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Abstract

The study of natural processes has inspired several heuristic optimization algorithms

which have proved to be very effective in combinatorial optimization. In this paper we

show how a new heuristic called ant system, in which the search task is distributed over

manysimple, loosely interacting agents, can be successfully applied to find good solutions

of job-shop scheduling problems.
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1. Introduction

A recent trend in the research on combinatorial optimization heuristic algorithmstakes inspiration

from the observation of natural processes, modeling them in a way that can be exploited in

optimization tasks. Even though the forerunnersof this approach can be dated backto the 50s, with

the Metropolis algorithm (Metropolis, 1953), it is only with the growth of interest on genetic

algorithms (Holland, 1975; Goldberg, 1989) and on neural networks (Hopfield, Tank, 1985) that

some major characteristics of this class of algorithms emerged, like distributed computation and

population-based search.

Recently there has been a flourishment of nature-inspired heuristics, with several interesting

proposals (see Maniezzo, Colorni, Dorigo, 1994, for an overview). Ant system (AS), a recently

introduced memberofthis class, has already proved effective on the Traveling Salesman Problem

(TSP, see Colorni, Dorigo, Maniezzo, 1991, 1992) and on the Quadratic Assignment Problem

(QAP, see Colorni, Dorigo, Maniezzo, Muzio, 1994).

The AS loosely models the behaviorthat ant colonies have in finding food (Denebourg, Pasteels &

Verhaeghe, 1983). Specifically, AS tries to capture the basic mechanismsthat allow ants, which are

almost blind insects, to find the shortest path between their colony and a feeding source. The

algorithm distributes the search effort over many cooperating, simple agents called ants. These

agents, taken alone, are incapable of achieving good results; on the contrary, their performance

becomesvery effective when theyactcollectively.

Cooperation goes on by updating a global memory structure,the trail matrix T=[tij], that in some

way memorizesstructures in the search space that have been successfully exploited in the past. Each

ant, at each cycle of the algorithm, constructively builds a solution on the basis of the currenttrail

levels and of a problem-specific greedy heuristic, based on a second, global data structure, the

visibility matrix H=(njj).

Morein detail, AS is based on the following procedure. Suppose that a solution of the problem

tackled can be represented by a permutation m=(x(1),...,.%(n)) of n entities which contribute to define

the problem (townsin the case of TSP,activities in the QAP). Each entity is assigned to a node ina

weighted digraph: the weights on the arcs are given by a pair of numbers, the first one being thetrail

level on the arc (whose value changes dynamically during the search process), and the second being

the (fixed) visibility that assesses how good the constructive greedy heuristic rates the juxtaposition

of the two adjacent nodesin the solutionto build.

At the beginning of the evolution, m ants are randomly positioned on the nodes of the network and

are free to move from a node to an adjacent one. Each ant chooses the node to moveto following a

Montecarlo procedure, with transition probabilities which are functionofvisibilities and trail levels of

outgoing arcs. When it moves from node i to node j, an ant memorizes node /in its tabu list: in the

following steps the ant will not be allowed to move to nodes whichare contained in the tabulist, even

whenthey are adjacentto the one the antis currently in. Each ant k moves from nodei to an adjacent

node j with probability
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where A, is the set of nodes adjacentto i in the graph, notcontainedin the tabulist of the k-th ant; «

and B are parameters which allow the user to balance the importance given to the greedy heuristic

(parameter B) with respect to the cooperation machinery based onthe trails (parameter a), and t is the

currentiteration. ,

If we have m ants, wecall an iteration of the algorithm the m movescarried out by the m ants in

the interval (t, t+1); then after n iterations ofthe algorithm each ant has completed a permutation and

eachant has filled its tabu list; we call this a cycle of the algorithm. After the cycle completion, each

permutation is evaluated, obtaining the corresponding value of the objective function (call it Ly for the

k-th ant). A value Atj, which quantifies the amountoftrail left by ant k on arc (i,j) duringthis cycle,

is computed for eacharc (i,j) that has been used by the k-th ant: its value is set to Q/Ly, where Q isa

system parameter. The total contributionofall ants to each arc is then computed as follows:

At, = s Ati;
k=l

Thetrail levels to be used at the next iteration of the algorithm are given by the formula:

TH+ D= p HD + ATi
wherep is a coefficient, such that (1-P) can be interpreted as a trail evaporation coefficient; that is,

(1-p)tij() represents the amountof trail which evaporates on each edge(i,j) in the period between

cycle J and cycle /+1. .

In this paper we will show how to apply this general approach to the solution of job-shop

scheduling problems. Wefirst introduce the problem and briefly review problem-specific heuristics;

then, we present the AS version that we implemented. Finally, we report computationalresults.

2. The Job-Shop Scheduling Problem

The Job-Shop Scheduling Problem, JSP, (Graham, Lawler, Lenstra, Rinnooy Kan, 1979) is the

following. A set M={Mj, ..., Mm} of machines, a set J={J1, ..., Jn} of jobs and a set of operations

O={uijj}, G.jJel, where Ic{1, n] x [1, m], are given.

For each operation ujj € O there is a job Jj to which it belongs, a machine Mj on whichit has to be

processed, and a processingtime pij (a nonnegative integer) of the operation uj.

The set © is decomposed into chains correspondingto the jobs:if the relation ujp — uig is ina

chain, both operations belong to job Jj and there is no uj, with ujp > Uik OF UjK > Uig.

The problem is to find a starting time Sjj (Vujj € O) such thatit is minimized

max (Sj; + pj (2)

subject to

Sij 2 Sik+ Pik when vik uij - (3)
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(Sij 2 Skj + Pkj) V Sxj 2 Sij + pip) (4)

where formula (3) expresses the operation precedence constraints on the job chains and formula (4)

expresses the machine constraint saying that no more than a single job can be processed at the same

time on the same machine.

The value Cij = Sij + pij is called completion time for the operation ujj € O. The maximum of the

completiontimesis called makespan.

Operations mustbe assignedto timeintervals in such a way that no job is pre-empted; thatis, once

an operation is started it must be completed.

This problem, which has been studied for a long time, is known to be NP-hard (Garey, Johnson,

Sethi, 1976) and has the reputation of being one of the mostdifficult combinatorial problems ever

considered. An indication ofits difficulty is given by the fact that the famous 10x10 instance (n=10,

m=10) formulated for the first time by Muth and Thompsonin 1963 was exactly solved only in 1989

by Carlier and Pinson using a branch and boundalgorithm. Recently, other more efficient branch and

bound algorithms have been proposed by Applegate and Cook (1990), and Brucker, Jurisch and

Sievers (1991). However, the performance of these algorithms is very sensitive to the particular

problem instance considered.

Besides exact methods, many heuristics have been developed; the most popular are List Scheduler

algorithms which assign one operation at a time from a list ordered by somepriority rule (see e.g.

Panwalker, Iskander (1977) for a comprehensive survey). A more sophisticated algorithm called

Shifting Bottleneck was given by Adams, Balas, Zawack (1988). The algorithm builds up and

improves a schedule by iterative solutions of a single bottleneck machine problem. Better solutions

than the ones given by deterministic algorithms were found using Simulated Annealing (van

Laarhoven, Aarts, Lenstra, 1988; Matsuo, Suh, Sullivan, 1988) but at the cost of greater

computational effort. Tabu Search (Glover, 1989;1990) was applied to Job-Shop by Taillard (1989),

and by Dell'Amico and Trubian (1993). The problem has also been approached by a conventional

Genetic Algorithm (Nakano, Yamada, 1991).

In order to describe our procedure for generating feasible solutions we introduce the disjunctive

graph model due to Roy and Sussmann(1964).

Givenan instance of JSP, we can associate with it a disjunctive graph D=(V, A, E) with V set of

nodes, A a set of conjunctive directed arcs and E a setof disjunctive (undirected) edges, defined as

follows:

V=OU {ug} U (uner}, (Lug) and {un+1} are special dummy nodes which identify the start and the

completion of the overall Job-Shop);

A= {(ujj, Uijs1): tf uij > ujje, in the chain of job J, Vi} U {(ug, 44j): ui is the first operation in the

chain of job J; Vi} U {(ujm,uN+1): Uim is the last operation in the chain of job J; Vi};

E= {(ujj, unj) Vil.

A weight pij is associated to each vertex ujj € O, vertices ug and uN+1 have weight zero. The

starting time and the completion timeof vertices ug and uN+1 represent respectively the starting and
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finishing times of the overall Job-Shop. Directed arcs represent the precedencerelations (3);

undirected edges represent the machine constraints (4). In Figure 1 is presented an instance with n=3

and m=4. One can see that any orientation of the edges which does not create cycles corresponds to a

feasible sequencing of the operations on the machines.

 

Legenda:

seeeee directed arcs
edges for machine 1

mem edges for machine 2

edges for machine 3

marwoures edges for machine 4

 

 

Figure 1. A 3 jobs 4 machines JSP.

Oncethe length of a path is defined as the sum ofthe weights of the vertices in the path, solving

the Job-Shop correspondsto find an acyclic orientation of D so that the length of the longest path

between ug and un4] (makespan) is minimized.

In ouralgorithm the visibility data structure (described in the next section) is based on the same

approach used by List Scheduler algorithms. In this class of algorithms,first a rule for assigning

priorities to the still unscheduled operations is defined; then, in subsequentstages, the operation with

maximum priority is scheduled. Our procedure constructively generates solutions; the operations

which can be feasibly assigned are those for which all predecessors are already scheduled. In this

case the earliest possible starting time with respect to precedence and machine constraintsis assigned

to the operation with maximum priority.

A lot of different priority rules have been proposed in the literature, but none of them dominatesall

the others. Commonly used criteria are the following.

SPT: select the operation with the shortest processing time;

LPT: select the operation with the longest processing time;

SRT: select the operation belonging to the job with the shortest remaining processing time;

LRT: select the operation belonging to the job with the longest remaining processing time;

LRM:select the operation belonging to the job with the longest remaining processing time excluding

the operation under consideration.

In our application we adopted the LRTrule.
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3. Ant system applied to the job-shop scheduling problem

A JSP with m machines, n jobs and operation set O, N=IOl, can be represented in the AS by the

directed, weighted graph Q=<U, E>, defined as follows: U=OU {ug}; E= {(ujj,uxi):

ujppuid€O}U ((uo,uii): ui1 is the first operation in the chain ofjob J;}. Node ug is necessary in order

to specify which, amongthe different jobs, will be scheduled first, in case several jobs havethefirst

operation on the same machine.

Wehave therefore N+1 nodes and (N(N-1)/2+n) edges, where each node, except ug, represents

the processing of a job by a machineandall the nodes are pairwise connected in both direction except

ug, which is connected only to the first operation of each job.

Eacharc is weighted by a pair of numbers, (tjj, Nij}. The first, t)j, holds the trail level, while nij

is an estimate ofthe desirability of the transition i->j according to the implemented heuristic (LRT in

our case), which is therefore constant in this simple application, but possibly variable according to

any specific desirability measure.

The order in which the nodesare visited by each ant specifies the directions to be given to the

edgesof the cliques representing each machine.

All ants are initially in ug and are thenleft free to identify a permutation of the remaining nodes. To

cope with this problem,transition probabilities have to be slightly modified with respect to those

computed according to formula (1): in order to have a feasible permutationit is in fact necessary to

constrain the set of reachable nodes in any step not only through the tabu list, but also in a problem-

dependent way. Let G denotethe set ofall the nodesstill to be visited and S the set of the nodes

whose predecessors have already been visited. Initially G=U-(ug} and S containsall the nodes that

representthe first operation of a job. Transition probabilities are computed on the basis of formula

(1), where the set of reachable nodes is equal to S. When a nodeis chosen,it is appendedto the tabu

list and deleted from G and from S; if the chosen nodeis not the last in its job then its immediate

successorin the chain is added to S. Theprocessis iterated until G=2.

At the end, the order of the nodesin the permutation given by the tabulist specifies the orientation

of the edgesof the cliques representing the machines.At this pointit is possible to computethe length

of the critical path of the oriented graph so obtained and thus to compute the value of the objective

function for the solution proposed by each ant. Thetrails can thus be computed in the usual way and

they are laid down as specified by the AS algorithm.

The following example helps to visualize possible successive decisions taken by an ant and the

solution it builds. In order to keep the example simple we used the 3x4 problem instance presented in

Figure 1, and wetrace thestepsof a single ant whichstarts in ug. At this time the reachable nodes are

only the starting ones of eachjob.
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ug, éS Uge Ugg U34

In the drawings, nodes memberof S are labeled by S and the nodesin G are simply the not yet

visited ones. The path followedis thickened, useless arcs and edges are removed.

Suppose the ant chooses to go to node uj4j; the new situation becomesthe following.

 

u3g1eS Ug2 33 U34

Now supposethe ant goesto u3;:

   

ui UygeS U43 44

u21ES “ i

oO >p-= X->e- - —-
Up fee” 2g

f
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a“ fe
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U3; u3z2ES U33 U34

Thenit goes to u;2, thus bringing uj3 into S.



 

°

u31 uz2€S U33 U34

Suppose that the final path is:

U4 Uy2 U13 Ur4
O-——_——_—_> °

U2} Ugg
° ° oO

Ug Pr 24

° ° °

u31 U32 U33 U34

This is a complete path: the next iteration will start the process again, with all the ants again

positioned in ug. The permutation identified is uj) u31 U1? U13 U2] UZ2 U22 U3Z3 23 24 U34 UY44; this

permutation correspondsto the following feasible edge directioning.

Ur U12 u
>o >t — — >¢4

U2

U34

 

4. Computational results

In this section we present the results of experiments about the AS parameter setting and the AS

performance on problemswith different degrees of complexity.
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4.1. Best values of the AS parameters

The parameters considered here are those that affect directly or indirectly the computation of the

probability in formula (1): a, B, p!. The number of ants has always been set to be equal to the

number n of jobs and the priority rule has always been LRT. Wetested several values for each

parameter; we set the default value of the parameters at a=1, B=1, p=0.7, and in each experiment

only one of the values was changed. The valuestested were: ate {0, 0.5, 1, 5, 10}, Be {0, 0.5, 1, 5,

10} and pe {0.3, 0.5, 0.7, 0.9}. The tests reported here are based on a standard 10x10 problems,

ORB4,originally proposed by Applegate and Cook (1990), which has an optimal solution of 1005.

All the tests have been carried out for 3000 iterations and were averaged over5 trials.

Beside the path length, we were interested also in investigating the stagnation behavior,thatis the

situation in which all the ants make the same path. Whenstagnation occurs the AS does not explore

new solutions, and therefore the best path achieved before stagnation will not be improved any more.

Weexperimentally found that only very particular parameters settings made the system enter the

stagnation behavior; in particular, we found that high values of favor stagnation.

The best and the average results of 5 trials for each parametersetting, obtained testing different

values of a, B and p, are respectively presented in Figures 2, 3 and 4. The obtained results show that

a and B have an optimal range around 1, p around 0.7.

The algorithm mainly uses the greedy heuristic to guide search in the early steps, but as the

computation runsit starts exploiting the global information contained in the values jj of trail. This

explains the value p=0.7: the algorithm needs to have the possibility to forget part of the experience

gained in the pastin order to better exploit new incoming global information.
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Figure 2. Best and average(5 trials) schedule length with increasing values of a.

! Previous experiments (Colomi, Dorigo, Maniezzo, 1991) have shown that quantity Q does not influence the

algorithm performance.
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Figure 3. Best and average (5 trials) schedule length with increasing values ofB.
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Figure 4. Best and average (5 trials) schedule length with increasing values of p.

The main strengths of the Ant-cycle algorithm can be summarized in the following points.

. With the best parametervaluesthe algorithm always finds good solutions (the best one about

7% from the best-known value of 1005).

. The algorithm quickly finds satisfying solutions; nevertheless it does not enter the stagnation

behavior, and the ants continue to search for new,possibly better, solutions.

. Wetested the algorithm on problems with increasing dimensions, and we found the parameter

sensitivity to the problem dimensionto be very low.

4.2. Experiments on different problem instances

A second set of experiments was run in orderto assess the effectiveness of our algorithm on

problemsofincreasing difficulty. In this phase we were notinterested in shaping an algorithm that

provided the best possible solutions, an activity that requires a careful study of the greedy heuristic
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and of the neighborhood structure used, but in verifying the effectiveness of the approach even with

the rude heuristic we used. Weplan in fact for the future to investigate the possibilities offered by the

AS whenused as a meta-heuristic, specifically as a global optimization algorithm that explores the

search space in order to provide good starting points for local optimization; the research we report

here is aimed at the validation of the AS approachasa viable,effective heuristic for JSP problems.

To do that, we first tested it on a “easy” instance, MT06 (a 6x6 problem originally proposed by Muth

and Thompson (1963)), finding the best-known within a few iterationsin all the runs (the experiment

was repeated 5 times), Then weattacked tougher problems: three 10x10 (MT10 by Muth and

Thompson (1963); ORB1 and ORB4, by Applegate and Cook (1990)) and a 10x15 (LA21, by

Lawrence (1984)) problems.
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Figure 5. Best results obtainedfor different problems.

In three out of four cases, we identified solutions within 10% from the optimum,as shown in

Figure 5. These results represent the best value achieved over five runs, with the best parameter

setting (a=1, B=1, p=0.7) presented before: we never got the optimum result, but a quick

convergence tosatisfying solutions was maintained forall the problems.

All the runs were stopped after 3000 iterations, but the search wasstill actively going on, as was

testified by the non-zero variance ofthe set of solutions proposed by the ants, andasit is suggested

by the plot of the best solution found at each iteration, presented in Figure 6 for the ORB4 problem.

50



1200

 

£
D 1150
2
oOS 1100 HR
oC
oO en

§ 1050
a

1000 -—+-—_+ + 4 tt tt
oO oO oO Oo oO oO oO QoQ Oo Qo Oo oO oO

w oO w Oo w oO wo Oo uw oO w oO

N w - oO N w ~ oO N w - oO

_- _- _- - N N N N oO

Iterations

Figure 6. Evolution of best solution achieved in the ORB4 problem.

5. Conclusions

In this paper we presented an original heuristic called ant system, and we applied it to the job-shop

scheduling problem. ASis a stochastic optimization algorithm thattakes inspiration from the model of

a natural process. One of its more attractive characteristics is the distribution of search over several

simple, loosely interacting agents called ants. The effectiveness of the algorithm is due to the

cooperation among the ants, which takes place periodically by modification of a global problem-

specific memory structure,the trail matrix.

The effect of applying AS to a JSP problemis a probabilistic superposition of effects: each ant,if

isolated (i.e., if a=0), would move according to a local, greedy heuristic. This greedy heuristic

guarantees only locally optimal moves; it doesn't give good results because greedy local

improvements very often lead to very bad final steps. In fact, the tour followed by an ant ruled by a

greedy policy is composed by someparts that are very good and some others whichare not. If we

now consider the effect of the simultaneous presence of many ants, then each antcontributesto a part

of thetrail distribution; good parts of pathswill be followed by manyants and therefore they receive

a great amountof trail, which in turn will make these parts more attractive (thus giving rise to a

positive feedback — or autocatalytic — process); bad parts chosen because obliged by constraints

satisfaction (the tabu list) will be chosen only by few ants and therefore their trail level remainslow.

Whenagentsinteract, the autocatalytic process converges on good solutions very quickly, without

getting stuck in local optima.

The AShasalready provedeffective in solving TSP (Colorni, Dorigo, Maniezzo, 1991; 1992) and

QAP(Colormi, Dorigo, Maniezzo, Muzio, 1994). The application reported here further suggests the

robustness of the approach, showing howit is one of the most easily adaptable population-based

heuristics so far proposed and howits basic computational paradigm (the updating of a global

problem representation by many simple agents) is indeed effective under very different conditions.
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