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Several studies have suggested that sea level rise during the last interglacial implies retreat of

the West Antarctic Ice Sheet (WAIS). The prevalent hypothesis is that the retreat coincided

with the peak Antarctic temperature and stable water isotope values from 128,000 years ago

(128 ka); very early in the last interglacial. Here, by analysing the first ever climate model

simulations of last interglacial WAIS loss featuring water isotopes, we show instead that the

isotopic response to WAIS loss is in opposition to the isotopic evidence at 128 ka. Instead,

a reduction in winter sea ice area of 65 ± 7 % fully explains the 128 ka ice core evidence.

Our finding of a dramatic retreat of the sea ice at 128 ka demonstrates, for the first time, the

sensitivity of Antarctic sea ice extent to climate warming.

1 Introduction

During the last interglacial (LIG; 130,000 to 115,000 years ago) global climate was warmer than

today1–4 and global mean sea level was 6-9 m higher5–10 (Fig. 1). This LIG sea level high stand was
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mainly driven by ice sheet loss5, 11. Recent ice core results indicate that the Greenland Ice Sheet

likely provided a modest 2 m contribution towards the global sea level rise5, with estimates ranging

from +1.4 m to +4.3 m12. This implies that ice loss from the West Antarctic Ice Sheet (WAIS)

must have contributed to the LIG sea level maxima: loss of the entire WAIS would contribute 3-4

m of global sea level rise13, 14. Coral records from Western Australia indicate that sea level rose

late in the interglacial, around 118,000 years ago (118 ka)9. However, Seychelles coral has been

interpreted as indication of a +5 m global sea level at 128 ka6. These differing interpretations

prevent constraint on the timing of WAIS loss, thus reducing the potential to use the LIG to inform

the debate on the likelihood of future WAIS loss11, 13, 14. We therefore turn to the ice core records

to push forward the WAIS loss debate.

The recent ice core drilled at WAIS Divide15 does not extend back through the LIG; ice

that may have been present during the LIG has since been lost through basal melt. However, ice

cores extending back throughout the LIG, at a resolution of less than 200 years per m of ice16, are

available from four locations on the East Antarctic Ice Sheet (Fig. 1). From west to east these

are: EPICA Dronning Maud Land (EDML); Dome F (DF); Vostok; and EPICA Dome C (EDC).

These four ice cores all record an isotopic maximum at approximately 128 ka, associated with peak

Antarctic warmth1, 17, 18. Relative to the last 3 ka this LIG isotopic maximum is between 2 and 4 o/oo

in δ
18O. It has been suggested that WAIS loss is required to explain the magnitude of this isotope

maximum2, 19.

We carry out a series of climate model experiments incorporating δ
18O20 (see Methods for

full details). All experiments are forced by 128 ka orbital and greenhouse gas concentrations and

compared to a pre-industrial control simulation. These experiments test whether loss of the WAIS

was responsible for the 128 ka isotopic anomaly. Three suites of experiments are performed. The

first experiment is forced by 128 ka orbital and greenhouse gas forcing alone. This experiment uses
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a modern WAIS volume and shape. The second suite comprises three experiments using alternative

versions of the WAIS (Supplementary Figure 1): a remnant flat WAIS, at an elevation of 200 m19;

the entire WAIS removed, and the exposed (submerged) bedrock replaced with a new region of

ocean; and the WAIS removed and replaced with ocean but with isotopically depleted freshwater,

melted from the WAIS, allowed to enter the Southern Ocean. To our knowledge these are the first

isotope-enabled, coupled atmosphere-ocean global climate model simulations in which the WAIS

has been removed and inundated with ocean. The third suite of experiments explores an alternative

hypothesis; that reduced Southern Hemisphere sea ice extent provides an alternative explanation

for the 128 ka isotopic maximum15, 21–23. Both ice and ocean core evidence suggests that a large

retreat of the Antarctic sea ice edge may have occurred at 128 ka22–24. This third suite of sea ice

reduction experiments are performed using both a modern WAIS configuration and with the WAIS

removed (but with no additional meltwater added to the Southern Ocean). See Supplementary

Table 1 for a full list of experiments.

Our results suggest that a full WAIS collapse cannot explain the magnitude or the spatial

pattern of the 128 ka δ18O maximum. Removing the WAIS causes changes in atmospheric circula-

tion and precipitation seasonality which tends to reduce δ
18O. Including WAIS meltwater reduces

δ
18O by freshening the surface ocean, resulting in cooling and sea ice expansion, which does not

improve the model-data agreement. A major sea ice retreat of 65 ± 7 % increases δ18O and does

result in a good model-data agreement. This finding will have consequences for sea ice projection

in a future warmer climate.

2 Results

128 ka simulations with changes in WAIS morphology. The isotopic response to 128 ka orbital

and greenhouse gas forcing alone (and no change in WAIS morphology) is weak (Fig. 2a). Simu-
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lated δ
18O anomalies at the ice core sites range between -1.55 and +0.26 o/oo. When the response to

a remnant 200 m WAIS is simulated, δ18O anomalies at the ice core sites range from -0.18 to +0.96

o/oo (Fig. 2b); and when the WAIS is fully removed and new ocean regions created, the simulated

δ
18O anomalies become further depleted to between -2.78 and +0.63 o/oo (Fig. 2c). Simulated δ

18O

anomalies are strongly positive over the WAIS for all experiments with a reduced WAIS. Reduced

elevation increases surface air temperature at a rate roughly proportional to the lapse rate (∼6

�C km�1; see Supplementary Figure 2), which in turn enriches the isotopic composition of local

vapour. If we include the effects of meltwater from a WAIS collapse, the δ
18O depletion becomes

more pronounced (Fig. 2d). A reduction in the Southern Ocean source water δ18O alongside an

expansion in sea ice both tend to reduce δ
18O at the ice core sites. These simulated δ

18O results,

from each of our three WAIS loss scenarios, do not match the 128 ka δ18O values from the ice core

data.

Decomposition of changes in δ
18O. At the ice core sites, changes in both the isotopic composition

and the seasonality of precipitation contribute to the simulated negative δ18O anomalies. Although

the precipitation over the ice core sites tends to be enriched during colder months due to WAIS loss,

an increased proportion of precipitation falling during colder months leads to an overall depletion

of δ18O (Supplementary Figures 3 and 4).

To qualify the relative impact of precipitation and δ
18O seasonality, we first isolate the

changes in δ
18O due to changes in the seasonal cycle of precipitation (∆Pseas)

25;

∆Pseas =

P
j δ

18OMOD
j · Pj

P
j Pj

−

P
j δ

18OMOD
j · PMOD

j
P

j P
MOD
j

(1)

Superscript MOD indicate values from the 128 ka experiment using a modern WAIS configuration

and no superscript indicate values from the WAIS sensitivity experiments. The difference between

the total δ18O change (∆δ
18O) and ∆Pseas represents other effects contributing to the observed
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δ
18O anomaly (such as variability in the δ

18O of precipitate and in the source vapour);

∆δ = ∆δ
18O −∆Pseas (2)

For all WAIS retreat scenarios (a remnant WAIS, WAIS removed and replaced with ocean, and

WAIS removed and meltwater added to the Southern Ocean) ∆Pseas is negative; a larger proportion

of precipitation falls on the EAIS during cold months when the WAIS is absent (Fig. 3, middle

panels). This differs from the WAIS loss experiments of Holden et al.
19, who observe an increase

in summer precipitation. This discrepancy is likely explained by differences in the modelling set-

up; Holden et al. include different boundary forcing (chosen for 130 ka), the WAIS replaced by

“ice-free” land at an elevation of 200m, and 1 Sv of freshwater added to the North Atlantic.

Changes in ∆δ are strongly positive over the WAIS for all experiments with a reduced WAIS,

which is a direct response to the lowered elevation and associated warming, mentioned above (Fig.

3, right panels). The response of ∆δ over the EAIS differs between the WAIS retreat scenarios. ∆δ

is positive over the EAIS for a remnant flat WAIS but turns negative when the WAIS is removed

and replaced with ocean. This suggests that there are changes in the intensity of precipitation

falling over the EAIS and/or a change in precipitation source region when the WAIS is replaced

with ocean. Such changes in the amount and/or intensity of precipitation over Antarctica would be

consistent with the expected changes in the thermal characteristics of the high southern latitudes;

lower Antarctic Ice Sheet (AIS) topography has been linked with intensified cyclones over the

continent (suppressed for higher AIS)26. These changes allow more storms to travel over the

continent, which are a key mechanism for transporting moisture inland26.

When the WAIS is replaced with ocean and meltwater is added to the Southern Ocean, ∆δ

is negative everywhere apart from the elevation induced positive anomalies over the WAIS (Fig.

3i). This is a response to the depleted isotopic composition of the prescribed meltwater (-30 o/oo),

depleting the isotopic composition of the surface Southern Ocean that is a source for Antarctic
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precipitation, and a freshwater associated expansion in Southern Hemisphere sea ice.

128 ka simulations with WAIS and sea ice retreat. Sea ice retreat in the presence and absence of

the WAIS both enrich δ
18O at the ice core sites. Water vapour becomes relatively enriched in heavy

isotopes in response to evaporative input from new water surfaces exposed by the retreat of sea ice.

A reduced distance between evaporation source and precipitation site for atmospheric water vapour

tends to enrich δ
18O21. However, there are considerable differences across East Antarctica in the

δ
18O response to WAIS presence and WAIS loss. Following a Bayesian analysis, we assess which

of these scenarios best explains the observed data (see Methods for details). Our results strongly

support the conclusion that the WAIS was present at 128 ka. Comparing the two scenarios using a

statistical model comparison, the likelihood ratio is 200 in favour of the WAIS being present, i.e.

the observations are 200 times more likely using a model with the WAIS present than when the

WAIS is removed. The WAIS-removed scenario does not explain the observed spatial pattern of

δ
18O measurements as well as the model simulations that retain the WAIS.

When the WAIS is present, a winter (September) sea ice area reduction of 65 % (posterior

mean with a 95 % credibility interval of 58 to 72 %) relative to pre-industrial provides a data-model

match of better than ± 0.02 o/oo with the δ
18O anomaly at Vostok and EDML, better than ± 0.8 o/oo

at EDC and ± 1.1 o/oo at Dome F (Fig. 4a and 5). With the WAIS removed, the best fit to the ice

core observations is similarly achieved with a sea ice reduction of 66 %. However, the uncertainty

band is nearly four times larger (95 % credible interval of 32 to 87 %) and the model-data match

is worse at every site; the model-data δ
18O match is worse than ± 0.05 o/oo at EDML, ± 1.0 o/oo

at Vostok, ± 1.9 o/oo at EDC and ± 3.5 o/oo at Dome F (Fig. 4b). This multi-ice core data-model

comparison thus suggests that complete loss of the WAIS at 128 ka is inconsistent with the ice core

evidence.
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3 Discussion

We have explored only complete WAIS loss, rather than WAIS reduction, scenarios here. Our

results thus do not preclude some loss of the WAIS by 128 ka, or that the WAIS may have been

lost later in the LIG, possibly preconditioned by the early retreat of Southern Hemisphere sea ice.

Indeed, loss of the WAIS between 128 and 125 ka and a meltwater driven build up of Southern

Hemisphere sea ice may provide an explanation for the late LIG δ
18O drop observed in ice core

records; the δ
18O trend throughout the early LIG, with a significant peak and subsequent drop, is

distinct from the isotope record of the present interglacial (Fig. 1). Our results indicate that the

LIG isotope trend may be consistent with a WAIS collapse and sea ice build up in the following

few thousand years of the isotope maximum.

The difference between an isotope record from Mt. Moulton and East Antarctic ice core

records27 may also be consistent with a slow loss of the WAIS, which could have been mostly

melted after another 2,000 years, by around 126 ka. Lower isotope anomalies in the Mt. Moulton

record relative to isotope records from East Antarctica suggest a local cooling anomaly, which

is consistent with climate model simulations of WAIS collapse driven by pre-industrial boundary

conditions27. The low isotope values in the Mt. Moulton record, relative to the other ice core

sites, persists throughout the LIG, but the difference is greatest after ∼126 ka, perhaps coinciding

with maximum retreat of the WAIS. Considering the reasonable agreement between the observed

peak-to-trough δ
18O anomalies and those calculated between our sea ice retreat and the WAIS loss

experiments (Supplementary Figure 5), we suggest that a large sea ice retreat best explains the

early isotope maximum and a subsequent retreat of the WAIS and sea ice build-up could provide

an explanation for the observed pattern of isotope anomalies following the LIG maximum.

The bipolar seesaw mechanism28 proposes that a slowdown in northwards ocean heat trans-

port, particularly in the Atlantic, tends to warm the Southern Ocean. This mechanism is consistent
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with a recent bipolar re-interpretation of the early LIG29, alongside a recent synthesis of sea surface

temperature reconstructions between 40 and 60 �S4. These all support Southern Ocean warming at

128 ka; providing a partial explanation for why Southern Hemisphere sea ice retreated at 128 ka.

In future work, we will investigate whether the bipolar-seesaw can provide the mechanism to cause

a major Southern Hemisphere sea ice retreat and thus reconcile the 128 ka δ18O maximum. Further

simulations, including WAIS loss and North Atlantic meltwater input, could provide insight into

the non-linear interactions between the bipolar-seesaw, the WAIS and Southern Hemisphere sea

ice.

Finally, we note the similarity between the wintertime sea ice reduction of up to 58 % fore-

cast for the end of the 21st century12 and our 58 to 72 % decrease suggested for 128 ka. This

implies that the 128 ka sea ice retreat may prove a crucial model-data target for the sea ice mod-

elling community. Currently, the most recent Coupled Model Intercomparison Project Phase 5

multi-model simulations3, 12, 30 do not simulate a reduction in September sea ice area greater than

13 % between the LIG and the present interglacial (see Supplementary Discussion 1). Consider-

ing the disagreement between modelled and observed Antarctic sea ice during the satellite era31, a

number of studies have called for improvements in the modelling of climate and climate change in

the Antarctic region31–33. Whether this recent discrepancy is a function of natural variability34 or

represents a failing of current climate models is still a matter of debate31. If the currently observed

increase in Antarctic sea ice is robust, a major reduction at 128 ka could indicate a tipping point

in the sea ice system. There is clearly a need for more (and more robust) data for Antarctica and

the surrounding sea ice edge during the LIG. If it is possible to correctly simulate the 128 ka sea

ice reduction, it would improve the low confidence associated with future predictions of South-

ern Hemisphere sea ice change and, subsequently, improve projections of Antarctic temperature,

precipitation and mass balance35.
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4 Methods

Ice core data. Four published ice core records from East Antarctica cover the LIG at a resolution

of less than 200 years per m of ice16; Vostok36, Dome F37, EPICA Dome C (EDC)1, and EPICA

Dronning Maud Land (EDML)38. Fractional isotopic content is expressed for oxygen-18 as: δ18O

= 1,000 × [(H18

2
O/H16

2
O)/RV SMOW - 1] (in o/oo), where RV SMOW is the ratio of H18

2
O to H16

2
O for

Vienna standard mean ocean water. The ice core isotope records are synchronised to the EDC3

age scale39 and interpolated onto a common 100 year time grid using an interpolate point method.

In order to minimise the effect of residual temporal misalignment between the ice cores, a 1,500

year low-pass filter is applied to each record before taking the LIG peak18. The misalignment and

isotope measurement error is then assumed to be negligible after this averaging. The EDC3 age

scale was chosen because the version of the EDML record corrected for upstream altitude changes

and for the changing δ
18O of seawater is not available on the more recent AICC2012 age scale.

However, as we are only interested in the LIG δ
18O maximum across ice core records, the choice

of chronology does not have a significant influence on our results.

Isotope-enabled General Circulation Model (GCM) experiments. The isotope-enabled cou-

pled General Circulation Model used in this study (HadCM3) has been tested for the present-day20,

the Last Glacial Maximum40, as well as warm interglacials of the past40, 41. HadCM3 can be run

for multi-millennial length simulations. The model has a reasonable representation of the global

distribution of isotopes in the ocean and atmosphere20, 41. Among the Climate Model Intercompar-

ison Project Phase 3 (CMIP3) model group, HadCM3 was assigned one of the highest skill scores

based on global mean sea level pressure (mslp), sea surface temperature, height and temperature

at 500 hPa, and surface mass balance over Antarctica42. The effect of seasonal biasing simulated

by the HadCM3 model over Antarctica for the present day is similar to that calculated using the

ECMWF ERA40 reanalysis product43.
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We use HadCM3 to simulate the isotopic response to differing West Antarctic Ice Sheet

(WAIS) deglaciation scenarios and sea ice retreats during the LIG isotope maximum, 128,000

years ago (128 ka). We perform three suites of experiments, all forced with orbit and greenhouse

gas values for 128 ka and compare to a pre-industrial control simulation, forced by 1850 yr BP

orbit and greenhouse gas concentrations. The first suite uses a modern WAIS configuration, so the

only difference from the control experiment are the 128 ka orbit and greenhouse gas forcing.

A second suite explores the isotopic response to WAIS deglaciation and includes experiments

with; (i) a remnant WAIS with elevations reduced to 200 m and ice covered, following the approach

of Holden et al. (2010)19; (ii) WAIS removed and replaced with a new region of ocean of 200 m

depth; and (iii) as (ii) but with isotopically depleted meltwater from the WAIS added to the surface

Southern Ocean. A prescribed freshwater flux of 0.4 Sv is added over a 100 year simulation

(continued from the spun-up WAIS removed simulation), equivalent to a collapse of the WAIS

and a global sea level contribution of 3.5 m. This can be considered an aggressive scenario and

represents an idealised catastrophic collapse of the WAIS, such would be required by a very early

complete loss of the WAIS during the LIG. The meltwater is distributed over the Southern Ocean

according to current iceberg trajectories44, 45. The meltwater is added with an isotopic composition

of -30 o/oo, which is approximately equal to that of the parent ice sheet16. Apart from (iii), all

experiments have been run for at least 700 years. This ensures that the upper ocean and atmosphere

are in quasi-equilibrium with the respective boundary conditions. The new regions of ocean which

are created when the WAIS is removed are allowed to evolve in the coupled simulation. No changes

have been applied to the topography of the East Antarctic Ice Sheet (EAIS). This ensures we isolate

the climate response to WAIS changes.

To investigate whether Southern Ocean sea ice retreat can provide an alternative explanation

for the LIG isotope maximum, a third suite of experiments are performed using both the modern
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WAIS configuration and with the WAIS removed and with a forced reduction in Antarctic sea ice

extent. Each experiment is continued from the spun-up 128 ka modern WAIS and WAIS removed

simulations and continued for an additional 50 years. We adopt a ‘clean’ method to force a sea

ice retreat by prescribing a heat flux to the bottom of Antarctic sea ice at all longitudes and all

latitudes south of 49 �S with no other effect to the model physics. The sea ice forcing is held

constant throughout the annual cycle so the model can still calculate the seasonal cycle of sea ice

growth and decay. Therefore, the simulated sea ice evolution is only reduced from the coupled

models equilibrium response but still consistent with the internal model physics and sea surface

temperatures and sea ice in our simulations are always internally consistent. The sea ice thus

evolves with the coupled model, and the ocean and atmosphere respond to sea ice changes. We

perform a range of experiments, each with a different prescribed heat flux from 0 W m�2 (no

forcing) up to 120 W m�2 (see Supplementary Table 1 for a full list of experiments).

All modelled isotopic output is first re-gridded to an equal area 50 km grid and smoothed

with the surrounding 100 km to remove grid dependence43 before evaluation against ice core data.

We calculate the simulated standard deviations, from annually resolved δ
18O model output, and

those observed in the ‘raw’ ice core records (before being synchronised, placed on a common time

scale and filtered; see previous section). Modelled and observed standard deviations for each of the

four ice core sites (Vostok, Dome F, EDC and EDML) are 2.18, 2.70, 1.85 and 1.87 o/oo, and 3.31,

2.12, 2.97 and 5.76 o/oo respectively. We also note reasonable agreement with results from a high

resolution EPICA Dome C ice core record, describing the LIG on a 20 year resolution; suggesting

a 3,000 year running mean standard deviation of 4.5 o/oo
46.

Statistics. Inference about the sea ice retreat is conducted using the framework of Bayesian mul-

tivariate linear regression47. A linear model is first fitted to the simulation outputs. x(j) denotes

the input heat flux for the (j)th simulation, y
(j)
i the vector of simulated annual average isotope
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values at the four measurement sites in the (i)th equilibrium year of the (j)th simulation, and z
(j)
i

the corresponding sea ice retreat. Here, we use the term ‘equilibrium years’ to describe the model

years after the surface ocean and atmosphere have reached a quasi-equilibrium with the input heat

flux and the sea ice response has converged to a new steady state. The number of simulations is N ,

each of which has K equilibrium years.

The sea ice response reaches an equilibrium with the input heat flux within 20 years of

each simulation so we use K = 30, i.e. we use the last 30 years from each 50 year sea ice

forcing experiment for the following calculations. We include the experiments with heat fluxes of

[30, 35, 40, 45, 50, 60, 80], such that N = 7. The isotope and sea ice retreat values are modelled as

jointly normally distributed with a linear dependence on the input heat flux,

ζ
(j)
i ∼

i.i.d
N

�
ax(j) + b,Σ

�
(3)

where ζ
(j)
i is a vector of all the dependent variables,

ζ
(j)
i =

2
664
y
(j)
i

z
(j)
i

3
775 , (4)

and the unknown model parameters are the slope (a), intercept (b) covariance matrix (Σ). Note

that a and b are 5-element column vectors with the first 4 elements corresponding to isotope mea-

surements at the four sites and the fifth corresponding to the sea ice retreat. Σ is a 5 × 5 positive

definite matrix. This can be written equivalently in matrix form using,

θ =


a b

�
, (5)

ex(j) =

2
664
x(j)

1

3
775 , (6)

such that

ax(j) + b = θex(j). (7)
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The complete sets of simulation variables will be written as

X = {x(j)}j=1...N (8)

Z = {⇣
(j)
i }i=1...K,j=1...N (9)

The model makes some strong assumptions about the temporal behaviour of the dependent

variables. Over long time periods, climate variables are clearly not well modelled by a constant

plus white noise, but display trends and seasonalities. However, over short intervals this simple

equilibrium model can be sufficiently accurate. We checked for whiteness by testing all time series

(those from the simulations and the equilibrium portions of the isotope records) with a Ljung-Box

test48, using 6 lags following the guideline of K/549, combining p-values using Fisher’s method50.

There is no significant autocorrelation in the isotope measurements, but the simulation data for sea

ice retreat does contain significant values for short lags. To remove this, we apply a preliminary

whitening step. For this we model the raw data as the output of an autoregressive process of order

1 with unknown mean,

bz
(j)
i = µ(j) + �(j)(bz

(j)
i−1 − µ(j)) + ✏

(j)
i , (10)

where µ(j) is the constant mean, and ✏
(j)
i is an i.i.d. Gaussian perturbation. We can transform such

a time series to an i.i.d. one using the following transformation,

z
(j)
i =

bz
(j)
i − �(j)bz

(j)
i

1− �(j)
(11)

= µ(j) +
1

1− �(j)
✏
(j)
i . (12)

To do this, we first need to estimate �(j), which can be achieved using a simple maximum likelihood

procedure (jointly with µ(j)). This method allows us to remove temporal correlation, replacing it

with an increased variance of each data point conditional on the preceding one. Full details can be

found in the supporting iPython notebook.
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We can write a probability density for the simulation variables conditional on the parameters,

p (Z|X, θ,Σ) =
Y

i,j


|2πΣ|−

1

2 exp

✓
−

1

2
(ζ

(j)
i − θex(j))TΣ−1(ζ

(j)
i − θex(j))

◆�
(13)

= |2πΣ|−
NK

2 exp

 
−

1

2

X

i,j

(ζ
(j)
i − θex(j))TΣ−1(ζ

(j)
i − θex(j))

!
. (14)

In order to infer the values of the model parameters, we first assign them a conjugate prior,

which is known to be a matrix normal-inverse Wishart distribution51,

p(θ,Σ) = MN (θ|M0,Σ, V0) IW (Σ|ν0,Ψ0) (15)

= |2πΣ|−
c

2 |2πV0|
−

d

2 exp

✓
−

1

2
Tr
⇥
(θ −M0)

T
Σ

−1(θ −M0)V
−1
0

⇤◆

×

|Ψ0|
ν0
2

2
ν0d

2 Γd

�
ν0

2

� |Σ|−
ν0+d+1

2 exp

✓
−

1

2
Tr
⇥
Ψ0Σ

−1
⇤◆

, (16)

where c×d are the dimensions of θ, i.e. c = 2, d = 5, and M0, V0, ν0 and Ψ0 are hyperparameters to

be specified. Since we have no particular prior information about the parameter values, we choose

to make the prior uninformative. We obtain the Jeffreys prior by setting Ψ0 → 05×5 (denoting the

5 × 5 matrix of zeros), V −1
0 → 02×2, and ν0 → 052. (We could use a weakly informative prior to

encode some basic deductions such as the fact that we expect az to be positive. However, since we

have an informative likelihood function for this stage of the inference, the effect of such a prior is

practically negligible.)

We can combine prior and likelihood to obtain a posterior distribution using Bayes’ theorem,

p (θ,Σ|X,Z) =
p (Z|θ,Σ, X) p (θ,Σ)

p (Z|X)

∝ p (Z|X, θ,Σ) p (θ,Σ) .

Note that we can ignore the denominator since it does not depend on θ or Σ. The unknown scale

factor can be resolved by enforcing that the resulting probability distribution must integrate to 1.
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Because we chose to use a conjugate prior, the posterior is also a matrix normal-inverse Wishart

distribution51,

p (θ,Σ|X,Z) = MN (θ|M,Σ, V ) IW (Σ|ν,Ψ) . (17)

The updated hyperparameters are,

V −1 = K
X

j

ex(j)ex(j)T (18)

M =

 
X

i,j

ζ
(j)
i ex(j)T

! 
K
X

j

ex(j)ex(j)T

!
−1

(19)

ν = NK (20)

Ψ =
X

i,j

ζ
(j)
i ζ

(j)T
i −

 
X

i,j

ζ
(j)
i ex(j)T

! 
K
X

j

ex(j)ex(j)T

!
−1 X

i,j

ζ
(j)
i ex(j)T

!T

. (21)

Note that the prior hyperparameters do not appear in these expressions because of our choice of

the Jeffreys prior.

The model trained on the simulated data describes the distribution of annual isotope and sea

ice retreat values. However, the ice core data does not provide annually resolved measurements.

Furthermore the temporal resolution of the various ice cores is not the same, and there is likely

to be some residual misalignment in the records even after the records have been synchronised.

As stated above, we mitigate these effects by averaging the ice core isotope measurements over a

selected interval of L years, where L = 1500. The chosen value of L represents an interval that is as

large as possible while not compromising the assumption that the system is in a quasi-equilibrium.

We denote the average value of the dependent variables over the selected interval as ζ , such

that,

ζ =
1

L

LX

i=1

ζi, (22)
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where ζi now denotes the true values of the variables in a particular year. Since the annual values

are assumed to be independent and identically distributed conditional on the linear model parame-

ters, we then have,

p(ζ|x, θ,Σ) = N

✓
θex, 1

L
Σ

◆
. (23)

We assume that after this averaging step measurement error is negligible compared to the other

sources of uncertainty.

For model comparison, we require the predicted distribution of the isotope measurements

alone. This can be obtained by simple marginalisation. We partition ζ and the parameter matrices

into isotope and sea ice retreat components,

ζ =

2
664
y

z

3
775 (24)

θ =

2
664
θy

θz

3
775 =

2
664
ay by

az bz

3
775

Σ =

2
664
Σyy Σyz

Σ
T
yz Σzz

3
775 . (25)

Using standard Gaussian density identities, the predicted distribution for the isotope measurements

is then simply47,

p(y|x, θ,Σ) =

Z
p(ζ|x, θ,Σ)dz (26)

= N

✓
θyex,

1

L
Σyy

◆
. (27)

Using this basic formulation, models trained on the with-WAIS and without-WAIS simula-

tion data both assign very small likelihoods to the measured isotope values. The problem is that

16



neither model predicts the isotope measurements to within the expected accuracy, since both are

imperfect representations of the real system. However we can still assess which is better by incor-

porating this error into the analysis. To this end, the observed vector of isotopes ey is modelled as

the predicted value plus some error term, such that,

p(ey|y, σ2
e
) = N

�
ey
��y, σ2

e
I4×4

�
, (28)

where I4×4 is the 4× 4 identity matrix. Hence,

p(ey|x, θ,Σ, σ2
e
) =

Z
p(ey|y, σ2

e
)p(y|x, θ,Σ)dy (29)

= N

✓
ey
����θyex,

1

L
Σyy + σ

2
e
I4×4

◆
. (30)

Hypothesis Testing. The standard mechanism for comparing two statistical models is to

compute the marginal likelihood (also known as the model evidence) for each47. This is the prob-

ability assigned to the observed data by the model, averaging over all possible model parameter

values,

p(ey) =
Z

p(ey, x, σe|θ,Σ)p(θ,Σ|X,Z)dxdσedθdΣ (31)

=

Z
p(ey|x, σe, θ,Σ)p(x, σe|θ,Σ)p(θ,Σ|X,Z)dxdσedθdΣ. (32)

This cannot be evaluated analytically, so instead we approximate it numerically. The linear

model parameter integrals are handled with Monte Carlo sampling. The remaining integrals over

the heat flux and error scale variables may be handled using an Empirical Bayes evidence approx-

imation. Since the posterior distribution for these variables is sharply peaked, the prior probability

density may be replaced with a point mass at the maximum likelihood value47,

p(x, σe|θ,Σ) = δbx(ey,θ,Σ),bσe(ey,θ,Σ)(x, σe), (33)
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where,

bx(ey, θ,Σ), bσe(ey, θ,Σ) = argmax
x,σe

: p(ey|x, σe, θ,Σ). (34)

This also removes the necessity of specifying a prior distribution over x and σe. Applying the two

approximations, we obtain,

p(ey) ≈ 1

M

MX

m=1

p
�
ey|bx(ey, θ[m],Σ[m]), bσe(ey, θ[m],Σ[m]), θ[m],Σ[m]

�
(35)

=
1

M

MX

m=1

N

✓
ey
����a

[m]
y bx(ey, θ[m],Σ[m]) + b[m]

y ,
1

L
Σ

[m]
yy + bσe(ey, θ[m],Σ[m])2I

◆
(36)

where θ[m],Σ[m] are sampled values of the linear model parameters drawn from the fitted posterior

distribution. In our calculations we used 1,000 Monte Carlo samples.

The average maximum likelihood values for heat flux are 72 W/m2 and 51 W/m2 respec-

tively for the with-WAIS and without-WAIS models. Comparing the two scenarios, the likelihood

ratio is 200 in favour of the WAIS being present (quoted to one significant figure), i.e. the ob-

served data is 200 times more likely using a model with the WAIS present than when the WAIS

is removed. Moreover, the average error scale for the with-WAIS model is 0.6 o/oo, compared with

1.9 o/oo for the without-WAIS model, indicating that larger error terms are needed in combination

with the without-WAIS model to obtain the most likely system. These results strongly support the

conclusion that the with-WAIS model is a more accurate representation of the ice core data. For

the two scenarios, the probability of the with-WAIS model is 99.5 %.

Calculating the Sea Ice Retreat. Taking into account the isotope measurements, knowledge
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about the corresponding average sea ice retreat is conveyed by the posterior distribution,

p(z|ey) ∝ p(z, ey) (37)

=

Z
p(z, ey, x, σe|θ,Σ)p(θ,Σ|X,Z)dxdσedθdΣ (38)

=

Z
p(z, ey|x, σe, θ,Σ)p(x, σe|θ,Σ)p(θ,Σ|X,Z)dxdσedθdΣ. (39)

This is the probability distribution over the possible values for sea ice retreat conditional on the

particular observed isotope measurements, but averaging over the possible values for the model

parameters. As before, the integrals cannot be evaluated analytically, and numerical methods must

be used.

Starting with the joint probability distribution over isotope and sea ice retreat, and applying

the Monte Carlo and Empirical Bayes approximations as before, we obtain,

p(z, ey) ≈ 1

M

MX

m=1

p
�
z, ey|bx(ey, θ[m],Σ[m]), bσe(ey, θ[m],Σ[m]), θ[m],Σ[m]

�
(40)

=
1

M

MX

m=1

N

0
BB@

2
664
ey

z

3
775

��������

2
664
a
[m]
y bx(ey, θ[m],Σ[m]) + b

[m]
y

a
[m]
z bx(ey, θ[m],Σ[m]) + b

[m]
z

3
775 ,

2
664

1
L
Σ

[m]
yy + bσe(ey, θ[m],Σ[m])2I 1

L
Σ

[m]
yz

1
L
Σ

[m]T
yz

1
L
Σ

[m]
zz

3
775

1
CCA .

(41)

Finally, conditioning on the isotope measurements using standard Gaussian density identities47,

the posterior distribution is approximated by,

p(z|ey, θ,Σ) ≈ 1

M

MX

m=1

N
⇣
z

���eα[m], eβ[m]
⌘
, (42)

where,

eα[m] = a[m]
z bx(ey, θ[m],Σ[m]) + b[m]

z +

✓
1

L
Σ

[m]
yz

◆T

✓
1

L
Σ

[m]
yy + bσe(ey, θ[m],Σ[m])2I

◆
−1

(ey − a[m]
y bx(ey, θ[m],Σ[m])− b[m]

y )

(43)
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eβ[m] =
1

L
Σ

[m]
zz −

✓
1

L
Σ

[m]
yz

◆T ✓
1

L
Σ

[m]
yy + bσe(ey, θ[m],Σ[m])2I

◆
−1 ✓

1

L
Σ

[m]
yz

◆
. (44)

Our final approximation of the distribution is a Gaussian mixture, from which a mean value

and credible intervals may be obtained. This provides us with the distribution of the average sea ice

retreat over the L years in our window. There is an additional uncertainty of
⇥
1− 1

L

⇤
Σzz associated

with each individual year due to the random annual variation.

For the with-WAIS scenario, we estimate the sea ice retreat during the LIG isotope maximum

to be 65 % (posterior mean). For the sea ice retreat in an arbitrary year, the 95 % credible interval is

[58 %, 72 %]. For the average value of sea ice retreat over the 1500 year period considered, the 95

% credible interval is [61 %, 70 %]. For the without-WAIS model, the same calculation similarly

suggests an estimated best fit sea ice retreat to fit the observations during the LIG isotope maximum

of 66 % (posterior mean). However, the uncertainty band is more than three times larger than for

the with-WAIS scenario. For the sea ice retreat in an arbitrary year, the 95 % credible interval is

[32 %, 87 %]. For the average value of sea ice retreat over the 1500 year period considered, the

95 % credible interval is [32 %, 86 %]. In the main text of the manuscript we quote the posterior

mean and the credibility interval for an arbitrary year during the 1,500 year period spanning the

LIG isotope maximum for each scenario.
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Figure legends

Fig. 1. Time series of Antarctic ice core stable water isotope records and sea level during the

last interglacial. (a) Stable water isotope (δ18O and δD) anomalies relative to the last 3 ka from

four deep ice cores16; EPICA Dronning Maud Land (EDML; green), Dome F (DF; red), Vostok

(blue), and EPICA Dome C (EDC; orange for δD and purple for δ18O). (b) Global sea level7 (pur-

ple curve; heavy line marks median projection, dashed lines the 16th and 84th percentiles, dotted

lines the 2.5th and 97.5th percentiles) and Red Sea relative sea level10 records (brown curve; solid

line shows maximum likelihood and shading represents 95 % confidence limits). The Antarctic

isotope peak at 128 ± 2 ka is shaded grey.

Fig. 2. Spatial pattern of δ18O anomalies. Precipitation weighted δ
18O anomalies (LIG-PI) for

128 ka simulations with (a) a modern WAIS configuration, (b) the WAIS flattened (indicated by

stippling), (c) the WAIS removed and replaced with a new region of ocean (indicated by crosshatch-

ing), and (d) the WAIS removed and meltwater added to the Southern Ocean. Filled circles show

ice core δ18O anomalies for the LIG maximum at approximately 128 ka (see Methods). Grey lines

signify the 15 % September sea ice concentration threshold.

Fig. 3. Decomposition of δ18O anomalies from 128 ka WAIS retreat experiments. (a-c); A

remnant flat WAIS, (d-f); WAIS removed and replaced with ocean, (g-i); WAIS removed and melt-

water added to the surface Southern Ocean. Left panels (a,d,g); the total δ18O change between

experiments (∆δ
18O). Middle panels (b,e,h); the change due to changes in the seasonal cycle of

precipitation (∆Pseas). Right panels (c,f,i); the change due to other effects, such as the monthly

isotopic composition of precipitation (∆δ). Anomalies are calculated relative to a 128 ka experi-

ment using a modern WAIS configuration. This calculation was performed using isotopic output
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from the native model grid, with no re-gridding, due to the need for monthly resolved data.

Fig. 4. Model-data δ
18O match at ice core sites. Ice core sites shown include Vostok (VOS;

blue circles), Dome F (DF; red squares), EDC (purple triangles), and EDML (green diamonds).

Results shown for sea ice retreat experiments and (a) a modern WAIS configuration and (b) with

the WAIS removed and replaced with ocean. Sea ice retreat is measured as the percentage change

in winter (September) sea ice area, relative to the pre-industrial control experiment. Shaded en-

velopes signify one standard deviation on simulated annual δ18O at each site. Best fit lines have

been added to each site (coloured as above).

Fig. 5. Spatial pattern of δ18O anomalies for the best fit sea ice retreat. Precipitation weighted

δ
18O anomalies (LIG-PI) interpolated between 128 ka experiments to best fit the ice core LIG max-

imum, corresponding to a 65 % winter sea ice retreat relative to pre-industrial. (b) September sea

ice concentration (sic) fraction, corresponding to (a). Black contour signifies the simulated 15 %

September sea ice concentration threshold. Blue contour signifies 1978-2013 satellite observations.
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