis is possibly too restrictive and the so-
lution schemes proposed in this document disregards some useful information
that could possibly be profitably employed.

4.4.2 Possible Extensions of the Problem

One of the aims of the Metaheuristics Network is to analyze the behavior of
metaheuristics on a variety of CO problems. Therefore we investigated other
possible formulations of Vehicle Routing, mainly with deterministic demand,
in order to distinguish common features. On one hand, real-world problems
have much more constraints than the one present in our model, on the other
hand, we must keep the model simple since we have limited computational
power and limited time. The experience in real-world scenarios provided by the
industrial partner Ant Optima was illuminating. We propose, therefore, the
following formulation that tries to approximate several over-constrained real-
world scenarios still maintaining a certain generality.

A non-homogeneous fleet of vehicles has to be routed to deliver or pickup
goods. Vehicles can differ for fixed costs, variable cost and capacity. Accessibil-
ity constraints restrict the use of vehicles to specific customers and to specific
paths while time constraints impose that a vehicle visit a customer not later
than its due date. Time constraints can be multiple, that is, composed by
several intervals. The number of vehicles to use is biased by a maximum make-
span per vehicle which could be expressed in time or in number of customers to
visit and by the objective function to minimize. The objective function is the
weighted sum of fixed costs per vehicle, cost per vehicle according to its use and
total traveled length. However, the definition of weights and fixed costs should
be carefully analyzed because the property to determine the number of vehicles
depends from their interaction.

Resuming, we can identify the following hard and soft constraints.

Hard Constraints:

• maximum make-span per vehicle

• accessibility

• Non homogeneous fleet (different fixed cost, different cost per kilometer,
different capacity)

• multiple intervals time windows.

Soft Constraints:

• fixed cost per vehicle

• variable cost per vehicle

4.4. FUTURE WORKS 75

• expected length

The problem thus defined is at the core of several real cases. Stochastic demands
could be included and the work done for the VRPSD simply reused to optimize
each single route. Nevertheless, we conjectured that time windows, meant as
hard constraints, would require to consider only worst cases behavior, that is,
the maximum possible demand for each customers. Indeed, the mixed strategy
does not guarantee against failures, and failures drastically modify timetable
making it easily infeasible in the case of strict time windows rules.

76 CHAPTER 4. FURTHER EXPERIMENTS

Conclusions

The main goal of this DEA thesis is a fair and meaningful comparison of different
metaheuristics applied to the Vehicle Routing Problem with Stochastic

Demands, whose formulation was given in Section 1.2.
The author of the thesis participated to the research conducted at the

IRIDIA node of the Metaheuristics Network, a Research Training Network pre-
sented in the Introduction. The experimental studies in the Metaheuristics
Network are designed in the first place to compare the implementations of the
metaheuristics contributed by the labs participating in the Network, in order
to understand which metaheuristics perform well on which problems, and only
as a secondary goal to compare the developed metaheuristics against exter-
nally available algorithms to show that they perform better. In order to avoid
the pitfall we have illustrated in Section 3.1, the Metaheuristics Network has
defined a strictly controlled, machine independent, experimental methodology
which allows a fair and meaningful comparison of experimental results in order
to compare different metaheuristics under the same experimental conditions.

In a first phase we compared, over four classes of instances, a basic Ran-
dom Restart Local Search that was used to set the minimum performance level
to be achieved by the other algorithms, Iterated Local Search, Simulated An-
nealing, Tabu Search, Ant Colony Optimization and Evolutionary Computation
(the five basic implementations of the metaheuristics normally implemented in
the Metaheuristics Network), and also an algorithm called Flim-Flam, whose
purpose was to see how far we could go by using strategies for solving Vehicle

Routing Problem with Stochastic Demands instances as Traveling

Salesman Problem ones. These comparisons were illustrated in Section 3.3.
Flim-Flam resulted the best performing algorithm, showing that, at least on
the instances that we considered, a TSP approximation of the cost function
is particularly effective. In a second phase we studied more in detail how to
exploit the similarities of the Vehicle Routing Problem with Stochas-

tic Demands with the Traveling Salesman Problem, therefore each of
the five metaheuristics (ILS, SA, TS, ACO, EC) and a Randomized Farthest
Insertion Random Restart Local Search were implemented using two different
approximated objective functions (a VRPSD proxy objective function and a
TSP objective function). Furthermore, state-of-the-art algorithms for the TSP
and for the CVRP were used for comparison. The same four classes of instances
used in the first phase were adopted. These comparisons were illustrated in
Section 4.3. From this second phase we concluded that the TSP approximation
of the cost function is indeed effective compared to the VRPSD proxy objective
function. The general conclusions that we can draw after all the comparisons
are:

77

78 Conclusions

1. The difficulty of the instances of the problem, with respect to the aggregate
results of the metaheuristics, varies, sometimes even significantly, among
instances of different classes, and, although in a minor measure, among
instances that belong to the same class. This behavior was expected, and
reflects the situation of the real world, where some specific problems (for
example, a few clients located far away from all the others, or some clients
having a very high variability in the demands) can be much more difficult
to solve than the average ones.

2. The relative performance of the algorithms under analysis is similar across
the different classes of instances: ILS is always the best performing meta-
heuristic followed by EC and then by ACO, TS and SA. The metaheuristics
ILS, EC obtain significantly better results than the Randomized Farthest
Insertion Random Restart Local Search, while ACO, TS and SA fail in
achieving the minimum required performances.

3. At least on the instances considered in this research, a TSP approximation
of the cost function is particularly effective. The performance of the meta-
heuristics that adopt the TSP objective function are significantly better
than the metaheuristics that adopt the VRPSD proxy objective function.

It is interesting to note that the two state-of-the-art algorithm for TSP and
CVRP obtained worse performances than some of the Metaheuristics Network’s
algorithms; this is a point which encourages the development of VRPSD-specific
algorithms and suggests that trying to treat the VRPSD as a TSP is not a good
idea, but that we have to make more efforts in trying to exploit more problem
specific knowledge and the specific solution landscape structure.

For what concern the bad performance obtained by the ACO metaheuristics
we want to point out the fact that the implemented ACS was quite a “basic”
one. As future work, in addition to what presented in Section 4.4 it could be
interesting to implement a new version of ACS using the Hyper-Cube Framework
for ACO recently developed by Blum and Dorigo [15].

Bibliography

[1] E. H. L. Aarts, J. H. M. Korst, and P. J. M. van Laarhoven. Simulated
annealing. In Local Search in Combinatorial Optimization, pages 91–120.
John Wiley & Sons, Chichester, UK, 1997.

[2] T. Bäck. Evolutionary Algorithms in Theory and Practice: Evolution
Strategies, Evolutionary Programming, Genetic Algorithms. Oxford Uni-
versity Press, New York, NY, 1996.

[3] T. Bäck, D. Fogel, and M. Michalewicz, editors. Handbook of Evolutionary
Computation. Institute of Physics Publishing, Bristol, UK, 1997.

[4] Y. Bar-Yam. Dynamics of Complex Systems. Westview Press, Boulder,
CO, 1997.

[5] R. Bellman. Dynamic Programming. Princeton University Press, Princeton,
NJ, 1957.

[6] J. L. Bentley. Fast algorithms for geometric traveling salesman problems.
ORSA Journal on Computing, 4(4):387–411, 1992.

[7] D. J. Bertsimas. A vehicle routing problem with stochastic demand. Op-
erations Research, 40(3):574–585, 1992.

[8] D. J. Bertsimas, P. Chervi, and M. Peterson. Computational approaches to
stochastic vehicle routing problems. Transportation Science, 29(4):342–352,
1995.

[9] D. J. Bertsimas, P. Jaillet, and A. Odoni. A priori optimisation. Operations
Research, 38:1019–1033, 1990.

[10] D. J. Bertsimas and D. Simchi-Levi. A new generation of vehicle routing
research: robust algorithms, addressing uncertainty. Operations Research,
44(2):216–304, 1996.

[11] L. Bianchi, M. Birattari, M. Chiarandini, M. Manfrin, M. Mastrolilli, L. Pa-
quete, O. Rossi-Doria, and T. Schiavinotto. Metaheuristics for the vehicle
routing problem with stochastic demands. Technical Report IDSIA-06-04,
IDSIA, Manno, Switzerland, 2004.

[12] L. Bianchi, L. M. Gambardella, and M. Dorigo. An ant colony optimiza-
tion approach to the probabilistic traveling salesman problem. In Parallel
Problem Solving from Nature - PPSN VII, volume 2439 of Lecture Notes in
Computer Science, pages 883–892, Berlin, Germany, 2002. Springer Verlag.

79

80 BIBLIOGRAPHY

[13] L. Bianchi, L. M. Gambardella, and M. Dorigo. Solving the homogeneous
probabilistic traveling salesman problem by the ACO metaheuristic. In
Proceedings of ANTS 2002 – Third International Workshop on Ant Algo-
rithms, volume 2463 of Lecture Notes in Computer Science, pages 176–187,
Berlin, Germany, 2002. Springer Verlag.

[14] L. Bianchi, M. Mastrolilli, M. Birattari, M. Manfrin, M. Chiarandini, L. Pa-
quete, and O. Rossi-Doria. Report for task 5: Research on the vehicle
routing problem with stocastic demand. Internal document of the Metahe-
uristics Network, 2004.

[15] C. Blum and M. Dorigo. The hyper-cube framework for ant colony optimi-
zation. IEEE Transactions on Systems, Man, and Cybernetics – Part B,
34(2):1161–1172, 2004.

[16] C. Blum and A. Roli. Metaheuristics in combinatorial optimization: Over-
view and conceptual comparison. ACM Computing Surveys, 35(3):268–308,
2003.

[17] J. Bramel and D. Simchi-Levi. The Logic of Logistics. Springer, Berlin,
Germany, 1997.

[18] P. Calegari, G. Coray, A. Hertz, D. Kobler, and P. Kuonen. A taxon-
omy of evolutionary algorithms in combinatorial optimization. Journal of
Heuristics, 5:145–158, 1999.

[19] D. J. Cavicchio. Adaptive search using simulated evolution. PhD thesis,
University of Michigan, Ann Arbor, MI, 1970.

[20] V. Cerný. A thermodynamical approach to the traveling salesman prob-
lem: an efficient simulation algorithm. Journal of Optimization Theory and
Applications, 45(1):41–51, 1985.

[21] P. Chardaire, J. L. Lutton, and A. Sutter. Thermostatical persistency: a
powerful improving concept for simulated annealing algorithms. European
Journal of Operational Research, 86:565–579, 1995.

[22] W. J. Conover. Practical Nonparametric Statistics. John Wiley & Sons,
New York, NY, 1999.

[23] T. G. Crainic and G. Laporte. Planning models for freight transportation.
European Journal of Operational Research, 97:409–438, 1997.

[24] K. A. DeJong. An Analysis of the Behavior of a Class of Genetic Adaptive
Systems. PhD thesis, University of Michigan, Ann Arbor, MI, 1975.

[25] J.-L. Deneubourg, S. Aron, S. Goss, and J.-M. Pasteels. The self-organizing
exploratory pattern of the argentine ant. Journal of Insect Behaviour, 3:
159–168, 1990.

[26] R. L. Devaney. An introduction to chaotic dynamical systems. Addison-
Wesley, Reading, MA, second edition, 1989.

[27] M. Dorigo. Ottimizzazione, apprendimento automatico, ed algoritmi basati
su metafora naturale. PhD thesis, Politecnico di Milano, Milan, Italy, 1992.

BIBLIOGRAPHY 81

[28] M. Dorigo and G. Di Caro. The Ant Colony Optimization meta-heuristic.
In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization,
pages 11–32. McGraw-Hill, London, UK, 1999.

[29] M. Dorigo, G. Di Caro, and L. M. Gambardella. Ant algorithms for discrete
optimization. Artificial Life, 5(2):137–172, 1999.

[30] M. Dorigo and L. M. Gambardella. Ant Colony System: A cooperative
learning approach to the travelling salesman problem. IEEE Transactions
on Evolutionary Computation, 1(1):53–66, April 1997.

[31] M. Dorigo, V. Maniezzo, and A. Colorni. Ant System: Optimization by a
colony of cooperating agents. IEEE Transactions on Systems, Man, and
Cybernetics – Part B, 26(1):29–41, 1996.

[32] M. Dorigo and T. Stützle. The ant colony optimization metaheuristic: Al-
gorithms, applications and advances. In F. Glover and G. Kochenberger,
editors, Handbook of Metaheuristics, volume 57 of International Series in
Operations Research & Management Science, pages 251–285. Kluwer Aca-
demic Publishers, Norwell, MA, 2002.

[33] M. Dorigo and T. Stützle. Ant Colony Optimization. MIT Press, Cam-
bridge, MA, 2004.

[34] A. E. Eiben and Z. Ruttkay. Constraint satisfaction problems. In T. Bäck,
D. Fogel, and M. Michalewicz, editors, Handbook of Evolutionary Compu-
tation. Institute of Physics Publishing, Bristol, UK, 1997.

[35] W. Feller. An introduction to Probability Theory and its Applications. John
Wiley & Sons, New York, NY, 1968.

[36] M. Fisher. Vehicle routing. In O. M. Ball, T. L. Magnanti, C. L. Monma,
and G. L. Nemhauser, editors, Network Routing, pages 1–33. Elsevier, Am-
sterdam, The Netherlands, 1995.

[37] M. Fleischer. Simulated annealing: past, present and future. In C. Alex-
opoulos, K. Kang, W. R. Lilegdon, and G. Goldsam, editors, Proceedings
of the 1995 Winter Simulation Conference, pages 155–161, 1995.

[38] D. B. Fogel. An introduction to simulated evolutionary optimization. IEEE
Transactions on Neural Networks, 5(1):3–14, Jan 1994.

[39] L. J. Fogel. Toward inductive inference automata. In Proceedings of the
International Federation for Information Processing Congress, pages 395–
399, Munich, Germany, 1962.

[40] L. J. Fogel, A. J. Owens, and M. J. Walsh. Artificial Intelligence through
Simulated Evolution. John Wiley & Sons, New York, NY, 1966.

[41] M. R. Garey and D. S. Johnson. Computers and Intractability / A Guide
to the Theory of NP-Completeness. W.H. Freeman & Company, San Fran-
cisco, CA, 1979.

82 BIBLIOGRAPHY

[42] M. Gendreau, G. Laporte, and R. Séguin. An exact algorithm for the vehicle
routing problem with stochastic demands and customers. Transportation
Sciences, 29(2):143–155, 1995.

[43] M. Gendreau, G. Laporte, and R. Séguin. A tabu search heuristic for the
vehicle routing problem with stochastic demands and customers. Opera-
tions Research, 44(3), 1996.

[44] F. Glover. Heuristics for integer programming using surrogate constraints.
Decision Sciences, 8:156–166, 1977.

[45] F. Glover. Future paths for integer programming and links to artificial
intelligence. Computers & Operations Research, 13:533–549, 1986.

[46] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers,
Norwell, MA, second edition, 1997.

[47] D. E. Goldberg and J. Richardson. Genetic algorithms with sharing for
multimodal function optimization. In J. J. Grefenstette, editor, Genetic
Algorithms and their Applications, pages 41–49. Lawrence Erlbaum Asso-
ciates, Hillsdale, NJ, 1987.

[48] B. L. Golden and A. A. Assad, editors. Vehicle Routing: Methods and
Studies. Elsevier, Amsterdam, The Netherlands, 1988.

[49] M. Haimovitch and A. Rinnooy Kan. Bounds and heuristics for capacitated
routing problems. Mathematics of Operations Research, 10:527–542, 1985.

[50] A. Hertz and D. Kobler. A framework for the description of evolutionary
algorithms. European Journal of Operational Research, 126:1–12, 2000.

[51] J. H. Holland. Adaptation in natural artificial systems. University of Michi-
gan Press, Ann Arbor, MI, 1975.

[52] S. Holm. A simple sequentially rejective multiple test procedure. Scandi-
navian Journal of Statistics, 6:65–70, 1979.

[53] L. Ingber. Adaptive simulated annealing (asa): Lessons learned. Control
and Cybernetics - Special Issue on Simulated Annealing Applied to Combi-
natorial Optimization, 25(1):33–54, 1996.

[54] P. Jaillet. Probabilistic Traveling Salesman Problems. PhD thesis, MIT,
Cambridge, MA, 1985.

[55] P. Jaillet. A priori solution of a travelling salesman problem in which a
random subset of the customers are visited. Operations Research, 36(6):
929–936, 1988.

[56] P. Jaillet and A. Odoni. The probabilistic vehicle routing problems. In B. L.
Golden and A. A. Assad, editors, Vehicle Routing: Methods and Studies.
Elsevier, Amsterdam, The Netherlands, 1988.

[57] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon. Optimi-
zation by simulated annealing: an experimental evaluation; part I, graph
partitioning. Operations Research, 37(6):865–892, 1989.

BIBLIOGRAPHY 83

[58] D. S. Johnson and L. A. McGeoch. The traveling salesman problem: A case
study in local optimization. In E.H.L. Aarts and J.K. Lenstra, editors, Local
Search in Combinatorial Optimization, pages 215–310. John Wiley & Sons,
New York, NY, 1997.

[59] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671–680, 1983.

[60] G. Laporte and F. Louveaux. The integer l-shaped method for stochastic
integer programs with complete recourse. Operations Research Letters, 33:
133–142, 1993.

[61] H. R. Lourenço, O. Martin, and T. Stützle. A beginner’s introduction to
iterated local search. In Proceedings of MIC’2001 - Meta-heuristics Inter-
national Conference, volume 1, Porto, Portugal, 2001.

[62] H. R. Lourenço, O. Martin, and T. Stützle. Iterated local search. In
F. Glover and G. Kochenberger, editors, Handbook of Metaheuristics, vol-
ume 57 of International Series in Operations Research & Management Sci-
ence, pages 321–353. Kluwer Academic Publishers, Norwell, MA, 2002.

[63] S. W. Mahfoud. Niching Methods for Genetic Algorithms. PhD thesis,
University of Illinois at Urbana-Champaign, Urbana, IL, 1995.

[64] M. Manfrin, M. Birattari, C. Blum, M. Sampels, O. Rossi-Doria,
M. Chiarandini, L. Paquete, T. Schiavinotto, L. Bianchi, M. Mastrolilli,
T. Bousonville, H. Juillé, and D. Huber. Report for task 7: Experimental
comparison. Internal document of the Metaheuristics Network, 2004.

[65] M. Manfrin, M. Birattari, C. Blum, M. Sampels, O. Rossi-Doria,
M. Chiarandini, L. Pauqete, T. Schiavinotto, L. Bianchi, and M. Mastrolilli.
Report for task 8: Final analysis. Internal document of the Metaheuristics
Network, 2004.

[66] O. Martin, S. W. Otto, and E. W. Felten. Large-step markov chains for
the traveling salesman problem. Complex Systems, 5(3):299–326, 1991.

[67] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller.
Equation of state calculations by fast computing machines. Journal of
Chemical Physics, 21:1087–1092, 1953.

[68] Z. Michlewicz and M. Michalewicz. Evolutionary computation techniques
and their applications. In Proceedings of the IEEE International Conference
on Intelligent Processing Systems, pages 14–24, Piscataway, NJ, 1997. IEEE
Publications.

[69] P. Moscato. On evolution, search, optimization, genetic algorithms and
martial arts: Towards memetic algorithms. Technical Report Caltech Con-
current Computation Program, Report. 826, California Institute of Tech-
nology, Pasadena, CA, 1989.

[70] P. Moscato. Memetic algorithms: A short introduction. In D. Corne,
M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pages 219–
234. McGraw-Hill, London, UK, 1999.

84 BIBLIOGRAPHY

[71] H. Mühlenbein and G. Paaß. From recombination of genes to estimation
of distributions. In H.-M. Voight, W. Ebeling, I. Rechenberg, and H.-
P. Schwefel, editors, Parallel Problem Solving from Nature – PPSN IV,
volume 1411 of Lecture Notes in Computer Science, pages 178–187, Berlin,
Germany, 1996. Springer Verlag.

[72] H. Mühlenbein and H.-M. Voigt. Gene pool recombination in genetic algo-
rithms. In I. H. Osman and J. P. Kelly, editors, Proceedings of the Meta-
heuristics Conference, Norwell, MA, 1995. Kluwer Academic Publishers.

[73] G. I. Nemhauser and A. L. Wolsey. Integer and Combinatorial Optimiza-
tion. John Wiley & Sons, New York, NY, 1988.

[74] I. Or. Traveling salesman-type combinatorial problems and their rela-
tion to the logistics of blood banking. PhD thesis, Nortwestern University,
Evanston, IL, 1976.

[75] I. Osman and G. Laporte. Metaheuristics: A Bibliography. Annals of
Operations Research, 63:513–623, 1996.

[76] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization - Algo-
rithms and Complexity. Dover Publications, Inc., New York, NY, 1982.

[77] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Nu-
merical Recipes in C. Cambridge University Press, Cambridge, UK, second
edition, 1993.

[78] N. J. Radcliffe. Forma analysis and random respectful recombination. In
Proceedings of the Fourth International Conference on Genetic Algorithms,
ICGA 1991, pages 222–229, San Mateo, CA, 1991. Morgan Kaufmann Pub-
lishers.

[79] I. Rechenberg. Evolution strategy: Optimization of technical systems by
means of biological evolution. Fromman-Holzboog, Stuttgart, Germany,
1973.

[80] D. Roberts and E. Hadjiconstantinou. A computational approach to the
vehicle routing problem with stochastic demands. In P. Borne, M. Ksouri,
and A. El Kamel, editors, Computational Engineering in Systems Applica-
tions, pages 139–144. IEEE Publications, Piscataway, NJ, 1998.

[81] N. Secomandi. Exact and heuristic dynamic programming algorithms for
the vehicle routing problem with stochastic demands. PhD thesis, University
of Houston, Houston, TX, 1998.

[82] N. Secomandi. A rollout policy for the vehicle routing problem with stochas-
tic demands. Operations Research, 49(5):796–802, 2001.

[83] W. M. Spears, K. A. De Jong, T. Bäck, D. B. Fogel, and H. de Garis. An
overview of evolutionary computation. In P. B. Brazdil, editor, Proceedings
of the European Conference on Machine Learning (ECML-93), volume 667
of Lecture Notes in Artificial Intelligence, pages 442–459, Berlin, Germany,
1993. Springer Verlag.

BIBLIOGRAPHY 85

[84] P. F. Stadler. Towards a theory of landscapes. In R. Lopéz-Peña,
R. Capovilla, and R. Garćıa-Pelayo, editors, Complex Systems and Binary
Networks, volume 461 of Lecture Notes in Physics, pages 77–163. Springer
Verlag, Berlin, Germany, 1995.

[85] P. F. Stadler. Landscapes and their correlation functions. Journal of Math-
ematical Chemistry, 20:1–45, 1996.

[86] T. Stützle. Local Search Algorithms for Combinatorial Problems - Analy-
sis, Algorithms and New Applications. PhD thesis, Technische Universität
Darmstadt, Darmstadt, Germany, 1998. Published in 1999 - Infix, Sankt
Augustin, Germany - volume 220 of DISKI.

[87] T. Stützle and M. den Besten. Guidelines for the production of software.
Internal document of the Metaheuristics Network, 2000.

[88] T. Stützle and M. Dorigo. A short convergence proof for a class of ACO
algorithms. IEEE Transactions on Evolutionary Computation, 6(4):358–
365, 2002.

[89] T. Stützle and H. Hoos. MAX–MIN Ant System. Future Generation
Computer System, 16(8):889–914, 2000.

[90] T. Stützle and H. Hoos. Analyzing the run-time behaviour of iterated
local search for the tsp. In P. Hansen and C. Ribeiro, editors, Essays and
Surveys on Metaheuristics, pages 589–612. Kluwer Academic Publishers,
Boston, MA, 2002.

[91] G. Syswerda. Simulated crossover in genetic algorithms. In Proceedings of
the second workshop on Foundations of Genetic Algorithms, pages 239–255,
San Mateo, CA, 1993. Morgan Kaufmann Publishers.

[92] S. Voss, S. Martello, I. Osman, and C. Roucairol. Meta-Heuristics - Ad-
vances and Trends in Local Search Paradigms for Optimization. Kluwer
Academic Publishers, Boston, MA, 1999.

[93] W. Yang, K. Mathur, and R. H. Ballou. Stochastic vehicle routing problem
with restocking. Transportation Science, 34(1):99–112, 2000.

[94] M. Zlochin, M. Birattari, N. Meuleau, and M. Dorigo. Model-based search
for combinatorial optimization: A critical survey. Annals of Operations
Research, 131:373–395, 2004.

