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Abstract In a sediment core from the Pacific sector of the Antarctic Zone (AZ) of the Southern Ocean,

we report diatom-bound N isotope (δ15Ndb) records for total recoverable diatoms and two distinct diatom

assemblages (pennate and centric rich). These data indicate tight coupling between the degree of nitrate

consumption and Antarctic climate across the last two glacial cycles, with δ15Ndb (and thus the degree of

nitrate consumption) increasing at each major Antarctic cooling event. Coupled with evidence from opal- and

barium-based proxies for reduced export production during ice ages, the δ15Ndb increases point to ice age

reductions in the supply of deep ocean-sourced nitrate to the AZ surface. The two diatom assemblages and

species abundance data indicate that the δ15Ndb changes are not the result of changing species composition.

The pennate and centric assemblage δ
15Ndb records indicate similar changes but with a significant decline in

their difference during peak ice ages. A tentative seasonality-based interpretation of the centric-to-pennate

δ15Ndb difference suggests that late summer surface waters became nitrate free during the peak glacials.

1. Introduction

The high concentrations of nitrate and phosphate in Antarctic Zone (AZ) surface waters ultimately derive from

the rapid supply of dissolved nutrients from the deep ocean, due to both vertical mixing across the relatively

weak pycnocline and the upwelling driven by the southern hemisphere westerly winds. However, Southern

Ocean phytoplankton could easily consume these nutrients in the summer if they grew at physiologically

maximal rates. Thus, limitations on phytoplankton growth must also play a role, and modern oceanographic

studies have pointed to the scarcity of light [Mitchell et al., 1991], iron [Martin et al., 1990], or both [Sunda

and Huntsman, 1997]. In the effort to understand this and other “high-nutrient, low-chlorophyll” (HNLC)

regions, the Antarctic Zone of the Southern Ocean is particularly important, for several reasons.

First, AZ conditions should have changed dramatically over each glacial cycle. Across the Southern Ocean as a

whole, the input of iron-bearing dust appears to have been greater during glacial periods [Lambert et al.,

2008; Martínez-García et al., 2009; Lamy et al., 2014]. In the glacial AZ, wintertime sea ice was far more

extensive than today, and summertime sea ice was also extended in some regions [Gersonde et al., 2005].

Second, changes in nutrient conditions in the AZ could have dramatic effects on productivity in other

regions. The westerly winds drive AZ nutrient-rich surface waters northward into the lower-latitude

Subantarctic Zone and also down into the ocean’s intermediate depths. These northward transported

nutrients are then mixed upward to fuel the productivity in the low-latitude ocean [Sarmiento et al., 2004].

Finally, the incomplete consumption of nitrate and phosphate in AZ surface waters followed by the

subduction of those surface waters back into the ocean interior allows once deeply sequestered CO2 to

escape to the atmosphere. An increase in the fraction of AZ nutrients that are consumed and exported

from the surface in sinking organic matter could thus lower atmospheric CO2 during ice ages, and this

possibility has been of interest for decades as a possible explanation for glacial/interglacial CO2 changes

[Sarmiento and Toggweiler, 1984; Knox and McElroy, 1984; Siegenthaler and Wenk, 1984]. In addition, data
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on the completeness of nutrient consumption in AZ surface waters at times in the past, when combined with

information on the rate of organic matter export from the surface ocean, yield the rate at which dissolved

nutrients were carried from deep waters into the AZ surface, which in turn relates to how rapidly deep

water was being circulated into the surface ocean—a critical piece of information regarding the physics of

the ice age ocean and its role in glacial/interglacial (G/IG) climate and CO2 changes.

The first major finding regarding the fertility of the ice age AZ was that the sinking of biological debris out of

the surface ocean (and presumably of organic matter in particular, known as “export production”) was greatly

reduced relative to today and previous interglacials [Mortlock et al., 1991; Charles et al., 1991; Kumar et al.,

1993]. This was initially assumed to indicate poor light conditions for AZ phytoplankton during the last ice

age, for example, due to sea ice cover or deeper mixing. Subsequently, based on the finding of higher
15N/14N in sedimentary organic matter, it was argued that nitrate consumption was more complete in AZ

surface waters during glacials [François et al., 1997]. This implies that (1) the supply of nitrate to AZ surface

waters was reduced during ice ages and (2) the physical and chemical conditions of the ice age AZ

allowed phytoplankton to consume a greater fraction of the nitrate supply than occurs today.

The rationale behind the N isotope proxy is that the 15N/14N of the sinking flux to the seabed in HNLC regions

is thought to reflect the degree to which nitrate has been consumed by phytoplankton in the surface ocean

[Altabet and François, 1994]. Since phytoplankton preferentially incorporate the lighter 14N into their biomass

[Waser et al., 1998], the nitrate left behind in the surface ocean becomes enriched in 15N, that is, elevated in

δ
15N, where δ

15N= [(15N/14N)sample/(
15N/14N)atm N2� 1] × 1000‰. Thus, as the surface nitrate pool is drawn

down, phytoplankton biomass records a progressively higher δ15N, with the δ15N of the annually integrated

particulate N exported to the seabed thus depending on the degree of nitrate consumption reached by the

end of the spring/summer period of rapid growth and export.

Diagenetic alteration during sinking and subsequent burial can bias the N isotopic composition of the bulk

sedimentary matter [Altabet and François, 1994; Robinson et al., 2012, for a synthesis]. Furthermore,

allochthonous N, such as clay-bound N and terrestrial organic N input, can obfuscate the δ15N relationship

between local export production and underlying bulk sediments [Schubert and Calvert, 2001; Meckler et al.,

2011]. To circumvent these biases, methods have been developed to measure the δ15N of organic N

intrinsic to microfossils, such as the siliceous frustules of diatoms [Robinson et al., 2004, 2005; Robinson and

Sigman, 2008; Brunelle et al., 2007, 2010; Studer et al., 2012, 2013] and the calcareous shells of foraminifera

[Ren et al., 2009, 2012; Meckler et al., 2011; Straub et al., 2013a, 2013b], as this organic matter is physically

protected from diagenetic loss and sedimentary contamination. However, the use of diatom-bound δ
15N

(δ15Ndb) introduces new uncertainties. Among the greatest concerns is the possibility that the δ15N

relationship between biomass and frustule-bound N varies among species, such that changes in diatom

species assemblage through time would drive δ15Ndb changes unrelated to the δ15N of diatom biomass

[Jacot Des Combes et al., 2008; Horn et al., 2011].

Previous studies reconstructing the degree of nitrate consumption in the Antarctic Zone of the Southern Ocean

using diatom-bound N isotopes have shown heterogeneous results. Some of the published δ15Ndb records from

the AZ occur in the context of dramatic downcore changes in diatom species assemblage [Jacot Des Combes

et al., 2008; Horn et al., 2011], while others are of low temporal resolution and/or have a poorly constrained

age model, which has made it difficult to go beyond general G/IG changes in δ15Ndb. Comparison of the

available downcore records from the Pacific, Indian, and Atlantic sectors of the AZ suggests a general

tendency of higher nutrient consumption during the Last Glacial Maximum (LGM) but with some exceptions

and some evidence for major changes within the last ice age [Robinson and Sigman, 2008].

Here in a sediment core from the open Antarctic Zone in the Pacific sector, we report a set of detailed diatom-

bound N isotope records over two glacial cycles, which begin to address the diatom assemblage question,

show by far the most robust coupling to date of AZ nutrient conditions to glacial cycles, and may provide

the first information on the response of the seasonality in AZ nutrient conditions to glacial cycles.

2. Materials, Methods, and Proxies

Gravity core PS75/072-4 was retrieved during the ANTXXVI/2 expedition from the Pacific sector of the Southern

Ocean (57°33.51′S, 151°13.17′W, water depth 3099m; Figure 1), located ~1.2° south of the present-day position
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of the polar front and north of the Southern Antarctic Circumpolar Current Front (SACCF) and the modern

winter sea ice edge. The 9.61m long sediment core consists of diatom ooze with variable amounts of

siliciclastics and foraminifera.

2.1. Age Model and Radiocarbon Dating

The stratigraphy of the sediment core is based mainly on (1) five accelerator mass spectrometry (AMS) 14C

dates on the planktonic foraminifera Neogloboquadrina pachyderma (sin.) (Figure 2, black triangles on top)

and (2) the correlation of the δ18O of N. pachyderma (sin.) to the European Project for Ice Coring in

Antarctica (EPICA) Dome C δD record [Jouzel et al., 2007] (blue triangles), as the sharp δ18O changes (e.g.,

the one depth (but replicated) δ18O maximum within the last deglaciation) are best explained as a

temperature response. For the deeper part of the core, where carbonate is lacking (the marine oxygen

isotope stage (MIS) 7/6 transition), Ba/Fe elemental ratios were correlated to EPICA Dome C δD (purple

triangle) based on Jaccard et al. [2013], maintaining similar sedimentation rates to those observed for

MIS 4 and the MIS 5/4 transition. An additional tie point at ~190 ka (pink triangle) comes from the

biostratigraphic constraint of the last appearance datum of the diatom Hemidiscus karstenii [Zielinski and

Gersonde, 2002].

The 14C dating was performed at ETH Zurich on an AMS system fitted with a gas ion source [Wacker et al.,

2013]. The planktonic foraminifera N. pachyderma (sin.) were handpicked from the 125–250μm size

fraction and cleaned using the protocol of Barker et al. [2003], with the modifications of Skinner et al.

[2010]. About 250–900μg of forams were weighed into clean 3mL Exetainer vials (Labco, UK), sealed,

degassed with helium, and reacted with phosphoric acid to CO2, which was fed to the gas ion source of

the AMS system [Wacker et al., 2013]. The radiocarbon ages were calibrated using the calibration program

Calib 6.1.0 [Stuiver and Reimer, 1986] and the calibration curve Marine09 [Reimer et al., 2009], after applying

a constant reservoir age of 590 years [Bard, 1988]. Additional samples from the last glacial and early

deglacial were dated, but both the uncertainty in Antarctic upper ocean reservoir age through time as well

as the lower carbonate content of these samples (and therefore greater possibility of down-working and

contamination with younger sediments across carbonate gradients) discouraged the use of these ages as

radiocarbon tie points. The 14C tie points are given in Table S1 in the supporting information. While the

temporal structure of changes through the deglaciations is of great importance, we will pursue elsewhere

Figure 1. Core location in the context of nitrate concentration and δ
15
N. Sediment core PS75/072-4 (black circle). (a) Map of austral summer (January–March)

sea surface nitrate concentration. (b and c) Meridional depth sections of nitrate concentration and δ
15
N along Line P16 [Rafter et al., 2013].The location of the

meridional depth sections in Figures 1b and 1c is shown as a white rectangle in Figure 1a. STF = Subtropical Front; SAF = Subantarctic Front; APF = Antarctic Polar

Front; SACCF = Southern Antarctic Circumpolar Current Front; UCDW=Upper Circumpolar Deep Water; LCDW= Lower Circumpolar Deep Water; AABW=Antarctic

Bottom Water; AAIW= Antarctic Intermediate Water; SAMW= Subantarctic Mode Water. The maps were generated using Ocean Data View [Schlitzer, 2002].
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the deglacial timing of changes in the biogeochemical proxies, so as to allow for a more complete description

of the dependence of our conclusions on the sediment core age model.

2.2. Diatom-Bound δ
15N Analysis

The isotopic composition of the organic N encapsulated in the diatom frustules (δ15Ndb) was determined on

the total diatom opal as well as on individual fractions dominated by centric and pennate diatom species,

respectively, providing three analytically independent records of past N isotope dynamics. The δ15Ndb was

measured at Princeton University by a wet chemical oxidation coupled to the denitrifier method [Robinson

et al., 2004; Knapp et al., 2005] after separation of the diatom opal from the bulk sediment. The protocol

followed that of Studer et al. [2013], with minor modifications as follows. To reduce sporadic contamination

by radiolaria the sediment was wet sieved with the <100μm fraction retained for analysis, with the

exception of the glacial age sediments (MISs 2–4 and 6), of which the <100μm fraction was retained. This

sieving size difference did not introduce a significant systematic bias (Figure S1 in the supporting

information). For each depth sample, two separate diatom opal extractions were made. The first was used

for total diatom δ15Ndb analysis while the second was split into a pennate diatom fraction (dominated by

Figure 2. Proxies for global climate and nitrate consumption and productivity across the last two glacial cycles in the Antarctic Zone of the Southern Ocean. (a) EPICA

Dome C δD record, a proxy for Antarctic air temperatures [Jouzel et al., 2007]. (b) The δ
18
O measured on the planktonic foraminifera Neogloboquadrina pachyderma

(sin.). (c) Ice core-derived atmospheric pCO2 composite record [Bereiter et al., 2015; Marcott et al., 2014; Ahn and Brook, 2014; Schneider et al., 2013; Rubino et al., 2013;

Bereiter et al., 2012; MacFarling Meure et al., 2006; Monnin et al., 2004, 2001; Petit et al., 1999]. (d) Diatom-bound δ
15
N measured on the total (black), pennate (red),

and centric (light green) diatom assemblage. The δ
15
N scale is inverted such that the interpreted fraction of remaining nitrate (and thus typically surface nitrate

concentration) is upward. (e) XRF-derived Ba/Fe elemental ratio (blue), a reflection of export production [Jaccard et al., 2013]. (f) The
230

Th-normalized biogenic opal

flux (purple), a measure of diatom productivity [Anderson et al., 2009]. The age model tiepoints are indicated with triangles on the top (black for radiocarbon, blue

for δ
18
O, purple for Ba/Fe, and pink for diatom biostratigraphy). The blue shadings indicate glacial stages.
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Fragilariopsis spp.) and a centric diatom fraction (dominated by Thalassiosira lentiginosa) (Figure 3). The

separated diatom opal was chemically cleaned, first in a reductive step to remove metal coatings and then

in an oxidative step to remove labile organic matter on the frustule surfaces. The cleaned diatom opal was

dissolved and the organic nitrogen released from the frustules oxidized to nitrate in a 1M sodium

hydroxide and 0.15M potassium persulfate solution in an autoclave at 121°C for 60min. The concentration

of the nitrate in the solution was determined by chemiluminescence [Braman and Hendrix, 1989]. An

aliquot of the nitrate solution equivalent to 10 nmol of N was converted to nitrous oxide (N2O) by the

denitrifier method [Sigman et al., 2001]. The δ15N of the N2O was determined by a purpose-built purge,

trap, gas chromatography inlet system [Casciotti et al., 2002] online to a Thermo MAT253 stable isotope

ratio mass spectrometer. Replicate analyses for samples and oxidation replicates indicate an average

standard deviation of 0.1‰ for the pennate fraction and 0.3‰ for the total diatom and centric fraction

and 0.1‰ for replicates of the nitrate isotopic analysis (all fractions).

Figure 3. Cartoon of the separation technique developed to isolate the centric and pennate diatoms from the total diatom

assemblage. The centric/pennate separation was achieved by centrifuging the suspended diatom slurry, causing the

hydrodynamically “heavier” centric diatoms to accumulate at the bottom of the centrifuge tube, while the pennate diatoms

accumulated in the upper part of the sedimented fraction. After the diatom opal was dried at 60°C, the pennate fraction

was rewetted with a few drops of distilled water, and a fracture was induced between the centric and pennate assemblage

by tapping the centrifuge tube against the curb of a table. The pennate fraction was then removed with forceps and placed

in a new centrifuge tube, while the centric diatom fraction adhered to the bottom of the tube.
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2.3. XRF Scanning and Absolute Elemental Concentrations

Previous studies have shown that the sedimentary Ba/Fe ratio reflects the biogenic flux of barium to the

seabed [Jaccard et al., 2013], a useful proxy for integrated export production [Dymond et al., 1992]. The

relative sedimentary elemental concentrations (Ba and Fe) were determined by X-ray fluorescence

scanning on an Avaatech core scanner at Alfred Wegener Institute, Bremerhaven. Data were obtained at a

1 cm resolution over an area of 1.2 cm2 (spot size: 1 cm downcore × 1.2 cm width) at the split core surface

of the archive half. Ba was measured for 30 s (life time) at 50 kV, Fe for 10 s at 10 kV. Absolute elemental

concentrations of major elements (Fe) were measured by inductively coupled plasma (ICP)–optical

emission spectroscopy (Varian Vista Pro), while minor elements (Ba) were measured by ICP–mass

spectrometry (Perkin-Elmer ELAN 9000) by ALS Chemex Ltd, North Vancouver, Canada. Accuracy was

better than 5% and 2%, respectively, for replicate measurements. The absolute elemental concentrations

of Ba and Fe were used to calibrate the XRF scanning data, and the reported Ba/Fe ratios thus represent

absolute element ratios.

2.4. Biogenic Opal

The concentration of biogenical opal was measured by the sequential leaching method [Müller and Schneider,

1993], porewater salt corrected [Kuhn, 2013].

2.5. Uranium and Thorium Isotope Analysis

In addition to the Ba/Fe ratio, the 230Th-normalized biogenic opal flux was determined, providing a

complementary measure of diatom export and thus, by inference, silicate supply to the core site. Uranium

and thorium isotope abundances were measured at Lamont-Doherty Earth Observatory by isotope dilution

using an Axiom single-collector ICP-MS [Fleisher and Anderson, 2003]. The 230Thxs-normalized fluxes were

calculated (for a recent review, see François et al. [2004]) using the following equation: F= β230× z/xs
230Th0,

where β230 is the water column production rate of 230Th (0.0256dpmm�3 yr�1), z is the water depth, and

xs230Th0 is the excess sedimentary 230Th concentration in dpmg�1 corrected for (a) the fraction of the in

situ-produced 230Th supported by the decay of 238U within lithogenic material assuming a mean regional

detrital 238U/232Th activity ratio of 0.4 ± 0.1 [Henderson and Anderson, 2003], (b) the fraction of the in situ-

produced 230Th by the decay of authigenic 238U, and (c) the radioactive decay.

2.6. Diatom Slide Preparation and Counting

In order to determine the diatom species composition throughout the core, quantitative diatom slides of core

PS75/072-4 were prepared according to the standard technique developed in the micropaleontological

laboratory at the Alfred Wegener Institute in Bremerhaven [Gersonde and Zielinski, 2000]. Diatom counting

followed the methods of Schrader and Gersonde [1987]. On average, around 550 valves were counted per

sample (minimum 400) with a Zeiss microscope at 1000X magnification and identified to species or

species-group level. The taxonomy and the grouping of diatom species and varieties followed Hasle and

Syvertsen [1996] and Zielinski and Gersonde [1997].

3. Results

3.1. Diatom-Bound Nitrogen Isotopes

Over the last two glacial cycles, total diatom δ15Ndb is consistently higher during glacials (by up to ~4‰;

Figure 2d), indicating that the AZ surface ocean was characterized by more complete nitrate consumption.

Starting from the previous interglacial (MIS 5e), δ15Ndb increases in three steps toward full glacial

conditions. The first major δ15Ndb rise occurs at the end of the penultimate interglacial, at the MIS 5e/5d

transition (~115 ka). Following the period of relatively stable δ15Ndb during MISs 5d to 5a, δ15Ndb rises

again by ~1‰ at the MIS 5/4 transition (~70 ka). From MIS 4 onward, it appears that δ15Ndb increases by

an additional 1‰, reaching peak values during MIS 2 (LGM). The deglaciations are characterized by δ15Ndb

declines on the order of 3.5‰, apparently occurring in two steps.

The two separated diatom assemblages, centrics and pennates, show distinct N isotopic signatures. Centric

diatom δ15Ndb is on average 1.3‰ higher than pennate δ15Ndb, although the centric-pennate offset varies

through time. The centric-pennate difference appears to increase from interglacials into early glacial

conditions (MISs 5d–5a) but then collapses (or even reverses) during (peak) glacials (Figures 2d and 4).
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Noteworthy are the early stages of

the deglaciations, where centric δ15Ndb

remains high as total diatom and

pennate δ15Ndb start to decline. Despite

their distinct N isotopic signatures, both

the centric and pennate assemblages

record the δ15Ndb elevation into the

ice ages.

3.2. Biogenic Fluxes

Export production as inferred from

Ba/Fe and 230Th-normalized opal flux

is higher during interglacials and lower

during the ice ages (Figures 2e and 2f),

consistent with other proxy evidence

from the Southern Ocean, indicating

reduced AZ export production during

glacial periods [Mortlock et al., 1991;

François et al., 1997; Kohfeld et al.,

2005; Jaccard et al., 2013]. During the

warm periods of MIS 5 (MISs 5a, 5c,

and 5e), opal flux shows three appar-

ently precessional peaks of similar

amplitude, with MISs 5a and 5c reach-

ing fluxes equivalent to those of MIS

5e, the penultimate peak interglacial.

While Ba/Fe suggests a similar deglacial increase in export production during terminations I and II, opal flux

indicates that Holocene rates were roughly half of those of MIS 5, an observation for which we offer no

explanation. Opal flux is high throughout the Holocene, in contrast to previous observations from the

Atlantic AZ that indicate highest opal fluxes during the deglaciation [Anderson et al., 2009].

3.3. Diatom Species Abundance

Reported are the 11 most abundant diatom species present in core PS75/072-4, representing >90% of the

diatom assemblage. The pennate diatoms dominate the total diatom assemblage throughout the record,

with abundances ranging from 60% during peak glacials to 90% during peak interglacials (Figure 5, red

colors). The centric assemblage shows the opposite pattern, with up to 35% abundance during peak glacials

and ~10% during peak interglacials (Figure 5, green colors). The pennate assemblage is dominated by

F. kerguelensis (~70–90%), with minor contributions of other Fragilariopsis species (F. separanda, F. curta, and

F. rhombica) and Thalassiothrix antarctica. The centric assemblage is dominated by T. lentiginosa (~30–80%),

with contributions from Chaetoceros spp., T. gracilis, E. antarctica, A. tabularis, and T. trifulta. While diatom

counts are useful to determine the species composition and relative abundance, we note here that they do

not translate into opal biovolume [Hillebrand et al., 1999].

4. Interpretation and Discussion

4.1. Implications of Assemblage δ
15Ndb for Total Diatom δ

15Ndb

While the differences among total diatom, pennate, and centric δ15Ndb will be discussed further in a

section below, most of the major changes are shared among the three records. Most importantly, ice

age δ15Ndb elevation is also observed in both of the separated diatom assemblages (Figure 2d),

indicating that each contributes to the observed ice age elevation of the δ15Ndb of the total diatom

fraction (although we reiterate that the pennate fraction dominates the total diatoms). Moreover, the

δ15Ndb difference between the fractions in any given interval is less than the full amplitude of the G/IG

change in the δ
15Ndb of total diatoms, such that even a complete shift from one assemblage to another

(had it occurred) could not drive the G/IG change in the δ15Ndb of total diatoms. The three data sets

Figure 4. Centric-pennate δ
15
Ndb difference as a function of total

diatom δ
15
Ndb, color coded according to coincident Antarctic air tempera-

tures reconstructed from ice core δD (Figure 2). The centric-pennate δ
15
Ndb

difference increases into the early glacial (purple points), followed by a

decline into the peak glacial (blue points). Deglacial points have been

omitted (Figure S4 in the supporting information).
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together thus rule out the possibility that the changes in total diatom δ15Ndb are an artifact of changes

between these two diatom assemblages.

Through the record, we observe correlations between δ15Ndb and some diatom species (Figure 5 and Figure S2

in the supporting information). This is to be expected since both types of measurements show clear G/IG

changes; no direct causative link between δ15Ndb and diatom species changes is required. However, a direct

causative link has been suggested in previous studies, with diatom species changes directly driving δ15Ndb

change [Jacot des Combes et al., 2008], and so we address this possibility here. The more abundant species

partition relatively purely into either the pennate or centric assemblage fractions and would have thus not

affected the δ15Ndb of all of the diatom fractions in a similar way. It is theoretically possible that there exists

a rare diatom species that occurs equally in the pennate and centric assemblages, has a particularly

characteristic δ15Ndb, and thus drives the δ15Ndb changes in both assemblages and the total diatoms.

Chaetoceros spp. and Eucampia antarctica may not sort strongly into either of the separated diatom

fractions. Both species increase in a proportionally significant way during ice ages, such that their

abundance shows a strong correlation with δ
15Ndb (R2> 0.3). One might then propose that changes in the

importance of these species drive the δ15Ndb of each measured fraction. However, even a 20% increase in

these two species during glacials (which is never observed in this core) cannot explain the ~3.5‰ glacial

δ
15Ndb increase of the total diatom fraction, as this would require them to have an unrealistically high

δ15Ndb, ~17‰ higher than the remaining 80% of the diatom fraction. Thus, the assemblage level δ15Ndb

measurements and diatom species data combine to indicate that diatom species changes alone cannot

explain the δ15Ndb changes.

These issues aside, the G/IG changes in diatom species may hold information regarding upper ocean

environmental conditions that could allow for a better mechanistic understanding of the physical and

biogeochemical changes reconstructed with δ15Ndb and export production proxies. The most quantitatively

significant diatom species change is that the abundance of centric diatoms, dominated by T. lentiginosa,

increases from ~15% during interglacials to ~30% during peak ice ages, increasing relative to the pennates,

Figure 5. Diatom species counts in sediment core PS75/072-4. The diatom species are grouped into pennates and centrics and

arranged from bottom up in order of decreasing abundance. Reported are the 11 most abundant diatom species present in

core PS75/072-4, representing >90% of the diatom assemblage. Pennate diatoms are pink-purple colored, centric diatoms

blue-green. Fragilariopsis kerguelensis dominates the total diatom assemblage (~40–80%), followed by Thalassiosira lentiginosa

(~5–20%). The pennate assemblage is dominated by F. kerguelensis (~70–90%), with minor contributions of other Fragilariopsis

species (F. separanda, F. curta, and F. rhombica) and Thalassiothrix antarctica. The centric assemblage is dominated by

T. lentiginosa (~30–80%), with contributions of Chaetoceros spp., T. gracilis, E. antarctica, A. tabularis, and T. trifulta.
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which are dominated by F. kerguelensis. In greater

detail, the T. lentiginosa-to-F. kerguelensis ratio

appears to covary with the opal flux changes within

MIS 5 (Figure S3 in the supporting information),

suggesting a stronger tie to opal flux than to

δ15Ndb. Shemesh et al. [1989] find that T. lentiginosa

has higher dissolution resistance than F. kerguelensis.

Thus, the rise in the T. lentiginosa-to-F. kerguelensis

ratio during the ice ages is best explained as the

result of reduced opal preservation under low opal

fluxes to the seabed—an expected result [Hurd,

1973; Nelson et al., 1995].

Changes in the less abundant diatoms may

speak to biogeochemical changes. The frustules

of E. antarctica and Chaetoceros spp. found in the

sediment are both resting spore/winter stages that

form under conditions unfavorable for growth, and

nitrate depletion has specifically been noted for

Chaetoceros [Leventer, 1991, and references therein].

The increase of Chaetoceros resting spores up to

>10% during glacial maxima may thus provide

an additional piece of evidence for the nitrate

depletion that is inferred from the peak glacial

δ15Ndb data (see below).

4.2. Reduced Gross Nitrate Supply to AZ

Surface During Glacials

In high-latitude HNLC regions such as the Antarctic

Zone of the Southern Ocean, the isotopic

composition of exported N records the fraction

of the gross nitrate supply that is consumed (or

“utilized” [Altabet and François, 1994]):

C ¼ U=S; (1)

where C is the degree of nitrate consumption in the surface mixed layer; U is the rate of nitrate uptake by

phytoplankton, which is assumed to eventually lead to N export and which occurs predominantly in the

spring/summer; and S is the gross rate of nitrate supply to the surface mixed layer. The δ15Ndb presented

here indicate that nitrate consumption was consistently more complete in the AZ (C was higher) during

glacial periods, while export production was lower (U was lower). This combination requires a decline in S,

the supply rate of nitrate to the surface ocean.

Focusing on the last glacial cycle, the δ15Ndb data suggest that C increased primarily at the MIS 5e/5d and the

MIS 5/4 transitions (Figure 2). The two proxies of export production do not yield identical histories here, and the

opal flux record in particular has a significantly different structure than the δ15Ndb record, with no permanent

decline at the MIS 5e/5d transition but rather a set of three peaks that may be linked to precession (i.e., with

maxima during MISs 5e, 5c, and 5a). We suspect that this pattern involves changes in the nutrient content

of the source water supplied to this site, as modulated by North Atlantic Deep Water formation changes

(see below). However, we will address this question elsewhere, with the benefit of additional data.

Rather, we focus here on the significance of the export production data for the G/IG reconstruction of gross

nitrate supply rate to the AZ surface. For the sake of argument, we undertake a calculation of changes in

nitrate supply rate using simplified reconstructions of C and U based on δ15Ndb and biogenic opal flux,

respectively (Figure 6). To clarify the role of the reconstructed export production in this calculation, two

different scenarios are assumed for export production and thus U: one where N export is proportional

Figure 6. Schematic reconstruction of the rate of gross nitrate

supply to the AZ surface from MIS 6 to MIS 4 from histories of

the degree of nitrate consumption (as indicated by (middle)

δ
15
Ndb) and of nitrate uptake rate (as indicated by (top) opal

flux). In the calculation, the gross nitrate supply equals export

production divided by the degree of nitrate consumption

(equation (1)). Two scenarios are shown for nitrate uptake rate:

(1) following (in stylized form) the changes in biogenic opal flux

(black), or (2) constant, for the sake of comparison (purple).

Given that neither scenario allows for increases in nitrate

uptake rate at the MIS 5e/5d or MIS 5/4 transitions, the rise in

the degree of nitrate consumption requires that nitrate supply

decreased during both time intervals (bottom), given the

observed δ
15
Ndb increases during those times.
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toreconstructed thorium-normalized opal accumulation (Figure 6, black line in top plot) and one where

N export is constant (Figure 6, purple line in top plot). Regardless of which N export scenario is assumed

across MIS 6 to MIS 4, increasing degree of nitrate consumption requires that the rate of nitrate supply

declined at both the MIS 5e/5d and MIS 5/4 transitions. Thus, while the changes in export production over

the early portion of the last glacial cycle (MIS 5d to MIS 5a) and their causes remain unclear, the combined

export production and δ15Ndb data suggest that the gross nitrate supply to the Antarctic Zone surface was

depressed over the entire extent of the last ice age (from MIS 5d to MIS 2).

A change in the physical circulation must have reduced the gross supply of nitrate into the surface-mixed

layer during glacial times by reducing the gross transport of interior (i.e., deep) water into the AZ surface.

Following previous work, we refer to this reduced gross supply of deep water to the surface as

“stratification” [François et al., 1997; Sigman et al., 2004]. Today, nitrate is supplied to the core site

largely from Upper Circumpolar Deep Water (UCDW) by Ekman upwelling and vertical mixing, with

Lower Circumpolar Deep Water (LCDW) possibly contributing by vertical mixing further to the south

followed by lateral exchange [DiFiore et al., 2010]. The data in hand cannot as yet distinguish which

nitrate supply mechanism—wind-driven upwelling or vertical mixing—decreased during ice ages, as

these two processes interact [Toggweiler et al., 2006; de Boer et al., 2007].

Early explanations for the ice age reduction in biogenic fluxes in the AZ involved increased restrictions on

phytoplankton growth by light or temperature, as might result from summer sea ice cover or deep summer

mixed layers, for example. This set of explanations clearly violates the data reported here, as these changes

would have led to a lower degree of nitrate consumption and thus lower, not higher, δ15Ndb. Below, we

address the possible mechanisms behind the ice age increase in the degree of nitrate consumption.

4.3. The Control of Iron Versus Light on Nitrate Uptake

The low degree of nitrate consumption (i.e., the low ratio of nitrate uptake relative to the gross nitrate supply

from below) in the modern Southern Ocean has been explained by the scarcity of iron [Martin et al., 1990],

light [Mitchell et al., 1991], or both [Sunda and Huntsman, 1997]. In order for the degree of nitrate

consumption to increase during glacial times, the limiting factor on phytoplankton growth must have

been alleviated relative to the nitrate supply.

Deepwaters have a deficit in iron relative to nitrate [Johnson et al., 1997]. A sharp ice age reduction in nutrient

supply from below, especially given the apparent increase in atmospheric iron sources [Lambert et al., 2008;

Martínez-García et al., 2009; Lamy et al., 2014], should have increased the iron-to-nitrate supply ratio to AZ

phytoplankton, causing nitrate consumption to become more complete (Figure 7a).

A class of explanations for increased nitrate consumption different from these related to iron involves the

relaxation of light limitation as a result of reduced vertical mixing, allowing the summer mixed layer to

shoal. However, an intermediate degree of nitrate consumption coupled with similar or reduced export

production, such as is observed in the early glacial (MISs 5a–5d) [Jaccard et al., 2013] (Figure 2), cannot be

explained as the relief of summertime light limitation. If light were the only limiting factor, easing its limitation

would lead to an increase in export production (scenario 2 in Figure 7b), which is contrary to observations. If

the glacial state is accompanied by a reduction in the nitrate ([NO3
�]) supply, then export production could

decrease (consistent with observations) only if nitrate is consumed to completion (scenario 1 in Figure 7b),

counter to early glacial observations. Thus, the data for early glacial biogeochemical conditions argue against

pure light limitation and for iron limitation as the dominant control on summertime Antarctic phytoplankton

growth. Iron/light colimitation could be consistent with the data, with improved light conditions effectively

lowering the iron requirement of phytoplankton.

4.4. The δ
15Ndb Changes Through the Last Ice Age

Emanating from the peak warmth of the penultimate interglacial period (Figure 8a), the first apparent δ15Ndb

increase occurs at the MIS 5e/5d transition (~115 ka), in the face of decreasing or stable export production

and in the absence of a substantial increase in dust input to Antarctica [Lambert et al., 2008] (Figure 2) and

the Southern Ocean [Martínez-García et al., 2011]. This implies that the increase in the degree of nitrate

consumption was related to a decrease in the supply of major nutrients, which supports the previously

postulated idea that the Antarctic Zone of the Southern Ocean stratified at the MIS 5e/5d transition
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[Hain et al., 2010] (Figure 8b). A stratified AZ surface oceanwould have reduced evasion of CO2 to the atmosphere,

both by decreasing the preformed nutrient content of the waters with which the AZ ventilated the ocean interior

and by decreasing the relative importance of the AZ as a ventilator of the global ocean interior. Both of these

changes would have raised the efficiency of the global biological pump and can explain the 40ppm decrease

in atmospheric CO2 associated with the MIS 5e/5d transition [Lüthi et al., 2008; Hain et al., 2010].

In contrast, the second δ15Ndb rise at the MIS 5/4 transition (~70 ka) is associated with a significant increase in

atmospheric iron deposition in the Subantarctic Zone of the Southern Ocean [Martínez-García et al., 2009;

Anderson et al., 2014], Antarctic ice cores [Lambert et al., 2008], and possibly at this site in the Pacific AZ.

Iron fertilization of the Subantarctic starting at the MIS 5/4 transition has been proposed to account for the

second major drop in atmospheric CO2 [Martínez-García et al., 2014; Jaccard et al., 2013; Kohfeld et al.,

2005; Hain et al., 2010, and references therein]. However, at our core site and throughout the AZ, there is

no evidence for increased export production upon the MIS 5/4 transition, arguing that if the increased

atmospheric iron supply was felt in the AZ, its effect on export production was offset by other processes.

The rise in δ
15Ndb and apparent further decline in export production may be explained by a further

reduction in surface/deep exchange in the Antarctic Zone. In addition, there is significant lateral mixing

across the Polar Frontal Zone [DiFiore et al., 2006], such that Subantarctic Zone nutrient conditions might

impact surface nitrate concentrations in the northernmost Antarctic Zone, just to the south of the polar

front. It appears that iron fertilization led to more complete nitrate consumption in the Subantarctic Zone

Figure 7. The effects of relaxation of iron and light limitation in the glacial AZ on nitrate consumption and export produc-

tion. (a) A glacial increase in stratification will reduce the supply of both [NO3
�

] and Fe to the surface AZ, reducing export

production. The additional Fe input from dust will increase the Fe:NO3
�

supply ratio, such that nitrate consumption will

increase relative to the interglacial scenario, consistent with observations (Figure 2). (b) A glacial shoaling of the mixed layer

will improve light conditions for phytoplankton. If light were the only limiting factor, this should lead to an increase in

export production (scenario 2), which is contrary to observations. If the glacial state is accompanied by a reduction in

the [NO3
�

] supply, then export production could decrease (consistent with observations) only if nitrate is consumed to

completion (scenario 1), counter to early glacial observations. Thus, neither scenario for relief of light limitation simulta-

neously matches the δ
15
Ndb and export production proxy constraints.
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Figure 8. Schematic section of the Southern Ocean at different stages through the glacial progression with interpreted

changes in circulation, nitrate concentration, and Antarctic stratification. (a) Interglacial MIS 5e, (b) early glacial MISs 5d–5a,

and (c) glacial MIS 4. The green shading indicates nitrate concentration, with darker shades representing higher [NO3
�

].

(Figure 8a) During peak interglacial MIS 5e, nitrate-rich UCDW is upwelled to the core site, leading to high productivity

and a low degree of nitrate consumption. (Figure 8b) At the MIS 5e/5d transition, a decrease in the gross supply of deep

water to the AZ surface reduces export production and increases the degree of nitrate consumption. (Figure 8c) At the MIS 5/4

transition, twopossible scenariosmay have lead to a further decline in gross nitrate supply: (1) further reduction in surface/deep

communication and/or (2) a drop in the nitrate concentration of UCDW as a result of both iron fertilization in the SAZ and a

shoaling of NADW to GNAIW. SAZ = Subantarctic Zone; PFZ = Polar Frontal Zone; AZ =Antarctic Zone; OAZ=Open Antarctic

Zone; PAZ = Polar Antarctic Zone; SAMW=Subantarctic ModeWater; AAIW=Antarctic IntermediateWater, PDW=Pacific Deep

Water; UCDW=Upper Circumpolar Deep Water; LCDW= Lower Circumpolar Deep Water; NADW=North Atlantic Deep Water;

GNAIW=Glacial North Atlantic Intermediate Water; AABW=Antarctic Bottom Water. Water mass transport (dashed line

represents more sluggish circulation) (blue arrows). Export production (black wavy arrows). Remineralization (black circling

arrows). Reduced water exchange between surface waters and underlying deepwater (“stratification”) (black dashed line). Core

site (black dot). Dust (iron) deposition (brown dots).
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starting at the MIS 5/4 transition [Martínez-García et al., 2014]. This may have diluted surface nitrate at our

core site, effectively decreasing S in equation (1) and thus allowing a higher degree of nitrate consumption

for a given rate of nitrate assimilation. This suggestion could be tested with cores from farther south in the

AZ, as the impact of mixing with the SAZ should not reach far into the AZ.

Large-scale ocean changes may have also played a role in the MIS 5/4 biogeochemical changes. Two such

changes are suspected to have shifted nutrients out of the middepth ocean and into the abyss at this

time, thus decreasing the nutrient supply to the open AZ. The first was the Subantarctic iron fertilization

noted above, which would have prevented unused nitrate from passing through the Southern Ocean and

into intermediate and thermocline depths of the global ocean [Keir, 1988]. Second, the MIS 5/4 transition is

believed to be the time when the North Atlantic Deep Water shoaled to form Glacial North Atlantic

Intermediate Water (GNAIW) [Hodell et al., 2003; Piotrowski et al., 2005, 2009; Guihou et al., 2011]. It is

expected, with support from observations, that both of these changes led regenerated nutrients and

carbon from the downward rain of organic matter to be shifted from middepths into the abyssal ocean

[Boyle, 1988; Keir, 1988; Toggweiler, 1999], complementarily depleting GNAIW and the downstream

middepth Indo-Pacific of nutrients. UCDW is upwelled at our core site, and it derives from roughly 2 km

depth in the low latitudes (Figure 1b). As this was the approximate depth of GNAIW, Subantarctic iron

fertilization and the NADW-to-GNAIW shift may have lowered the nitrate concentration of UCDW and thus

reduced the nitrate supply to our core site (Figure 8c). Such a change should cause an increase in the

degree of nitrate consumption (by decreasing S in equation (1)) and thus may explain part of the δ15Ndb

rise at the MIS 5/4 transition. The relationship of these changes to the decline in export production is

highly uncertain, depending on how the iron concentration of UCDW changed in response to the

proposed changes in its major nutrient concentrations. If the iron concentration of UCDW did not decrease

in step with its major nutrient concentrations, then the decline in export production would require a

further shift toward stratification at the MIS 5/4 transition (Figure 8c).

The cause of the third and more gradual rise in δ
15Ndb into the LGM is particularly difficult to pose specific

hypotheses for, partly because many climate and biogeochemical parameters show extrema during the

LGM and partly because age control is weakest in the sediments of MIS 4 to MIS 2.

4.5. Environmental Significance of the δ
15Ndb Difference Between Centric and Pennate

Diatom Assemblages

The overall trends among total diatom, pennate, and centric δ15Ndb are very similar, such that most of the

temporal total diatom δ
15Ndb changes that were discussed above also apply to the pennate and centric

δ15Ndb. Nevertheless, there are differences among the records that warrant consideration. With the benefit

of the diatom species information collected accompanying the δ15Ndb data, we provide a tentative

interpretation for the N isotopic difference between the centric and pennate-rich diatom fractions.

The δ
15Ndb difference that characterizes the centric and pennate diatom assemblages may indicate (1) a

difference in seasonality or depth habitat, as it affects the δ15N of the available nitrate, (2) differences in the

dominant form of N assimilated (i.e., nitrate or recycled ammonium) [Fawcett et al., 2011], or (3) physiological

differences that result in a different δ15Ndb/diatom biomass δ15N relationship [Horn et al., 2011; Morales et al.,

2013]. Regarding the last, if the centric-pennate δ15Ndb difference were solely due to differences in

fundamental biosynthesis pathways as they impact the δ15N relationship between the biomass N of a

diatom and its frustule-bound N, then a constant interassemblage difference would be expected over time.

Instead, the coherent covariation of the centric-pennate δ15Ndb difference with climate, with a larger offset

during warm periods and almost no offset during peak glacials (Figure 2), suggests that it reflects

environmental change.

The Antarctic Zone of the Southern Ocean is characterized by a seasonal cycle of nitrate recharge in the

winter that is followed by nitrate uptake during the subsequent spring and summer, leading to an increase

in nitrate δ15N over the course of the season (Figure 9). It is possible that the diatom assemblages record

different periods in the seasonal progression. In this case, the higher δ15Ndb of the centric diatoms, which

represent a secondary fraction of the total diatom material (Figure 5), could be explained if they reach

greatest proportional importance (relative to other species) in middle to late summer, a tendency that
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is arguably (although not convincingly)

supported by existing observations from

net tow and sediment trap studies [Fischer

et al., 2002; Armand et al., 2008].

During the early glacial (MISs 5a–5d), the

δ15Ndb difference between the centric and

pennate fractions almost doubled relative to

their interglacial difference (Figure 4). Total

diatom δ15Ndb points to a rise in degree of

nitrate consumption during this time, and this

is explained by reduced nitrate supply, higher

iron-to-nitrate supply ratio, and possibly

improved summer light conditions due to

mixed layer shoaling. Under these conditions,

the proportional nitrate drawdown over the

summer should have risen, and this would

yield a larger summertime change (increase)

in mixed layer nitrate δ
15N. In the case of

the proposed bias of the centric diatoms to

middle to late summer, the observed increase

in centric-pennate δ15Ndb difference can be

explained by this greater summertime nitrate

δ15N increase.

However, during peak ice ages, the centric-

pennate δ15Ndb difference is observed to

decline sharply (Figure 4). Given the discus-

sion above, this change is inconsistent with

the expectations based on the summertime

evolution of nitrate δ
15N of an even greater

centric-pennate δ15Ndb difference. We spec-

ulate that the peak glacial decline in the

centric-pennate δ15N difference is an indica-

tion that in this region of the AZ during peak

glacials, nitrate was completely consumed

by late summer. The logic is as follows.

If nitrate were the only N source available for phytoplankton assimilation in the modern Southern Ocean, then

the δ15N of their organic matter should increase over the course of the spring and summer. However, modern

ocean data indicate that surface suspended particulate nitrogen (PN) δ15N actually decreases during late austral

summer (February/March) [Lourey et al., 2003]. This has been explained as the result of enhanced summertime

ammonium recycling in the euphotic zone. Heterotrophy in surface waters tends to preferentially export high

δ15N organic N from the surface ocean, releasing back into the mixed layer low-δ15N ammonium that is quickly

reconsumed by phytoplankton, leading to a decline in surface suspended PN δ15N [Altabet, 1988]. Thus,

throughout the summer period, heterotrophy is inferred to supply low-δ15N ammonium to the phytoplankton

population. This ammonium never accumulates to high concentrations (although it can reach ≥1μM in

Antarctic waters [Tréguer and Jacques, 1992]). This reflects the fact that the ammonium is assimilated roughly

at the same rate as it is produced by heterotrophy and remineralization.

Relative to cyanobacteria, eukaryotic phytoplankton are observed to have a greater reliance on nitrate [Fawcett

et al., 2011, and references therein] (i.e., a greater “f ratio” as defined by Eppley and Peterson [1979]). Diatoms in

particular appear to have a strong tendency toward nitrate assimilation [Dortch, 1990; Savidge et al., 1995;

Goericke, 2002; Fawcett and Ward, 2011]. One explanation for the higher δ15N of the centric diatom

assemblage during interglacials is that the centric and pennate diatoms consume nitrate and ammonium in

similar ratios, such that the summertime rise in nitrate δ15N is imprinted on the δ15Ndb difference between

Figure 9. Inferred AZ surface nitrate seasonality during interglacials

and peak glacials and its proposed role in explaining the conver-

gence of pennate and centric δ
15
Ndb during peak glacials. The red

and blue lines represent the nitrate concentration during intergla-

cials and peak glacials, respectively. The Antarctic Zone of the

Southern Ocean is characterized by a seasonal cycle of nitrate

recharge in winter that is followed by nitrate uptake during the

subsequent spring and summer. Because of more vigorous winter-

time recharge, spring nitrate concentrations are higher during

interglacials compared to glacials, and nitrate is never drawn down

completely by the end of the growth season, such that nitrate and

recycled low-δ
15
N ammonium are both utilized by diatoms in the

later summer. During peak glacials, spring nitrate concentrations are

lower, such that the AZ becomes nitrate free by the later summer,

leaving late season diatom growth to rely primarily on the low-δ
15
N

ammonium being continuously produced by upper ocean N recy-

cling. Given the proposal that centric diatoms are biased toward

growth in the middle to late summer, this would provide an expla-

nation for the convergence of pennate and centric diatom δ
15
Ndb

during peak glacials (e.g., the LGM).
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the two assemblages despite the availability of low-δ15N ammonium throughout the growth period.

Alternatively, centrics may consume a greater fraction of ammonium that is nevertheless inadequate to

overwhelm the effect of rising nitrate δ15N over the summer.

During peak glacials, however, the total diatom δ15Ndb of ~6‰ suggests that summertime nitrate

consumption was high and possibly complete. If nitrate consumption did in fact reach completion over

the course of each summer, then the diatoms growing in the later summer would have been forced to rely

on recycled ammonium (Figure 9). If the centrics are biased toward the middle to late summer, then such

a change would work to lower the δ
15Ndb of the centric assemblage, explaining its convergence with that

of the pennate fraction.

One appealing aspect of this proposal is that it could explain why centric δ15Ndb does not immediately

decline during the deglaciations (Figure 2). As nitrate supply rises and the degree of nitrate consumption

falls into the deglaciation, nitrate would once again persist in the mixed layer through the AZ summer.

This would decrease the proportional reliance of the middle and late summer centric diatoms on low-δ15N

ammonium and thus raise their δ15Ndb relative to the pennate fraction. Their absolute δ
15Ndb may thus

have held roughly constant because of offsetting effects from a decline in the degree of nitrate

consumption and a concurrent decline in the proportional importance of ammonium assimilation.

The proposal above, in essence, argues for a decoupling of δ15Ndb from nitrate consumption at the point of

complete nitrate consumption. The reader might interpret this as a major concern for the use of δ15Ndb as a

general proxy for nitrate consumption. However, it is important to note that total δ15Ndb would not be

impacted significantly by this effect because it would apply to diatoms growing in the latter part of the

growth season, subsequent to nitrate exhaustion: these diatoms will not represent a major proportion of the

total diatom production. Thus, while auxiliary fractions of the diatoms may be affected by such nonnitrate

dynamics, this is unlikely to dramatically change the outcome for the δ
15Ndb of total recoverable diatoms.

Of course, there may well be alternative explanations for the peak glacial collapse in the centric-pennate

δ15Ndb difference. With low rates of nitrate supply and high degrees of nitrate consumption, the nature of

upper ocean nitrate δ15N may differ in dramatic ways from the modern condition. Numerical simulations

are required to understand and quantify such potential changes. More broadly, as paleogeochemical

studies begin to explore the differences among different diatom groups and species, modern ocean data

on the ecology and biogeochemistry of diatoms at the genus and species level are needed.
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