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Abstract. Most of model checkers found in the literature use exact
deterministic algorithms to check the properties. The memory required
for the verification with these algorithms usually grows in an exponential
way with the size of the system to verify. When the search for errors with
a low amount of computational resources (memory and time) is a priority
(for example, in the first stages of the implementation of a program), non-
exhaustive algorithms using heuristic information can be used. In this
work we summarize our observations after the application of Ant Colony
Optimization to find property violations in concurrent systems using a
explicit state model checker. The experimental studies show that ACO
finds optimal or near optimal error trails in faulty concurrent systems
with a reduced amount of resources, outperforming in most cases the
results of algorithms that are widely used in model checking, like Nested
Depth First Search. This fact makes ACO suitable for checking properties
in large faulty concurrent programs, in which traditional techniques fail
to find counterexamples because of the model size.

1 Introduction

Model checking [7] is a fully automatic technique that allows to check if a given
concurrent system satisfies a property like, for example, the absence of deadlocks,
the absence of starvation, the fulfilment of an invariant, etc. The use of this
technique is a must when developing software that controls critical systems, such
as an airplane or a spacecraft. However, the memory required for the verification
usually grows in an exponential way with the size of the system to verify. This
fact is known as the state explosion problem and limits the size of the system
that a model checker can verify.

When the search for errors with a low amount of computational resources
(memory and time) is a priority (e.g., in the first stages of the development),
non-exhaustive algorithms using heuristic information can be used. A well-known
class of non-exhaustive algorithms for solving complex problems is the class of
metaheuristic algorithms [3]. They are search algorithms used in optimization
problems that can find good quality solutions in a reasonable time. In this work
we summarize the approaches used for the application of one metaheuristic,
Ant Colony Optimization (ACO), to the problem of finding property violations
in concurrent systems. We also show the results of some experimental studies
analyzing the performance of the different approaches.



The paper is organized as follows. The next section presents the background
information. Section 3 describes our algorithmic proposals. In Section 4 we
present some experimental studies to analyze the performance of our propos-
als. We also compare our proposals against the most popular algorithms utilized
in model checking. Finally, Section 5 outlines the conclusions and future work.

2 Background

In this section we give some details on the way in which properties are checked in
explicit state model checking. In particular, we will focus on the model checker
HSF-SPIN [9], an experimental model checker by Edelkamp, Lluch-Lafuente and
Leue based on the popular model checker SPIN [12]. First, we formally define the
concept of property of a concurrent system and we detail how the properties are
checked. Then, we define the concepts of strongly connected components (SCC),
partial order reduction (POR) and the use of heuristic information.

2.1 Properties and Checking

Let S be the set of possible states of a program (concurrent system), S! the
set of infinite sequences of program states, and S∗ the set of finite sequences of
program states. The elements of S! are called executions and the elements of
S∗ are partial executions. However, (partial) executions are not necessarily real
(partial) executions of the program. The set of real executions of the program,
denoted by M , is a subset of S!, that is, M ⊆ S!. A property P is also a set
of executions, P ⊆ S!. We say that an execution � ∈ S! satisfies the property
P if � ∈ P , and � violates the property if � /∈ P . In the former case we use
the notation � ⊢ P , and the latter case is denoted with � ⊬ P . A property
P is a safety property if for all executions � that violate the property there
exists a prefix �i (partial execution) such that all the extensions of �i violate
the property. Formally,

∀� ∈ S! : � ⊬ P → (∃i ≥ 0 : ∀� ∈ S! : �i� ⊬ P) , (1)

where �i is the partial execution composed of the first i states of �. Some ex-
amples of safety properties are the absence of deadlocks and the fulfilment of
invariants. On the other hand, a property P is a liveness property if for all the
partial executions � there exists at least one extension that satisfies the property,
that is,

∀� ∈ S∗ : ∃� ∈ S!, �� ⊢ P . (2)

One example of liveness property is the absence of starvation. The only prop-
erty that is a safety and liveness property at the same time is the trivial property
P = S!. It can be proved that any given property can be expressed as an inter-
section of a safety and a liveness property [2].

In explicit state model checking the concurrent system M and the property
P are represented by finite state !-automata, A(M) and A(P ) respectively, that
accept those executions they contain. In HSF-SPIN (and SPIN) the automaton
A(P ), which captures the violations of the property, is called never claim. In



order to find a violation of a given property, HSF-SPIN explores the intersection
(or synchronous product) of the concurrent model and the never claim, A(M)∩
A(P ), also called Büchi automaton. HSF-SPIN searches in the Büchi automaton
for an execution � = ��! composed of a partial execution � ∈ S∗ and a cycle
of states � ∈ S∗ containing an accepting state. If such an execution is found it
violates the liveness component of the property and, thus, the whole property.
During the search, it is also possible to find a state in which the end state of the
never claim is reached (if any). This means that an execution has been found
that violates the safety component of the property and the partial execution
� ∈ S∗ that leads the model to that state violates the property.

Nested Depth First Search algorithm (NDFS) [11] is the most popular algo-
rithm for performing the search. However, if the property is a safety one (the
liveness component is true) the problem of finding a property violation is reduced
to find a partial execution � ∈ S∗, i.e., it is not required to find an additional
cycle containing the accepting state. In this case, classical graph exploration al-
gorithms such as Breadth First Search (BFS), or Depth First Search (DFS) can
be used for finding property violations.

2.2 Strongly Connected Components

In order to improve the search for property violations it is possible to take into
account the structure of the never claim. The idea is based on the fact that a
cycle of states in the Büchi automaton entails a cycle in the never claim (and in
the concurrent system). For improving the search first we need to compute the
strongly connected components (SCCs) of the never claim. Then, we classify the
SCCs into three categories depending on the accepting cycles they include. By
an N-SCC, we denote an SCC in which no cycle is accepting. A P-SCC is an SCC
in which there exists at least one accepting cycle and at least one non-accepting
cycle. Finally, a F-SCC is an SCC in which all the cycles are accepting [10].

All the cycles found in the Büchi automaton have an associated cycle in the
never claim, and, according to the definition of SCC, this cycle is included in
one SCC of the never claim. Furthermore, if the cycle is accepting (which is
the objective of the search) this SCC is necessarily a P-SCC or an F-SCC. The
classification of the SCCs of the never claim can be used to improve the search
for property violations. In particular, the accepting states in an N-SCC can be
ignored, and the cycles found inside an F-SCC can be considered as accepting.

2.3 Partial Order Reduction

Partial order reduction (POR) is a method that exploits the commutativity
of asynchronous systems in order to reduce the size of the state space. The
interleaving model in concurrent systems imposes an arbitrary ordering between
concurrent events. When the automaton of the concurrent system is built, the
events are interleaved in all possible ways. The ordering between independent
concurrent instructions is meaningless. Hence, we can consider just one ordering
for checking one given property since the other orderings are equivalent. This
fact can be used to construct a reduced state graph hopefully much easier to
explore compared to the full state graph (original automaton).



We use here a POR proposal based on ample sets. The main idea of ample
sets is to explore only a subset of the enabled transitions of each state such that
the reduced state space is equivalent to the full state space. This reduction of
the state space is performed on-the-fly while the graph is generated.

2.4 Using Heuristic Information

In order to guide the search to the accepting states, a heuristic value is associated
to each state of the transition graph of the model. Different kinds of heuristic
functions have been defined in the past to better guide exhaustive algorithms.
Formula-based heuristics, for example, are based on the expression of the LTL
formula checked [9]. Using the logic expression that must be false in an accepting
state, these heuristics estimate the number of transitions required to get such
an accepting state from the current one. Given a logic formula ', the heuristic
function for that formula H' is defined using its subformulae. In this work we
use a formula-based heuristic that is defined in [9].

There is another group of heuristic functions called state-based heuristics
that can be used when the objective state is known. From this group we can
highlight the distance of finite state machines Hfsm, in which the heuristic value
is computed as the sum of the minimum number of transitions required to reach
the objective state from the current one in the local automaton of each process.

3 Algorithmic proposals

In order to find property violations in concurrent systems we proposed in the past
an algorithm that we call ACOhg, a new variant of ACO [1]. This algorithm can
be used when the property to check is a safety property. In the case of liveness
properties we use a different algorithm, called ACOhg-live, that contains ACOhg
as a component. We describe ACOhg in the next section and ACOhg-live in
Section 3.2.

3.1 ACOhg algorithm

The objective of ACOhg is to find a path from the initial node to one objective
node from a set O in a very large exploration graph. We denote with f a function
that maps the paths of the graph into real numbers. This function must be
designed to reach minimum values when the shortest path to an objective node
is found. ACOhg minimizes this objective function. In Algorithm 1 we show the
pseudocode of ACOhg.

The algorithm works as follows. At the beginning, the variables are initialized
(lines 1-5). All the pheromone trails are initialized with the same value: a random
number between �min

0 and �max
0 . In the init set (initial nodes for the ants

construction), a starting path with only the initial node is inserted (line 1). This
way, all the ants of the first stage begin the construction of their path at the
initial node.

After the initialization, the algorithm enters in a loop that is executed until a
given maximum number of steps (msteps) set by the user is performed (line 6).
In a loop, each ant builds a path starting in the final node of a previous path



Algorithm 1 ACOhg
1: init = {initial node};
2: next init = ∅;
3: � = initializePheromone();
4: step = 1;
5: stage = 1;
6: while step ≤ msteps do

7: for k=1 to colsize do {Ant operations}

8: ak = ∅;
9: ak

1 = selectInitNodeRandomly (init);

10: while ∣ak∣ < �ant ∧ T (ak
∗) − ak ∕= ∅ ∧ ak

∗ /∈ O do

11: node = selectSuccessor (ak
∗ , T (ak

∗), � ,�);

12: ak = ak + node;
13: � = localPheromoneUpdate(� ,�,node);
14: end while

15: next init = selectBestPaths(init, next init, ak);

16: if f(ak) < f(abest) then

17: abest = ak;
18: end if

19: end for

20: � = pheromoneEvaporation(� , �);

21: � = pheromoneUpdate(� , abest);
22: if step ≡ 0 mod �s then

23: init = next init;
24: next init = ∅;
25: stage = stage+1;
26: � = pheromoneReset();
27: end if

28: step = step + 1;
29: end while

(line 9). This path is randomly selected from the init set. For the construction
of the path, the ants enter a loop (lines 10-14) in which each ant k stochastically
selects the next node according to the pheromone (�ij) and the heuristic value
(�ij) associated to each arc (ak∗ , j) with j ∈ T (ak∗) (line 11). The expression used
is the standard random proportional rule used in ACOs [8].

After the movement of an ant from a node to the next one the pheromone trail
associated to the arc traversed is updated as in Ant Colony Systems (ACS) [8]
using the expression �ij ← (1− �)�ij (line 13) where �, with 0 < � < 1, controls
the evaporation of the pheromone during the construction phase. This mecha-
nism increases the exploration of the algorithm, since it reduces the probability
that an ant follows the path of a previous ant in the same step. The construction
process is iterated until the ant reaches the maximum length �ant, it finds an
objective node, or all the successors of the last node of the current path, T (ak∗),
have been visited by the ant during the construction phase. This last condition
prevents the ants from constructing cycles in their paths.

After the construction phase, the ant is used to update the next init set
(line 15), which will be the init set in the next stage. In next init, only starting
paths are allowed and all the paths must have different last nodes. This rule is
ensured by selectBestPaths. The cardinality of next init is bounded by a
given parameter �. When this limit is reached and a new path must be included
in the set, the starting path with higher objective value is removed from the set.



When all the ants have built their paths, a pheromone update phase is per-
formed. First, all the pheromone trails are reduced according to the expression
�ij ← (1− �)�ij (line 20), where � is the pheromone evaporation rate and it
holds that 0 < � ≤ 1. Then, the pheromone trails associated to the arcs tra-
versed by the best-so-far ant (abest) are increased using the expression �ij ←
�ij+1/f(abest), ∀(i, j) ∈ abest (line 21). This way, the best path found is awarded
with an extra amount of pheromone and the ants will follow that path with higher
probability in the next step. We use here the mechanism introduced in Max-Min
Ant Systems (ℳℳAS) [8] for keeping the value of pheromone trails in a given
interval [�min, �max] in order to maintain the probability of selecting one node
above a given threshold. The values of the trail limits are �max = 1/�f(abest)
and �min = �max/a where the parameter a controls the size of the interval.

Finally, with a frequency of �s steps, a new stage starts. The init set is
replaced by next init and all the pheromone trails are removed from memory
(lines 22-27). In addition to the pheromone trails, the arcs to which the removed
pheromone trails are associated are also discarded (unless they also belong to a
path in next init). This removing step allows the algorithm to reduce the amount
of memory required to a minimum value. This minimum amount of memory is
the one utilized for storing the best paths found in one stage (the next init set).

3.2 ACOhg-live

In this section we present ACOhg-live, an algorithm based on ACOhg for search-
ing for general property violations in concurrent systems. In Algorithm 2 we show
a high level object oriented pseudocode of ACOhg-live. We assume that acohg1
and acohg2 are two instances of a class implementing ACOhg.

The search that ACOhg-live performs is composed of two different phases. In
the first one, ACOhg is used for finding accepting states in the Büchi automaton
(line 2 in Algorithm 2). In this phase, the search of ACOhg starts in the initial
node of the graph q and the set of objective nodes O is empty. That is, although
the algorithm searches for accepting states, there is no preference on a specific set
of them. If the algorithm finds accepting states, in a second phase a new search is
performed using ACOhg again for each accepting state discovered (lines 3 to 8).
In this second search the objective is to find a cycle involving the accepting
state. The search starts in one accepting state and the algorithm searches for
the same state in order to find a cycle. That is, the initial node of the search
and the only objective node are the same: the accepting state. If a cycle is found
ACOhg-live returns the complete accepting path (line 6). If no cycle is found for
any of the accepting states ACOhg-live runs again the first phase after including
the accepting states in a tabu list (line 9). This tabu list prevents the algorithm
from searching again cycles containing the just explored accepting states. If one
of the accepting states in the tabu list is reached it will not be included in the list
of accepting states to be explored in the second phase. ACOhg-live alternates
between the two phases until no accepting state is found in the first one (line 10).

The algorithm can also stop its search due to another reason: an end state has
been found. That is, when an end state is found either in the first or the second
phase of the search the algorithm stops and returns the path from the initial



Algorithm 2 ACOhg-live
1: repeat

2: accpt = acohg1.findAcceptingStates(); {First phase}
3: for node in accpt do

4: acohg2.findCycle(node); {Second phase}
5: if acohg2.cycleFound() then

6: return acohg2.acceptingPath();
7: end if

8: end for

9: acohg1.insertTabu(accpt);
10: until empty(accpt)
11: return null;

state to that end state. If this happens, an execution of the concurrent system
has been found that violates the safety component of the checked property.

When the property to check is the absence of deadlocks only the first phase
of the search is required. In this case, ACOhg-live searches for deadlock states
(states with no successors) instead of accepting states. When a deadlock state
is found the algorithm stops returning the path from the initial state to that
deadlock state. The second phase of the search, the objective of which is to find
an accepting cycle, is never run in this situation.

Now we are going to give the details of the ACOhg algorithms used inside
ACOhg-live. First of all, we use a node-based pheromone model, that is, the
pheromone trails are associated to the nodes instead of the arcs. This means
that all the values �xj associated to the arcs which head is node j are in fact the
same value and is associated to node j. The heuristic values �ij are defined after
the heuristic function H using the expression �ij = 1/(1 +H(j)). This way, �ij
increases when H(j) decreases (high preference to explore node j).

Finally, the objective function f to be minimized is defined as

f(ak) =

{

∣� + ak∣ if ak
∗ ∈ O

∣� + ak∣ + H(ak
∗) + pp + pc

�ant−∣ak∣
�ant−1 if ak

∗ /∈ O ,
(3)

where � is the starting path in init whose last node is the first one of ak, pp, and
pc are penalty values that are added when the ant does not end in an objective
node and when ak contains a cycle, respectively. The last term in the second row
of Eq. (3) makes the penalty higher in shorter cycles (see [4] for more details).

4 Experimental studies

In this section we present some experimental studies aimed at analyzing the
performance of our ACO proposals for the problem of finding property violations
in concurrent systems. In the following section we present the Promela models
used in the experimentation. Then we show the results of four different analyses:
two of them related to the violation of safety properties and the other two related
to liveness properties. In all the cases, 100 independent runs of the ACOhg
algorithms are performed and the average and the standard deviation are shown.



4.1 Models

In the empirical studies we used nine Promela models, some of them scalable. In
Table 1 we present the models with some information about them. They can be
found in oplink.lcc.uma.es together with the HSF-SPIN and ACOhg source
code. In the table we also show the safety and liveness properties that we check
in the models.

Table 1. Promela models used in the experiments

Model LoC Processes Safety property Liveness property

phij 57 j + 1 deadlock □(p → ♢q)
giopi, j 740 i + 3(j + 1) deadlock □(p → ♢q)
marriersj 142 j + 1 deadlock
leaderj 178 j + 1 assertion
needham 260 4 LTL formula
pots 453 8 deadlock
alter 64 2 □(p → ♢q) ∧ □(r → ♢s)
elevj 191 j + 3 □(p → ♢q)
sgc 1001 20 ♢p

4.2 Safety properties

In this section we compare the results obtained with ACOhg for safety prop-
erties against the ones obtained with exact algorithms previously found in the
literature. These algorithms are Breadth First Search (BFS), Depth First Search
(DFS), A∗, and Best First Search (BF). BFS and DFS do not use heuristic in-
formation while the other two do. In order to make a fair comparison we use
two different ACOhg algorithms: one not using heuristic information (ACOhg-b)
and another one using it (ACOhg-h). We show the results of all the algorithms
in Table 2. In the table we can see the hit rate (number of executions that got an
error trail), the length of the error trails found (number of states), the memory
required (in Kilobytes), and the CPU time used (in milliseconds) by each algo-
rithm. We highlight with a grey background the best results (maximum values
for hit rate and minimum values for the rest of the measures). For ACOhg-b
and ACOhg-h we omit here the standard deviation due to room problems. The
parameters used in the ACOhg algorithms are the ones of [1].

In general terms, we can state that ACOhg-b is a robust algorithm that is
able to find errors in all the proposed models with a low amount of memory. In
addition, it combines the two good features of BFS and DFS: it obtains short
error trails, like BFS, while at the same time requires a reduced CPU time, like
DFS. Regarding the algorithms using heuristic information, we can state that
ACOhg-h is the best trade-off between solution quality and memory required: it
obtains almost optimal solutions with a reduced amount of memory.

4.3 Influence of POR

In this section we are going to analyze how the combination of partial order
reduction plus ACOhg can help in the search for safety property violations in
concurrent models. In Table 3 we present the results of applying ACOhg and
ACOhgPOR to nine models: three instances of giop, marriers, and leader. The
hit rate is always 100 %, and for this reason we omit it. In order to clarify that



Table 2. Results of ACOhg-b and ACOhg-h against the exhaustive algorithms.

Model Measure BFS DFS ACOhg-b A∗ BF ACOhg-h

giop2,2

Hit rate 0/1 1/1 100/100 1/1 1/1 100/100
Length - 112.00 45.80 44.00 44.00 44.20
Mem. (KB) - 3945.00 4814.12 417792.00 2873.00 4482.12
Time (ms) - 30.00 113.60 46440.00 10.00 112.40

marriers4

Hit rate 0/1 0/1 57/100 0/1 1/1 84/100
Length - - 92.18 - 108.00 86.65
Mem. (KB) - - 5917.91 - 41980.00 5811.43
Time (ms) - - 257.19 - 190.00 233.33

needham

Hit rate 1/1 1/1 100/100 1/1 1/1 100/100
Length 5.00 11.00 6.39 5.00 10.00 6.12
Mem. (KB) 23552.00 62464.00 5026.36 19456.00 4149.00 4865.40
Time (ms) 1110.00 18880.00 262.00 810.00 20.00 229.50

phi16

Hit rate 0/1 0/1 100/100 1/1 1/1 100/100
Length - - 31.44 17.00 81.00 23.08
Mem. (KB) - - 10905.60 2881.00 10240.00 10680.32
Time (ms) - - 289.40 10.00 40.00 243.80

pots

Hit rate 1/1 1/1 49/100 1/1 1/1 99/100
Length 5.00 14.00 5.73 5.00 7.00 5.44
Mem. (KB) 57344.00 12288.00 9304.67 57344.00 6389.00 6974.56
Time (ms) 4190.00 140.00 441.63 6640.00 50.00 319.49

the reduced amount of memory required by the ACOhg algorithms is not due
to the use of the heuristic information, we also show the results obtained with
A∗ for all the models using the same heuristic functions as the ACOhg algo-
rithms. This clearly states that memory reduction is a very appealing attribute
of ACOhg itself.

Table 3. Comparison among ACOhg, ACOhgPOR and A∗.

Model Measure ACOhg ACOhgPOR A∗

giop2,1

Length 42.30 1.71 42.10 0.99 42.00
Mem. (KB) 3428.44 134.95 2979.48 98.33 27648.00
Time (ms) 202.00 9.06 162.50 5.55 1000.00

giop4,1

Length 70.21 7.56 59.76 5.79 -
Mem. (KB) 9523.67 331.76 7420.08 422.94 -
Time (ms) 354.50 42.39 264.90 40.46 -

giop6,1

Length 67.59 13.43 61.74 3.16 -
Mem. (KB) 11970.56 473.59 11591.68 477.67 -
Time (ms) 440.60 71.02 391.70 43.86 -

leader6

Length 50.90 4.52 56.36 3.04 37.00
Mem. (KB) 16005.12 494.39 3710.64 410.29 132096.00
Time (ms) 494.00 21.12 98.80 8.16 1250.00

leader8

Length 60.83 4.66 74.11 4.51 -
Mem. (KB) 24381.44 515.98 4831.40 114.10 -
Time (ms) 1061.20 211.47 198.90 4.67 -

leader10

Length 73.84 4.79 80.86 6.36 -
Mem. (KB) 30167.04 586.82 7178.05 2225.78 -
Time (ms) 1910.70 45.02 294.90 66.96 -

marriers10

Length 307.11 34.87 233.19 21.91 -
Mem. (KB) 34170.88 494.39 18319.36 804.93 -
Time (ms) 8847.00 634.06 1306.60 126.56 -

marriers15

Length 540.41 60.88 395.10 40.07 -
Mem. (KB) 51148.80 223.18 26050.56 1256.81 -
Time (ms) 19740.50 1935.54 3595.00 316.59 -

marriers20

Length 793.62 80.45 569.99 54.63 -
Mem. (KB) 68003.84 503.64 33351.68 1442.75 -
Time (ms) 49446.30 7557.40 8174.00 707.71 -



From the results in the table we conclude that the memory required by
ACOhgPOR is always smaller than the one required by ACOhg. The length of
the error paths is smaller for ACOhgPOR in six out of the nine models. Finally,
the CPU time required by ACOhgPOR is up to 6.8 times lower (in marriers10)
than the time required by ACOhg. Although it is not our objective to optimize
the length of the error paths in this work, we can say that, in six out of the nine
models, the length of the error paths obtained by ACOhgPOR is shorter than the
one obtained by ACOhg. We finally also remind that other popular algorithm
like A* cannot even be applied to most of these instances (only giop2,1 and
leader6 can be tackled with A∗), and thus we are investigating in a new frontier
of high dimension models usually not found in literature.

4.4 Liveness Results

In the next experiment we compare the results obtained with ACOhg-live against
the classical algorithm utilized for finding liveness errors in concurrent systems:
Nested-DFS. This last algorithm is deterministic and for this reason we only
perform one single run. In Table 4 we show the results of both algorithms. We
also show the results of a statistical test (with level of significance � = 0.05) in
order to check if there exist statistically significant differences (last column). A
plus sign means that the difference is significant and a minus sign means that it
is not. For more details on the experiments see [5].

Table 4. Comparison between ACOhg-live and Nested-DFS

Model Measure ACOhg-live Nested-DFS Test

alter

Hit rate 100/100 1/1 -
Length 30.68 10.72 64.00 +
Mem. (KB) 1925.00 0.00 1873.00 +
Time (ms) 90.00 13.86 0.00 +

giop2,2

Hit rate 100/100 1/1 -
Length 43.76 5.82 298.00 +
Mem. (KB) 2953.76 327.48 7865.00 +
Time (ms) 747.50 408.09 240.00 +

giop6,2

Hit rate 100/100 0/1 +
Length 58.77 7.21 ∙ ∙
Mem. (KB) 5588.04 631.36 ∙ ∙
Time (ms) 8733.50 3304.90 ∙ ∙

giop10,2

Hit rate 86/100 0/1 +
Length 62.85 7.03 ∙ ∙
Mem. (KB) 9316.67 700.44 ∙ ∙
Time (ms) 43059.07 21417.74 ∙ ∙

phi8

Hit rate 100/100 1/1 -
Length 51.36 6.95 3405.00 +
Mem. (KB) 2014.32 18.87 4005.00 +
Time (ms) 2126.10 479.64 40.00 +

phi14

Hit rate 99/100 1/1 -
Length 76.05 9.35 10001.00 +
Mem. (KB) 2496.07 41.81 59392.00 +
Time (ms) 8070.30 1530.12 2300.00 +

phi20

Hit rate 98/100 1/1 -
Length 97.39 10.14 10001.00 +
Mem. (KB) 3244.67 91.33 392192.00 +
Time (ms) 18064.90 5538.30 17460.00 -

The first observation concerning the hit rate is that ACOhg-live is the only
one that is able to find error paths in all the models. Nested-DFS is not able



to find error paths in giop6,2 and giop10,2 because it requires more than
the memory available in the machine used for the experiments (512 MB). With
respect to the length of the error paths we observe that ACOhg-live obtains
shorter error executions than Nested-DFS in all the models (with statistical
significance). If we focus on the computational resources we observe that ACOhg-
live requires less memory than Nested-DFS to find the error paths with the only
exception of alter. The biggest differences are those of giop6,2 and giop10,2

in which Nested-DFS requires more than 512 MB of memory while ACOhg-live
obtains error paths with 38 MB at most. With respect to the time required for
the search, Nested-DFS is faster than ACOhg-live. The mechanisms included in
ACOhg-live in order to be able to find short error paths with high hit rate and
low amount of memory extend the time required for the search. Anyway, the
maximum difference with respect to the time is around six seconds (in phi14),
which is not too much if we take into account that the error path obtained is
much shorter.

4.5 Influence of the SCC improvement

In this final study we compare two versions of the ACOhg-live algorithm: one
of them using the SCC improvement (called ACOhg-live+ in the following) and
the other one without that improvement (called ACOhg-live−). With this exper-
iment we want to analyze the influence on the results of the SCC improvement.
All the properties checked in the experiments have at least one F-SCC in the
never claim; none of them has a P-SCC; and all except sgc have exactly one
N-SCC. In Table 5 we show the results. For more details on the experiments
see [6].

Table 5. Influence of the SCC improvement

Model Measure ACohg-live− ACOhg-live+ T Model ACohg-live− ACOhg-live+ T

giop10,2

Hit rate 84/100 89/100 -

elev10

100/100 100/100 -
Length 68.57

5.29
67.60

6.09
- 126.56

18.32
127.76

16.89
-

Mem. (KB) 6375.90 542.50 5098.75 1580.90 + 2617.60 7.93 2617.04 9.72 -

Time (ms) 7816.55
4779.41

935.84
1009.74

+ 2577.30
2258.38

2372.90
1963.04

-

giop15,2

Hit rate 46/100 57/100 -

elev15

100/100 100/100 -
Length 81.26

3.64
78.30

6.49
+ 182.02

9.75
180.04

16.83
-

Mem. (KB) 9001.17 483.22 8538.54 1610.63 - 3163.56 10.98 3164.64 13.44 -

Time (ms) 11725.65
7307.22

2016.84
1254.88

+ 2683.00
3274.20

2812.10
3540.73

-

giop20,2

Hit rate 14/100 30/100 +

elev20

100/100 100/100 -
Length 93.29

2.08
88.47

4.72
+ 233.00

0.00
231.62

13.73
-

Mem. (KB) 11132.71 894.26 10403.17 1920.50 - 3716.44 13.15 3716.92 11.29 -

Time (ms) 11360.00
4564.72

2575.33
1103.46

+ 3900.60
7141.02

3034.00
4709.07

-

phi20

Hit rate 98/100 97/100 -

alter

100/100 100/100 -
Length 88.29

6.91
108.73

10.08
+ 10.00

0.00
15.82

6.74
+

Mem. (KB) 3398.63 34.05 3385.04 63.41 - 1929.00 0.00 1929.00 0.00 -

Time (ms) 5162.04
645.64

851.75
1462.71

+ 241.80
59.35

10.40
3.98

+

phi30

Hit rate 94/100 95/100 -

sgc

32/100 100/100 +
Length 122.60

9.58
139.15

9.06
+ 24.00

0.00
24.00

0.00
-

Mem. (KB) 5146.62 44.70 5148.12 57.48 - 2699.00 23.13 2285.00 0.00 +

Time (ms) 10980.64
2156.73

2701.79
3876.34

+ 575191.88
62021.86

710.20
48.58

+

phi40

Hit rate 77/100 81/100 -
Length 154.74

9.74
166.83

9.44
+

Mem. (KB) 7573.68 66.50 7545.35 81.04 +

Time (ms) 20422.60
5795.93

5807.41
7588.17

+

From the results in Table 5, we conclude that the use of the SCC improvement
increases the hit rate and decreases the computational resources required for the
search. The length of error paths could be slightly increased depending on the
particular model.



5 Conclusions and Future Work

In this paper we summarize our observations using ACO algorithms for the prob-
lem of searching for property violations in concurrent systems. The numerical
results shown here are an excerpt from the research work performed during the
last two years on this topic. From the results we conclude that ACO algorithms
are promising for the model checking domain. They can find short error trails
using a low amount of computational resources.

At present, we are investigating how other metaheuristic algorithms perform
on this problem. We are also working on new heuristic functions that can guide
the search in a better way. As future work, we plan to design and develop new
models of parallel ACO algorithms in order to profit from the computational
power of a cluster or a grid of computers.
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