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Abstract

In this paper we introduce Ant-Q, a family of
algorithms which present many similarities
with Q-learning (Watkins, 1989), and which we
apply to the solution of symmetric and asym-
metric instances of the traveling salesman prob-
lem (TSP).  Ant-Q algorithms were inspired by
work on the ant system (AS), a distributed algo-
rithm for combinatorial optimization based on
the metaphor of ant colonies which was recently
proposed in (Dorigo, 1992; Dorigo, Maniezzo
and Colorni, 1996).  We show that AS is a par-
ticular instance of the Ant-Q family, and that
there are instances of this family which perform
better than AS.  We experimentally investigate
the functioning of Ant-Q and we show that the
results obtained by Ant-Q on symmetric TSP's
are competitive with those obtained by other
heuristic approaches based on neural networks or
local search.  Finally, we apply Ant-Q to some
difficult asymmetric TSP's obtaining very good
results:  Ant-Q was able to find solutions of a
quality which usually can be found only by very
specialized algorithms.

1 INTRODUCTION
Recently a new distributed algorithm for combinatorial
optimization has been introduced by Dorigo, Maniezzo
and Colorni (Dorigo, 1992; Dorigo, Maniezzo and
Colorni 1996; Colorni, Maniezzo and Dorigo, 1991;
1992).  The basic idea underlying this algorithm, called
ant system (AS), was that of using a colony of cooperat-
ing ants to find shortest Hamiltonian tours in a weighted
complete graph (the so called traveling salesman problem,
TSP).  We recently realized that AS can be interpreted as
a particular kind of distributed reinforcement learning
(RL) technique.  In this paper we propose Ant-Q, a
family of algorithms which strengthen the connection
between RL, in particular Q-learning, and AS.  The Ant-

Q family of algorithms is presented in Section 2, and a
few different members of the family are discussed and
experimentally compared in Section 3.  Experiments are
run on symmetric and asymmetric traveling salesman
problems.  In Section 4 we experimentally study some
properties of Ant-Q.  In particular we show that, as com-
putation goes on, agents do not converge toward a com-
mon path.  Instead, they continue to search the solutions
space.  Also, we show that Ant-Q learns AQ-values
which favor the agents discovery of short tours.  In
Section 5 we present a comparison between results ob-
tained by Ant-Q and those obtained by other heuristic ap-
proaches on five sets of standard TSP problems.  In this
comparison Ant-Q resulted to be, for the majority of data
sets, the best performing when compared to the elastic
net, simulated annealing, the self organizing map, and
farthest insertion.  We also applied Ant-Q to some
difficult ATSP problems finding very good results.  For
example, Ant-Q was able to find in 119 iterations1 (238
seconds on a Pentium PC) the optimal solution for
43X2, a 43-city asymmetric problem (Balas, Ceria and
Cornuéjols, 1993).  The same problem could not be
solved to optimality within 32 hours of computation on a
workstation by the best published code available for the
ATSP based on the Assignment Problem relaxation
(Fischetti and Toth, 1992) of the ATSP, and was only
very recently solved to optimality by (Fischetti and Toth,
1994) with an algorithm based on polyhedral cuts
(branch-and-cut scheme).  We conclude in Section 6
briefly discussing related and future work.

2 THE ANT-Q FAMILY OF ALGO-
RITHMS

We introduce the Ant-Q algorithm by its application to
the traveling salesman problem. Given a set of n cities,
and for each pair of cities a distance drs, the TSP is stated

1 I.e., it visited 5,117 tours. The mean performance, over 15 trials, was
5625 (550 sec).



as the problem of finding a minimal length closed tour
that visits each city once. An instance of the TSP is gi-
ven by a graph (N,E), where N, N =n, is the set of cities
and E is the set of edges between cities (a fully connected
graph in the Euclidean TSP).  In case drs≠dsr we have the
more general asymmetric traveling salesman problem
(ATSP).  Ant-Q algorithms apply indifferently to both
problems.

Let AQ(r,s), read Ant-Q-value, be a positive real value as-
sociated to the edge (r,s).  It is the Ant-Q counterpart of
Q-learning Q-values, and is intended to indicate how use-
ful it is to make move s (i.e., to go to city s) when in
city r.  AQ(r,s)’s are changed at run time.  When Ant-Q is
applied to a symmetric TSP, then AQ(r,s)=AQ(s,r).
Otherwise, when Ant-Q is applied to an asymmetric TSP,
AQ(r,s)’s can be different from AQ(s,r)’s.

Let HE(r,s) be a heuristic value associated to edge (r,s)
which allows an heuristic evaluation of which moves are
better (in the TSP we chose the inverse of the distance).

Let k be an agent whose task is to make a tour: visit all
the cities and return to the starting one.  Associated to k
there is the list Jk(r) of cities still to be visited, where r is
the current city.  This list implements a kind of memory,
and is used to constrain agents to make feasible tours, that
is, tours which visit all cities once and only once.

An agent k situated in city r moves to city s using the
following rule, called action choice rule (or state transi-
tion rule):

s =

 arg max
u∈ J

k
r( )

AQ r,u( )[ ]δ ⋅ HE r,u( )[ ]β{ }    if q ≤ q
0
 

         S                                                     otherwise










(1)

where δ and β are parameters which weigh the relative
importance of the learned AQ-values and the heuristic va-
lues, q is a value chosen randomly with uniform probabi-
lity in [0,1], q0 (0≤q0≤1) is a parameter such that the
higher q0 the smaller the probability to make a random
choice, and S is a random variable selected according to a
probability distribution given by a function of the
AQ(r,u)’s and HE(r,u)’s, with u ∈ Jk(r).
In equation (1), as it is the case in the following equation
(3), we multiply the AQ-value AQ(r,u) by the correspon-
ding heuristic value HE(r,u).  This choice was meant to
favor those AQ-values belonging to shorter edges, and
was mainly motivated by our previous work on the ant
system.  Other composition functions, different from
multiplication, are possible and will be the subject of fu-
ture work.

In Ant-Q m agents cooperate to learn AQ-values such that
they can favor, in probability, the discovery of good TSP
solutions.  AQ-values are updated by the following rule:

AQ r,s( ) ← 1 − α( ) ⋅ AQ r,s( ) +

+α ⋅ ∆AQ r,s( ) + γ ⋅ Max
z∈ J

k
s( )

 AQ s,z( )






(2)

The update term is composed of a reinforcement term and
of the discounted evaluation of the next state.  Parameters
α and γ are the learning step and the discount factor.  In
AS, and in all the Ant-Q algorithms presented here, the
reinforcement ∆AQ is always zero except after each agent
has completed its tour.  How this delayed reinforcement
∆AQ(r,s) is computed will be discussed in Section 3.2.

The update rule of formula (2) is the same as in Q-learn-
ing, except for the fact that the set of available actions in
state s, that is, the set Jk(s), is a function of the previous
history of agent k.

In Fig.1 we report the generic Ant-Q algorithm.  The al-
gorithm is called generic because there are two structural
parameters2 which are not instantiated.  These are:  (i) the
action choice rule given by formula (1), and in particular
the form of the probability distribution of variable S, and
(ii) the way delayed reinforcement ∆AQ(r,s) used by for-
mula (2) is computed and distributed.  In Section 3 we
will study and compare algorithms which result from dif-
ferent instantiations of the above structural parameters.

An iteration of the generic Ant-Q algorithm can be descri-
bed in words as follows.  First, at Step 1 there is an ini-
tialization phase in which an initial value is given to AQ-
values, and each agent k is placed on a city rk1 chosen ac-
cording to some policy (discussed in Section  3).  Also,
the set Jk(rk1) of the still to be visited cities is initialized.
Then, at Step 2, a cycle, in which each of the m agents
makes a move and the AQ(r,s)’s are updated using only
the discounted next state evaluation, is repeated until each
agent has finished its tour and is back in the starting city.
At Step 3, the length Lk of the tour done by agent k is
computed, and is used to compute (see discussion in
Section 3.2) the delayed reinforcements ∆AQ(r,s)’s.  Then
AQ(r,s)’s are updated using formula (2).  Finally, Step 4
checks whether a termination condition is met, and if it is
not the case the algorithm returns to Step 2.  Usually the
termination condition is verified after a fixed number of
cycles, or when no improvement is obtained for a fixed
number of cycles.  (In experiments in which the optimal
value was known a priori the algorithm was stopped as
soon as the optimum was found.)

3 AN EXPERIMENTAL COMPARI-
SON OF ANT-Q ALGORITHMS

We start this section with an experimental investigation
of the Ant-Q performance for a few different instantiations
of two structural parameters: the action choice rule, and
the way delayed reinforcement ∆AQ is computed.  We
conclude with a brief description of the ant system (AS),
which first inspired Ant-Q, and with an experimental
comparison of AS and Ant-Q.

2 We call these parameters “structural” because their value changes
the form of the algorithm.  They differ therefore from other more
standard parameters, like δ and β in formula (1), which only need to be
numerically optimized.



Algorithm performance was evaluated repeating each trial
15 times. We report means, variances and, when neces-
sary, the significance of comparisons between means was
computed by Mann-Whitney t-tests and Kruskal-Wallis
ANOVA (Siegel and Castellan, 1956). In tables we report
average and best performances. The average performance is
computed by taking the best result obtained in each of the
15 trials and computing the mean. The best performance
is given by the best result obtained in the 15 trials.  In
the experiments reported in the following, if not differ-

ently indicated, the value of parameters was set to:  δ=1,
β=2, AQ0=1/(average_length_of_edges·n), q0=0.9, α=0.1,
γ=0.3, W=10, m=n.  In general, we found that the num-
ber m of agents should belong to the range [0.6·n, n]:
this range was experimentally found to be a good one (fur-
ther experiments will be necessary to better understand the
role of cooperation, see Dorigo and Gambardella, 1995,
for some preliminary results).  Regarding their initial po-
sitioning, we placed one agent in each city.

1./* Initialization phase */
For each pair (r,s) AQ(r,s):= AQ0  End-for
For k:=1 to m do

Let rk1 be the starting city for agent k
Jk(rk1):= {1, ..., n} - rk1
/* Jk(rk1) is the set of yet to be visited cities for agent k in city rk1 */
rk:=rk1
/* rk is the city where agent k is located */

End-for
2. /* This is the step in which agents build their tours. The tour of agent k is stored in

Tourk.  Given that local reinforcement is always null, only the next state evaluation is used
to update AQ-values. */
For i:=1 to n do

    If i≠n
Then
For k:=1 to m do

Choose the next city sk according to formula (1)
If i≠n-1 Then Jk(sk):= Jk(rk) - sk
If i=n-1 Then Jk(sk):= Jk(rk) - sk + rk1
Tourk(i):=(rk,sk)

End-for
Else
For k:=1 to m do  /* In this cycle all the agents go back to the initial city rk1 */

sk := rk1
Tourk(i):=(rk,sk)

End-for
For k:=1 to m do

AQ(rk,sk):=(1-α)AQ(rk,sk)+α·γ·
  
Max

z∈ J
k
(s

k
)
AQ(sk,z)

/* This above is formula (2), where the reinforcement ∆AQ(rk,sk) is always null */
rk := sk  /* New city for agent k */

End-for
End-for

3. /* In this step delayed reinforcement is computed and AQ-values are updated using formula
(2), in which the next state evaluation term γ·Max AQ(rk1,z) is null for all z */
For k:=1 to m do
Compute Lk  /*Lk is the length of the tour done by agent k*/

End-for
For each edge (r,s)
Compute the delayed reinforcement ∆AQ(r,s)

/*The delayed reinforcement ∆AQ(r,s) is a function of Lk’s */
End-for
Update AQ-values applying a formula (2)

4. If (End_condition = True)
then Print shortest of Lk
else goto Step 2

Figure 1:  The Ant-Q algorithm



Table 1:  A comparison of action choice rules.  Type of delayed reinforcement:  iteration-best.  50-city
problems were stopped after 500 iterations.  Oliver30 was stopped after 200 iterations and ry48p after 600
iterations.  Averaged over 15 trials.

Pseudo-random Pseudo-random-proportional Random-proportional

γ mean std
dev

best γ mean std
dev

best γ mean std
dev

best

City Set 1 0.5 6.18 0.06 6.03 0.3 5.87 0.05 5.84 0.9 7.85 0.25 7.40

City Set 2 0.5 6.26 0.04 6.20 0.3 6.06 0.05 5.99 0.9 7.77 0.30 7.43

City Set 3 0.5 5.69 0.07 5.61 0.3 5.57 0.00 5.57 0.9 7.89 0.17 7.75

City Set 4 0.5 5.92 0.05 5.84 0.3 5.76 0.03 5.70 0.9 7.95 0.10 7.85

City Set 5 0.5 6.30 0.04 6.22 0.3 6.18 0.01 6.17 0.9 8.48 0.21 8.10

Oliver30 0.5 425.02 1.22 424.69 0.3 424.44 0.46 423.74 0.9 515.19 10 493.20

ry48p 0.3 15602 440 14848 0.3 14690 175 14422 0.9 19495  797 17921

These values were found to be very good for a set of
benchmark problems: grid problems3, Oliver30 (a 30-city
symmetric problem, see for example Whitley,
Starkweather and Fuquay, 1989), ry48p (a 48-city asym-
metric problem, see TSPLIB, in Reinelt, 1994), and for a
set of five 50-city symmetric problems in which cities
coordinates were randomly generated (Durbin and
Willshaw, 1987).

3.1 THE ACTION CHOICE RULE

We tested Ant-Q algorithms with the following action
choice rules:  pseudo-random, pseudo-random-proportio-
nal, and random-proportional.  They are all obtained from
formula (1) as follows.
• The pseudo-random rule is given by formula (1) in

which S is a random variable over the set Jk(r), that is,
over the set of cities not yet visited by the agent situa-
ted in city r, selected according to the uniform distri-
bution.  This action choice rule strongly resembles
the pseudo-random action choice rule of Q-learning.

• The pseudo-random-proportional rule is given by for-
mula (1) in which S is a random variable over the set
N, selected according to the distribution given by for-
mula (3) below which gives the probability with
which an agent in city r chooses the city s to move
to.

p
k
(r,s) =

AQ(r,s)[ ]δ ⋅ HE(r,s)[ ]β

AQ(r,u)[ ]δ ⋅ HE(r,u)[ ]β

u∈ J
k

(r)
∑

      if  s ∈ J
k
(r)

0                                         otherwise











(3)

• The random-proportional rule is the same as the
pseudo-random-proportional in which q0=0.  That is,

3 A grid problem is a problem in which cities are evenly distributed on
a squared grid.  In this paper we present results obtained with a 6x6-
city grid.

the choice of the next city is always done by using
random selection where edges are chosen with a proba-
bility distribution given by formula (3).  This action
choice rule is the same as it was used in the ant sys-
tem.

Table 1, in which we report the results obtained with the
three action choice rules, clearly shows that the pseudo-
random-proportional rule is by far the best choice for Ant-
Q.  The differences between means resulted to be signifi-
cant (p-value < 0.001) for all problems except Oliver30
for both the Kruskal-Wallis ANOVA and the Mann-
Whitney t-tests.  These results were obtained using the
iteration-best type of delayed reinforcement (see next
Section 3.2).  Very similar results were obtained with the
global-best type of delayed reinforcement, which is intro-
duce in the next section.

3.2 THE DELAYED REINFORCEMENT

We tested two types of delayed reinforcement, called
global-best and iteration-best.  These are discussed in the
following.  All the experiments were run using the
pseudo-random-proportional action choice rule.

Global-best.  The delayed reinforcement is computed by
the following formula:

∆AQ r,s( ) =

W

L
k

gb

     if r,s( ) ∈  tour done by agent k
gb

    0        otherwise                                      










(4)

where W is a parameter which in all experiments was set
to W=10 (this value was found to be a good one with AS,
and was not optimized for Ant-Q), kgb is the agent who
made the globally best tour from the beginning of the
trial, and Lkgb

 is its tour length. Formula (4) says that
only those AQ-values which correspond to edges be-
longing to the globally best tour will receive reinforce-
ment.



Iteration-best.  The delayed reinforcement is computed by
the formula:

∆AQ r,s( ) =

W

L
k

ib

     if r,s( ) ∈  tour done by agent k
ib

 

   0        otherwise                                      










(5)

where kib is the agent who made the best tour in the cur-
rent iteration of the trial, and Lkib

 is its tour length.

Results in Table 2 show that, on the average, the two me-
thods give very similar results.  Still, there are reasons to
prefer the iteration-best type of delayed reinforcement.
First, it was slightly faster in finding solutions of the
same quality as those found by global-best.  Second, and
most important, it was less sensitive to changes of the
value of parameter γ.  We decided therefore to use the
iteration-best type of delayed reinforcement in the rest of
the paper (except where otherwise stated).  In any case,
our results on the best way of computing the delayed rein-
forcement aren't definitive yet, and this subject will re-
quire further research.

Table 2:  A comparison among different ways to
compute delayed reinforcement.  50-city problems
were stopped after 500 iterations.  Oliver30 was
stopped after 200 iterations and ry48p after 600 ite-
rations.  Averaged over 15 trials.

Ant-Q
Global-best

Ant-Q
Iteration-best

mean
std.
dev. best mean

std.
dev. best

City
Set 1

5.90 0.08 5.84 5.87 0.05 5.84

City
Set 2

6.05 0.04 5.99 6.06 0.05 5.99

City
Set 3

5.58 0.01 5.57 5.57 0.00 5.57

City
Set 4

5.76 0.03 5.70 5.76 0.03 5.70

City
Set 5

6.20 0.03 6.17 6.18 0.01 6.17

Oliver
30

424.37 0.43 423.74 424.44 0.46 423.74

ry48p 14697 157 14442 14690 157 14422

3 . 3 THE ANT SYSTEM

The ant system presents, with respect to Ant-Q, two ma-
jor differences.  First, the delayed reinforcement was com-
puted according to the following formulas:

∆AQ r,s( ) = ∆AQk r,s( )
k=1

m

∑ (7)

∆AQk r,s( ) =
   

W

Lk
     if r,s( ) ∈  tour done by agent k

 0       otherwise                              









(8)

where Lk is the length of the tour done by agent k, and m
is the number of agents.  In this case therefore the delayed
reinforcement is such that edges belonging to shorter
tours and chosen by more agents receive more reinforce-
ment than those which belong to longer tours or which
were chosen by a smaller number of agents.  Therefore, in
the ant system, as opposed to Ant-Q algorithms, all
agents contribute to delayed reinforcement.

Second, formula (2) is simplified to AQ(r,s)← (1-α )·
AQ(r,s)+∆AQ(r,s) and is applied to all edges, not only to
those which were visited by at least one agent.  This
choice is due to the fact that AS was inspired by the ob-
servation of ant colonies and that the AQ(r,s) was intended
to represent the amount of pheromone on edge (r,s).  The
AQ-values updating formula was meant to simulate the
change in the amount of pheromone due to both the addi-
tion of new pheromone deposited by agents (ants) on the
visited edges, and to pheromone evaporation.

Table 3 indicates that, for the most difficult problems,
Ant-Q outperforms the ant system.  In particular, similar
or better results were obtained in fewer iterations.

Table 3:  A comparison among the best Ant-Q al-
gorithm and  ant system.  The Ant-Q algorithm
used pseudo-random-proportional action choice and
iteration-best delayed reinforcement.  AS experi-
ments were stopped after 3000 iterations (or after
the optimal solution was found).  Ant-Q experi-
ments were stopped after the optimal solution was
found or after 50 iterations for the 6x6 grid, 200
iterations for Oliver30, and 600 iterations for
ry48p.  Results are averaged over 15 trials.

Ant-Q Ant system

mean
std.
dev. best mean

std.
dev. best

6x6
grid

360 0 360 360 0 360

Oliver
30

424.44 0.46 423.74 425.46 0.51 423.74

ry48p 14690 157 14422 14889 223 14803

4 TWO INTERESTING PROPERTIES
OF ANT-Q

In this section we highlight two characteristics of Ant-Q.
In Ant-Q (i) agents do not end up making the same tour,
and (ii) learned AQ-values are such that they can be ex-
ploited by agents to find short tours.  We present results
obtained with the Ant-Q algorithm with pseudo-random-
proportional action choice and delayed reinforcement com-



puted by the iteration-best method.  The test problem is
the ry48p asymmetric TSP.  Qualitatively analogous
results were obtained on other problems.  In the experi-
ments reported in this section we computed performance
both during learning and in test sessions.  The learning
performance was computed while running the basic algo-
rithm reported in Fig.1, while in the test sessions the up-
dating of AQ-values was switched off and q0 was set to 1
(that is, agents deterministically chose the best edge
among those available).  In both cases the performance
was given by the length of the shortest tour done by the
m agents in the considered iteration.  Test sessions were
run every 10 learning iterations.  We ran two kinds of test
sessions.  In the first one, called NO-HE test session,
each agent deterministically chose the edge (r,s) for which
AQ(r,s) was the highest among those leading to a not yet
visited city.  In the second one, called HE test session,
each agent deterministically chose the edge (r,s) for which
the product [AQ(r,u)]δ·[HE(r,u)]β was the highest among
those leading to a not yet visited city.

4 . 1 ANT-Q AGENTS DO NOT CONVERGE
TO A COMMON PATH

A characteristic of the ant system which we find also in
Ant-Q is that agents do not converge to a common path.
This was observed by running two experiments.  In the
first one, see Fig.2, we observed the mean4 length of all
agents tours and its standard deviation.  Although the
mean tour length diminishes as the algorithm runs, it is
clear (see the standard deviation in Fig.2) that agents are
not converging towards a common path.  Nevertheless,
the Ant-Q algorithm continues to improve the best found
tour (see mean length of best tour in Fig.2).
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Figure 2:  Mean length of best tour, mean length
of all agents tour, and its std. dev.  Problem:
ry48p.  Averaged over 15 trials.

4 This mean is the mean over 15 trials of the mean length of the tours
made by the m agents.

In the second experiment we observed how the mean λ-
branching factor changes as computation goes on.  In this
paper the λ-branching factor of a node r is defined as fol-
lows.  Let AQmax(r,s) and AQmin(r,s)  be the largest and
the smallest respectively of the AQ-values on all edges
exiting from node r, and let δr=AQmax(r,s)-AQmin(r,s).
Given a parameter λ , 0≤λ≤1, the λ-branching factor of
node r is given by the number of edges exiting from r
which have an associated A Q -value greater than
λ·δr+AQmin(r,s).

The mean λ-branching factor gives an indication of the
dimension of the search space.  The experiment whose re-
sults are reported in Fig.3 showed that the λ-branching
factor diminish monotonically as the computation goes
on.  Ant-Q maintains therefore a property which was typ-
ical of AS:  the agents reduce drastically the search space
(by a reduction of the λ -branching factor) in the first
phases of the computation, but they do not converge on a
common path.  Agents continue to explore a subset of the
search space as computation goes on.

This is a desirable property given that if agents explore
different paths then there is a higher probability that one
of them will find an improving solution than in the case
they all make the same tour (which would make useless
the use of m agents).

4 . 2 THE BEHAVIOR OF THE AGENTS IN
THE TEST SESSION

Another interesting thing to do is to observe the behavior
of the agents in the test session. Given that in the NO-
HE test session at each step agents deterministically
choose the edge with the highest AQ-value, good tours
found in the NO-HE test session indicate that AQ-values
are exploited by agents to find shortest tours.  In Fig.4
we show the HE and NO-HE test session performances.
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Figure 3:  λ−branching factor.  Problem:  ry48p.
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Figure 4:  Best tour found during test session using
only the AQ-values (NO-HE test session), and using
both the AQ-values and the HE heuristic values (HE
test session).  The test session was run every ten
learning iterations.  Problem: ry48p.  Averaged over
15 trials.

It is interesting to observe that, while in the early stages
of the computation the use of the heuristic improves the
performance, later on, after about 300 iterations,  the NO-
HE performance becomes slightly better than the HE per-
formance.  This is an indication of the fact that, as com-
putation goes on, AQ-values become more and more use-
ful to direct agents in finding good solutions.  (At begin-
ning the AQ-values have no special meaning; in fact,
they all have the same value before the first iteration.)
The heuristic function, which is useful in the early stages
of the computation, seems to become useless, if not
slightly detrimental, once good AQ-values have been
learned.

5 COMPARISONS WITH OTHER
HEURISTICS AND SOME RESULTS
ON DIFFICULT PROBLEMS

We compared the average behavior of Ant-Q with the fol-
lowing well-known heuristic methods: Elastic Net (EN),
Simulated Annealing (SA), Self Organizing Map (SOM),
and Farthest Insertion (FI).  We also compared the best re-
sult obtained by Ant-Q with those obtained using impro-
ved versions of the previous heuristics:  SOM+, an im-
proved version of SOM consisting of over 4,000 different
runs of SOM processing the cities in various orders, and
SA and FI plus local optimization by 2-opt and 3-opt
(Lin, 1965)5.  The comparison was run on the set of five
50-city problems of Durbin and Willshaw (1987).  Table
4 reports the average results obtained by each heuristic
(the best average result found by all heuristics is in bold
font).  It is interesting to note that Ant-Q was almost al-
ways the best performing algorithm.  Also, when we ap-

5 2-opt and 3-opt are two well-known r-edge exchange procedures
whose purpose is to improve a TSP feasible tour (Hamiltonian tour). In
edge exchange procedures, r arcs are removed from the Hamiltonian
tour, thus producing r disconnected paths.  These paths are reconnec-
ted to produce the best possible tour.  A tour is r-optimal if no r-ex-
change produces a tour with a lower length.

plied the 2-opt and 3-opt heuristics to the result produced
by Ant-Q these local optimization heuristics were not
able to improve the result. That is, solutions produced by
Ant-Q resulted to be locally optimal with respect to the 2-
opt and 3-opt heuristics.

In Table 5 we compare the best results obtained by Ant-
Q, SOM+, SA+3-opt, and farthest insertion plus local
optimization by 2-opt and 3-opt.  In this case, Ant-Q and
SA+3-opt were the two best performing algorithms.

Although the above comparison of Ant-Q with some of
the most well-known heuristics gave encouraging results,
we believe that Ant-Q’s real strength is in solving the
asymmetric version of the TSP.  In fact, Ant-Q iteration
complexity (order of m·n2) makes quickly infeasible its
application to big TSP problems, for which there exist
good heuristic and exact methods. (Using exact methods
optimal solutions can be found for instances of many
hundreds of cities; the largest TSP solved optimally has
2392 cities (Padberg and Rinaldi, 1990).)   On the other
hand, ATSP problems are much more difficult than the
TSP (using exact methods optimal solutions have been
found for instances of no more than 200 cities), and Ant-
Q maintains the same iteration complexity as when ap-
plied to the TSP.  We run therefore a few experiments to
compare Ant-Q with two exact methods6 proposed in
(Fischetti and Toth, 1992; 1994).  In Table 6 we report
the best result and the time needed to find it by the two
exact algorithms and the mean and the best result obtained
by Ant-Q on 15 trials of 600 iterations each.  The two
test problems are available in the TSPLIB7 (Reinelt,
1994).  For the 43X2 problem the FT-92 exact algorithm
was not able to find the optimal solution within 32 hours
of computation.

6 CONCLUSIONS
In this paper we have presented Ant-Q, a new family of
algorithms inspired by both the Q-learning algorithm and
by the observation of ant colonies behavior.  Ant-Q is, to
the authors knowledge, the first and only application of a
Q-learning related technique to a combinatorial optimiza-
tion problem like the traveling salesman problem (TSP).
Results obtained with an application to the TSP, in parti-
cular to its asymmetric version, have shown that Ant-Q
is very effective in finding very good, often optimal solu-
tions to rather hard problem instances.  Further work will
be in the direction of a better understanding of Ant-Q dy-
namics.  In particular, we suspect that the connection be-
tween Ant-Q and Q-learning can be made tighter and that
theoretical results obtained for Q-learning can be extended
or reformulated for Ant-Q.  Also, we plan to extend the
realm of Ant-Q applications, applying it to other combi-
natorial optimization problems.

6 These are considered to be the best exact methods for the ATSP.
7 In the TSPLIB the problem 43X2 is called p43.atsp.  They differ in
that 43X2 is obtained from p43.atsp by doubling the length of arcs.



Table 4:  Comparisons on average result obtained on five 50-city problems. EN = elastic net, SA = simulated an-
nealing, SOM = self organizing map, FI = farthest insertion, FI+2-opt = best solution found by FI and many dis-
tinct runs of 2-opt, FI+3-opt = best solution found by FI and many distinct runs of 3-opt.  Results on EN, SA,
and SOM are from Durbin and Willshaw (1989), and Potvin (1993).  FI results are averaged over 15 trials starting
from different initial cities.  Ant-Q used pseudo-random-proportional action choice and iteration-best delayed
reinforcement.  It was run for 500 iterations and the results are averaged over 15 trials.

City
set

EN SA SOM FI FI
+ 2-opt

FI
+ 3-opt

Ant-Q

1 5.98 5.88 6.06 6.03 5.99 5.90 5 . 8 7

2 6.03 6 . 0 1 6.25 6.28 6.20 6.07 6.06

3 5.70 5.65 5.83 5.85 5.80 5.63 5 . 5 7

4 5.86 5.81 5.87 5.96 5.96 5.81 5 . 7 6

5 6.49 6.33 6.70 6.71 6.61 6.48 6 . 1 8

Table 5:   Comparison between the best results obtained by SA+3-opt = best solution found by simulated annea-
ling and many distinct runs of 3-opt, SOM+ = best solution found by SOM over 4,000 different runs (by proces-
sing the cities in various orders), FI and its locally optimized versions, and Ant-Q.  The 2-opt and 3-opt heuristics
used the result of FI as starting configuration for local optimization.  Results on SA+3-opt and SOM+ are from
Durbin and Willshaw (1989), and Potvin (1993).  Ant-Q used pseudo-random-proportional action choice and
iteration-best delayed reinforcement.  It was run for 500 iterations, and the best result was obtained out of 15
trials.

City set SA
+ 3-opt

SOM+ FI FI
+ 2-opt

FI
+ 3-opt

Ant-Q

1 5 . 8 4 5 . 8 4 5.89 5.85 5.85 5 . 8 4
2 5 . 9 9 6.00 6.02 6.01 5 . 9 9 5 . 9 9
3 5 . 5 7 5.58 5 . 5 7 5 . 5 7 5 . 5 7 5 . 5 7
4 5.70 5 . 6 0 5.76 5.76 5.70 5.70

5 6 . 1 7 6.19 6.50 6.45 6.40 6 . 1 7

Table 6: Comparison between exact methods and Ant-Q for difficult ATSP problems.  Numbers in parenthesis are
seconds.  Type of delayed reinforcement:  global-best.  For the problem 43X2 we set γ=0.01.  Ant-Q was run for
600 iterations, and results were obtained out of 15 trials.

Problem FT-92 FT-94 Ant-Q
Mean

Ant-Q
Best result

ry48p 14422
(729.6)

14422
(52.8)

14690
(1590)

14422
(696)

43X2 N/A 5620
(492.2)

5625
(550)

5620
(238)
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