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Abstract—Operation scheduling (OS) is a fundamental problem
in mapping an application to a computational device. It takes a
behavioral application specification and produces a schedule to
minimize either the completion time or the computing resources
required to meet a given deadline. The OS problem is NP-hard;
thus, effective heuristic methods are necessary to provide qualita-
tive solutions. We present novel OS algorithms using the ant colony
optimization approach for both timing-constrained scheduling
(TCS) and resource-constrained scheduling (RCS) problems. The
algorithms use a unique hybrid approach by combining the
MAX–MIN ant system metaheuristic with traditional scheduling
heuristics. We compiled a comprehensive testing benchmark set
from real-world applications in order to verify the effectiveness
and efficiency of our proposed algorithms. For TCS, our algorithm
achieves better results compared with force-directed scheduling on
almost all the testing cases with a maximum 19.5% reduction of
the number of resources. For RCS, our algorithm outperforms a
number of different list-scheduling heuristics with better stability
and generates better results with up to 14.7% improvement. Our
algorithms outperform the simulated annealing method for both
scheduling problems in terms of quality, computing time, and
stability.

Index Terms—Force-directed scheduling (FDS), list scheduling,
operation scheduling (OS), MAX–MIN ant system (MMAS).

I. INTRODUCTION

A S THE fabrication technology advances and transistors
become more plentiful, modern computing systems can

achieve better system performance by increasing the amount
of computation units. It is estimated that we will be able to
integrate more than half a billion transistors on a 468-mm2 chip
by the year 2009 [1]. This yields tremendous potential for future
computing systems; however, it imposes big challenges on how
to effectively use and design such complicated systems.

As computing systems become more complex, so do the
applications that can run on them. Designers will increasingly
rely on automated design tools in order to map applications
onto these systems. One fundamental process of these tools is
mapping a behavioral application specification to the comput-
ing system. For example, the tool may take a C function and
create the code to program a microprocessor. This is viewed as
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software compilation. Or the tool may take a transaction level
behavior and create a register transfer level circuit description.
This is called hardware or behavioral synthesis. Both software
and hardware synthesis flows are essential for the use and
design of future computing systems.

Operation scheduling (OS) is an important problem in soft-
ware compilation and hardware synthesis. An inappropriate
scheduling of the operations can fail to exploit the full potential
of the system. OS appears in a number of different problems,
e.g., compiler design for superscalar and very long instruction
word microprocessors [2], distributed clustering computation
architectures [3], and behavioral synthesis of application-
specified integrated circuit (ASICs) and field-programmable
gate arrays (FPGAs) [4]. In this paper, we focus on OS for
behavioral synthesis for ASICs/FPGAs. However, the basic
algorithms proposed here can be modified to handle a wide
variety of OS problems.

OS is performed on a behavioral description of the appli-
cation. This description is typically decomposed into several
blocks (e.g., basic blocks), and each of the blocks is represented
by a data flow graph (DFG). Fig. 1 shows an example DFG for
a 1-D eight-point fast discrete cosine transformation (DCT).

OS can be classified as resource-constrained scheduling
(RCS) or timing-constrained scheduling (TCS). Given a DFG,
clock cycle time, resource count, and resource delays, an RCS
finds the minimum number of clock cycles needed to execute
the DFG. On the other hand, TCS tries to determine the
minimum number of resources needed for a given deadline.

In the TCS problem (also called fixed control step schedul-
ing), the target is to find the minimum computing resource
cost under a set of given types of computing units and a
predefined latency deadline. For example, in many digital signal
processing (DSP) systems, the sampling rate of the input data
stream dictates the maximum time allowed for computation on
the present data sample before the next sample arrives. Since
the sampling rate is fixed, the main objective is to minimize the
cost of the hardware. Given the clock cycle time, the sampling
rate can be expressed in terms of the numbers of cycles that are
required to execute the algorithm.

RCS is also found frequently in practice. This is because
in many cases, the number of resources is known a priori.
For instance, in software compilation for microprocessors, the
computing resources are fixed. In hardware compilation, DFGs
are often constructed and scheduled almost independently. Fur-
thermore, if we want to maximize resource sharing, each block
should use same or similar resources, which is hardly ensured
by time-constrained schedulers. The time constraint of each
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Fig. 1. DFG of the COSINE2 benchmark (“r” is for memory read and “w” for memory write).

block is not easy to define since blocks are typically serialized
and budgeting global performance constraint for each block is
not trivial.

OS methods can be further classified as static scheduling
and dynamic scheduling [5]. Static OS is performed during the
compilation of the application. Once an acceptable scheduling
solution is found, it is deployed as part of the application
image. In dynamic scheduling, a dedicated system component
makes scheduling decisions on-the-fly. Dynamic scheduling
methods must minimize the program’s completion time while
considering the overhead paid for running the scheduler.

In this paper, we focus on both resource- and timing-
constrained static OS. We propose iterative algorithms based
on the MAX–MIN ant colony optimization (ACO) for solving
these problems. In our algorithms, a collection of agents (ants)
cooperate together to search for a solution. Global and local
heuristics are combined in a stochastic decision-making process
in order to efficiently explore the search space. The quality of
the resultant schedules is evaluated and fed back to dynamically
adjust the heuristics for future iterations. The main contribution
of this paper is the formulation of scheduling algorithms that:

1) utilize a unique hybrid approach combining traditional
heuristics and the recently developed MAX–MIN ant
system (MMAS) optimization [6];

2) dynamically use local and global heuristics based on the
input application to adaptively search the solution space;

3) generate consistently good scheduling results over all
testing cases compared with a range of list-scheduling
heuristics, force-directed scheduling (FDS), simulated
annealing (SA), and the optimal integer linear program-
ming (ILP) solution, and demonstrate stable quality over
a variety of application benchmarks of large size.

This paper is organized as follows: We formally define the
TCS and RCS problems in Section II. In Section III, we give
a brief review on the MAX–MIN ACO. Then, in Sections IV
and V, we present two hybrid approaches combining traditional
scheduling heuristics with the MMAS optimization to solve the
TCS and RCS problems, respectively. We discuss the construc-
tion of our benchmarks in Section VI. Experimental results for

the new algorithms are presented and analyzed in Section VII.
In Section VIII, we compare this paper with a related study. We
conclude with Section IX.

II. PRELIMINARIES

A. OS Problem Definition

Given a set of operations and a collection of computational
units, the RCS problem schedules the operations onto the
computing units such that the execution time of these operations
is minimized while respecting the capacity limits imposed by
the number of computational resources. The operations can
be modeled as a DFG G(V,E), where each node vi ∈ V (i =
1, . . . , n) represents an operation opi, and the edge eij denotes a
dependency between operations vj and vi. A DFG is a directed
acyclic graph where the dependencies define a partially ordered
relationship (denoted by the symbol �) among the nodes.
Without affecting the problem, we add two virtual nodes “root”
and “end,” which are associated with no operation (NOP). We
assume that “root” is the only starting node in the DFG, i.e., it
has no predecessors, and node “end” is the only exit node, i.e.,
it has no successors.

Additionally, we have a collection of computing resources,
e.g., ALUs, adders, and multipliers. There areR different types,
and rj > 0 gives the number of units for resource type j
(1 � j � R). Furthermore, each operation defined in the DFG
must be executable on at least one type of resource. When
each of the operations is uniquely associated with one resource
type, we call it “homogenous” scheduling. If an operation
can be performed by more than one resource type, we call it
“heterogeneous” scheduling [7]. Moreover, we assume that the
cycle delays for each operation on different types of resources
are known as d(i, j). Of course, “root” and “end” have zero
delays. Finally, we assume that the execution of the operations
is non-preemptive, that is, once an operation starts execution, it
must finish without being interrupted.

An RCS is given by the vector

{(sroot, froot), (si, fi), . . . , (send, fend)}
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where si and fi indicate the starting and finishing times of
the operation opi. The RCS problem is formally defined as
min(send) with respect to the following conditions.

1) An operation can only start when all its predecessors have
finished, i.e., si � fj if opj � opi.

2) At any given cycle t, the number of resources needed is
constrained by rj for all 1 � j � R.

The TCS is a dual problem of the RCS version and can be
defined using the same terminology presented above. Here, the
target is to minimize total resources Σjrj or the total cost of the
resources (e.g., the hardware area needed) subject to the same
dependencies between operations imposed by the DFG and a
given deadline D, i.e., send < D.

B. Related Work

Many variants of the OS problem areNP-hard [8]. Although
it is possible to formulate and solve them using ILP [9], the
feasible solution space quickly becomes intractable for larger
problem instances. In order to address this problem, a range
of heuristic methods with polynomial runtime complexity has
been proposed.

Many TCS algorithms used in high-level synthesis are
derivatives of the FDS algorithm presented in [10] and [11].
Verhaegh et al. [12], [13] provide a theoretical treatment on the
original FDS algorithm and report better results by applying
gradual time-frame reduction and the use of global spring con-
stants in the force calculation. Due to the lack of a look-ahead
scheme, the FDS algorithm is likely to produce a suboptimal
solution. One way to address this issue is the iterative method
proposed by Park and Kyung [14] based on Kernighan and
Lin’s heuristic [15] method used for solving the graph-bisection
problem. In their approach, each operation is scheduled into an
earlier or later step using the move that produces the maximum
gain. Then, all the operations are unlocked, and the whole
procedure is repeated with this new schedule. The quality of
the result produced by this algorithm is highly dependent upon
the initial solution. More recently, Heijligers and Jess [16] and
InSyn [17] use evolutionary techniques like genetic algorithms
and simulated evolution.

There are a number of algorithms for the RCS problem,
including list scheduling [7], [18], FDS [10], genetic algo-
rithm [19], tabu search [20], SA [21], and graph-theoretic and
computational geometry approaches [3]. Among them, list
scheduling is the most common due to its simplicity of imple-
mentation and capability of generating reasonably good results
for small-sized problems. The success of the list scheduler is
highly dependent on the priority function and the structure of
the input application (DFG) [4], [21], [22]. One commonly used
priority function assigns the priority inversely proportional to
the mobility. This ensures that the scheduling of operations with
large mobilities is deferred because they have more flexibility
as to where they can be scheduled. Many other priority func-
tions have been proposed [18], [19], [22], [23]. However, it
is commonly agreed that there is no single good heuristic for
prioritizing the DFG nodes across a range of applications using
list scheduling. Our results in Section VII confirm this.

III. ACO

Before we describe our ACOs for OS, we give a brief
description of ACO metaheuristic and define terminology that
we later use in our ACO formulations. Those familiar with ACO
can skip or skim this section.

A. Basic ACO

The ACO algorithm, originally introduced by Dorigo et al.
[24], is a cooperative heuristic searching algorithm inspired by
ethological studies on the behavior of ants. It was observed [25]
that ants—who lack sophisticated vision—manage to establish
the optimal path between their colony and a food source within
a very short period of time. This is done through indirect
communication known as “stigmergy” via the chemical sub-
stance, or “pheromone,” left by the ants on the paths. Each
individual ant makes a decision on its direction biased on the
“strength” of the pheromone trails that lie before it, where a
higher amount of pheromone hints a better path. As an ant
traverses a path, it reinforces that path with its own pheromone.
A collective autocatalytic behavior emerges as more ants will
choose the shorter trails, which in turn creates an even larger
amount of pheromone on those short trails, making them more
likely to be chosen by future ants. The ACO algorithm is
inspired by this observation. It is a population-based approach
where a collection of agents cooperate together to explore the
search space. They communicate via a mechanism imitating the
pheromone trails.

One of the first problems to which ACO was successfully
applied was the traveling salesman problem (TSP) [24], and
it gave competitive results compared with traditional methods.
The TSP can be modeled as a complete weighted directed graph
G = (V,E, d), where V = {1, 2, . . . , n} is a set of vertices or
cities, E = {(i, j)|(i, j) ∈ V × V } is a set of edges, and d is
a function that associates a numeric weight dij for each edge
(i, j) in E. This weight is naturally interpreted as the distance
between cities i and j. The objective is to find a Hamiltonian
path for G that gives the minimal length.

In order to solve the TSP problem, ACO associates a
pheromone trail τij for each edge (i, j) in E. The pheromone
indicates the attractiveness of the edge and serves as a dis-
tributed global heuristic. Initially, τij is set with some fixed
value τ0. For each iteration, m ants are released randomly on
the cities, and each starts to construct a tour. Every ant will
have memory about the cities it has visited so far in order
to guarantee the constructed tour is a Hamiltonian path. If at
step t the ant is at city i, the ant chooses the next city j
probabilistically using

pij =

{
τij(t)

α·ηβ
ij

Σk(τα
ik

(t)·ηβ
ik)
, if is j not visited

0, otherwise
(1)

where the edges (i, k) are all the allowed moves from i, ηik

is a local heuristics that is defined as the inverse of dij , and
α and β are parameters to control the relative influence of
the distributed global heuristic τik and local heuristic ηik,
respectively. Intuitively, the ant favors a decision on an edge
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that possesses higher volume of pheromone and better local
distance. At the end of each iteration, the pheromone trails are
updated. More specifically, we have

τij(t) = ρ · τij(t) +
m∑

k=1

∆τk
ij(t), where 0 < ρ < 1. (2)

Here, ρ is the evaporation ratio within the range [0,1],
and ∆τk

ij = Q/Lk if edge (i, j) is included in the tour ant
k constructed, otherwise ∆τk

ij = 0. Q is a fixed constant to
control the delivery rate of the pheromone, while Lk is the tour
length for ant k. Two important operations are performed in
this updating process. The evaporation operation is necessary
for the ACO to be effective in exploring different parts of
the search space, while the reinforcement operation ensures
that frequently used edges and edges contained in the better
tours receive a higher volume of pheromone and will have a
better chance of being selected in the future iterations of the
algorithm. The above process is repeated multiple times until
a certain ending condition is reached. The best result found by
the algorithm is reported.

Researchers have since formulated ACO methods for a vari-
ety of traditional NP-hard problems. These problems include
the maximum clique problem [26], the quadratic assignment
problem [27], the graph coloring problem [28], the shortest
common supersequence problem [29], [30], and the multiple
knapsack problem [31]. ACO has also been applied to practical
problems such as the vehicle routing problem [32], data mining
[33], network routing problem [34], and the system-level task
partitioning problem [35]–[37].

Premature convergence to local minima is a critical algo-
rithmic issue that can be experienced by all evolutionary al-
gorithms. Balancing exploration and exploitation is not trivial
in these algorithms, especially for algorithms that use positive
feedback such as ACO. This problem was formally investi-
gated in [38]. It was shown that ACO with a time-dependent
evaporation factor or a time-dependent lower-pheromone bound
converges to an optimal solution with probability of exactly
one. Similar to the optimality proof for the SA metaheuristic,
such a global convergence guarantee can be obtained by a
suitable speed of “cooling” (i.e., reduction of the influence
of randomness). Although they failed in providing any con-
structive approach, the authors suggested that it is theoretically
achievable by decreasing the evaporation factors or by slowly
decreasing the lower-pheromone bounds.

B. MMAS

MMAS [6] is built upon the original ACO algorithm and
is specifically designed to address the premature convergence
problem. It improves the original ACO by providing dynam-
ically evolving bounds on the pheromone trails such that the
heuristic value is always within a limit to that of the best path.
As a result, all possible paths will have a nontrivial probability
of being selected and thus encourages broader exploration of
the search space.

More specifically, MMAS forces the pheromone trails to
be limited within evolving bounds, that is, for iteration t,

τmin(t) � τij(t) � τmax(t). If we use f to denote the cost
function of a specific solution S, the upper bound τmax [6] is
shown as

τmax(t) =
1

1− ρ
1

f (Sgb(t− 1))
(3)

where Sgb(·) represents the global best solution found so far in
all iterations. The lower bound is defined as

τmin(t) =
τmax(t)(1− n

√
pbest)

(avg − 1) n
√
pbest

(4)

where pbest ∈ (0, 1] is a controlling parameter to dynamically
adjust the bounds of the pheromone trails. The physical mean-
ing of pbest is that it indicates the conditional probability of
the current global best solution Sgb(t) being selected given
that all edges not belonging to the global best solution have a
pheromone level of τmin(t), and all edges in the global best
solution have τmax(t). Here, avg is the average size of the
decision choices over all the iterations. For a TSP problem of
n cities, avg = n/2. It is noted from (4) that lowering pbest

will result in a tighter range for the pheromone heuristic. As
pbest → 0, τmin(t)→ τmax(t), which means more emphasis is
given to search space exploration.

Theoretical treatments of using pheromone bounds and other
modifications on the original ACO algorithm are proposed
in [6]. These include a pheromone-updating policy that only
utilizes the best performing ant, initializing pheromone with
τmax, and combining local search with the algorithm. It was
reported that MMAS was the best performing ACO approach
and provided very high quality solutions.

IV. MMAS FOR TCS

In this section, we introduce our MMAS-based algorithms
for solving the TCS problem. As discussed in Section II, FDS is
a commonly used heuristic as it generates “good” quality results
for moderately sized DFGs. Our algorithm uses distribution
graphs from FDS as a local heuristic. Additionally, we use
the results produced by FDS to evaluate the quality of our
algorithm. For these reasons, we provide some details of FDS in
the following subsection. The remaining subsections describe
our MMAS algorithm for TCS.

A. FDS

The FDS algorithm (and its various forms) has been widely
used since it was first proposed by Paulin and Knight [10]. The
goal of the algorithm is to reduce the number of functional
units used in the implementation of the design. This objective
is achieved by attempting to uniformly distribute the operations
onto the available resource units. The distribution ensures that
resource units allocated to perform operations in one control
step are used efficiently in all other control steps, which leads
to a high utilization rate.

The FDS algorithm relies on both the as-soon-as-possible
(ASAP) and the as-late-as-possible (ALAP) scheduling algo-
rithms to determine the feasible control steps for every opera-
tion opi or the time frame of opi (denoted as [tSi , t

L
i ], where
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tSi and tLi are the ASAP and ALAP times, respectively). It also
assumes that each operation opi has a uniform probability of
being scheduled into any of the control steps in the range and
zero probability of being scheduled elsewhere. Thus, for a given
time step j and an operation opi that needs �i � 1 time steps
to execute, this probability is given as

pj(opi)

=

{(∑�i

l=0 hi(j−l)
) / (

tLi −tSi +1
)
, if tSi � j � tLi

0, otherwise
(5)

where hi(·) is a unit window function defined on [tSi , t
L
i ].

Based on this probability, a set of distribution graphs can be
created, one for each specific type of operation, denoted as qk.
More specifically, for type k at time step j, we have

qk(j) =
∑
opi

pj(opi), if the type of opi is k. (6)

We can see that qk(j) is an estimation on the number of type-k
resources that are needed at control step j.

The FDS algorithm tries to minimize the overall concurrency
under a fixed latency by scheduling operations one by one.
At every time step, the effect of scheduling each unscheduled
operation on every possible time step in its frame range is
calculated, and the operation and the corresponding time step
with the smallest negative effect are selected. This effect is
equated as the force for an unscheduled operation opi at control
step j and is comprised of two components, namely: 1) the self-
force SFij and 2) the predecessor–successor forces PSFij .

The self-force SFij represents the direct effect of this
scheduling on the overall concurrency. It is given by

SFij =
tL
i +�i∑
l=tS

i

qk(l) (Hi(l)− pi(l)) (7)

where j ∈ [tSi , t
L
i ], k is the type of operation opi, and Hi(·) is

the unit window function defined on [j, j +�i].
We also need to consider the predecessor and successor

forces since assigning operation opi to time step j might cause
the time frame of a predecessor or successor operation opl

to change from [tSl , t
L
l ] to [t̃Sl , t̃

S
l ]. The force exerted by a

predecessor or successor is given by

PSFij(l) =
t̃L
i +�l∑
m=t̃S

i

(qk(m) · p̃m(opl))

−
tL
i +�l∑
m=tS

i

(qk(m) · pm(opl)) (8)

where p̃m(opl) is computed in the same way as (5) except the
updated mobility information [t̃Sl , t̃

S
l ] is used. Notice that the

above computation has to be carried for all the predecessor and
successor operations of opi. The total force of the hypothetical

assignment of scheduling opi on time step j is the addition of
the self-force and all the predecessor–successor forces, i.e.,

total forceij = SFij +
∑

l

PSFij(l) (9)

where opl is a predecessor or successor of opi. Finally, the
total forces obtained for all the unscheduled operations at
every possible time step are compared. The operation and time
step with the best force reduction are chosen, and the partial
scheduling result is incremented until all the operations have
been scheduled.

The FDS method is “constructive” because the solution is
computed without performing any backtracking. Every deci-
sion is made in a greedy manner. If there are two possible
assignments sharing the same cost, the above algorithm cannot
accurately estimate the best choice. Based on our experience,
this happens fairly often as the DFG becomes larger and more
complex. Moreover, FDS does not take into account future as-
signments of operators to the same control step. Consequently,
it is likely that the resulting solution will not be optimal due to
the lack of a look-ahead scheme and the lack of compromises
between early and late decisions.

Our experiments show that a baseline FDS implementation
based on [10] fails to find the optimal solution even on small
testing cases. To ease this problem, a look-ahead factor was
introduced in the same paper. A second-order term of the
displacement weighted by a constant η is included in force
computation, and the value η is experimentally decided to be
1/3. In our experiments, this look-ahead factor has a positive
impact on some testing cases but does not always work well.
More details regarding FDS performance can be found in
Section VII.

B. MMAS for TCS

We address the TCS problem in an evolutionary manner.
The proposed algorithm is built upon the ant system approach,
and the TCS problem is formulated as an iterative searching
process. Each iteration consists of two stages. First, the ACO
algorithm is applied in which a collection of ants traverse the
DFG to construct individual operation schedules with respect
to the specified deadline using global and local heuristics.
Second, these results are evaluated using their resource costs.
The heuristics are adjusted based on the solutions found in the
current iteration. The hope is that future iterations will benefit
from this adjustment and come up with better schedules.

Each operation or DFG node opi is associated with D
pheromone trails τij , where j = 1, . . . , D, and D is the speci-
fied deadline. These pheromone trails indicate the global favor-
ableness of assigning the ith operation at the jth control step
in order to minimize the resource cost with respect to the time
constraint. Initially, based on ASAP and ALAP results, τij is
set with some fixed value τ0 if j is a valid control step for opi;
otherwise, it is set to be 0.

For each iteration, m ants are released, and each ant individ-
ually starts to construct a schedule by picking an unscheduled
operation and determining its desired control step. However,
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unlike the deterministic approach used in the FDS method, each
ant picks up the next operation probabilistically. The simplest
way is to select an operation uniformly among all unscheduled
operations. Once an operation oph is selected, the ant needs to
make a decision on which control step it should be assigned to.
This decision is also made probabilistically according to

phj =

{
τhj(t)

α·ηβ
hj∑

l
(τα

hl
(t)·ηβ

hl)
, if oph can be scheduled at l and j

0, otherwise
.

(10)

Here, j is the control step under consideration, which is
between oph’s time frame [tSh , t

L
h ]. The item ηhj is the local

heuristic for scheduling operation oph at control step j, and
α and β are parameters to control the relative influence of
the distributed global heuristic τhj and local heuristic ηhj ,
respectively. In this paper, assuming oph is of type k, we simply
set ηhj to be the inverse of qk(j), that is, the distribution graph
value of type k at control step j (calculated in the same way
as in FDS). Recalling our discussion in Section IV-A, qk is
computed based on partial scheduling result and is an indication
on the number of computing units of type k needed at control
step j. Intuitively, the ant favors a decision that possesses higher
volume of pheromone and better local heuristic, i.e., a lower qk.
In other words, an ant is more likely to make a decision that is
globally considered “good” and also uses the fewest number of
resources under the current partially scheduled result. Similar
to FDS, once an operation is fixed at a time step, it will not
change. Furthermore, the time frames will be updated to reflect
the changed partial schedule. This guarantees that each ant will
always construct a valid schedule.

In the second stage of our algorithm, the ant’s solutions are
evaluated. The quality of the solution from ant h is judged by
the total number of resources, i.e., Qh = Σkrk. At the end of
the iteration, the pheromone trail is updated according to the
quality of individual schedules. Additionally, a certain amount
of pheromone evaporates. More specifically, we have

τij(t) = ρ · τij(t) +
m∑

h=1

∆τh
ij(t), where 0 < ρ < 1. (11)

Here, ρ is the evaporation ratio, and

∆τh
ij =

{
Q/Qh, if opi is scheduled at j by ant h
0, otherwise

. (12)

Q is a fixed constant to control the delivery rate of the
pheromone. Two important operations are performed in the
pheromone trail updating process. Evaporation is necessary for
ACO to effectively explore the solution space, while reinforce-
ment ensures that the favorable operation orderings receive a
higher volume of pheromone and will have a better chance of
being selected in the future iterations. The above process is
repeated multiple times until an ending condition is reached.
The best result found by the algorithm is reported.

In our experiments, we implemented both the basic ACO and
the MMAS algorithms. The latter consistently achieves better
scheduling results, especially for larger DFGs. A pseudocode

implementation of the final version of our TCS algorithm
using MMAS is shown as Algorithm 1, where the pheromone
bounding step is indicated as step 23.

Algorithm 1: MMAS for TCS
procedure MaxMinAntSchedulingTCS(G, R)
input: DFG G(V,E), resource set R
output: operation schedule
1. initialize parameter ρ, τij , pbest, τmax, τmin

2. construct m ants
3. BestSolution← φ
4. while ending condition is not met do
5. for i = 0 to m do
6. ant(i) constructs a valid schedule timing constrained

Scurrent as following:
7. Scurrent ← φ
8. perform ASAP and ALAP
9. while exists unscheduled operation do
10. update time frame [tSi , t

L
i ] associated with each

operation opi and the distribution graphs qk.
11. select one operation oph among all unscheduled

operations probabilistically
12. for tSh � j � tLh do
13. set local heuristic ηhj = 1/qk(j) where oph is

of type k
14. end for
15. select time step l using η and τ as (10).
16. Scurrent = schedule(Scurrent, oph, l)
17. Update time frame and distribution graphs based

on Scurrent

18. end while
19. if Scurrent is better than that ofBestSolution} then
20. BestSolution← Scurrent

21. end if
22. end for
23. update τmax and τmin based on (3) and (4)
24. update η if needed
25. update τij based on (11)
26. end while
27. return BestSolution

C. Refinements

1) Updating Neighboring Pheromone Trails: We found that
a “better” solution can often be achieved from a “good”
scheduling result by simply adjusting very few operations’
scheduled positions within their time frames. Based on this
observation, we can refine our pheromone update policy to en-
courage exploration of the neighboring positions. More specifi-
cally, in the pheromone reinforcement step indicated by (12),
we also increase the pheromone trails of the control steps’
adjacent position j subject to a weighted function window.
Two such windowing functions are shown in Fig. 2. Depending
on the neighbor’s offset from j, the two functions adjust its
pheromone trail in a similar manner to (12) but with an extra
factor applied. Assuming we use x to represent the offset, then
Fig. 2(a) has a weight function of 1− 1/3|x|, while Fig. 2(b)
provides a weight function of e−|x|. In our experiments, the
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Fig. 2. Pheromone update windows.

latter provides relatively better performance. Ideally, the weight
function window size shall be computed based on the mobility
ranges of the operations. However, to keep the algorithm sim-
ple, we use a window size 5 across all our experiments, subject
to the operation’s time frame [tSi , t

L
i ]. This number is estimated

using the average mobility ranges of all testing cases.
2) Operation Selection: In our algorithm, the ants construct

a schedule for the given DFG by making two decisions in
sequence. First, it needs to select the next operation. Then, a
specific control step is determined for the selected operation.
As discussed earlier, the simplest approach for selecting an
operation is to randomly pick one among all the unscheduled
operations. Although it is simple and computationally effec-
tive, it does not appreciate the information accumulated in the
pheromone from the previous iterations; it also ignores the
dynamic time-frame information. One possible refinement is to
make the selection probability proportional to the pheromone
and inversely proportional to the size of the operation’s time
frame at that instance. More precisely, we pick the next opera-
tion opi probabilistically with

pi =

∑
j

τij

(tL
i
−tS

i
+1)∑

l

∑
k

τlk

(tL
l
−tS

l
+1)

. (13)

Here, the numerator can be viewed as the average pheromone
value over all possible positions in the current time frame for
operation opi. The denominator is a normalization factor to
bring the result to a valid probability value between 0 and 1.
It is basically the addition of the average pheromone for all
the unscheduled operations opl. Notice that as the time frames
of the operations change dynamically depending on the partial
schedule, the average pheromone trail is not constant during the
schedule construction process. In other words, we only consider
a pheromone τij when tSi � j � tLi .

Intuitively, this formulation favors an operation with stronger
pheromone and fewer possible scheduling alternatives. In the
extreme case, tLi = tSi , which means operation opi is on the cri-
tical path, we will have only one choice for opi. If the
pheromone for opi at this position happens to be very strong,
we will have better chance to pick opi at the next step compared
with other operations. Our experiments show that applying this
operation selection policy makes the algorithm faster in identi-
fying high-quality results. Compared with the even possibility

approach, there is an overhead in performing this operation
selection policy. However, by making the selection more tar-
geted, it allows us to reduce the overall iteration number of the
algorithm; thus, the additional overhead is well worth it. In our
experiments, we were able to reduce the total runtime by about
23% while achieving almost the same quality with our testing
results by adopting this biased selection policy.

D. Extensions

Our proposed TCS algorithm applies the ACO metaheuristic
at the high level. It poses little difficulty to extend it to handle
different scheduling contexts. Most of the methods proposed
previously for FDS can be readily implemented within our
framework.
1) Resource Preference: In this paper, the target is to mini-

mize the total count of resources needed. Accordingly, we use
the inverse of this total count as the quality of the scheduling
result. This quality measurement is further used to adjust the
pheromone trails. However, in practice, we may have unbal-
anced hardware costs for different resource types. With this
consideration, we might find that we prefer a schedule that
requires three multipliers and four adders rather than one that
needs four multipliers and three adders, although both sched-
ules have the same total number (i.e., seven) of resources. This
issue can be handled in our algorithm simply by introducing a
cost factor ck for each resource type and modifying the quality
of the schedule to this weighted resource cost, i.e.,

Qh =
∑

k

(ckrk). (14)

By adjusting the ck assigned to different resource types, we can
control the preference in our schedule results.
2) Multicycle Operation: No change is needed for our algo-

rithm to handle multicycle operation since it uses dynamically
computed time frames. Also, as presented in Section IV-A, the
distribution graph handles multicycle operations naturally.
3) Mutually Exclusive Operations: Mutually exclusive op-

erations occur when operations are located in different branches
of the program. This happens in “if–then–else” and “case”
statements in high-level languages. With the proposed algo-
rithm, we do not need to add any extra constraint for han-
dling such operations; thus, the approach proposed in [10] is
still valid.
4) Chained Operations: When the total delay of consec-

utive operations is less than a clock cycle, it is possible to
chain the operations during scheduling. The same techniques
used in [10] can be directly applied within our approach,
where chaining is handled by extending the ASAP and ALAP
computation to obtain the time frames for the operations.
5) Pipelining: For pipelined resources, there exists addi-

tional parallelism provided by functional pipelining. Here,
optimizing an individual control step becomes inappropriate
and limited. We have to consider scheduling optimization over
groups of control steps. We can solve this by slicing and
superimposing the distribution graph in a manner depending
on the latency [10]. Again, this method can also be applied to
extend our algorithm to handle the pipelined scenario.
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E. Complexity Analysis

As we can see, the construction of an individual schedule by
the ants, or the body of the inner loop in the proposed algorithm,
is of complexity O(n2), where n is the number of nodes in
the DFG under consideration. Thus, the total complexity of
the algorithm is determined by the number of ants m and the
iteration number N . Theoretically, the production of m and N
shall be proportional to the production of n and the deadline D.
In this case, we have a total complexity ofO(Dn3), which is the
same as the unoptimized version of FDS. However, in practice,
we found it is possible to fix m and N for a large range of
applications (see Section VII). This means that in practical use
the algorithm can be expected to work with O(n2) complexity
for most of the cases.

V. MMAS FOR RCS

In this section, we present our algorithm of applying the
ant system heuristic, or more specifically the MMAS [6], for
solving the OS problem under resource constraints.

A. Algorithm Formulation

As discussed in Section II, list scheduling is the most widely
used method for the RCS problem. A list scheduler takes a DFG
and a priority list of all the nodes in the DFG as input. The list
is sorted with decreasing magnitude of priority assigned to each
of the operations. The list scheduler maintains a ready list, i.e.,
nodes whose predecessors have already been scheduled. In each
iteration, the algorithm scans the priority list, and operations
with higher priority are scheduled first. Scheduling an operator
to a control step makes its successor operations ready, which
will be added to the ready list. This process is repeated until all
of the operations have been scheduled. When there exist more
than one ready operations sharing the same priority, ties are
broken randomly. The effectiveness of the list scheduler heavily
depends on the priority list. Although there exist many different
heuristics on how to order the list, it is commonly believed that
the best list depends on the structure of the input application. A
priority list based on a single heuristic limits the exploration of
the search space for the list scheduler.

Based on this observation, we address the RCS problem in
a similar manner to the ACO metaheuristic framework used to
solve the TCS problem. The key idea is to combine the ACO
metaheuristic with the traditional list-scheduling algorithm and
formulate the problem as an iterative searching process over the
operation list space.

Similar to the algorithm formulated for the TCS problem,
each operation, or DFG node opi, is associated with a set
of pheromone trails τij . The difference is that now each trail
indicates the global favorableness of assigning the ith operation
at the jth position in the priority list, where j = 1, . . . , n. Since
it is valid for the operation to be assigned to any of the position
in the priority list, each pheromone trail will be valid. This is
different from the TCS formulation where some trails are fixed
to be zero based on the allowed time frames of the operations.
Initially, τij is set with some fixed value τ0.

A pseudocode implementation of our RCS algorithm using
MMAS is shown in Algorithm 2, where the pheromone bound-
ing step is indicated as step 12.

Algorithm 2: MMAS for RCS
procedure MaxMinAntSchedulingRCS(G,R)
input: DFG G(V,E), resource set R
output: operation schedule
1. initialize parameter ρ, τij , pbest, τmax, τmin

2. construct m ants
3. BestSolution← φ
4. while ending condition is not met}
5. for i = 0 to m do
6. ant(i) constructs a list L(i) of nodes using τ and η
7. Qi = ListScheduling(G,R,L(i))
8. if Qi is better than that of BestSolution}
9. BestSolution← L(i)
10. end if
11. end for
12. update τmax and τmin based on (3) and (4)
13. update η if needed
14. update τij based on (11)
15. end while
16. return BestSolution

For each iteration, m ants are released, and each starts to
construct an individual priority list by filling the list with one
operation per step. Every ant will have memory about the
operations it has already selected in order to guarantee the
validity of the constructed list. Upon starting step j, the ant
has already selected j − 1 operations of the DFG. To fill the
jth position of the list, the ant chooses the next operation opi

probabilistically according to

pij =

{
τij(t)

α·ηβ
ij∑

k
(τα

kj
(t)·ηβ

kj)
, if opk is not scheduled yet

0, otherwise
(15)

where the eligible operations opk are those yet to be scheduled.
Again, ηik is a local heuristic for selecting operation opk,
and α and β are parameters to control the relative influence
of the distributed global heuristic τik and local heuristic ηik,
respectively.

The local heuristic η gives the local favorableness of schedul-
ing the ith operation at the jth position of the priority list. In this
paper, we experimented with different well-known heuristics
[4] proposed for OS.

1) Operation mobility (OM): The mobility of an opera-
tion gives the range for scheduling the operation. It is
computed as the difference between ALAP and ASAP
results. The smaller is the mobility, the more urgent is the
scheduling of the operation. When the mobility is zero,
the operation is on the critical path.

2) Operation depth (OD): OD is the length of the longest
path in the DFG from the operation to the sink. It is an
obvious measure for the priority of an operation as it gives
the number of operations we must pass.
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3) Latency-weighed OD (LWOD): LWOD is computed in
a similar manner as OD except that the nodes along the
path are weighed using their operation latencies.

4) Successor number (SN): The motivation of using the
number of successors is the hope that scheduling a node
with more successors has a higher possibility of making
other nodes in the DFG free, thus increasing the number
of possible operations to choose from later on.

The second stage of the algorithm, i.e., the result quality
assessment and pheromone trail updating, proceeds similarly as
the TCS algorithm discussed previously. The only exception is
that now the quality Qh in (12) is replaced by the total latency
Lh of the generated scheduling result.

B. Refinements

1) Dynamic Local Heuristics: One important difference be-
tween our algorithm and other ant system algorithms is that
we use a dynamic local heuristic in the RCS process. It is
indicated by step 13 in Algorithm 2. This technique allows
better local guidance to the ants for making the selection in the
next iteration. We will illustrate this feature with the use of the
OM heuristic.

Typically, the mobility of an operation is computed by using
ALAP and ASAP results. One important input parameter in
computing the ALAP result is the estimated scheduling dead-
line. This deadline is usually obtained from system specifica-
tions or other quick heuristic methods such as a list scheduler.
It is clear that more accurate deadline estimations will yield a
tighter mobility range, thus better local guidance.

Based on the above observation, we use dynamically com-
puted mobility as the local heuristic in our algorithm. As the
algorithm proceeds, whenever a better schedule is achieved, we
use the newly obtained scheduling length as the deadline for
computing the ALAP result for the next iteration. That is, for
iteration t, the local heuristic for operation i is computed as
(see Section III-B for definitions for f and Sgb)

ηi(t) =
1

ALAP (f (Sgb(t− 1)) , i)− ASAP(i) + 1
. (16)

2) Topologically Sorted Lists: In the above algorithm, the
ants construct a priority list using the same traversing method
that is used in the TSP formulation [24]. In fact, this turns out
to be a naive way. To illustrate this, one just needs to notice that
it will yield a search space of totally n! possible lists, which
is simply all the permutations of n operations. However, we
know that the resultant schedules of the list scheduler are only
a small portion of these lists. More precisely, they are all the
possible permutations of the operations that are topologically
sorted based on the dependency constraints imposed by the
DFG. By leveraging this application-dependent feature, it is
possible for us to greatly reduce the search space. For instance,
using this technique on a simple 11-node example [4] reduces
the possible number of orderings from 11! to 59 400, or 0.15%.
Although it quickly becomes prohibitive to precisely compute

such reduction for more complex graphs,1 it is generally sig-
nificant. By adopting this technique, in the final version of our
algorithm, the ant traverses the DFG in a similar manner to the
list-scheduling process and fills the operation list one by one. At
each step, the ant will select an operation based on (15) but only
from all the ready operations, that is, from all the operations
whose predecessors have all been scheduled.

C. Extensions

So far, our discussion on the OS problems has been limited
to the “homogeneous” case. In other words, each operation is
mapped to a unique resource type, although a resource type
might be able to handle different operations. In practice, this
means that a “resource allocation” step needs to precede the
OS process. We often need to handle the “heterogeneous” case,
where one operation can be executed with different resource
types. For example, a system might have two different realiza-
tions of multiplier: one is faster but more expensive, while the
other is slower but cheaper. Both are capable of executing a
multiplication operation. Our challenge is to determine how to
effectively use the resources to achieve the best time perfor-
mance. In this situation, separating the resource allocation step
from OS may not be a favorable approach, as the prior step
could greatly limit the optimization opportunity for OS. This
motivates us to consider the resource allocation issue within the
OS problem.

It is possible to address this problem using ILP by extending
the ILP formulation for the homogenous case. The basic idea is
to introduce a new set of parameters mik that can take the value
of 0 or 1 and describe the compatibility between operation opi

and resource type k. A set of new constraints is needed to make
sure that only one type of resource among all those that are
capable of processing opi is used, i.e.,∑

k

mik = 1, where i = 1, . . . , n. (17)

We can see that it makes the ILP problem even more
intractable.

However, this extra difficulty does not block the list sched-
uler or the proposed MMAS approach from working. The basic
algorithm could be carried out with almost no changes except
for the list construction. The major problem is that, when
there exist alternative resource types for one specific operation,
estimating a certain attribute of the operation becomes more
challenging. For example, with different execution delay on
capable resource types, the mobility of the operation is variable.
This has been studied in previous research, e.g., [7], where
the average latency over a set of heterogeneous resources is
used to carry the scheduling task. In this paper, we simply
take the pessimistic approach by applying the longest execution
latency among the alternative resources in computing such
attributes. With this extension, our algorithm can be applied to
heterogeneous cases.

1We tried to compute the search space reduction for Fig. 5 using GenLE [39].
It failed to produce any result within 100 computer hours.
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D. Complexity Analysis

List scheduling is a two-step process. In the first step, a
priority list is built. The second step takes n steps to solve the
scheduling problem since it is a constructive method without
backtracking. For different heuristics, the complexity of the
first step is different. When OM, OD, and LWOD are used, it
takes O(n2) steps to build the priority list since a depth-first or
breadth-first graph transverse is involved. When the successor
node number is adopted as the list construction heuristic, it
only takes n step. Thus, the complexities for these methods are
O(n2) or O(n).

The force-directed RCS method is different. Although it is
also a constructive method without backtracking, we need to
compute the force of each operation at every step since the
total latency is dynamically increased based on whether there
is enough resources to handle the ready operations. Thus, the
FDS method has O(n3) complexity.

The complexity of the proposed MMAS solution is deter-
mined mainly by the complexity of constructing individual
scheduling solutions, the number of ants m, and the total it-
eration N in every run. In order to generate a schedule solution,
each ant needs to first loop through n operations and for each
operation determine its location, which has a complexity of
O(n). This list is then provided to a list scheduler with a com-
plexity of O(n) or O(n2). This makes an overall complexity
of O(n2). Obviously, if mN is proportional to n, we will
have one-order higher complexity than the corresponding list-
scheduling approach. However, based on our experience, it is
possible to fix such factor for a large set of practical cases so
that the complexity of the MMAS solution is the same as the
list-scheduling approach.

VI. BENCHMARKS

In order to test and evaluate our algorithms, we have con-
structed a comprehensive set of benchmarks. These benchmarks
are taken from one of two sources:

1) popular benchmarks used in the previous literature;
2) real-life examples generated and selected from the

MediaBench suite [40].

The benefit of having classic samples is that they provide a
direct comparison between results generated by our algorithm
and that from previously published methods. This is especially
helpful when some of the benchmarks have known optimal
solutions. In our final testing benchmark set, seven samples
widely used in OS studies are included. These samples focus
mainly on frequently used numeric calculations performed by
different applications. They are listed as follows.

1) ARF: an implementation of an “autoregression filter.”
2) EWF: an implementation of an “elliptic wave filter.”
3) FIR1 and FIR2: two versions of a “finite impulse response

filter.”
4) COSINE1 and COSINE2: two implementations for a 1-D

eight-point fast DCT, where COSINE1 assumes constant
coefficients while the coefficients in COSINE2 are given
as inputs.

5) HAL: an iterative solution of a second-order differential
equation. This perhaps is the most popularly used exam-
ple in textbooks that originally appeared in [10].

However, these samples are typically small to medium in size
and are considered somewhat old. To be representative, it is
necessary to create a more comprehensive set with benchmarks
of different sizes and complexities. Such benchmarks shall aim
to the following:

1) provide real-life testing cases from real-life applications;
2) provide more up-to-date testing cases from modern appli-

cations;
3) provide challenging samples for OS algorithms with re-

gards to larger number of operations, higher level of
parallelism, and data dependency;

4) provide a wide range of synthesis problems to test the
algorithms’ scalability.

For this purpose, we have investigated the MediaBench suite,
which contains a wide range of complete applications for
image processing, communications, and DSP applications. We
analyzed these applications using SUIF [41] and Machine SUIF
[42] tools, and over 14 000 DFGs were extracted as preliminary
candidates for our benchmark set. After careful study, 13 DFG
samples were selected from four MediaBench applications.
These applications are listed as follows.

1) JPEG: JPEG is a lossy compression technique for digital
images. The “cjpeg” application performs compression,
while the “djpeg” application decompresses the JPEG
image.

2) MPEG2: MPEG2 is a digital video compression stan-
dard commonly used for high-quality video compression
including DVD compression. The mpeg2enc application
encodes the video, while the mpeg2dec application de-
codes the video.

3) EPIC: EPIC stands for efficient pyramid image coder and
is another image compression utility.

4) MESA: The Mesa project is a software 3-D graphics
package. The primary application that we were concerned
with was the “texgen” utility, which generates a texture-
mapped version of the Utah teapot.

From the JPEG project, four basic blocks were selected.
The first came from the write_bmp_header function. The basic
block was selected for its high level of parallelism. The second
basic block came from the h2v2_smooth_downsample func-
tion. This function has 51 nodes for only one store operation
at the end. The store is dependent on all but two of the
operations, making it an interesting problem for scheduling.
The third basic block was selected from the jpeg_fdct_islow
function. The function performs an integer forward DCT using
a slow-but-accurate algorithm and was chosen for its popularity
among DSP applications. The final block was selected from
the jpeg_idct_ifast function. Like the forward DCT, this was
selected for its commonality. However, this implementation is
a fast, and much less accurate, version of the inverse DCT.

Two basic blocks were selected from the MPEG section.
The first came from the “idctcol” function in the “mpeg2dec”
application. The function implements another version of the
inverse DCT algorithm. In this case, the function is part of a 2-D
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TABLE I
BENCHMARK NODE AND EDGE COUNT WITH OD ASSUMING UNIT DELAY

inverse DCT, while the inverse DCT from the JPEG application
is only 1-D. The large size of the DFG and the complicated
dependency structure provide a good test for the scheduling
algorithm. The second comes from the motion_vectors func-
tion in the “mpeg2enc” function. The basic block only con-
tains 42 nodes and 38 edges, making it one of the smaller
blocks selected from MediaBench, ensuring that the benchmark
suite provides a wide range of synthesis problems to test
scalability.

The EPIC project supplied one basic block. It came from the
collapse_pyr function, which is a quadrature mirror filter bank.
The block was selected for its medium size and common use in
DSP applications.

From the MESA application, six basic blocks were selected
to be added to the benchmark suite. The invert_matrix_general
and “matmul” functions were selected because they are general
functions, not specific to the MESA application. Matrix opera-
tions, such as inversion and multiplication, are common in DSP
applications where many filters are merely matrix multiplica-
tions with a set of coefficients. The next block selected came
from the smooth_color_z_triangle function. The basic block is
essentially four parallel computations without data dependen-
cies, making it an ideal addition to the benchmark suite. The
fourth benchmark is from the horner_bezier method. With only
18 nodes, the small size helps add variety to the benchmarks.
The fifth block comes from the interpolate_aux function. The
function performs four linear interpolation calculations, which
can easily be run in parallel if the hardware is available. The
final benchmark is from the feedback_points function, which
calculates texture coordinates for a feedback buffer.

Table I lists all 20 benchmarks that were included in our
final benchmark set, together with the names of the various
functions where the basic blocks originated are the number of
nodes, number of edges, and OD (assuming unit delay for every
operation) of the DFG. The data, including related statistics,
DFG graphs, and source code for the all testing benchmarks,
are available online [43].

Fig. 3. Distribution of DFG size for MediaBench.

In order to justify the difficulty and representativeness of
our testing cases, we analyze the distribution of the sizes of
DFGs in practical software programs. Our analysis covers the
“epic,” “jpeg,” “g721,” “mpeg2enc,” “mpeg2dec,” and “mesa”
packages. The result is shown in Fig. 3. We found that the
maximum size of a DFG can be as big as 632. However,
the majority of the DFGs are much smaller. In fact, more
than 99.3% DFGs have fewer than 90 nodes. Moreover, the
very largest ones are of little interest with respect to system
performance. They are typically related to system initialization
and are executed only once.

VII. EXPERIMENTAL RESULTS

A. TCS

In order to evaluate the quality of our proposed algorithm
for the TCS problem, we compare its results with that obtained
by the widely used FDS method. For all testing benchmarks,
operations are allocated on two types of computing resources,
namely MUL and ALU, where MUL is capable of handling
multiplication and division, and ALU is used for other opera-
tions such as addition and subtraction. Furthermore, we define
the operations running on MUL to take two clock cycles, and
the ALU operations take one. This is definitely a simplified case
from reality. However, it is a close enough approximation and
does not change the generality of the results. Other choices can
easily be implemented within our framework.

Since there is no widely distributed and recognized FDS
implementation, we implemented our own. The implementation
is based on [10] and has all the applicable refinements proposed
in this paper, including multicycle operation support, resource
preference control, and look ahead using the second order
of displacement in force computation. Actually, based on our
experience, the look-ahead function for FDS is very critical.
Without invoking this mechanism, the basic FDS provides poor
scheduling results even for small-sized examples. In Table II,
we show the effect of look ahead for the HAL benchmark
originally presented in [10], which has only 11 operations and
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TABLE II
EFFECT OF LOOK-AHEAD MECHANISM IN FDS (RESULT SHOWN IN

MUL/ALU NUMBER PAIR. DEADLINE IS IN CYCLES)

eight data dependencies. Because of this, in our experiments,
the look-ahead function is always used to allow FDS to provide
better results.

With the assigned resource/operation mapping, ASAP is
first performed to find the critical path delay Lc. We then set
our predefined deadline range to be [Lc, 2Lc], i.e., from the
critical path delay to two times of this delay. This results in
263 testing cases in total. For each delay, we run FDS first
to obtain its scheduling result. Following this, the proposed
MMAS algorithm is executed five times to obtain enough data
for performance evaluation. We report the FDS result quality,
the average and best result quality for the proposed algorithm,
and the standard deviation for these results. The execution time
information for both algorithms is also reported.

We have implemented our MMAS formulation in C for the
TCS problem, with the refinements discussed in Section IV.
The evaporation rate ρ is configured to be 0.98. The scaling pa-
rameters for global and local heuristics are set to be α = β = 1
and delivery rateQ = 1. These parameters are not changed over
the tests. We also experimented with different ant numbers m
and the allowed iteration count N . For example, set m to be
proportional to the average branching factor of the DFG under
study and N to be proportional to the total operation number.
However, it was found that there seems to exist a fixed value
pair for m and N that works well across the wide range of
testing samples in our benchmark. In our final settings, we set
m to be 10 and N to be 150 for all the TCS experiments.

Due to the large amount of data, we will not be able to report
testing results for all the 263 cases in detail. Table III compares
the testing results for “idctcol” and invert_matrix_general, two
of the biggest samples. In this table, we provide a side-by-
side comparison between FDS and our proposed method. The
scheduling results are reported as MUL/ALU number pair
required by the obtained scheduling. For the MMAS method,
we report both the average performance and the best perfor-
mance in the five runs for each testing case together with the
saving percentage. The saving is measured by the reduction of
computing resources. In order to keep the evaluation general
and objective, we use the total count of resources as the quality
metrics without considering their individual cost factors.

Besides the absolute quality of the results, one difference
between FDS and the proposed method is that our method is
relatively more stable. In our experiments, it is observed that the
FDS approach can provide the worse quality results as the dead-
line is relaxed. Using the “idctcol” in Table III as an example,
FDS provides drastically worse results for deadlines ranging
from 25 to 30, although it is able to reach decent scheduling
qualities for deadline from 19 to 24. The same problem occurs

for deadlines between 36 and 38. One possible reason is that
as the deadline is extended, the time frame of each operation is
also extended, which makes the force computation more likely
to clash with similar values. Due to the lack of backtracking
and good look-ahead capability, an early mistake would lead
to inferior results. On the other hand, our proposed algorithm
robustly generates monotonically nonincreasing results with
fewer resource requirements as the deadline increases.

Table IV summarizes the testing results for all of the bench-
marks. We present the average and the best results for each
testing benchmark, its tested deadline range, and the average
standard deviations. The table is arranged in increasing order
of the complexity of the DFGs. The average result quality
generated by our algorithm is better than or equal to the FDS
results in 258 out of 263 cases. Among them, for 192 testing
cases (or 73% of the cases), our MMAS method outperforms
the FDS method. There are only five cases where our approach
has worse average quality results. They all happened on the
invert_matrix_general benchmark and are listed in Table III,
indicated by lines with italic bold fonts. On average, as shown
in Table IV, we can expect a 16.4% performance improvement
over FDS. If only considering the best results among the five
runs for each testing case, we achieve a 19.5% resource reduc-
tion averaged over all tested samples. The most outstanding re-
sults provided by our proposed method achieve a 75% resource
reduction compared with FDS. These results are obtained on a
few deadlines for the jpeg_idct_ifast benchmark.

From Table IV, it is easy to see that for all the examples,
MMAS-based OS achieves better or much better results. Our
approach seems to have much stronger capability in robustly
finding better results for different testing cases. Furthermore,
it scales very well over different DFG sizes and complexities.
Another aspect of scalability is the predefined deadline. Based
on the results presented in Tables III and IV, the proposed algo-
rithm also demonstrates better scalability over this parameter.

All of the experimental results are obtained on a Linux box
with a 2-GHz CPU. Fig. 4 shows the execution time compar-
ison between the presented algorithm and the FDS. Curves A
and B show the run time for FDS and the proposed method,
respectively, where we use the average runtime for our MMAS
solutions over five runs. As discussed before, since we use a
fixed ant number m and iteration limit N in our experiments to
make the algorithm simpler, there exists a big gap between the
execution times for the smaller-sized cases. For example, for
the HAL example, which only has 11 operations, the execution
time of FDS is 0.014 s while our method takes 0.66 s. This
translates into a ratio of 47. However, as the size of the problem
gets bigger, this ratio drops quickly. For the biggest cases
invert_matrix_general, FDS takes 270.6 s while our method
spends about 411.7 s, which makes the ratio 1.5. To summarize,
for smaller cases, our algorithm does have relatively larger
execution times but the absolute run time is still very short.
For the HAL example, it only takes a fraction of a second. For
bigger cases, the proposed method has a runtime at the same
scale as FDS. This makes our algorithm practical.

In Fig. 4, we do see some spikes in the ratio curve. We con-
tribute this to two main reasons. First, the recorded execution
time is based on system time, and it is relatively more unreliable
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TABLE III
PARTIAL DETAILED RESULTS FOR TCS (SIZE IS GIVEN AS DFG NODE/EDGE NUMBER PAIR. VIRTUAL NODES AND EDGES ARE NOT

COUNTED. AVERAGE AND STANDARD DEVIATION σ ARE COMPUTED OVER FIVE RUNS. SAVING IS

COMPUTED BASED ON FDS RESULTS. NO WEIGHT APPLIED)

TABLE IV
RESULT SUMMARY FOR TCS DATA IN PARENTHESIS SHOWS THE RESULTS OBTAINED USING SA. DEADLINE SHOWS THE TESTED RANGE.

AVERAGE σ IS COMPUTED OVER THE TESTED RANGE. SAVING IS COMPUTED BASED ON FDS RESULTS. NO WEIGHT APPLIED

when the execution time is small. Second, but perhaps more
important, the timing performance of both algorithms is not
only determined by the DFG node count but also dependent on

the predefined dependencies in the DFGs and the deadline D.
This will introduce variance when the curves are drawn against
the node count.
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Fig. 4. Execution time for TCS. (Ratio is MMAS time/FDS time.)

B. RCS

We have implemented the proposed MMAS-based RCS al-
gorithm and compared its performance with the popularly used
list-scheduling and FDS algorithms.

For each of the benchmark samples, we run the proposed
algorithm with different choices of local heuristics. For each
choice, we also perform five runs to obtain enough statistics
for evaluating the stability of the algorithm. Again, we fixed
the number of ants per iteration to ten, and in each run we
allow 100 iterations. Other parameters are also the same as
those used in the TCS problem. The best schedule latency is
reported at the end of each run, and then the average value is
reported as the performance for the corresponding setting. Two
different experiments are conducted for RCS, namely: 1) the
homogenous case and 2) the heterogeneous case.

For the homogenous case, resource allocation is performed
before the OS. Each operation is mapped to a unique resource
type. In other words, there is no ambiguity on which resource
the operation shall be handled during the scheduling step. In
this experiment, similar to the TCS case, two types of resources
(MUL/ALU) are allowed. The number of each resource type is
predefined after making sure they do not make the experiment
trivial (for example, if we are too generous, then the problem
simplifies to an ASAP problem).

Table V shows the testing results for the homogenous case.
The best results for each case are shown in bold. Compared with
a variety of list-scheduling approaches and the FDS method, the
proposed algorithm generates better results consistently over all
testing cases, which is demonstrated by the number of times
that it provides the best results for the tested cases. This is
especially true for the case when OD is used as the local heuris-
tic, where we find the best results in 14 cases among 20 tested
benchmarks. For other traditional methods, FDS generates the
most hits (ten times) for best results, which is still less than
the worst case of MMAS (11 times). For some of the testing
samples, our method provides significant improvement on the
schedule latency. The biggest saving achieved is 22%. This is
obtained for the COSINE2 benchmark when OM is used as the
local heuristic for our algorithm and also as the heuristic for
constructing the priority list for the traditional list scheduler.

For cases that our algorithm fails to provide the best solution,
the quality of its results is also much closer to the best than
other methods.

Besides the absolute schedule latency, another important
aspect of the quality of a scheduling algorithm is its stability
over different input applications. As indicated in Section II, the
performance of the traditional list scheduler heavily depends on
the input application. This is echoed by the data in Table V. In
the meantime, it is easy to observe that the proposed algorithm
is much less sensitive to the choice of different local heuristics
and input applications. This is evidenced by the fact that the
standard deviation of the results achieved by the new algorithm
is much smaller than that of the traditional list scheduler. Based
on the data shown in Table V, the average standard deviation for
list scheduling over all the benchmarks and different heuristic
choices is 1.2, while for the MMAS algorithm it is only 0.19. In
other words, we can expect to achieve high-quality scheduling
results much more stably on different application DFGs regard-
less of the choice of local heuristic. This is a great attribute
desired in practice.

One possible explanation for the above advantage is the
different way how the scheduling heuristics are used by the list
scheduler and the proposed algorithm. In list scheduling, the
heuristics are used in a greedy manner to determine the order
of the operations. Furthermore, the schedule of the operations
is done all at once. Differently, in the proposed algorithm,
local heuristics are used stochastically and combined with the
pheromone values to determine the operations’ order. This
makes the solution exploration more balanced. Another funda-
mental difference is that the proposed algorithm is an iterative
process. In this process, the pheromone value acts as an indirect
feedback and tries to reflect the quality of a potential component
based on the evaluations of historical solutions that contain this
component. It introduces a way to integrate global assessments
into the scheduling process, which is missing in the traditional
list or FDS.

In the second experiment, heterogeneous computing units
are allowed, i.e., one type of operation can be performed by
different types of resources. For example, multiplication can
be performed by either a faster multiplier or a regular one.
Furthermore, multiple same-type units are also allowed. For
example, we may have three faster multipliers and two regu-
lar ones.

We conduct the heterogeneous experiments with the same
configuration as for the homogenous case. Moreover, to better
assess the quality of our algorithm, the same heterogeneous
RCS tasks are also formulated as ILP problems and then
optimally solved using CPLEX. Since the ILP solution is time
consuming to obtain, our heterogeneous tests are only done for
the classic samples.

Table VI summarizes our heterogeneous experimental
results. Here, an extended HAL benchmark is used, which
includes extra memory access operations. Compared with a
variety of list-scheduling approaches and the FDS method, the
proposed algorithm generates better results consistently over
all testing cases. The biggest saving achieved is 23%. This is
obtained for the FIR2 benchmark when the LWOD is used
as the local heuristic. Similar to the homogenous case, our
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TABLE V
RESULT SUMMARY FOR HOMOGENOUS RCS (HEURISTIC LABELS: OM = OPERATION MOBILITY, OD = OPERATION DEPTH,

LWOD = LATENCY WEIGHTED OPERATION DEPTH, SN = SUCCESSOR NUMBER)

TABLE VI
RESULT SUMMARY FOR HETEROGENEOUS RCS SCHEDULE LATENCY IS IN CYCLES; RUNTIME IS IN SECONDS; † INDICATES CPLEX FAILED

TO PROVIDE FINAL RESULT BEFORE RUNNING OUT OF MEMORY. (RESOURCE LABELS: A = ALU, FM = FASTER MULTIPLIER,
M = MULTIPLIER, I = INPUT, O = OUTPUT) (HEURISTIC LABELS: OM = OPERATION MOBILITY, OD = OPERATION DEPTH,

LWOD = LATENCY WEIGHTED OPERATION DEPTH, SN = SUCCESSOR NUMBER)

algorithm outperforms other methods with regards to consis-
tently generating high-quality results. In Table VI, the average
standard deviation for the list scheduler over all the benchmarks
and different heuristic choices is 0.8128, while that for the
MMAS algorithm is only 0.1673.

Although the results of the force-directed scheduler generally
outperform the list scheduler, our algorithm achieves even
better results. On average, comparing with the force-directed
approach, our algorithm provides a 6.2% performance enhance-
ment for the testing cases, while the performance improvement
for individual test sample can be as much as 14.7%.

Finally, compared with the optimal scheduling results com-
puted by using the ILP model, the results generated by the
proposed algorithm are much closer to the optimal than those
provided by the list-scheduling heuristics and the force-directed
approach. For all the benchmarks with known optima, our algo-
rithm improves the average schedule latency by 44% compared
with the list-scheduling heuristics. For larger-sized DFGs such
as COSINE1 and COSINE2, CPLEX fails to generate optimal
results after more than 10 h of execution on a Scalable Perfor-
mance ARChitecture (SPARC) workstation with a 440-MHz
CPU and 384-MB memory. In fact, CPLEX crashes for these

two cases because of running out of memory. For COSINE1,
CPLEX does provide an intermediate suboptimal solution of
18 cycles before it crashes. This result is worse than the best
result found by our proposed algorithm.

The experimental results of our algorithm as well as those
for list scheduling and the FDS are obtained on a Linux box
with a 2-GHz CPU. For all the benchmarks, the runtime of the
proposed algorithm ranges from 0.1 to 1.76 s. List scheduling
is always the fastest due to its one-pass nature. It typically
finishes within a small fraction of a second. The force-directed
scheduler runs much slower than the list scheduler because its
complexity is cubic in the number of operations. For small
testing cases, it is typically faster than our algorithm as we
set a fixed iteration number for the ants to explore the search
space. However, as the problem size grows, the force-directed
scheduler has longer runtime than our algorithm. In fact, for
COSINE1 and COSINE2, the force-directed approach takes
12.7% and 21.2% more execution time, respectively.

The evolutionary effect on the global heuristics τij is illus-
trated in Fig. 6. It plots the pheromone values for the ARF
testing sample after 100 iterations of the proposed algorithm.
The x-axis is the index of operation node in the DFG (shown
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Fig. 5. DFG. (The number by the node is the index assigned for the operation.)

Fig. 6. Pheromone heuristic distribution for ARF.

in Fig. 5), and the y-axis is the order index in the priority list
passed to the list scheduler. There exist totally 30 nodes with
node 1 and node 30 as the dummy source and sink of the DFG,
respectively. Each dot in the diagram indicates the strength of
the resultant pheromone trails for assigning a corresponding
order to a certain operation—the bigger the size of the dot, the
stronger the value of the pheromone.

It is clearly seen in Fig. 6 that there are a few strong
pheromone trails while the remaining pheromone trails are
very weak. This might be explained by the strong symmetric
structure of the ARF DFG and the special implementation in
our algorithm of considering operation list only with topologi-
cally sorted order. It is also interesting to notice that although
a good amount of operations have a limited few alternative
“good” positions (such as operation 6 and 26), for some of

the operations, the pheromone heuristics are strong enough to
lock their positions. For example, according to its pheromone
distribution, operation 10 shall be placed as the 28th item in the
list, and there is no other competitive position for its placement.
After careful evaluation, this ordering preference cannot be
trivially obtained by constructing priority lists with any of
the popularly used heuristics. This shows that the proposed
algorithm has the possibility to discover better orderings that
may be hard to achieve intuitively.

C. Comparison With SA

In order to further investigate the quality of the proposed
algorithms, we compared them with the SA approach. For RCS,
we implemented the algorithm presented in [21]. The basic idea
is very similar to what we proposed in our MMAS approach
in which a metaheuristic method (SA) is used to guide the
searching process while a traditional list scheduler is used to
evaluate the result quality. The scheduling result with the best
resource usage is reported when the algorithm terminates.

However, it is more difficult for the TCS problem since we
have not found any SA-based approach in previously published
works. Therefore, we formulated one ourselves. Consequently,
we will give more emphasis on our SA-based formulation for
the TCS problem in the rest of this section.

A pseudo-implementation of the SA-based TCS algorithm is
given in Algorithm 3.

Algorithm 3: SA for TCS
procedure SA-TCS(G, R)
input: DFG G(V,E), resource set R, and a map of operation

to one resource in R
output: operation schedule
1: perform ASAP and ALAP on the DFG to obtain mobility

ranges.
2: randomly initialize a valid seed scheduling Scurrent

3: set starting and ending temperature Ts and Te.
4: set local search weight to θ.
5: set N to be the number of operations.
6: set t to Ts

7: set Sbest to be Scurrent

8: while t > Te do
9: for I = 0; i < θN ; i + + do
10: randomly generate a neighbor solution Sn

11: if Sn is invalid then
12: continue
13: else
14: compute the resource cost of Sn

15: randomly accept Sn to be Scurrent

16: update Sbest if needed
17: end if
18: end for
19 update t based on cooling scheme
20: end while
21: return Sbest and the resource cost

The major challenge here is the construction of a “neigh-
bor” selection in the SA process. With knowledge of each
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operation’s mobility range, it is trivial to see that the search
space for the TCS problem is covered by all the possible com-
binations of operation/time step pairs, where each operation
can be scheduled into any time step in its mobility range. In
our formulation, given a scheduling S where operation opi is
scheduled at ti, we experimented with two different methods
for generating a neighbor solution.

1) Physical neighbor: A neighbor of S is generated by se-
lecting an operation opi and rescheduling it to a physical
neighbor of its current scheduled time step ti, namely
either ti + 1 or ti − 1 with even possibility. In case ti
is on the boundary of its mobility range, we treat the
mobility range as a circular buffer.

2) Random neighbor: A neighbor of S is generated by
selecting an operation and rescheduling it to any of the
positions in its mobility range excluding its currently
scheduled position.

However, both of the above approaches suffer from the
problem that many of these “neighbors” will be invalid because
they may violate the data dependency posed by the DFG. For
example, say, in S, a single cycle operation op1 is scheduled
at time step 3, and another single cycle operation op2 that is
data dependent on op1 is scheduled at time step 4. Changing
the schedule of op2 to step 3 will create an invalid scheduling
result. To deal with this problem in our implementation, for
each generated scheduling, we quickly check whether it is valid
by verifying the operation’s new schedule against those of its
predecessor and successor operations defined in the DFG. Only
valid schedules will be considered.

Furthermore, in order to give roughly equal chance for each
operation to be selected in the above process, we try to generate
multiple neighbors before any temperature update is taken. This
can be considered as a local search effort, which is widely
implemented in different variants of the SA algorithm. We
control this local search effort with a weight parameter θ.
That is, before any temperature update takes place, we attempt
to generate θN valid scheduling candidates, where N is the
number of operations in the DFG. In this paper, we set θ = 2,
which roughly gives each operation two chances to alter its
currently scheduled position in each cooling step.

This local search mechanism is applied to both neighbor
generation schemes discussed above. In our experiments, we
found that there is no noticeable difference between the two
neighbor generation approaches with respect to the quality of
the final scheduling results except that the “random neighbor”
method tends to take significantly more computing time. This is
because it is more likely to come up with an invalid scheduling
that is simply ignored in our algorithm. In our final realization,
we always use the “physical neighbor” method.

Another issue related to the SA implementation is how to
set the initial seed solution. In our experiments, we exper-
imented with three different seed solutions: ASAP, ALAP,
and a randomly generated valid scheduling. We found that
the SA algorithm with a randomly generated seed constantly
outperforms that using the ASAP or ALAP initialization. It is
especially true when the “physical neighbor” approach is used.
This is not surprising since the ASAP and ALAP solutions
tend to cluster operations together, which is bad for minimizing

resource usage. In our final realization, we always use the
randomly generated schedule as the seed solution.

The framework of our SA implementation for both TCS and
RCS is similar to the one reported in [44]. The acceptance of
a more costly neighboring solution is determined by applying
the Boltzmann probability criteria [45], which depends on the
cost difference and the annealing temperature. In our experi-
ments, the most commonly known and used geometric cooling
schedule [44] is applied, and the temperature decrement factor
is set to 0.9. When it reaches the predefined maximum iteration
number or the stop temperature, the best solution found by SA
is reported.

The experimental results for the TCS problem obtained using
the above SA formulation are shown in Table IV, where the
SA results are provided in parenthesis column-by-column with
those achieved by using MMAS. Similar to the MMAS algo-
rithm, we perform five runs for each benchmark sample and
report the average savings, the best savings, and the standard
deviation of the reported scheduling results. It can be seen from
Table IV that the SA method provides much worse results com-
pared with the proposed MMAS solutions. In fact, the MMAS
approach provides better results on every testing case. Although
the SA method does have significant gains on select cases over
FDS, its average performance is actually worse than FDS by
5%, while our method provides a 16.4% average savings. This
is also true if we consider the best savings achieved among
multiple runs, where a modest 1% savings is observed in SA
compared with a 19.5% reduction obtained by the MMAS
method. Furthermore, the quality of the SA method seems to be
very dependent on the input applications. This is evidenced by
the large dynamic range of the scheduling quality and the larger
standard deviation over the different runs. Finally, we also want
to make it clear that to achieve this result, the SA approach takes
substantially more computing time than the proposed MMAS
method. A typical experiment over all 263 testing cases will run
between 9 and 12 h, which is three to four times longer than the
MMAS-based TCS algorithm.

As discussed above, our SA formulation for RCS is similar to
that studied in [21]. It is relatively more straight forward since
it will always provide valid scheduling using a list scheduler.
To be fair, a randomly generated operation list is used as the
seed solution for the SA algorithm. The neighbor solutions are
constructed by swapping the positions of two neighboring oper-
ations in the current list. Since the algorithm always generates
a valid scheduling, we can better control the runtime than in
its TCS counterpart by adjusting the cooling scheme parameter.
We carried experiments using execution limit ranging from one
to ten times that of the MMAS approach. It was observed that
the SA RCS algorithm provides poor performance when the
time limit was too short. On the other hand, once we increase
this time limit to over five times of the MMAS execution time,
there was no significant improvement on the results as the
execution time increased. In the rightmost column of Table V,
we present the typical RCS results using SA achieved with ten
times the MMAS execution time. The performance data are
averaged over ten runs for each testing sample. It is easy to
see that the MMAS-based algorithm consistently outperforms
it while using much less computing time.



WANG et al.: ANT COLONY OPTIMIZATIONS FOR RCS AND TCS OPERATION 1027

D. Parameter Sensitivity

The proposed ACO-based algorithms belong to the category
of stochastic search algorithms. This implies a certain sensitiv-
ity of the result to the choices of parameters that are at times
difficult to determine. In order to better understand this issue
and its relationship with the algorithms’ performance, a study
on their sensitivity to the parameter selection is in order. We
have conducted extensive experiments in this paper on this topic
and will report our major findings in this section.
1) α, β, and Q: Variation on the global heuristic weight

α, the local heuristic weight β, and the pheromone delivery
constant Q does not have noticeable impact on the performance
of our algorithms. The algorithms consistently provide robust
results when α and β are in the range of [1, 100] and Q is
between [1, 5000] with small step size, while performance on
benchmarks of smaller sizes tends to have more fluctuations
than the bigger ones. Of course, a numerically precise limit
should be a concern for the parameters α and β in algorithm
realization because they are used in power functions. Also, the
scaling of local and global heuristics could be an issue with
these parameters. In our study, we found that setting α = β = 1
worked well in our implementation over a comprehensive set of
testing benchmarks. Moreover, the benefit is that it essentially
eliminates the power function calls in (1), which further reduces
the computing time.
2) ρ: The pheromone evaporation factor ρ takes a value

in the range of [0, 1] and controls how much the existing
pheromone trails will be reduced before any enhancement.
The smaller is this number, the more reduction is applied [see
(2)]. When this number is too small, historical information
accumulated in the search process will be essentially lost,
and the algorithms behave close to a random search. In our
experiments, we found that a value between 0.95 and 1 seems
to be a good choice. In our final setup, the parameter ρ is set
to 0.98.
3) pbest: This parameter, together with ρ, controls how the

lower bound and upper bound of pheromone trails will be
computed. Recall that when pbest → 0, the difference between
τmin(t) and τmax(t) gets smaller, which means the search is
getting more random and more emphasis is given to search
space exploration. In our experiments, we found that pbest

should be bigger than 0.5. Once it is above this threshold, both
algorithms for RCS and TCS problems perform robustly. In our
final setup, pbest is set to 0.93.
4) m and N : The ant count m and the iteration number N

are closely related and have a direct impact on the algorithms
execution time. Roughly, the product of m and N gives an
estimation of how many scheduling instances the algorithms
will cover. Theoretically, the bigger is this product, the better is
the performance. Also, it is intuitive to see that these parameters
should be positively correlated with the complexity of the test
sample. In this paper, we prefer to use a fixed setting for these
parameters in order to make the algorithm simpler. As reported
above, with m = 10 and N is set to be 150 and 100 for the
TCS and RCS problem, respectively, our algorithms work well
over a wide range of testing samples. In a further study, we
varied m between 1 and 10, and N from 50 to 1000. We found

that little performance improvement is seen after N is bigger
than 250 when m is reasonably large (� 4). We contribute
this to the fact that the pheromone trails converge after a large
number of iterations. If N is smaller than 100, we will often
miss the optimal solution because of premature termination.
This is especially true for the TCS problem. Similarly, when
m is bigger than 6, we see little improvement. The best tradeoff
of m seems to be between 4 and 6. It is interesting to notice that
these numbers are very close to the average branching factor of
the testing samples. These results imply that we may still have
room to fine tune these two parameters to further improve the
performance/cost tradeoff of the algorithms.

VIII. RELATED WORK

To the best of our knowledge, the only other reported work
on using ACO to solve the OS problem is done by Kopuri and
Mansouri [46]. Compared with this paper, their study is limited
to the TCS problem.

To address the TCS problem, their algorithm has a different
formulation and is more closely related to the classic FDS
algorithm. They use a modified self-force computation, where
predecessor and successor forces are dropped in the overall
force consideration. This force is calculated by linear combina-
tion of normalized classic self-force and the pheromone trails.
Since the resulting value can be both negative and positive, it
is hard to act as an indicator for operation selection during the
scheduling construction process. In their work, simple random
selection is used.

Our algorithm uses a dynamically computed distribution
graph for the corresponding resource k for the local heuristic,
and force calculation is not needed. We believe it provides the
following benefits.

1) It is directly tied with the optimization target, i.e., mini-
mizing the resource cost.

2) It is faster to compute.
3) The value range for the distributed graph is nonnegative,

which enables more effective operation selection strategy
than random selection as discussed in Section IV-C.

Moreover, as discussed in Section IV, our algorithm can
be readily extended to handle different design scenarios such
as multiple-cycle operations, mutually exclusive operations,
operation chaining, and pipelining. It is unclear if their algo-
rithm can be easily extended to do so, and only single-cycle
operations were used in their study.

It is known that premature convergence is an important issue
in ant-based approaches, and our experience shows that this is
an important factor for the OS problem. In order to cope with
this, the MAX–MIN formulation is used in our algorithms for
both TCS and RCS. No such mechanism was used in [46].

Finally, the effectiveness and efficiency of our algorithms
are tested over a comprehensive benchmark suite compiled
from real-world applications. The performance with respect to
solution quality, stability, scalability, and timing performance is
more thoroughly studied and reported here. Only limited results
on a small number of samples were reported in [46].
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IX. CONCLUSION

In this paper, we presented two novel heuristic searching
methods for the RCS and TCS problems based on MMAS.
Our algorithms employ a collection of agents that collaborate
to explore the search space. We proposed a stochastic decision-
making strategy in order to combine global and local heuris-
tics to effectively conduct this exploration. As the algorithms
proceed in finding better quality solutions, dynamically com-
puted local heuristics are utilized to better guide the searching
process.

A comprehensive set of benchmarks was constructed to
include a wide range of applications. Experimental results
over our test cases showed promising results. The proposed
algorithms consistently provided higher quality results over
the tested examples and achieved very good savings compared
with traditional SA, list scheduling, and FDS approaches.
Furthermore, the algorithm demonstrated robust stability over
different applications and different selection of local heuristics,
as evidenced by a much smaller deviation over the results.
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