
IEEE TRANSACTIONS ON CYBERNETICS, VOL. 49, NO. 6, JUNE 2019 2215

Ant Colony Stream Clustering: A Fast Density

Clustering Algorithm for Dynamic Data Streams
Conor Fahy, Shengxiang Yang , Senior Member, IEEE, and Mario Gongora

Abstract—A data stream is a continuously arriving sequence of
data and clustering data streams requires additional considera-
tions to traditional clustering. A stream is potentially unbounded,
data points arrive online and each data point can be examined
only once. This imposes limitations on available memory and pro-
cessing time. Furthermore, streams can be noisy and the number
of clusters in the data and their statistical properties can change
over time. This paper presents an online, bio-inspired approach
to clustering dynamic data streams. The proposed ant colony
stream clustering (ACSC) algorithm is a density-based clustering
algorithm, whereby clusters are identified as high-density areas
of the feature space separated by low-density areas. ACSC iden-
tifies clusters as groups of micro-clusters. The tumbling window
model is used to read a stream and rough clusters are incre-
mentally formed during a single pass of a window. A stochastic
method is employed to find these rough clusters, this is shown to
significantly speeding up the algorithm with only a minor cost
to performance, as compared to a deterministic approach. The
rough clusters are then refined using a method inspired by the
observed sorting behavior of ants. Ants pick-up and drop items
based on the similarity with the surrounding items. Artificial ants
sort clusters by probabilistically picking and dropping micro-
clusters based on local density and local similarity. Clusters are
summarized using their constituent micro-clusters and these sum-
mary statistics are stored offline. Experimental results show that
the clustering quality of ACSC is scalable, robust to noise and
favorable to leading ant clustering and stream-clustering algo-
rithms. It also requires fewer parameters and less computational
time.

Index Terms—Ant colony, concept drift, concept evolution,
data stream clustering, density clustering.

I. INTRODUCTION

M
INING data streams brings additional problems to tra-

ditional data mining. A data stream is a potentially

unbounded sequence of data and in dynamic environments

the properties of this data can change over time in unforeseen

ways. As a stream progresses, the performance of traditional

Manuscript received December 3, 2017; revised March 7, 2018; accepted
March 27, 2018. Date of publication May 10, 2018; date of current version
March 28, 2019. This work was supported by the Engineering and Physical
Sciences Research Council of U.K. under Grant EP/K001310/1. This paper
was recommended by Associate Editor M. Zhang. (Corresponding author:

Shengxiang Yang.)

The authors are with the Centre for Computational Intelligence,
School of Computer Science and Informatics, De Montfort University,
Leicester LE1 9BH, U.K. (e-mail: conor.fahy@dmu.ac.uk; syang@dmu.ac.uk;
mgongora@dmu.ac.uk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCYB.2018.2822552

classifiers and predictive models can degrade as the charac-

teristics of the target objects change. This change can be

gradual, known as concept-drift, sudden as concept-shift, or

in the form of concept-evolution when entirely new classes

appear in the stream. Detecting this change is a challenge,

as is reacting and adapting to the change. This challenge

is compounded by the scarcity-of-labels problem, whereby

in a streaming environment, newly arriving data is both

expensive and time-consuming to label. Unsupervised learn-

ing techniques, such as clustering, can potentially be used to

mitigate this labeling problem and also as a change detec-

tion mechanism alongside traditional classifiers and predictive

models.

Clustering in a data stream requires additional considera-

tions to traditional clustering. When dealing with a continuous

sequence of information, it is only possible to examine the

data once. Clustering needs to be performed quickly to pre-

vent bottlenecks and potential loss of data. A stream can be

potentially infinite but only a limited amount of memory is

available, necessitating the summarization of identified clusters

in a meaningful way. The nature of an evolving stream implies

that clusters can drift, new clusters can appear, or clusters can

disappear and reappear cyclically. Therefore, it is difficult to

know a priori how many clusters are present in the stream.

Although traditional partitioning clustering techniques, such as

k-means and its variants, have been successfully applied to data

streaming, they have the drawback of requiring k to be speci-

fied a priori. Density-based clustering, a form of hierarchical

clustering, overcomes this limitation.

Density-based clustering defines clusters as high-density

areas of the feature space separated by areas of low density.

It can identify arbitrarily shaped clusters, is robust to out-

liers and, crucially, does not require the number of clusters

to be known a priori. In our proposed algorithm, dense areas

are described using micro-clusters: n-dimensional spheres with

center c and radius r. Micro-clusters have a maximum radius ǫ

where r ≤ ǫ. A data point is assigned to a micro-cluster if the

point falls within its radius. The set of micro-clusters that are

connected form the macro-cluster. Generally, there are more

micro-clusters than there are actual clusters but significantly

fewer micro-clusters than there are data points. This serves a

dual purpose both as the clustering mechanism and as a sum-

marization technique because a number of local data points

can be represented by a single micro-cluster. Clusters identified

by the algorithm are summarized by their constituent micro-

clusters and these summaries are stored offline for evaluation

by the user. This has two advantages.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

https://orcid.org/0000-0001-7222-4917

2216 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 49, NO. 6, JUNE 2019

1) Information about clusters can be stored in a fraction of

the space.

2) Representative micro-clusters are potentially easier to

evaluate than the entire set of individual data points

assigned to a cluster.

A density-based approach to stream clustering can address

the problem of a shifting number of nonstationary clusters

and provides a method to summarize these clusters, and we

propose a sampling method to address the speed requirement

of data stream clustering. A point’s similarity with a cluster is

evaluated using a sample taken from the cluster. The stochastic

sampling method replaces the traditional, exhaustive search

for each point’s appropriate micro-cluster, and subsequently

the nearest neighbor of each micro-cluster. Rough clusters are

incrementally created in a single pass of the data. The first

point seeds the first cluster, subsequent points are assigned to

an existing cluster or, if too dissimilar, seed a new cluster. Only

after every point has been assigned to its respective cluster

are micro-clusters created. Each point is converted to a micro-

cluster and these micro-clusters attempt to merge with others

in the same cluster only. The merging operation is expensive,

and attempting to merge at this stage reduces the number of

failed merging attempts.

After this single-pass of the data, the discovered clusters are

often rough and too many. These clusters are refined using an

ant-inspired sorting method. This method (i.e., the “pick-and-

drop” method) is modeled based on the behavior of certain

species of ant which cluster corpses into “cemeteries” or sort

their larvae into piles. The idea is that isolated items should be

picked up and then dropped at other locations where similar

items are present. Sorting ants are assigned to each cluster and

they attempt to refine the initial clusters by probabilistically

picking micro-clusters and dropping them in more suitable

clusters. The probabilistic operations are biased toward the

dissolution of smaller clusters and their contents moved to

similar, larger clusters. Intuitively, it is better to have all points

of class X in one cluster rather than distributed in a number

of smaller clusters.

In other density-based streaming algorithms that use micro-

clusters, e.g., DenStream [7] and its variants, micro-clusters

are defined by two parameters; the maximum radius ǫ and

minPoints which determines the minimum number of data

points within ǫ for the micro-cluster to be considered dense.

In ant colony stream clustering (ACSC), each point is ini-

tially treated as its own micro-cluster and so the minPoint

parameter is effectively 1 and therefore not required. This

removes the complication of defining micro-clusters as either

core, potential or outlier as each micro-cluster is treated

equally. To further simplify we merge the concepts of density-

reachable, directly density-reachable, and density-connected

into one concept density-reachable, which determines if two

micro-clusters are connected and should be considered part

of the same cluster. ACSC assigns points to a cluster before

creating and merging micro-clusters so when a new micro-

cluster is directly density-reachable to any in the cluster, it is

density-reachable and density-connected to all in the cluster.

This simplifies the algorithm, reduces the overall complexity

and allows for effective sampling. The main features of ACSC

can be summarized as follows.

1) The two phases of summarization and clustering are

combined into a single online phase.

2) Micro-clusters are defined using a single parameter ǫ,

and ACSC requires just three parameters overall.

3) Clusters are formed using a single concept of density

and outliers are identified as clusters containing a single

point.

4) Sorting operations are performed locally, through sam-

pling from each cluster. This reduces the computational

time and scales linearly to larger dimensionality and

increasing numbers of clusters.

The rest of this paper is organized as follows. Section II

presents related work in this area. Our proposed ACSC is

described in Section III. Section IV presents our experimen-

tal study based on several real and synthetic data streams.

Section V concludes this paper.

II. RELATED WORK

The work by Aggarwal et al. [1] was the first attempt

to address one of the fundamental problems in dealing with

streams, the problem of being unable to revisit evolving

data. The authors suggested that a stream clustering algorithm

should consist of two components: 1) an online component

and 2) an offline component. Data arriving online should be

summarized and the offline component should perform clus-

tering on the summarized data. Their algorithm, CluStream,

introduced the concept of micro-clusters as a method to sum-

marize data. Micro-clusters are a temporal extension of the

cluster-feature-vector proposed in [45]. In CluStream, only a

certain number of micro-clusters can be stored in memory at

any one time so when a new micro-cluster is formed, two

existing micro-clusters must be merged or one deleted. The

offline clustering of the micro-clusters is based on the k-means

algorithm [20].

Partitional clustering algorithms have been extended for

single-pass and stream clustering. In [33], a general approach

is proposed to enable traditional soft partitional clustering

algorithms to deal with streaming data. The data stream is split

into chunks and each chunk is partitioned into a set of cluster

centroids. The centroids are weighted with the amount of sam-

ples they represent and in order to maintain the history of the

stream, previously identified centroids are added to the newly

arriving chunk of data to be clustered. In [17], a constant-

factor approximation algorithm for a K-median approach to

data streaming is described. These algorithms offer a fast,

accurate single pass clustering of data but could be sensitive

to changes in the underlying distribution or a shifting number

of natural clusters.

Density-based approaches [12] do not suffer from these lim-

itations. Clusters are identified as areas of high density in the

feature space and so the number of clusters does not need to

be specified, noise and outlier points are easier to identify and

clusters of any shape can be found. Density-based clustering

has been extended for streams by adopting the aforementioned,

two-part, online and offline framework [7], [41], [43].

MR-Stream [43] partitions the search space into cells and

uses a tree structure to store the space partitioning. Newly

arriving data points are assigned to a cell and the tree structure

FAHY et al.: ACSC: FAST DENSITY CLUSTERING ALGORITHM FOR DYNAMIC DATA STREAMS 2217

is updated. The offline clustering is performed on the summa-

rized tree. D-Stream introduced in [41] and extended in [8]

also partitions the search space into discrete grid sections on

which data are mapped. A decay factor is used to give higher

importance to recent data. The authors introduced a technique

to detect and remove sparse grid sections, which improves the

space and time efficiency and improves on previous grid-based

clustering algorithms.

DenStream [7] extends the concept of micro clusters intro-

duced in CluStream by adding a temporal aspect. It uses

the time-dampened window model to assign higher weight

to recent data. Data points are summarized online as micro-

clusters and when a clustering request is made by a user,

these micro-clusters are clustered offline using a traditional

density-based clustering algorithm [12]. However, as observed

in [15] and [43], the offline clustering phase is computation-

ally expensive and, furthermore, it is only executed when

a clustering request is made by a user, so there is poten-

tially a tradeoff between frequent requests to discover changes

in the stream and infrequent requests in order to reduce

computational overheads.

To overcome this, the two phases of DenStream were

merged into a single online phase in FlockStream [15].

FlockStream was inspired by the flocking behavior of birds

as proposed in Reynolds’ Boids algorithm [36]. It uses a

decentralized, self-organizing strategy to group similar micro-

clusters. FlockStream has been shown to require substantially

fewer pair-wise distance comparisons than DenStream while

achieving similar cluster purity. FlockStream adopts the con-

cepts of time-weighted core micro-clusters and noncore micro-

clusters introduced in DenStream. These concepts are also

employed in DEC [3] to identify clusters in real-time streams

upon which fuzzy models are developed.

The offline clustering phase used by DenStream is an exten-

sion of the DBSCAN algorithm [12], which groups data in

terms of core-points, reachable points, and outliers. A point

p is considered core if there are at least minPoints within a

distance ǫ of p. Point p forms a cluster with all points that are

reachable to it and any points which are not are considered

to be outliers. Various extensions to DBSCAN have been pro-

posed, including methods for parallelization [29], parameter

estimation [13], and increased accuracy [31]. A comprehensive

review of all the variants is given in [35].

A particularly relevant extension of DBSCAN is the PACA-

DBSCAN algorithm [23]. PACA-DBSCAN uses the pick-and-

drop model of ant clustering introduced in [9] to initially

partition the data before the DBSCAN algorithm is applied.

The pick-and-drop model proposed by Deneubourg et al.

was extended [30] for data analysis by introducing a sim-

ilarity measure between data objects. In this model, each

n-dimensional data point is associated with a 2-D point in

a 2-D space. Initially, these points are distributed randomly.

Artificial ants move around and probabilistically pick-and-drop

the 2-D data objects based on local density in the 2-D space

and similarity of the data in the n-dimensional feature space.

Clusters emerge as a consequence of these simple, local rules.

This pick-and-drop model has been extended [6], [18], [19].

However, this model requires many iterations to cluster the

data and the final clustering solution is just a spatial embed-

ding of the data in a 2-D space and a further processing step

is often required. Along with hard clustering methods, fuzzy

approaches to ant clustering have been proposed [24]. Once

initial heaps have been formed by the ants, the centroids are

refined by the fuzzy c-means algorithm [4].

A variation on the leader ant algorithm was proposed in

AntClust [27]. Data objects are associated with ants and ants

are assigned an “odor.” Ants sharing the same odor form

nests. This model was extended in [32] for streams and is one

of the few examples in the literature of ant-inspired stream

clustering algorithms. Ants move from nest to nest along

pheromone trails and find their most suitable (closest in terms

of the Euclidean distance). The algorithm computes the clus-

ters using k-means, which limits its suitability for a streaming

environment.

Along with pick-and-drop and chemical coordination, other

properties of social insects, such as self assembly [2] and

Stimergy [14], have been used as inspiration for clustering

models, and there is a large body of research on clustering with

ant colony optimization [11] whereby the clustering problem

is viewed as an optimization problem [25], [37], [38]. Other

bio-inspired stochastic stream-clustering algorithms include

extensions on the neural gas algorithm G-stream [16] and

Kohen’s self organizing map [10].

III. PROPOSED ANT COLONY STREAM

CLUSTERING ALGORITHM

ACSC employs the tumbling window model [28] when deal-

ing with data streams. A tumbling window is a type of sliding

window where, at each iteration, a fixed size nonoverlapping

chunk of data is considered. In each window, ACSC identi-

fies clusters as a group of micro-clusters, and a micro-cluster

is a set of neighboring points within a certain radius; the

ǫ-neighborhood determines this radius.

A micro-cluster containing N points { �Xi}, i = {1, . . . , N},
is described using three components.

1) The number of data points the micro-cluster

contains (N).

2) The linear sum (LS) of each dimension (i.e.,
∑N

i=1
�Xi).

3) The squared sum (SS) of each dimension (i.e.,
∑N

i=1
�X2

i).

LS and SS are d-dimensional arrays, where d is the number

of dimensions in a point. From these, the radius r and center

c of the micro-cluster can be determined [1]

c =
LS

N
(1)

r =

√

SS

N
−

(

LS

N

)2

. (2)

A micro-cluster can also contain a temporal variable, but

this is not necessary in the tumbling window model. LS and SS

have the properties of additivity and increment-ability, which

allow micro-clusters to absorb new data points and to merge

with other micro-clusters. A micro-cluster m can absorb point

p if, after updating the LS and SS of m with p, radius(m) ≤ ǫ.

Similarly, two micro-clusters mi and mj can attempt to merge

2218 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 49, NO. 6, JUNE 2019

Algorithm 1 Merge Operation

Input: ǫ-neighbourhood, 2 micro-clusters; a and b

Output: Merged micro-cluster iff operation successful

1: Create new, empty micro-cluster c

2: Initialise c := a

3: Add b to c (3)

4: r := radius of c (2)

5: if (r ≤ ǫ) then merge successful

6: Delete a and b

7: Return c

8: else

9: Delete c

10: Return false

into a single micro-cluster mk as follows:

mk =
(

Ni + Nj, �LSi + �LSj, SSi + SSj

)

. (3)

If radius(mk) ≤ ǫ, the clusters merge; otherwise, the merging

operation fails. The pseudo-code for this process is outlined

in Algorithm 1.

Micro-clusters mi and mj are said density reachable if

dist
(

cmi , cmj

)

≤ ǫ (4)

where cmi and cmj are the centers of micro-clusters mi and mj,

respectively.

The solution provided by ACSC is a set of clusters con-

taining density-reachable micro-clusters. ACSC works in two

steps.

1) Rough clusters are identified in a single-pass of the

window.

2) These rough clusters are refined and their summary

statistics are stored offline.

A. Find Clusters

ACSC employs the tumbling window model when dealing

with data streams. At each iteration, a fixed size nonoverlap-

ping chunk of data is considered. So, at the beginning of this

step, there will be WindowSize points. In a single-pass of

the window, clusters are incrementally formed. The first point

seeds the first cluster. Subsequent points are assigned to an

existing cluster or used to seed a new cluster. Point p’s suit-

ability with cluster c is evaluated using the Euclidean distance

from p with a sample nSamples taken from c. The suitability

of point p with cluster c is estimated as follows:

Suitability(p, c) =

min(nSamples,n)
∑

j=1

dist
(

p, cj

)

min(nSamples, n)
(5)

where n is the number of points that are present in the cluster.

Each cluster is evaluated and the point is assigned to the most

suitable one provided the suitability is equal to or below ǫ; if

not, the point seeds a new cluster. The parameter ǫ determines

the maximum radius for a micro-cluster in the subsequent step

and also serves as the minimum suitability measure in this

step.

Algorithm 2 Find Clusters

Input: Window

Output: Clusters, Cluster Similarity

1: while <Window> do

2: for <each data point> do

3: if <clusters> then

4: Find best cluster (5)

5: Add point to cluster

6: Update cluster similarity (6)

7: else if <No clusters ||
8: No suitable cluster> then

9: Create new cluster

10: Add point to cluster

11: Update cluster similarity (6)

12:
return Clusters, Cluster Similarity

As we estimate each point’s suitability with each cluster, we

record each suitability. This is useful information, especially

when afforded just a single pass of the data. Upon joining (or

establishing) a cluster, we update the similarity information

between the selected cluster and its neighboring clusters. The

similarity between clusters a and b is the average of each point

p in cluster a’s suitability (5) with cluster b

Similarity(a, b) =
1

n

n
∑

i=1

Suitability(ai, b). (6)

The similarity to each neighboring cluster is a rolling

average updated whenever a new point is assigned to the clus-

ter. Although comparable, Similarity(a, b) �= Similarity(b, a).

This phase of the algorithm is outlined in Algorithm 2.

B. Sort Clusters

The previous step discovers clusters in a single-pass of the

window. The clusters identified at this stage are often rough,

impure and too-many. In this step, micro-clusters are created,

merged, and intercluster sorting is performed.

Initially, each d-dimensional point p in each cluster is

treated as its own micro-cluster m. This micro-cluster will have

a radius of 0 and a center of p. Formally, we have

m.N = 1

m.LSi = pi, i = {1, . . . , d}

m.SSi = pi
2, i = {1, . . . , d} (7)

where pi is the ith dimension of point p.

Before sorting, each micro-cluster attempts to merge with

other micro-clusters in the same cluster. The merging opera-

tion is performed by comparing each micro-cluster with every

other in the same cluster. If, after summing their constituent

parts (3), the radius is less than or equal to ǫ, the merg-

ing operation is a success. Merging at this step ensures that

only neighboring micro-clusters attempt to merge and avoids

the unnecessary computation of comparing micro-clusters in

different dense areas. Another advantage is that, during the

sorting phase, n points represented by a micro-cluster can be

FAHY et al.: ACSC: FAST DENSITY CLUSTERING ALGORITHM FOR DYNAMIC DATA STREAMS 2219

moved in a single operation, speeding up the sorting process

and reducing the number of pairwise comparisons.

“Sorting ants” are created and one is assigned to each clus-

ter. Each sorting ant is native to its own cluster. Sorting ants

probabilistically decide to pick-up a micro-cluster from their

cluster. A micro-cluster m is chosen at random from cluster

k and is iteratively compared with nSamples micro-clusters

in the same cluster. The Euclidean distance from the cen-

ter of m to each of the selected micro-clusters is calculated

and if both are density-reachable (4), then a reachable count

is incremented. The probability of a pick-up is calculated as

follows:

Ppick = 1 −
reachable

nSamples
. (8)

It is important to note that if the number of micro-clusters n

in cluster c is fewer than nSamples, then only n comparisons

are made. However, Ppick is still calculated using nSamples.

This ensures a higher probability of a pick-up in clusters con-

taining fewer micro-clusters. This leads to the dissolution of

smaller clusters and their incorporation into larger, similar

clusters.

If a micro-cluster is successfully picked-up, the Boolean

variable carrying is true and the sorting ant moves to a

neighboring cluster and attempts to drop it.

Sorting ants move to the most similar cluster (using the sim-

ilarity information from the first step) ensuring that they do not

attempt to drop micro-clusters in clusters that are dissimilar

to their own. A sorting ant attempts to drop its micro-cluster

in the new cluster based on the inverse of (8). If the drop-

ping operation is successful, the micro-cluster is moved to the

new cluster; otherwise, the micro-cluster remains in its orig-

inal cluster. The ant returns to its native cluster and updates

the similarity information between the two clusters with the

latest suitability score [see (5)].

Each sorting ant continues to attempt sorting until either

the cluster is empty (all of its contents have been moved to

another cluster) or the sorting ant is “asleep.” Each sorting ant

has a counter and if a pick-and-drop operation is unsuccess-

ful, either picking or dropping, this counter is incremented.

When the counter reaches sleepMax, then the cluster is con-

sidered to be sorted and a Boolean counter sleeping is true.

The counter is reset to zero after a successful operation or if a

new micro-cluster is placed in the cluster by a foreign sorting

ant. When all ants are sleeping, the stop condition is met.

This step purifies each cluster and causes many smaller, sim-

ilar clusters to dissolve and form one larger cluster. Clusters

containing only one micro-cluster are considered to be out-

liers and the clustering solution is given as the set of nonempty

clusters. Each cluster contains a grouping of density-reachable

micro-clusters which summarize the partitioned areas of high-

density in the feature space. These summary statistics are

stored offline and the next tumbling window in the data stream

is evaluated. This step is outlined in Algorithm 3.

IV. EXPERIMENTAL STUDY

The performance of ACSC is evaluated on both stationary

and nonstationary datasets across three metrics. Since there

Algorithm 3 Sort Clusters

Input: Initial Clusters, Cluster Similarity

Output: Sorted Clusters

1: Create micro-clusters (7)

2: Merge micro-clusters in each cluster (Algorithm 1)

3: Assign Sorting Ant to each cluster

4: while <!Stop Condition> do

5: for <each ant> do

6: if <!Sleeping> then

7: Probabilistically pick-up (8)

8: if <Carrying> then

9: Move to most similar cluster

10: Probabilistically drop (8)

11: Update similarity information (6)

12: Update sleepCounter

13: return Clusters

are so few ant-based stream-clustering algorithms, ACSC is

compared with four popular static ant clustering algorithms.

ACA [42] extends the original pick-and-drop implementa-

tion [30] by introducing a cooling scheme for the picking

probabilities. ACAm [6] extends this by associating a short

term memory with each ant. The heuristic is further improved

in ATTA [18] by using a colony of heterogeneous ants.

AntClust does not use the pick-and-drop model for clustering

but is instead inspired by the chemical recognition system of

ants. The performance of these algorithms is taken from results

already published in the literature. ACSC is then compared

with three leading stream clustering algorithms on nonstation-

ary streams. DenStream [7], CluStream [1], and ClusTree [26]

are density-based stream clustering algorithms. Similar to

ACSC, they each employ micro-clusters to identify dense

areas of the stream. However, unlike ACSC, they use the two-

phase process of online summarization and offline clustering.

DenStream uses a time dampened window to assign higher

importance to more recent data and the offline clustering

phase is based on a variation of the DBSCAN [12] algorithm

whereas CluStream applies a weighted k-means algorithm on

the generated micro-clusters. ClusTree uses a self-adaptive

index structure to update the micro-clusters. Each of these

algorithms are evaluated using the massive online analysis

(MOA) [5] open source software.

A. Performance Metrics

ACSC is evaluated across three metrics: 1) purity;

2) F-measure [22]; and 3) rand index [34]. Each dataset used

is labeled and the ideal “correct” clustering solution is known,

so performance is measured with respect to this ground truth.

In each metric, a bad clustering will have a value close to 0

and an ideal clustering solution will have a value of 1.

The purity metric measures how homogeneous a cluster is.

A cluster is assigned to the class which appears most fre-

quently within the cluster, the accuracy of this is evaluated

by summing the instances of this class and dividing by the

2220 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 49, NO. 6, JUNE 2019

TABLE I
DESCRIPTION OF DATASETS USED IN EXPERIMENTS

total number of instances in the cluster. The F-measure (some-

times called F-score or F1-score) is the harmonic mean of the

precision and recall scores obtained by the algorithm.

In the following, R represents the clustering result returned

by the algorithm. R contains n clusters. In every identified

cluster Ri (i = {1, . . . , n}), V i represents the most frequently

appearing class label in cluster Ri, V i
sum is the number of

instances of V i in Ri, and V i
total represents the total number of

instances of V i in the current window. From these, we define

the following features for cluster Ri:

precisionRi
=

V i
sum

|Ri|
(9)

recallRi =
V i

sum

V i
total

(10)

ScoreRi = 2 ∗
precisionRi

∗ recallRi

precisionRi
+ recallRi

. (11)

Overall, purity (P) and F-measure (F) can now be expressed

in terms of the total number of clusters identified, as follows:

P =
1

n

n
∑

i=1

precisionRi
(12)

F =
1

n

n
∑

i=1

ScoreRi . (13)

The rand index (R) is a measure of agreement between two

clustering solutions; the solution identified by the algorithm

and the ideal clustering solution known from the ground truth.

It measures the number of decisions that are correct by penaliz-

ing false negatives and false positives. Simply put, it measures

the accuracy of the algorithm, defined as follows:

R =
TP + TN

TP + FP + TN + FN
(14)

where TP, TN, FP, and FP denote the number of true posi-

tive, true negative, false positive, and false negative decisions,

respectively.

We compare the performance of ACSC (stochastic) with

results already published in the literature and also with three

deterministic streaming algorithms (DenStream, CluStream,

and ClusTree). To statistically analyze the results on the

above metrics, we use the nonparametric one-sample Wilcoxon

signed-rank test [44]. We reject the null hypothesis that the

distribution of the ACSC results are symmetric around the

corresponding peer result with p < 0.05.

B. Datasets

ACSC is compared with other ant-based clustering solutions

across three well known and popular nonstationary datasets;

Iris, Wine, and Zoo. These datasets were taken from the UCI

Machine Learning Depository1 and the details of each are pre-

sented in Table I. These datasets are originally sorted by class

so we randomly shuffle each dataset to remove any potential

bias in the sorted streaming order. To evaluate the performance

of ACSC over nonstationary streams, six datasets were used.

Four datasets are synthetic and are taken from the nonstation-

ary dataset used in [39] and made publicly available by the

authors.2 The four selected datasets were chosen in order to

test increasing numbers of natural clusters present in the data.

ACSC is also tested on two real data streams.

1) The network intrusion benchmark dataset3 used in [7]

and [15].

2) The forest cover-type dataset.4

The network intrusion data stream is composed of seven

weeks of simulated network requests on the DARPA network.

Requests can be “normal” or “malicious.” The nonstationary

“malicious” class contains substantial drift as it is com-

posed of twenty three different types of attack. The forest

cover data stream is composed of 54 cartographic variables

describing forest coverage in Roosevelt National Forest of

Northern Colorado and is widely used in the stream-mining

literature [1], [16], [26]. The full details of each dataset are

presented in Table I. These datasets have been transformed into

a stream by taking the input order as the streaming order. For

the UCI datasets, we take the shuffled order as the streaming

order.

C. Clustering Quality Evaluation

To evaluate ACSC on the static datasets the algorithm was

tested on one window with windowSize set to the number

of samples. ACSC is compared with leading ant clustering

1http://archive.ics.uci.edu/ml/
2https://sites.google.com/site/nonstationaryarchive/
3http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
4https://archive.ics.uci.edu/ml/datasets/covertype

FAHY et al.: ACSC: FAST DENSITY CLUSTERING ALGORITHM FOR DYNAMIC DATA STREAMS 2221

Fig. 1. Performance on Network-Intrusion Stream over 1000 windows of size 1000, where ǫ = 0.05.

Fig. 2. Performance on Forest-Cover Stream over 1000 windows of size 1000, where ǫ = 0.05.

TABLE II
RESULTS OF ALGORITHMS ON STATIONARY DATASETS REGARDING

PURITY (P), F-MEASURE (F), AND RAND INDEX (R)

algorithms and the performances of these algorithms were

taken from results already published in the literature, with

the exception of our implementation of AntClust. The purity

and rand Index for the ATTA algorithm are omitted as they

are not available in the literature. The comparative results are

presented in Table II. The average of 30 runs of ACSC is

presented along with result of the Wilcoxon signed-rank test,

where “s+” indicates ACSC performs significantly better than

the best peer result and “s−” indicates ACSC performs sig-

nificantly worse. ACSC performs significantly better on each

metric in the Iris and Wine datasets and is outperformed only

by AntClust on the rand index measure on the Wine dataset.

The overall average shows that ACSC outperforms the others

on these three datasets on all metrics.

To evaluate ACSC on nonstationary streams, ACSC is com-

pared with DenStream, CluStream, and CluStream. Table III

displays a comparative evaluation of each algorithm across

the entire stream. The peer algorithms are deterministic but

ACSC is stochastic so the displayed results are the average,

along with the Wilcoxon test over 30 runs. ACSC, on aver-

age over all six datasets, outperforms the compared algorithms.

The levels of cluster purity are comparable across each dataset

except for 2CHT where ACSC performs much better. ACSC

achieves the best Rand Index scores on each dataset and the

best F-measure on five out of six datasets and on average, is

the best overall. On the final stream; forest cover, we are using

the full dataset, containing 54 variables, both continuous and

discreet. CluStream and ClusTree were unable to find a clus-

tering solution on this full dataset (we are evaluating through

the MOA platform). Previous studies report using a subset of

the data (the first ten continuous variables).

While Table III shows the mean values across the whole

stream, the online performance of ACSC as a stream pro-

gresses is displayed in Figs. 1 and 2. We use the two real

data streams (network intrusion and forest cover) and plot the

algorithm’s performance over time.

2222 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 49, NO. 6, JUNE 2019

TABLE III
AVERAGE PERFORMANCE OF ALGORITHMS OVER THE ENTIRE STREAM REGARDING PURITY (P), F-MEASURE (F), AND RAND INDEX (R)

TABLE IV
TIME MEASUREMENT IN SECONDS OVER STREAM. TOTAL TIME FOR STREAM AND AVERAGE WINDOW LENGTH USING

WINDOW SIZE OF 1000. * FASTER ALGORITHMS DID NOT DISCOVER A CLUSTERING SOLUTION

Fig. 3. Mean number of calculations performed on network intrusion dataset
over 100 windows of size 1000.

To evaluate the time requirement of the algorithm we mea-

sure the speed of the algorithm in seconds. We measure the

total time the algorithm takes to process a stream. We also

report the average time to process a single window with size

1000. Through MOA, we also measure the performance of

the peer algorithms for comparison and report the results in

Table IV.

Fig. 3 shows the mean number of calculations performed

by ACSC and, for comparison, DenStream on the network

intrusion stream. These comparisons are the Euclidean dis-

tance comparisons between two micro-clusters. Intuitively,

the greater the number of comparisons, the longer the algo-

rithm takes. The sampling method in ACSC, and the stage

at which micro-clusters attempt to merge mean that far fewer

comparisons are needed and the reason why ACSC can pro-

cess a stream comparatively faster. These results are based on

a window size of 1000 for ACSC and a horizon and initPoints

of 1000 for DenStream. The other DenStream variables were

tuned to ǫ = 0.02, β = 0.2, µ = 1, and λ = 0.25.

The memory requirement of the algorithm is a function of

the window size. The window is read in a single pass, summa-

rized into a smaller number of micro-clusters and then deleted.

These micro-clusters are operated on and stored. So the overall

memory usage is determined by the size of the window (the

number and dimensionality of points) loaded into memory. We

use a commercial profiler [21] to accurately measure the mem-

ory usage of the algorithm as a stream progresses. We report

the usage in MB on the network intrusion and forest cover

data streams. We measure memory usage on different window

sizes of 1k, 2k, and 5k. These results are displayed in Fig. 4.

For display purposes, each plot-point is an average over a set

of windows. For windows of length 1k, we averaged ten win-

dows. For windows of length 2k, we averaged five windows,

and for windows of length 5k, we averaged two windows. It

can be seen that as the window size increases, the memory

usage increases. Also, as the dimensionality increases (forest

cover), the memory usage increases. We used a PC with an

Intel processor at 2.6 GHz and 8 GB of RAM.

D. Effect of Stochastic Sampling and Sample-Size

In phase one of the algorithm we make a single pass of a

window, incrementally forming clusters. We evaluate a point

FAHY et al.: ACSC: FAST DENSITY CLUSTERING ALGORITHM FOR DYNAMIC DATA STREAMS 2223

TABLE V
EFFECT OF THE NCOMP PARAMETER ON SPEED AND PERFORMANCE, NETWORK INTRUSION STREAM WITH VARYING WINDOW SIZES

Fig. 4. Memory usage in MB.

p’s similarity with an existing cluster C using the Euclidean

distance from p with a sample (without replacement) from C.

The nComp parameter determines the size of this sample

nSamples = WindowSize ∗ nComp. (15)

A smaller value for nComp, say 0.05, will result in a smaller

sample taken, fewer comparisons made and, intuitively, a faster

run. A larger value for nComp will require more comparisons,

slowing the algorithm but offering, potentially, greater accu-

racy with less variance in results. A value of 1.0 for nComp

requires a comparison with each point in every cluster (not

just a sample) effectively making this phase of the algorithm

deterministic.

In Table V, we report the performance (over ten runs) of

ACSC on the network intrusion data stream with gradually

increasing values for nComp. We report the performance of

the algorithm (the average of the purity, F1-measure, and rand

TABLE VI
COMPARISON OF DENSTREAM WITH STOCHASTIC AND DETERMINISTIC

ACSC. NETWORK INTRUSION, WINDOW = 1000

TABLE VII
COMPARISON OF DENSTREAM WITH STOCHASTIC AND DETERMINISTIC

ACSC. FOREST COVER, WINDOW = 1000

index metrics) along with the total running time of the algo-

rithm (in seconds). We report the results on this stream with

varying window sizes.

On this data stream, it can be seen that the performance of

the algorithm improves only very slightly with an increase in

nComp whereas the running time increases with larger values.

For example, with each window size, a value of 1.0 takes

over twice as long as a value of 0.1 with only a minimal

improvement in performance.

In Tables VI and VII, we compare the results of DenStream

with ACSC on two real data streams; network intrusion and

forest cover, respectively. We report ACSC using a determinis-

tic phase (nComp = 1.0) and, alternatively, a stochastic phase

(nComp = 0.1). The deterministic ACSC performs better than

DenStream on the F1 and rand index metrics and is also faster.

The stochastic version is faster still, with an almost identical

performance.

E. Performance of Sorting Ants

In this section, we examine the effect of the second phase

of ACSC. In the first phase, rough clusters are formed. In the

second phase, sorting ants are assigned to each cluster and

intercluster sorting is performed. We examine the effect of

these sorting ants on the initial clusters.

The stopping condition for this phase is determined by

the sleepMax parameter; the number of unsuccessful sort-

ing attempts allowed for each ant before it is “asleep.” A

2224 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 49, NO. 6, JUNE 2019

TABLE VIII
WINE CLUSTERING SOLUTION BEFORE SORTING ANTS

TABLE IX
WINE CLUSTERING SOLUTION AFTER SORTING ANTS

TABLE X
NETWORK INTRUSION WINDOW BEFORE SORTING ANTS

TABLE XI
NETWORK INTRUSION WINDOW AFTER SORTING ANTS

sleepMax of 0 means that this phase is never performed. We

use the Wine dataset and a window from the network intru-

sion stream as illustrative examples of the effect of the sorting

ants. The Wine dataset contains three classes with a distribu-

tion of [59, 71, 48]. While the window (size = 1000) from

the network intrusion stream has a distribution of [998, 2].

Table VIII shows the clusters identified in phase one on the

Wine dataset. The three natural clusters are grouped into seven

clusters with an overall purity = 0.97, F-score = 0.86, and

rand index = 0.85.

Table IX shows the clusters after the Sorting phase with a

sleepMax of 3. Three clusters are identified with an overall

purity = 0.94, F-score = 0.91, and rand index = 0.90.

Table X shows the network intrusion window before, with

purity = 0.98, F1 = 0.51, and rand index = 0.72. The sorted

clusters are displayed in Table XI. The sorted clusters have a

similar purity but higher F1 and rand index score (0.86 and

0.75, respectively).

Imitating their biological counterparts, the sorting ants are

biased to picking-up isolated items and dropping them in

denser areas. The final clusters are a closer representation of

the true underlying structure. The purity score is lower than the

initial clusters as the average purity is measured. For example,

Fig. 5. Sleep max on network intrusion.

Fig. 6. Sleep max on 1CDT.

Fig. 7. Threshold values on Wine.

cluster 3 in Table VIII contains a single micro cluster and so

has 100% purity and the overall average increases. However,

these sparse clusters lower the F-score and rand index metrics.

Taken on its own, purity can be a misleading metric as it does

not consider the actual topology of the data. A similar perfor-

mance can be seen in the network intrusion dataset (first 100

windows, with a window size of 1000) and the 2CDT dataset

in Figs. 5 and 6, respectively.

In previous studies [6], [18], [19], [30], the decisions to

pick and drop are probabilistic. We evaluate a deterministic

alternative to these probabilistic operations. Because the ini-

tial clusters in the first part of the algorithm are formed using a

stochastic process, the algorithm itself is nondeterministic and

the comparisons here relate only to the behavior of the sort-

ing ants. The decision for picking a micro-cluster [see (8)] is

a probability based on the number of density-reachable micro-

clusters in the cluster and the parameter nComp. We introduce

a deterministic threshold to replace the probability. The deter-

ministic decision to pick a micro-cluster we propose is given

as follows:

reachable

nComp
≥ nComp ∗ threshold. (16)

A drop is successful if there are more reachable micro-

clusters in the second cluster than there are in the first cluster.

To find a suitable threshold, we evaluate different values on

30 runs of the Wine dataset and the results are presented in

Fig. 7. The best performance using a deterministic decision

with a threshold of 0.5 on the Wine dataset is very similar to

the probabilistic decisions, a similar observation can be made

on other datasets, as shown in Table XII. Overall, the results

FAHY et al.: ACSC: FAST DENSITY CLUSTERING ALGORITHM FOR DYNAMIC DATA STREAMS 2225

TABLE XII
SORTING ANTS COMPARISON USING PURITY (P), F-MEASURE (F), AND

RAND INDEX (R)

Fig. 8. Scalability to the number of dimensions.

are very similar and we elect to use the probabilistic functions

as they do not require an additional tunable parameter.

F. Scalability and Robustness to Noise

To test the scalability of ACSC, we generated synthetic

datasets with different numbers of dimensions and different

numbers of natural clusters. As in [7], the points in each syn-

thetic dataset are drawn from a series of Gaussian distributions

(each representing a cluster). The mean and variance of each

distribution are changed after every 5000 points during the

data generation process. We follow the notation used in [7]

to describe the synthetic datasets: “B” indicates the number

of data points (in hundreds of thousands), “C” and “D” indi-

cate the number of clusters present and the dimensionality

of each point, respectively. For example, B2C10D20 indicates

the dataset contains 200 000 data points of 20 dimensions,

belonging to ten different clusters.

The performance of the algorithm is measured in the exe-

cution time using a window size of 10 000 and ǫ = 0.05.

The scalability of the algorithm, in terms of time, is evaluated

against increasing number of clusters and also increasing num-

ber of dimensions. First, the number of data points and clusters

are fixed and the algorithm is tested on varying numbers of

dimensions from 10 to 40. In Fig. 8, it can be seen that as the

dimensionality increases, the execution time increases linearly.

The plot follows a similar trend for each dataset regardless of

how many clusters are present suggesting that the dimensional-

ity is a more important factor than the number of clusters. This

is confirmed in Fig. 9. The number of data-points and dimen-

sions are fixed and the number of clusters increases from 5

to 30. As the amount of clusters increases, the execution time

increases only marginally.

To evaluate how robust the algorithm is to noise, we intro-

duce random samples to three datasets: 1) B1C5D20; 2) Wine;

Fig. 9. Scalability to the number of clusters.

TABLE XIII
B1C5D20 WITH NOISE, ǫ = 0.05

TABLE XIV
WINE WITH NOISE, ǫ = 0.07

TABLE XV
NETWORK INTRUSION WITH NOISE, ǫ = 0.09

and 3) network intrusion (first 100 windows of size 1000). To

introduce 5% noise, we replace 5% of the final dataset with

random samples. Tables XIII–XV show the average perfor-

mance over 30 runs of ACSC on each dataset with varying

levels of noise.

The results show that it is robust and the performance of

the algorithm is not greatly affected by noise. It is interesting

to note that the number of clusters identified by the algorithm

increases with the number of noisy samples. Each random

point is assigned to its own cluster and the natural clusters

remain relatively unaffected.

G. Sensitivity Analysis

In the previous sections, we have examined the sensitivity of

the nComp parameter (Section IV-D) and the sleepMax param-

eter (Section IV-E). In this section, we examine the sensitivity

of the ǫ parameter and the effect of different window sizes on

the algorithm’s performance. The ǫ-neighbourhood is crucial

2226 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 49, NO. 6, JUNE 2019

Fig. 10. Sensitivity of ǫ-neighbourhood on network intrusion stream.

Fig. 11. Sensitivity of ǫ-neighbourhood on 4CE1CF stream.

Fig. 12. Sensitivity of window size (in thousands).

in density clustering: if it is too small, no clusters will form;

if it is too large, there will be rough and impure clusters. This

value is sensitive and data-dependent. Figs. 10 and 11 show

the sensitivity of the parameter on the network intrusion and

4CE1CF datasets, respectively.

To evaluate the sensitivity of window sizes, ACSC was

tested across 6 different window sizes: 500, 1000, 1500, 2000,

3000, and 5000. The mean purity, F-measure, and rand index

are calculated across each window size in the stream and,

for visualization purposes, we report the algorithm’s “score,”

which is simply the average of all three metrics. The results

are shown in Fig. 12. On both network intrusion and 4CE1CF,

it can be seen that the window size has the minimal effect on

the accuracy of the algorithm.

H. Discussion

ACSC is shown to outperform other ant-based clustering

algorithms over three static datasets. It also, on average, out-

performs DenStream, CluStream, and ClusTree over all six

nonstationary datasets. The levels of cluster purity are compa-

rable across each dataset but purity, in isolation, is not a very

revealing evaluation metric as it does not consider the true

topology of the data, for example, assigning each data point

to its own cluster would give 100% purity. It is, however, a

useful metric when taken alongside the F-measure and rand

index measures. ACSC achieves the best F-measure and rand

index scores on five out of six datasets and, on average, per-

forms the best overall. The second phase of the algorithm,

the sorting phase, is the reason for this. The probabilistic

FAHY et al.: ACSC: FAST DENSITY CLUSTERING ALGORITHM FOR DYNAMIC DATA STREAMS 2227

functions for picking and dropping micro-clusters are biased

toward the dissolution of smaller clusters and incorporating

them into similar, larger clusters. This improves the preci-

sion and recall scores (and hence the F-measure) and creates

clusters closer to the “true” structure of the data. This is

reflected in the rand index score. ACSC can process the eval-

uated streams faster than the comparative peer algorithms.

This is due to the stochastic sampling method and also how

micro-clusters attempt to merge. This merging operation is

expensive. In ACSC, only micro-clusters in the same cluster

attempt to merge, replacing an exhaustive search and reduc-

ing the number of failed merging operations. Of the real data

streams evaluated, DenStream performs better than CluStream

and ClusTree. However, ACSC outperforms DenStream.

It is interesting to note that ACSC performs favorably but

requires fewer parameters and considerably fewer calcula-

tions. Fig. 3 shows that ACSC requires roughly ten times

fewer calculations. This is due to the fact that DenStream

performs an exhaustive search for the nearest neighbor of

each micro-cluster. If ACSC used a deterministic implemen-

tation whereby each point is compared with every other point,

it would require O(N2) time. But, each point in ACSC is

evaluated against a sample taken from a cluster. The abso-

lute worst case would require O(N2) only if n data points in

each window belonged to n different clusters. Experimental

results show that the number of calculations is comparatively

low. We report that for the network intrusion stream, with

42 dimensions, the algorithm can process a window of 1000

points in, on average, 0.04 s with an average memory require-

ment of 21.5 MB. The larger forest cover stream can be

processed in, on average, 0.08 s while requiring 37.6 MB of

memory.

ACSC uses a stochastic sampling-without-replacement

method in the initial phase and a probabilistic pick-and-drop

model for the sorting ants in the second phase. However,

it is possible to run ACSC deterministically. The sam-

pling rate in the first phase is determined by the parameter

nComp. We investigate the effects of varying this parameter

in Section IV-D. A lower value for this parameter (we use 0.1

in all experiments) reduces the run-time with minimal effect on

performance. If the sampling rate is set to WindowSize, then

the first phase is deterministic, but it will be slower without any

further improvement in the clustering accuracy. In the second

phase, the probabilistic sorting ants can be replaced with deter-

ministic sorting ants described in Section IV-E. With these

changes, the algorithm is deterministic but its speed is sacri-

ficed and an additional, data-dependant parameter threshold is

required.

The window size has little effect on the accuracy of the

algorithm. This window size is just one of three tune-able

parameters required (unlike DenStream, for example, which

requires six parameters). The second parameter is the sleep-

Max value, which determines how many unsuccessful sorting

attempts are allowed before a cluster is considered to be sorted.

Experimental results show that the performance plateaus after

a sleepMax limit of three. Any value greater than this gives

similar results but requires additional, unnecessary, computa-

tion as each ant continues to attempt sorting the cluster. The

final parameter is the ǫ-neighbourhood. This is data dependent

and very sensitive as shown in Figs. 10 and 11.

V. CONCLUSION

In this paper, we proposed an ACSC algorithm for cluster-

ing dynamic data streams. ACSC uses the tumbling window

model and results show that it scales linearly to larger win-

dow sizes and higher dimensionality, while being robust to

noise. Clusters are formed in a single pass of the data using a

stochastic sampling method. The sampling method replaces

an exhaustive search and is shown to require considerably

fewer calculations. The deterministic method (corresponding

to nComp = 1.0) yields the highest performance, at the cost of

the longest run time. With a suitable choice of the parameter

nComp, the proposed algorithm achieves a significant speed

up at only little performance loss. The initial clusters discov-

ered are further refined using a method inspired by the sorting

behavior of ants. This sorting method is based on the clas-

sic pick-and-drop ant clustering algorithm. The probabilistic

functions for picking and dropping are biased toward the disso-

lution of smaller clusters and incorporating their contents into

similar, larger clusters. This improves the precision and recall

scores and creates clusters closer to the “true” structure of

the data. Our implementation addresses a short-coming of the

original pick-and-drop model; speed. Rough clusters are iden-

tified quickly in a single pass and then sorted. Furthermore, in

the traditional algorithm, data points are moved individually

which can take a long time. By grouping similar points into

micro-clusters, a number of points can be moved in a single

operation, further speeding up the algorithm.

ACSC was shown to outperform other ant-based cluster-

ing algorithms in the literature and was compared with three

popular stream clustering algorithms across real and syn-

thetic datasets. Experimental results show that ACSC performs

favorably while requiring fewer parameters. Of the required

parameters, the ǫ parameter was shown to be very sensitive and

greatly affects the performance of ACSC. It is data-dependent

and requires manual tuning. Furthermore, it is global and so

restricts the algorithm to finding clusters of similar density,

a common problem for density-based clustering algorithms.

Further research will investigate an adaptive, local ǫ parame-

ter. This could potentially allow the discovery of clusters with

varying densities in the data.

REFERENCES

[1] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, “A framework for clus-
tering evolving data streams,” in Proc. 29th Int. Conf. Very Large Data
Bases, vol. 29. Berlin, Germany, 2003, pp. 81–92.

[2] H. Azzag, N. Monmarche, M. Slimane, and G. Venturini, “AntTree: A
new model for clustering with artificial ants,” in Proc. IEEE Conf. Evol.
Comput., vol. 4. Canberra, ACT, Australia, 2003, pp. 2642–2647.

[3] R. D. Baruah and P. Angelov, “DEC: Dynamically evolving clustering
and its application to structure identification of evolving fuzzy models,”
IEEE Trans. Cybern., vol. 44, no. 9, pp. 1619–1631, Sep. 2014.

[4] J. C. Bezdek, R. Ehrlich, and W. Full, “FCM: The fuzzy C-means
clustering algorithm,” Comput. Geosci., vol. 10, nos. 2–3, pp. 191–203,
Jan. 1984.

[5] A. Bifet, G. Holmes, R. Kirby, and B. Pfahringer, “MOA: Massive online
analysis,” J. Mach. Learn. Res., vol. 11, pp. 1601–1604, May 2010.

[6] U. Boryczka, “Finding groups in data: Cluster analysis with ants,” Appl.
Soft Comput., vol. 9, no. 1, pp. 61–70, Jan. 2009.

2228 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 49, NO. 6, JUNE 2019

[7] F. Cao, M. Ester, W. Qian, and A. Zhou, “Density-based clustering over
an evolving data stream with noise,” in Proc. SIAM Int. Conf. Data Min.,
vol. 6, 2006, pp. 328–339.

[8] Y. Chen and L. Tu, “Density-based clustering for real-time stream
data,” in Proc. 13th ACM SIGKDD Int. Conf. Knowl. Disc. Data Min.,
Aug. 2007, pp. 133–142.

[9] J. L. Deneubourg et al., “The dynamics of collective sorting robot-like
ants and ant-like robots,” in Proc. 1st Int. Conf. Simulat. Adapt. Behav.
Animals Animats, 1991, pp. 356–363.

[10] D. Deng and N. Kasabov, “ESOM: An algorithm to evolve self-
organizing maps from online data streams,” in Proc. IEEE-INNS-ENNS
Int. Joint Conf. Neural Netw., vol. 6. Como, Italy, 2000, pp. 3–8.

[11] M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony optimization,” IEEE
Comput. Intell. Mag., vol. 1, no. 4, pp. 28–39, Nov. 2006.

[12] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm
for discovering clusters in large spatial databases with noise,” in Proc.
KDD, vol. 96, 1996, pp. 226–231.

[13] A. H. Fahim, A. M. Salem, F. A. Torkey, and M. A. Ramadan, “Density
clustering based on radius of data,” World Acad. Sci. Eng. Technol.,
vol. 3, 2006.

[14] C. M. Fernandes, A. M. Mora, J. J. Merelo, and A. C. Rosa, “KANTS:
A Stigmergic ant algorithm for cluster analysis and swarm art,” IEEE
Trans. Cybern., vol. 44, no. 6, pp. 843–856, Jun. 2014.

[15] A. Forestiero, C. Pizzuti, and G. Spezzano, “A single pass algorithm
for clustering evolving data streams based on swarm intelligence,” Data
Min. Knowl. Disc., vol. 26, no. 1, pp. 1–26, Nov. 2011.

[16] M. Ghesmoune, M. Lebbah, and H. Azzag, “A new growing neural gas
for clustering data streams,” Neural Netw., vol. 78, pp. 36–50, Jun. 2016.

[17] S. Guha and N. Mishra, “Clustering data streams,” in Data Stream
Management. Berlin, Germany: Springer, 2016, pp. 169–187.

[18] J. Handl, J. Knowles, and M. Dorigo, “Ant-based clustering and
topographic mapping,” Artif. Life, vol. 12, no. 1, pp. 35–62, Jan. 2006.

[19] J. Handl and B. Meyer, “Ant-based and swarm-based clustering,” Swarm
Intell., vol. 1, no. 2, pp. 95–113, Nov. 2007.

[20] J. A. Hartigan and M. A. Wong, “Algorithm AS 136: A K-means
clustering algorithm,” Appl. Stat., vol. 28, no. 1, pp. 100–108, 1979.

[21] J-Profiler: Java Profiler. Accessed: Nov. 21, 2017. [Online]. Available:
https://www.ej-technologies.com/products/jprofiler/overview.html

[22] N. Jardine and C. J. van Rijsbergen, “The use of hierarchic clustering in
information retrieval,” Inf. Storage Retrieval, vol. 7, no. 5, pp. 217–240,
Dec. 1971.

[23] H. Jiang, J. Li, S. Yi, X. Wang, and X. Hu, “A new hybrid method based
on partitioning-based DBSCAN and ant clustering,” Expert Syst. Appl.,
vol. 38, no. 8, pp. 9373–9381, Aug. 2011.

[24] P. M. Kanade and L. O. Hall, “Fuzzy ants and clustering,” IEEE Trans.
Syst., Man, Cybern. A, Syst., Humans, vol. 37, no. 5, pp. 758–769,
Sep. 2007.

[25] M. Korürek and A. Nizam, “A new arrhythmia clustering technique
based on ant colony optimization,” J. Biomed. Inform., vol. 41, no. 6,
pp. 874–881, Dec. 2008.

[26] P. Kranen, I. Assent, C. Baldauf, and T. Seidl, “The ClusTree: Indexing
micro-clusters for anytime stream mining,” Knowl. Inf. Syst., vol. 29,
no. 2, pp. 249–272, 2011.

[27] N. Labroche, N. Monmarché, and G. Venturini, “AntClust: Ant clustering
and Web usage mining,” in Proc. Genet. Evol. Comput. Conf., 2003,
pp. 25–36.

[28] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker, “Semantics
and evaluation techniques for window aggregates in data streams,” in
Proc. ACM SIGMOD Int. Conf. Manag. Data, 2005, pp. 311–322.

[29] B. Liu, “A fast density-based clustering algorithm for large databases,”
in Proc. 5th Int. Conf. Mach. Learn. Cybern., 2006, pp. 996–1000.

[30] E. D. Lumer and B. Faieta, “Diversity and adaptation in populations of
clustering ants,” in Proc. 3rd Int. Conf. Simulat. Adapt. Behav. Animals
Animats, vol. 3, 1994, pp. 501–508.

[31] S. Mahran and K. Mahar, “Using grid for accelerating density-based
clustering,” in Proc. IEEE Int. Conf. Comput. Inf. Technol., Sydney,
NSW, Australia, 2008, pp. 35–40.

[32] N. Masmoudi, H. Azzag, M. Lebbah, C. Bertelle, and M. B. Jemaa,
“How to use ants for data stream clustering,” in Proc. IEEE Congr.
Evol. Comput., 2015, Sendai, Japan, pp. 656–663.

[33] P. Hore, L. O. Hall, and D. B. Goldgof, “Creating streaming iterative soft
clustering algorithms,” in Proc. IEEE Annu. Meeting North Amer. Fuzzy
Inf. Process. Soc. (NAFIPS), San Diego, CA, USA, 2007, pp. 484–488.

[34] W. M. Rand, “Objective criteria for the evaluation of clustering meth-
ods,” J. Amer. Stat. Assoc., vol. 66, no. 336, pp. 846–850, Dec. 1971.

[35] S. U. Rehman, A. Asghar, S. Fong, and S. Sarasvady, “DBSCAN: Past,
present and future,” in Proc. 5th Int. Conf. Appl. Digit. Inf. Web Technol.
(ICADIWT), 2014, pp. 232–238.

[36] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral
model,” ACM SIGGRAPH Comput. Graphics, vol. 21, no. 4, pp. 25–34,
Jul. 1987.

[37] T. A. Runkler, “Ant colony optimization of clustering models,” Int. J.
Intell. Syst., vol. 20, no. 12, pp. 1233–1251, 2005.

[38] P. S. Shelokar, V. K. Jayaraman, and B. D. Kulkarni, “An ant colony
approach for clustering,” Analytica Chimica Acta, vol. 509, no. 2,
pp. 187–195, May 2004.

[39] M. T. Chao, “Data stream classification guided by clustering on nonsta-
tionary environments and extreme verification latency,” in Proc. SIAM
Int. Conf. Data Min., 2015, pp. 873–881.

[40] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining.
Boston, MA, USA: Pearson, 2005, ch. 9, pp. 147–160.

[41] L. Tu and Y. Chen, “Stream data clustering based on grid density and
attraction,” ACM Trans. Knowl. Disc. Data, vol. 3, no. 3, pp. 1–27,
Jul. 2009.

[42] A. L. Vizine, L. N. De Castro, and R. R. Gudwin, “Text document
classification using swarm intelligence,” in Proc. KIMAS, Waltham, MA,
USA, 2005, pp. 134–139.

[43] L. Wan, W. K. Ng, X. H. Dang, P. S. Yu, and K. Zhang, “Density-based
clustering of data streams at multiple resolutions,” ACM Trans. Knowl.
Disc. Data, vol. 3, no. 3, pp. 1–28, Jul. 2009.

[44] F. Wilcoxon and R. A. Wilcox, Some Rapid Approximate Statistical
Procedures. Pearl River, NY, USA: Lederle Lab., 1964.

[45] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: A new data clus-
tering algorithm and its applications,” Data Min. Knowl. Disc., vol. 1,
no. 2, pp. 141–182, 1997.

Conor Fahy received the B.Sc. degree in com-
puter science from Dublin City University, Dublin,
Ireland, in 2004, and the M.Sc. degree in intelligent
systems from De Montfort University, Leicester,
U.K., in 2016, where he is currently pursuing the
Ph.D. degree with the Centre for Computational
Intelligence.

His current research interests include swarm intel-
ligence and ensemble methods for unsupervised and
semisupervised learning in dynamic environments.

Shengxiang Yang (M’00–SM’14) received the
B.Sc. and M.Sc. degrees in automatic control and
the Ph.D. degree in systems engineering from
Northeastern University, Shenyang, China, in 1993,
1996, and 1999, respectively.

He is currently a Professor of Computational
Intelligence and the Director of the Centre for
Computational Intelligence, School of Computer
Science and Informatics, De Montfort University,
Leicester, U.K. He has over 250 publications. His
current research interests include evolutionary com-

putation, swarm intelligence, artificial neural networks, data mining and data
stream analysis, and relevant real-world applications.

Dr. Yang serves as an Associate Editor/Editorial Board Member of seven
international journals, such as the IEEE TRANSACTIONS ON CYBERNETICS,
Information Sciences, Evolutionary Computation, and Soft Computing.

Mario Gongora received the Ph.D. degree from the
University of Warwick, Coventry, U.K.

He is currently an Associate Professor with
the School of Computer Science and Informatics,
De Montfort University, Leicester, U.K., where he
is also the Deputy Director of the Centre for
Computational Intelligence. His current research
interests include the application of artificial intel-
ligence techniques to the identification, modeling,
simulation, and control of complex systems, evolu-
tionary computing, and biologically inspired meth-

ods. He is also involved in close contact with industry, applying his research
results in the analysis of consumer behavior and other complex industrial
processes.

