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Ant Colony System-Based Algorithm for Constrained
Load Flow Problem
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Abstract—This paper presents the ant colony system (ACS)
method for network-constrained optimization problems. The
developed ACS algorithm formulates the constrained load flow
(CLF) problem as a combinatorial optimization problem. It is a
distributed algorithm composed of a set of cooperating artificial
agents, called ants, that cooperate among them to find an optimum
solution of the CLF problem. A pheromone matrix that plays the
role of global memory provides the cooperation between ants.
The study consists of mapping the solution space, expressed by an
objective function of the CLF on the space of control variables [ant
system (AS)-graph], that ants walk. The ACS algorithm is applied
to the IEEE 14-bus system and the IEEE 136-bus system. The
results are compared with those given by the probabilistic CLF
and the reinforcement learning (RL) methods, demonstrating the
superiority and flexibility of the ACS algorithm. Moreover, the
ACS algorithm is applied to the reactive power control problem
for the IEEE 14-bus system in order to minimize real power losses
subject to operating constraints over the whole planning period.

Index Terms—Ant colony system (ACS), combinatorial opti-
mization, constrained load flow (CLF), reinforcement learning
(RL).

I. INTRODUCTION

MANY optimization problems in power systems can be
expressed as combinatorial optimization problems, such

as the constrained load flow (CLF) problem. The CLF problem
deals with the offline adjustment of the power system control
variables in order to satisfy physical and operating constraints.
A number of traditional algorithms have been developed in order
to solve this problem [1]–[8]. These algorithms are based on the
modification of the Jacobian matrix formed in the standard load
flow method, using sensitivity or injection-changing-error feed-
back control [1], [2] or evolutionary computation techniques [3],
[4]. The CLF problem is also expressed as a constrained op-
timization problem falling within the general class of optimal
power flow (OPF) problems [5]–[8].

These methods, however, are inefficient in providing offline
settings of control variables that must remain optimal for a
whole planning period. The problem of the offline control
settings has been tackled by the probabilistic CLF formulation
[9]. The method [9] takes into account load uncertainties and
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generating unit unavailability modeled as probability density
functions. This method provides near-optimum offline control
settings. Recent research solves the CLF problem by means of
the heuristic reinforcement learning (RL) method [10]–[12].
The RL modified the CLF problem as a combinatorial opti-
mization problem [13]. In this, optimal control settings are
learned by experience adjusting a closed-loop control rule,
which maps operating states to control actions by means of
reward values [13].

In this paper, the CLF problem is solved by means of the
heuristic ant colony system (ACS) method. Dorigo has pro-
posed the first ACS in his Ph.D. dissertation [14]. The ACS
method belongs to biologically inspired heuristics (meta-heuris-
tics) methods. Real ants are capable of finding the shortest path
from the food source to their nest, without using visual cues, but
by exploiting pheromone information. While walking, real ants
deposit pheromone trails on the ground and follow pheromones
previously deposited by other ants. This behavior has inspired
the ACS algorithm in which a set of artificial ants cooperate in
solving a problem by exchanging information via pheromones
deposited on a graph. Currently, most works have been done in
the direction of applying ACS to the combinatorial optimiza-
tion problems [15]–[18]. For most of these applications, the re-
sults show that the ACS-based approach can outperform other
heuristic methods. In power systems, the ACS has been applied
to solve the optimum generation scheduling problems [19], [20]
and the optimum switch relocation and network reconfiguration
problems for distribution systems [21], [22]. It is rather diffi-
cult to find a single search space, configuration, and a param-
eter set of an ACS algorithm that can satisfy every optimiza-
tion problem. Therefore, there is a need for the development of
an improved version of the ACS algorithms [14]–[21] tailored
to solve the CLF problem. The ACS algorithm proposed in this
paper formulates the CLF problem as a combinatorial optimiza-
tion problem. As an example, the settings of control variables
(tap-settings, VAr compensation blocks, etc.) are combined in
order to achieve optimum voltage values at the nodes of a power
system. In our approach, the graph that describes the settings
of control variables of the CLF problem is mapped on the ant
system (AS)-graph, which is the space that the artificial ants
will walk. Specifically, the objective function of the ACS algo-
rithm has similar formulation with the Q-learning [13] reward
function. The objective function “fires” the transition function,
which gives the probability for an ant to select an edge to walk.
In this paper, for computational simplicity, the transition func-
tion considers only the trail intensity for the transition proba-
bility [14], [21], i.e., the trail that more ants choose will have
more probability to be selected.
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The paper is organized in six sections. Section II formulates
the constrained load flow problem, and Section III describes
the basic concepts of the ACS. In Section IV, the ACS algo-
rithm is implemented to the CLF problem. In Section V, the
results obtained by the application of the ACS algorithm to
the IEEE 14-bus system and to the IEEE 136-bus system are
presented and discussed. The ACS algorithm is compared with
a conventional probabilistic method and the reinforcement
learning recently introduced by Ernst et al. in power system
control [26], [27]. Specifically, the results are compared with
those obtained by the probabilistic CLF [9] and the Q-learning
method [13], showing the superiority of the proposed ACS al-
gorithm. Moreover, the ACS algorithm is applied to the reactive
power control problem for the IEEE 14-bus system in order
to minimize real power losses while simultaneously satisfying
operating constraints over the whole planning period. Finally,
in Section VI, general conclusions are drawn.

II. CLF PROBLEM

The load flow problem can be expressed by the next two sets
of nonlinear equations:

(1)

where
vector of nodal power injections
vector of constrained variables (power flows, reactive
powers of PV buses, etc.);
state vector (voltage angles and magnitudes);
control vector (transformer tap settings, shunt compensa-
tion, voltage and power at PV buses, etc.).

The objective of the constrained load flow is to maintain
some or all elements of and vectors within given operating
limits under the uncertainty of generating units’ availabilities
and load uncertainties. This can be achieved by selecting
appropriate (robust) values of control variables under random
variations of loads and generations (noise factors) within their
operating range. The next sections of this paper propose a
technique to maintain constrained variables within operating
limits over the whole planning period using the ACS algorithm.

III. BASIC CONCEPTS OF ACS

ACS algorithms simulate the behavior of real ants [14], [15].
They are based on the principle that using simple communi-
cation mechanisms, an ant group is able to find the shortest
path between any two points. During their trips, a chemical trail
(pheromone) is left on the ground. The pheromone guides other
ants toward the target point. For one ant, the path is chosen ac-
cording to the quantity of pheromone. The pheromone evap-
orates over time (i.e., it loses quantity if other ants lay down
no more pheromone). If many ants choose a certain path and
lay down pheromones, the quantity of the trail increases, and
thus, this trail attracts more and more ants. The artificial ants
(or simply, ants) simulate the transitions from one point to an-
other point , according to the improved version of ACS, namely
the Max-Min AS (MMAS) algorithm [23], as follows.

If the ant is at point , has the next point been visited? The
ant maintains a tabu list in memory that defines the set of
points still to be visited when it is at point . The ant chooses
to go from point to point during a tour with a probability
given by [23]

(2)

where matrix represents the amount of the pheromone
trail (pheromone intensity) between points and .

Then, the pheromone trail on coupling is updated ac-
cording to

(3)

where with is the persistence of the pheromone
trail, so that to represent the evaporation and
is the amount of pheromone that ant puts on the trail .
The pheromone update reflects the desirability of the
trail , such as shorter distance, better performance, etc.,
depending on the application problem. Since the best tour is un-
known initially, an ant needs to select a trail randomly and de-
posits pheromone in the trail, where the amount of pheromone
will depend upon the pheromone update rule (3). The random-
ness implies that pheromone is deposited in all possible trails,
not just in the best trail. The trail with favorable update, how-
ever, increases the pheromone intensity more than other trails.

After all ants have completed their tours, global pheromone
is updated in the trails of the ant with the best tour executed. In
the next section, the MMAS algorithm is extended and modified
to solve the CLF problem.

IV. DEVELOPMENT OF ANT COLONY SYSTEM

FOR THE CLF PROBLEM

The settings of control variables (tap-settings, VAr compen-
sation blocks, etc.) are combined in order to achieve the power
system constraints. In our approach, the graph that describes
the settings of control variables of the CLF problem is mapped
on the AS-graph, which is the space that the artificial ants will
walk. Fig. 1 shows the AS-graph (searching space) for the CLF
problem. All possible candidate discrete settings for a control
variable are represented by the states of the AS-graph

. The control variables are represented by the stages
, where is the number of the control variables.

Each ant will start its tour at the home colony and stop at the
destination. The ACS algorithm proceeds as follows.

An operating point comprising a load and generation pattern
(operating point of the whole planning period of the system) is
randomly created. For this operating point, first of all, the AS
graph is created, and all paths receive an amount of pheromone
that corresponds to an estimation of the best solution so that ants
test all paths in the initial iterations. Therefore, the ACS-algo-
rithm achieves the best exploration of the AS-graph in the earlier
iterations of convergence and better exploitation at the latest.

Then, ant chooses the next states to go to in accordance
with the transition probability calculated by (2). When the ant

moves from one stage to the next, the state of each stage will
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Fig. 1. Search space for the CLF problem.

be recorded in a location list . After the tour of ant is com-
pleted, its location list is used to compute its current solution.
Then, the pheromone trails composed by nodes of location list

are updated in accordance with (3) (local update). For the
purpose of this research, the pheromone update is
chosen as

(4)

where is the objective function, and Q is a large positive
constant.

Application of the ACS algorithm to the CLF problem is
linked to the choice of an objective function , such as the limits
of the constrained variables to be satisfied for the whole plan-
ning period. An enforced empirical strategy is to consider the
variations of constrained variables close to the means of their
operating intervals. The objective function is computed by the
average of all constrained variables, normalized in the interval
[0, 1], as follows:

(5)

where expresses the number of constrained variables, the
value of th constrained variable, and are its
lower and upper limits, respectively.

It must be noticed that , where is the immediate
rewards used by the Q-learning algorithm to the CLF problem
[13]. The objective function has this formulation in order for
the results provided by the ACS and the Q-learning algorithms
to be compared.

In order to exploit the iteration in finding the best solution,
the next two steps are considered.

a) When all ants complete their tours, load flow is run, and
the objective function (5) is calculated for each run. Then,
the pheromone trails of the best ant tour [ant with
minimum objective function (5)] is updated (global up-
date) as

(6)

where is a large positive constant. Both in (4) and
are arbitrarily large numbers. Empirical tests have shown
that the ACS-algorithm converges faster when is almost
equal to .

b) To avoid search stagnation (the situation where all the
ants follow the same path, that is, they construct the same
solution [15]), the allowed range of the pheromone trail
strengths is limited to

if
if

(7)

For our study, the limits are chosen as

(8)

where is the global best solution (best over the
whole past iterations), and

(9)

where is the number of ants.
The procedure is repeated for a large number of operating

states covering the whole planning period. Once we have the
set of optimal control settings for a large number of operating
points, the one that minimizes the sum of multiobjective func-
tion (mtf) over the whole planning period is defined as a greedy-
optimum control setting

mtf total of objective functions

over whole planning period

(10)

Table I shows the execution steps of the ACS algorithm ap-
plied to the CLF problem.

V. RESULTS

The ACS algorithm is applied to adjust reactive control vari-
ables in the IEEE 14-bus test system shown in Fig. 2. The test
system consists of the slack bus (node 1), three PV (nodes 2, 3,
and 6), ten PQ buses, and 20 branches. It has been used in many
probabilistic studies. The network data and load probabilistic
data are the same as used in [9]. They comprise six discrete dis-
tributions for the active load (at nodes 3, 6, 9, 10, 11, and 14),
four discrete distributions for the reactive load (at nodes 9, 10,
11, and 14), with three to five impulses each and eight normal
distributions for active and reactive loads at the remaining buses.
The total installed capacity is equal to 4.9 p.u. and comprises
14 capacitor banks at node 1, four banks at node 2, two banks
at node 3, and two banks at node 6. The voltage at all PV buses
is taken equal to 1.0 p.u. and the slack bus voltage equal to 1.02
p.u. A fixed network topology is assumed. The control variables
comprise all transformer taps and reactive compensation
at bus 9 (see Fig. 2).

The upper part of Table II shows the limits of the control vari-
ables min and max and the discrete steps in variation. The
transformer taps ( , , and ) are in 16 steps, while the re-
active compensation is in nine steps. Therefore, the last step
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TABLE I
ACS ALGORITHM TO THE CLF PROBLEM

Fig. 2. IEEE 14-bus system.

of is repeated for the next seven steps, for steps
10 through 16. This makes the pheromone matrix of
the AS-graph well defined for all stages and states. In the lower
part of Table II, the upper and lower limits of all constrained
variables max and min are shown.

In our study, the following ACS parameters (see Table I) are
chosen: , , , and ,
and the initial best solution is estimated at 0.0001. The param-
eter from our experience shows that any value in the range
[0.88 0.999] works well. In this paper, it is chosen as

. In this study, the search will be terminated if one of the
following criteria is satisfied: a) The number of iterations since
the last change of the best solution is greater than 1000 itera-
tions, or b) the number of iterations reaches 3000 iterations.

TABLE II
LIMITS AND DISCRETIZATION OF ACTIONS AND LIMITS

OF CONSTRAINED VARIABLES

The ACS algorithm can be implemented in a large number
of load combinations (operating points) selected over the whole
planning period.

In our study, the algorithm learns the optimum control set-
tings for each of 41 operating points selected from the whole
planning period. These full correlated operating points are sam-
pled uniformly from the curves of normal and discrete distribu-
tion probabilities as follows:

Load step (11)

where . The and are the average values
and the standard deviations for normal distributions of loads
given in [24]. The and for the discrete distributions of loads
are calculated using the formulae given by [25].

Performance of the ACS algorithm is shown in Figs. 3(a),
3(b), and (3c) depicting the obtained values of objective function
(5) during the ACS procedure for the nominal, heavy, and light
load, respectively.

The nominal load corresponds to the mean values of the
load. The heavy and light load correspond to the 1% confidence
limit that all load values are lower and higher than these
values, respectively. Figs. 3(a)–3(c) show the convergence of
ACS algorithm in a minimum value of (5), achieving the
optimum control settings for each of the three operating points
corresponding to the heavy, light, and nominal load. Among
the 41 optimal control settings, the greedy-optimum control
settings are those that provide the minimum total function (10).
Tests have shown that the calculation of (10) in the above three
operating points is sufficient to provide the mtf. Results on the
IEEE 14-bus system show that the greedy-optimum control
settings that achieve the mtf (10) over the whole planning
period are the optimal control settings obtained for the nominal
load [see Fig. 3(a)]. In this case, convergence of the ACS
algorithm took 1730 iterations. Table III shows the mtf (10)
is calculated at 0.732, the greedy-optimum control settings
and the operating space of constrained variables, when these
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Fig. 3. Performance of ACS algorithm in the (a) nominal, (b) heavy, and (c)
light loads.

settings are enforced over the whole planning period. It can
be seen that even when applying the greedy-optimum control
settings, reactive production at node 2 (Qg2) violates its limits.
In Table III, these results are also compared to the results of
the Q-learning (RL) [13] and the probabilistic CLF method
[9], obtained for the same network. The Q-learning algorithm
[13] provides slightly worse results, since Qg2 violates its
limits, and the voltage at node 14 violates its lower limit,
too. The absolute value of maximum total reward (mtr) [13]
in this case was calculated at 0.804, which is greater than
the corresponding index of the ACS algorithm mtf .
The Q-learning algorithm [13] took about 38 800 iterations
to find the greedy-optimum control settings. In the case of
probabilistic CLF [9], the upper limit of reactive production
at node 2 (Qg2) and the lower limit of voltage at node 14
as well as the upper limit of the apparent flow (T23) in line
2-3 are violated.

One way of enforcing violated limits of Qg2 is to relax the
constant voltage limit at node 2, considering it as a PQ bus and
allowing the voltages at nodes 6 and 1 to be set at 1.021 and 1.03
p.u., respectively [9]. Rerunning the ACS algorithm under these
new considerations, the best solutions are provided as shown in
Figs. 4(a)–(c), in the nominal, heavy, and light loads, respec-
tively. Among them, the greedy-optimum control settings that
achieve the mtf (10) over the whole planning period are once
more the optimal control settings obtained for the nominal load

TABLE III
COMPARISON OF RESULTS BETWEEN ACS, RL, AND PROBABILISTIC

LOAD FLOW ON THE IEEE 14-BUS SYSTEM

[see Fig. 4(a)]. In this case, convergence of the ACS algorithm
took 2645 iterations. Table IV shows the mtf (10) calculated at
0.557, the greedy optimum control settings, and the operating
limits of constrained variables when these settings are enforced
over the whole planning period. In Table IV, the greedy-op-
timum control settings are also compared to the results of the
Q-learning [13] and the probabilistic CLF method [9]. In the
case of Q-learning algorithm [13], the corresponding absolute
value mtr was calculated at 0.565, which is almost equal to
mtf, mtf . It must be underscored that the Q-learning
algorithm took about 42 800 iterations to find the greedy-op-
timum control settings [13].

The ACS and Q-learning algorithms provide the optimal re-
sults, rather than the near-optimal results given by the prob-
abilistic CLF method [9], since all constraints, including the
upper limit of apparent flow (T23) on line 2-3, are satisfied.

Table V shows the optimal settings proposed by ACS algo-
rithm at five operating points (11) corresponding to the average
load values and the two adjacent pairs
together with the maximum total rewards of the optimal actions.

A key advantage of the proposed ACS algorithm is its flexi-
bility in providing control actions that can satisfy additional cri-
teria and, thus, solve multicriteria optimization problems. For
example, if the cost of VAr compensation should be taken into
account, then as greedy-optimal action, the action that mini-
mizes compensation at node 9 could be chosen.

Table VI shows the operating space of constrained variables
when the new optimal settings are enforced over the whole
planning period. The convergence of the ACS algorithm to
optimal actions in the case of minimum VAr compensation
corresponding to operating points and (see
Table V) takes 2563 and 2021 iterations, respectively. These
results show that the ACS algorithm provides control settings
for the whole planning period and can be more effective than
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Fig. 4. Performance of ACS algorithm when Qg2 is Cutoff in the (a) nominal,
(b) heavy, and (c) light loads.

TABLE IV
COMPARISON OF RESULTS BETWEEN ACS, RL, AND PROBABILISTIC

LOAD FLOW ON THE IEEE 14-BUS SYSTEM

TABLE V
OPTIMAL ACTIONS OVER THE WHOLE PLANNING PERIOD (CUTOFF QG2)

TABLE VI
OPERATING SPACE OF CONSTRAINED VARIABLES WHEN THE CRITERION

IS MINIMUM VAr COMPENSATION AT BUS 9

the probabilistic CLF method [9] since it satisfies constraints
with minimum VAr compensation.

The ACS algorithm is also applied to the reactive power con-
trol problem for the IEEE 136-bus system. This system consists
of 136 buses (33 PV and 103 load buses), 199 lines, 24 trans-
formers, and 17 reactive compensations. In our study, the ACS
algorithm learns the optimum control settings for each of 41 op-
erating points selected from the whole planning period similarly
to the IEEE 14-bus case [9]. The control variables selected com-
prise voltages at PV buses 4 and 21 (discrete variations 0.99 to
1.02, in step 0.01), taps at transformers 28, 41, and 176 (discrete
variation of 0.92 to 1.00, in steps of 0.02), and reactive compen-
sation at buses 3 and 52 (discrete variation of six blocks).
The total number of actions is . The con-
strained variables include voltages at all PQ buses (from 0.96 to
1.05 p.u.) and three apparent power flows at the most heavily
loaded lines 156 and 177 (upper limit 4.6 p.u.) and 179 (upper
limit 3.4 p.u.). The initial control settings violate the power flow
limits of all the above lines and upper limit of the voltages of
buses 18, 19, and 23. The ACS algorithm learns the greedy-op-
timal control action, resulting in the satisfaction of the limits of
constrained variables over the whole planning period, as shown
in Table VII.

In this case, the agent found the optimum control action at
the average load values after about 2910 iterations (see Fig. 5)
in contrast to 112 980 iterations of Q-learning algorithm. The
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TABLE VII
RESULTS OF ACS AND Q-LEARNING ALGORITHMS ON THE

IEEE 136-BUS SYSTEM

Fig. 5. Performance of ACS algorithm in the average values of loads of IEEE
136-bus system.

total computing time is about 8 s on a 1.4-GHz Pentium-IV PC,
compared to the 160 s achieved by Q-learning [13].

Summarizing, ACS and the Q-learning algorithms provide
the optimal results, rather than the near-optimal results pro-
vided by the probabilistic CLF method [9]. A key advantage of
the proposed ACS algorithm is its flexibility in providing con-
trol actions that can accommodate additional criteria and, thus,
solve multicriteria optimization problems. The main advantage
of ACS algorithm in comparison with the Q-learning algorithm
[13] is the better results in greatly less number of iterations.

As another application, the ACS algorithm (see Table I) can
be applied to the reactive power control problem for the IEEE
14-bus system by considering as objective function both the real
power losses and the operating constraints expressed by (5). The
AS-graph updates its pheromone by selecting a large number
of load/generation combinations (1000 operating points) over
the whole planning period. However, these 1000 uncorrelated
operating points are sampled randomly with normal and discrete
distribution probabilities of the loads and generations [9]. The
control variables comprise all transformer taps , the reactive
compensation at bus 9, and the generator voltages of buses
1 and 6.

Among all operating points, the best takes 961 iterations to
find the optimum control action, as shown in Fig. 6. The op-
timal settings and the voltages over the whole planning period
are shown in Table VIII. The real power losses calculated over

Fig. 6. Greedy-optimum performance of the ACS algorithm in reactive power
optimization of the IEEE 14-bus system.

TABLE VIII
RESULTS OF ACS ON THE IEEE 14-BUS SYSTEM WITH POWER LOSSES

AS OBJECTIVE FUNCTION

the whole planning period are between 0.015 13 and 0.114 67
p.u., compared to the initial losses which were between 0.0843
and 0.2067 p.u. and those given by the probabilistic CLF, which
were between 0.0242 and 0.1387 p.u. Consequently, the results
are better than the initial and the ones obtained by the proba-
bilistic CLF (see Table IV) in minimizing the real power losses
while satisfying all operating constraints.

The total number of load flows is equal to (the number of iter-
ations reported) (the number of ants) for every one of the ran-
domly selected operating points. In the case of the greedy-op-
timum operating point of the IEEE 14-bus system, load flow is
run times. Fig. 6, like the rest of the figures
in the paper, shows the best solution out of 100 ants at each iter-
ation. However, in terms of computing time for 100 ants, the 961
iterations are still too much. The number of iterations can be fur-
ther reduced by determining the optimum parameters (M, Q, R,

) in the ACS algorithm. This can be achieved by incorporating
any of the modern evolutionary algorithms such as cultural al-
gorithms [28] in the proposed ACS.
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VI. CONCLUSION

In this paper, the ACS approach is applied to the solution of
the CLF problem. The CLF problem is modified as a combina-
torial optimization problem. An iterative ACS algorithm is im-
plemented, providing the optimal offline control settings over
a planning period, satisfying all operating limits of the con-
strained variables. Our algorithm consists of mapping the so-
lution space, expressed by an objective function of the com-
binatorial optimization CLF problem on the space of control
settings, where artificial ants walk. Test results show that the
ACS algorithm can be used to find optimum solutions within a
reasonable time. The results of the proposed algorithm are also
compared to those obtained by the Q-learning and probabilistic
CLF methods. The approach is very flexible, allowing its ap-
plication to multicriteria optimization problems, e.g., assigning
priorities to control actions. Moreover, the ACS algorithm was
implemented in the reactive power control problem by consid-
ering the real power losses and operating constraints over the
whole planning period. These results demonstrate the superi-
ority of the ACS algorithm in providing the optimal control set-
tings. In order to increase the speed of convergence, an evolu-
tionary algorithm, such as the cultural-ACS algorithm, will be
introduced in the future to determine the optimum values of the
empirical parameters of the ACS algorithm.
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