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1. Introduction and summary. For a set of variables in a given order, sth
ante-dependence will be said to obtain if each one of the variables, given at
least s immediate antecedent variables in the order, is independent of all further
preceding variables. If the number of variables is p, ante-dependence is of some
order between 0 and p — 1. Oth ante-dependence and (p — 1)st ante-dependence
are equivalent to complete independence and to completely arbitrary patterns of
dependence, respectively, and are defined irrespective of the ordering of the
variables. 1st to (p — 2)nd ante-dependence are defined in terms of a specific

order only.
If X,,X,, -+, X, are multivariate normal, sth ante-dependence is equiva-
lent to each X, given X;,, X5, -+, Xi,, -+, Xi,, being uncorrelated

with X, .1, Xi4 22, -+, Xz, X) for any non-negative z. In other words,
the partial correlation of X; and X, , ., given all the variables X;,, X, ,,
-+, X, is zero for all ¢, k and 2. The hypothesis that the covariance matrix
is such that all the above partial correlations vanish will be denoted by
D,(s=0,1,---,p — 1), so that, for the multivariate normal distribution,
D, denotes the hypothesis of sth ante-dependence.

It is shown that for any set of ordered variables, normal or otherwise, D, is
equivalent to the following correspondence between the regression equations of
X: on all other variables, and on X, ,, Xi o1, , Xix, Xip1, +++ , Xiga
only: the multiple correlations are equal, and the regression coefficients of
Xie,Xist1, +++, Xiys are equal in both equations, all other coefficients in
the former equation being zero. It is also equivalent to the (p — s) (p — s — 1) /2
elements in the upper right (and also lower left) corner of the inverse covariance
matrix being zero.® Indeed, any null hypothesis on a set of elements of the in-
verse covariance matrix may be formulated, and tested, as a hypothesis D, if
the variables can be so ordered as to put the zero elements in the upper right
and lower left corners of the inverse.
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1 This research was supported by the United States Air Force through the Air Force
Office of Scientific Research of the Air Research and Development Command, under Con-
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the United States Government.

2 Sets of variables of X may be defined in a manner as to include formally variables not
in X, e.g., the set X;_, , X 4421, *** , Xi, -, Xi_, would have X;,, undefined if 7 < s.
In such cases the sets will be understood to include only the variables which are defined
in X.

3 In terms of Greenberg and Sarhan’s paper [3] the inverse covariance matrix is diagonal
of type s — 1.
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202 K. R. GABRIEL

Maximum likelihood estimates are derived under D, for the normal case.
Likelihood ratio tests of any one D, against any other follow immediately and
may be expressed in terms of the sample partial correlations. Exact distributions
are not investigated, but for large samples x° approximations are available. Thus
a sequence of tests of D, » under D, , D, ; under D, 5, -+, Do under D, , is
obtained which, in effect, forms a breakdown of the large sample test of inde-
pendence, D, , under the general alternative, D, .

The assumptions of ante-dependence are clearly analogous to those of Markov
processes and autoregressive schemes for time series; the motivation for the
study and application of these models is also similar. The present model is more
general in that it relaxes the usual autoregression assumptions of equal variances
and, more crucial, of equal correlations between all pairs of equidistant variables
(distance being meant in terms of the order of the set or time series). This greater
generality requires analysis of a sample of observations for the study of ante-
dependence, whereas for autoregressive schemes there are methods of analysis
based on a single observation of the time series.

The ante-dependence models can be generalized to the case of several variables
at each stage of the ordering. This would be analogous to the study of multiple
time-series.

s-ante-dependent sets of variables may be generated by s successive summa-
tions of independent variables. This may be relevant for some applications of
such models.

Ante-dependence models might be applicable to observations ordered in time
or otherwise. Observations on growth of organisms up to each of several ages
could be analyzed in such a manner. Where growth is recorded on several di-
mensions, e.g., height and weight, the analysis would proceed in terms of the
multidimensional generalization of the model. Other possible fields of applica-
tion include batteries of psychological tests increasing in complexity, and data
on the successive location of travelling objects. A study of some such applica-
tions is now under way.4

2. A sequence of null hypotheses on partial correlations. Consider a vector
variable X = (X,, X,, ---, X,;) with E(X) = y and Var (X) = 2, where =
is positive definite. Denote the (%, j)th elements of = and =™ by ¢, and ¢¥,
respectively. Define A as the p X p matrix with diagonal elements oy, 032,

-, opp and all other elements zero, and set P = A_*E}A_* with (7, j)th ele-
ment p;; = 0:i(0:0j;) " and P! with (4, j)th element p*. Next define

Piikteem = (Pitoeim — PitetyoeemPibed,eoe,m) (1 = piketoce,m) (1 — plhetyeeesm)
and
2 ¥ 2
1 - Pi(yidzaeeeids) = III {1 - Piiu‘il.iz."‘.iu—x}'
b

4 A generalization of ante-dependence analysis for any linear model, and a specializa-
tion of MANOVA under each order of ante-dependence has been presented to the ISI meet-
ing in Paris, August-September, 1961 [9].
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These are the usual definitions of the population values of the following param-
eters:
¢;; = covariance of X; and X ;,

pi; = correlation of X; and X;,

pij-k.1,---,m = partial correlation of X; and X ; given X, , X;, -+ , X,

Pi(j1.jz.+.5s) = multiple correlation of X; on X;, , X;,, ---, X, .
A sequence of hypotheses Gy, G1, G2, -+, Gp_1, is defined as
G, P e1e 51,42, 00 its — 0 forall <= 1, 2, crr,p— 8 — 1

together with the sequence of hypotheses

p—1

D,=NG. §=012 ---,p— 1.

Thus, considering D, under D, is equivalent to considering G, under the as-
sumption that G,41, Ge42, + ++ , Gp— all hold.

These hypotheses form a chain from completely arbitrary correlations—under
D, no restrictions except positive definiteness of = are put on the correlations—
to complete null correlation among all variables—under D, (see Theorem 1). As
one goes from any D, to D,_, there are p — s further restrictions on the correla-
tions, amounting in effect to correlation of each X; with one less of the preceding
Xia,Xi2,- -, orfollowing X;41, Xiye, -+ . It will be shown in Theorem 1
that D, is equivalent to =™ having arbitrary elements in the principal diagonal
and in the first s off diagonals, and zero elements everywhere else. (The sth off
diagonals of =" are defined as the elements ¢* for which ¢ — j = s (upper) or
Jj — 12 = s (lower)). In other words, the sequence Dy, Dy, -+, D, is one in
which increasingly more off diagonals become arbitrary rather than zero. For D,
all off diagonals are zero; for D; the first off diagonal is arbitrary, all others zero;
and so forth until for D,_; all elements of =" are arbitrary.

It should be noted that the hypotheses G, and D, are defined in terms of the
given order of the variables X;, X;, -+, to X, . For any other order of the
variables the hypotheses would have a different meaning. In fact hypotheses
about certain null partial correlations or null elements in the inverse covariance
matrix might be formulated as hypotheses D, by suitable permutation of the
order of the variables. Only the two extreme hypotheses, Do and D, , are defined
irrespective of the order.

Lemma 1. Under D, , pij.es = O for all © and j, where ® denotes any set of s or
more successive variables between X ; and X ; .

Proor. Consider first®tobes + 1, ¢ + 2, --- ,7 + s, wheret + s+ 1 <j
(for ¢ 4+ s + 1 = j the result is trivial). Then

2 2
Pizaitett = (Pig0 — Piisesrapiitera) (1 — piiterra) F(1 — pjiresne)
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and since under D, , psitst1.2 = 0,
Pijeiter1 = 0 © pije = 0.
Similarly, under D, ,

Pijeitetiterzr = 0 pijsitern = 0,
and finally, under D, ,
Pij®,itstl itat2,e -1 = 0 pije = 0.

Now the LHS equality holds under D;_;;, which is implied by D, as
j — 2 — 1 > s. Therefore under D, the RHS equality also holds.

The same argument is readily extended to cases where ® does not include X,;4; .

LemMMA 2. Under D, pij.s = 0, for all ¢ and j, where ¥ is any set including at
least s successive vartables intermediate to X; and X ; .

Proor. Write any s successive variables in ¥ which are intermediate to X; and
X ;as® and the rest of ¥ as X3, , X, , - -+ , X, ; X&, being chosen as the variable
from among ¥ — & which is nearest in the ordering either to X; or to X ;. Now

Pij- ¥ = Pij-®,k1.ke, e kg

—_ (pij"l’.kln"‘:ku—l —_ piku'@ v kl ) *tt ku—l pjku‘q’ ) kl IR ku—l)
2 ) 2 % ’
(1 — pikyedbr, oo ks ) (1 — Pikyd by, eeeikucs)

so that if the Lemma holds for all ¥ with s + v — 1 terms or less,
Pijed Ky, kg1 = 0 and either Piky® Ky yooe gy = 0or Piky® Ky ,ooe kyy = 0, whence the
LHS will also be zero and the Lemma hold for all ¥ with s + u terms. But by
Lemma 1 it holds for v = 0, and therefore it must hold forallu =0, 1,2, - -

LemMA 3. For any non-singular p X p mairiz = the following two statements are
equivalent for any 1:

(8) ¢* = 0, for all j such that |i — j| > s;

(b) the ith column of the inverse of the princtpal minor of thet — 8,7 — s + 1,
I A s o srowsandcolumnsofzwmdeupofthecorrespondmgelenwnts
of the tnverse of =.

ProoF. By definition, forallj = 1,2, -+« | p,

D ki
: 3
D opo™ = by
k=l

(Kroeneker’s delta). It can easily be checked that

i+

Zo‘ikd“ = 6,‘5 for 3.11] = 1, 2, o
Kt —g .
if and only if ¢** = 0 for all [k — 7| > s.
The second set of equations forj =4 — 8,2 — s+ 1,---,4,---,% + sde-

fine (¢* ', "5, .ot 6™, o, *T"%) as the ith column of the inverse of the
principal minor of the (¢ — s,z — s+ 1,---,%, -+ ,% 4+ 8) rows and columns
of =.
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LemmAa 4. For any non-singular p X p mairiz Z, the condition
o =0  forall 4,7 such that |i — j| > s,
tmplies that in the inverse of any principal minor of consecutive rows and columns
of Z, all elements outside the principal diagonal and the first s off diagonals are zero.
Proor. Consider any principal minor of the first » + s rows and columns. By
definition

P .
2 oad" = b8y for all < and j,
Fomm1
so that if ¢*’ = 0 for |1 — j| > s,
uts R
S oac* =08; fori=1,2---,u and j=1,2 -, u+s
k1

But the latter equations define the first u columns of the inverse of the principal
minor, which are therefore seen to have the same elements as the corresponding
parts of the first u columns of =™ In particular, all elements for which ¢ > J+s
must be zero.

By the same reasoning about the first 4 rows of the inverse of that principal
minor, all elements for which ;7 > 7 + s must be zero.

The same argument holds for principal minors of the last  + s consecutive
rows. For minors of s rows and columns the argument is trivial.

Now, any principal minor of consecutive rows and columns of = can be obtained
from Z by first taking the principal minor whose last rows and columns are the
ones concerned, and then taking the required minor as the last so and so many
rows and columns of that. For example, in a matrix of four rows and columns
one would obtain the principal minor of the second and third rows and columns
by first striking out the fourth, and then from the remainder striking out the first.
As has been shown, the property that all elements outside the first s off diagonals
vanish is preserved when taking minors in this manner. Therefore that property
holds for any principal minor of consecutive rows and columns of T if it holds
for Z.

THEOREM 1. For a vector variable X with variance = and correlation P, the follow-
ing three statements are equivalent:

D, : piituttreitt, et = Oforall i and all u = s;

D,:6¢ " = 0forallli —j > s;

Dy : For all %, the regressions of X

(1) on all other variables in X, and
(2) on all other X ; such that v — j| < s, have equal multiple correlations and
regression co-efficients of X ; for |i — j| < s, and all other regression co-efficients

n (1) are null.

Proor. By Lemmas 1 and 2, D, implies that p;j.an1 others inx = 0 if [ — j| > s.
But s ee e

Pij-all others in X = _0'”(0'"0'”) -

([2]—23.4.2—gives this in terms of co-factors). Thus D, — D, .
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By Lemma 4, D, implies that, for any i, in the inverse of the principal minor
of the (¢,7 4+ 1, - -+ 2 4+ « 4 1)th rows and columns of =, the (¢, 7 + u 4+ 1)th
element is zero if u = s. But ps,itut1.i41,....i+u 18 & multiple of that element (by
the same expression quoted above), so it also is zero under D, . Thus D, — D, .

The regression of any X; on all the other variables in X has (regressmn co-
efficient of X;) = —¢*/c”, ([21—23.24—) and (multiple correlation) =
a- 1/0...7")* ([21—23.5.2—).

Under D, clearly the regression co-efficients of X ; for |¢ — j| > s are zero. By
Lemma 3, ¢* for |i — j| < s are equal to the correspondmg elements in the ¢th
column of the principal minor of the (¢ — s,2 — s+ 1, --- 1, ,© + s)th rows
and columns of =. But the regression of X;on X, ,, - - -, X.~_1 , X.-+1 y oty Xige
involves the elements of the sth column of that minor in the same formulae. As
the elements involved are equal for both regressions, the regression co-efficients
and multiple correlations are necessarily also equal.

Conversely, if the regressions are the same, application of the formulae above
shows the non-null elements of the #th columns of = and the minor to be the same.
By the converse of Lemma 3, ¢”* = 0 for j such that | — j| > s. Thus D, < D7 .

This completes the proof of the theorem.

It should be noted that D, could equivalently have been stated in terms of
05, i4udl-i41,e0 i4u y and D: in terms of p'.".

"The above are hypotheses of null correlation or covariance, not of independ-
ence. For a multivariate normally distributed X, however, they are equivalent
to independence [7], and D, would correspond to the definition of sth ante-
dependence given in the introduction.

The hypotheses, or models Dy, D, , - -+, D,_; may be considered in terms of
regression on preceding variables in the sequence. Each variable X; may be par-
titioned into its regression on X;;, X; ., -+, X, , plus a residual which,
under D, , is uncorrelated with X; , X, - -+ , X;_,_; . This model is a generaliza-
tion of an autoregressive scheme of order s [6], though the latter usually involves
the additional assumption of equal regression functions at each stage. Moreover,
the statistical treatment of autoregression commonly is in terms of a single ob-
servation on the whole series, whereas the present discussion is in terms of
repeated samples of the sequence.

An interesting way to generate sth ante-dependent variables is by repeated
(s times) summation of uncorrelated variables. If X;(s) be the ¢th value of the
sth successive sum of Z;, Z, - - - , then the standard expression for an nth dif-

ference is Z; = D o (—1)* < ) . This can be rewritten

X = Z( 1+ (,j) X%+ Z:

showmg that X{°, glven X0, X%, ---, X8 is uncorrelated with
Xik1, X2, X1,1ie., that D, holds for X*. ‘
The case s = 1is known as Guttman’s Perfect Simplex [4, 5]. It has been pro-
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pdsed as a model for batteries of psychological tests increasing in complexity by
successive addition of independent increments. For s > 1 the relative weight of
the earlier increments becomes greater—no simple application is known.

3. Likelihood ratio tests of partial independence. For X multivariate normal,
consider a sample of N, i.e, X;, X2, +++, Xy where x = (21, o, *** , Zo»).
Define & = (&, &, - ,%,) where & = N ‘D Y.z, also define s;; =
NV, (% — %) (xj — ;) foralls,j = 1,2, - -+, p and let s;; be the (¢,7)th
element of S. Similarly to the population parameters, define

S~ with element s*,

D with diagonal s;;, s22, *** , 8pp and other elements zero,

R = D*SD™* with element r,;,

R with element ¥,

Tijek,l,eeom = (T.;,'.z,...,,,. bl T;k.l,...,mrjk.z,...,m) (1 bl T‘z'k.z,...,m)_*(l - T?k.z,...,m)_l,
and

2 2
1-— ri(:il.:iz."'.i.) = H {1 - riju'jxvilv“'rju—l}'

u=l

TaeorEM 2. Let X have a multivariate normal distribution with expectation u and
variance Z, and X = (X;1,Xz2, -+ , Xn) be a sample of N from it. Let T be a set of
elements of unordered pairs of numbers (¢, j), 0 < ¢,j =< p, including (1, 1),
(2,2), -, (p, p), and let Y., denote summation over all pairs (3, j) € T'. Con-
stder the hypothests

Dr:e” =0 if (3,5) g T.
Then under Dr the maximum likelthood is
(2r) ™% |2 )| ™" exp [~ Np/2],
where Sy has elements 6:; = sij for (3, 7) €T, and £, satisfies ¢ =0
Jor (3,7) 2 T.

Proor. Under Dr the parameters u and o;; for (¢, j) € T' specify the distribu-
tion completely. The likelihood is maximized by putting

p=x

and choosing é;; to satisfy

. P vz
Z Z (a'u - su) a% =

v=l z=1 da¥?

for all (7, j) € T. (This is a simple extension of the well known theory. See [1],
Sec. 3.2). The latter is satisfied by putting

bij = 8ij for all (¢, ) e T.
The maximum likelihood can be written

(2m) ™" S| ™ exp [N Tr £y(2 — #)(X — )’ — INTr£m8),
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where {i; as above, and £, are the maximum likelihood estimates under Dr .
Clearly the first term in the exponent vanishes. The second term is

P P ..
—3ND D 69y
fmm]l Jeml

—3iN E 6‘“8“:‘
e

= —IN2 oY%
v

—iNTr$HS

p p .o
= —%NZ Z 6‘”0.','

fmml Jml

= —%N Tr 2—(.%)2(1‘)

= —%Np’

for as ¢* = 0 for (¢,7) T, E., ¢V = Z?_l >r, ¢"a;; for any as; .
LemMa 5. For any correlation matriz P

p—1 p—2 p—s
|P| = IlIl(l — pf,,-_,_l)I]l: (1 = pfoiqzeigr) *°° H (1 = Pi oo it i42,0me sibamd)

v (1 = plpayeeepmt)-
Proor. It is well known ([2]—23.5.2—) that
| P|

=1— piasn»
| Py |
whence
P
I | = (1 - sz)(l bl p:a,z) e (1 band pfp.za...p_l).
| Py |
Similarly
P
[Pul (1 = p2)(1 = phes) -+ (1 = plpestrnrps),
| P1122 I

and so on for further principal minors of P. Multiplying these results together,
the above result follows.
COROLLARY 2.1. Under D, the maximum likelthood s

(27) V% | 2| ™" exp [~ Np/2]
-where
P »—1 . p—2 2
|2(a)| = 1118.'4111 a- Ti,i+l)n (1 - T.’,s'+2-.'+1)
p—8

v TT (1 = 78 igeigriigeneeiden) -

fm]
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Proor. It was shown in Theorem 1 that D, is a hypothesis of the type con-
sidered in Theorem 2. Hence by Theorem 2 the above expression for the likeli-
hood follows.

Now under D, the maximum likelihood estimators of o:; are s;; , and those of
the non-null partial correlation co-efficients are the sample partial correlations.
This follows from the fact that the set of variances and correlations p;; where
|¢ — j| £ s are a one-to-one transformation of the set of variances and non-null
partial correlations under D, . (For similar considerations see [1] Corollary 3.2.1
and section 4.3.1).

Next = = A'PA} whence |Z| = |A| |P|. Now |A| = J]%-1 0is, and under D,

p—1 p—2 p—s

IPl = iIl (1 - P?,i+1)111 (1 - P?,i+2.i+1) “ee Hl (1 bt p?,"-ht'i+l."'l'+t—l)-

Introducing the maximum likelihood estimates one obtains the expression for
12wl
CoRrOLLARY 2.2. The a-level likelthood ratio test of D, under D, 18,
p—s—1

accept D, of —N Zl ngO(l - T?.€+.+1-€+1,---i+a) = X;—a’
p-

reject D, otherwise,
where xi—q 18 the 100(1 — a) percentage point of the X distribution with (p — s — 1)
degrees of freedom. This test 1s asymptotically valid.
Proor: The ratio of the likelihood under D, to that under D, is, from Corol-
lary 2.1,

—Ni2 Pt 2 NI
A= “ 2{.)|/| 2(.+1)|} = { I]1: (1 - Ti,i+.+1.i+1,---,¢+.)} ’
so that

p—2s—1

—2log\, = —N El 108.(1 — 73 ipatteidtoeen ide) -

Now D, specifies (p — 8)(p — s — 1)/2 zero elements in =™ and D, specifies
only (p — s — 1)(p — s — 2)/2 of them as zero. Thus by the well known results
on the asymptotic distribution of the likelihood criterion [8], —2 log.\, is asymp-
totically distributed as x” with (p — s — 1) degrees of freedom ; nothing definite
is known about the closeness of the asymptotic approximation for any finite
sample size.

A closer approximation to the asymptotic distribution of the likelihood cri-
terion results from the following considerations. For zero partial correlation
D5 itatl-i+l,---,i+¢ ODE uses the even moments of the partial correlation [1] to
calculate

E(]. - T?,i+.+1.i+1,...,.‘+,) =1- 1/(N — 8 —1)
and

Var (1 — 7} ipetteittyonize) = 2(N — 8 — 2)/(N — s + 1)(N — s — 1)%
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Now taking the logarithm of 1 — »—omitting the subscripts—and expanding it
as a Taylor’s series, one obtains for the first two terms,

E log,(1 — %) = log.E(1 — r*) — Var(1 — r*)/2[E(1 — )]}
=logfl —1/(N—s—1]—1/(N—s+ 1)(N —s —2)
=—1/(N—s—1) —1/2(N —s—1"—1/3(N —s — 1)?
— o —1/(N — s+ 1)(N — s —2)
=—1/(N—s—1) —0[1/(N — s — 1)%.

Hence

p—s—1

—N X (=1/(N—s—1) —0[l/(N —s — )7}

=1
=(p—s—1)N/(N—s—1) +0[1/(N — s — 1)L
The distribution of —2 log.\, is asymptotically x* with p — s — 1 degrees of

freedom, so its expectation should be p — s — 1. This expectation will be ap-
proximated more rapidly by using the criterion

E(—2log.\,)

p—s—1

—2log\, = —(N —s— 1) Zl 108 (1 — 75, ipetteittoeeride) -

Tests for each D, under D,4;,8 = 0,1,2, --- , p — 2, are given in Corollary
2.2. As these are likelihood ratios, successive tests can be combined by adding
the statistics and the degrees of freedom of X, e.g., to test D; under D;, the test
statistic

p—2

—2log. M —2log N, = —N {Z logo(1 — 7% i42.i41)
=
=3 2
+ Z; log.(1 — 1’.',.'+3..’+1,1+2)}

is distributed asymptotically as x* with (p — 2) + (p — 3) = 2p — 5 degrees
of freedom. Another example is the test of Do under D,_, , i.e., of independence
under the most general alternative, whose statistic is

p—2

p—2
2 —2loga, = —2log. ]I\ = Nlog{|2wl/|Z6nl} = —N log. |P|
distributed as x* with p(p — 1) /2 degrees of freedom, giving the usual likelihood
ratio test for independence [1].

Thus the present sequence of tests breaks up the general test of independence
into a sequence of intermediate steps of increasing degrees of ante-dependence.
Procedures for inferring the degree of ante-dependence may be adapted from
these tests, for instance in analogy to the procedures for inferring the degree of
polynomial regression by the use of tests of successive regression co-efficients.

All tests, except that of Do under D, , depend on the ordering of the variables.
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This is assumed given; procedures for inferring possible orderings of the variables
have not been investigated.

4. Generalization to several dimensions. A multidimensional generalization
of the foregoing will be to consider p sets of variables X;, X, - -+, X, with k;
variables in set X; = (X, , Xi,, -+, X4;,). The corresponding hypotheses can
be written

G @ Piy, (et pgeitl,i42,eesits = 0
forallz=1,2,---p—s —landalla =1,2,--- k;and B = 1,2, - - - kiyey1,
the subscript ¢ + w denoting all the variables of X;,, . As before,

-1
D,:NG..

This generalized model is analogous (for constant k;) to the extension of auto-
regressive schemes for multiple time series. The present hypotheses relate only
to the order between the sets, and are invariant under permutations of the varia-
bles within any or all sets (unlike multiple time series).

The results of the previous section can be extended to this more general case
by partitioning the matrix = of > 7 k; rows and columns, into a p X p super-
matrix of minors with %, , &k, , - - - , k, rows and columns, respectively. The main
theorem now becomes

TaEOREM 1'. For a vector variable X = (X, , -+, Xy, , Xoy, -, Xp,,) with
variance = and correlation P, the following three statements are equivalent:

D,: Pig Gitutl)ges+1,i42,000 540 = OfOT allu = 8,8 + l, et ,Pp - 1 and all a, ﬁ;

D, : o™ = 0 for all a, B and all 1, j such that |i — j| > s;

D} : for any i and any a in the regressions of X, on:

(1) all other variables in X apart from those in X,

(2) all other X j, with any B and j such that 0 < |¢ — j| = s, the multiple
correlations and the regression co-efficients of X j, are equal, and all other regression
co-efficients in (1) are zero.

Theorem 2 stands as it is also for the generalized case.

Denote the partial correlation of X, and X, , given X, ,, Xi, .0, -, Xipy,
as pijg-int (if j < ¢ and/or 8 < «a, the definition would be adjusted suitably).
Define next, I'; the class of all pairs (i, ,js) such that ; — ¢ = s. Then Lemma 5
and Corollary 2.2 can be reformulated as

LEMMA 5.
p—1 9
IP| = ]I (1 = piyigeint) ;
u=0 (imip)els
and

CoOROLLARY 2.2'. The a-level likelihood ratio test of D, under D, 18:
accept D, if —N D, log(1 — 7%, jpint) < Xi-a,

Gaip)els
reject D, otherwise,
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where xi—o ts the 100(1 — a) percentage point of the X distribution with
D277 ki kigesa degrees of freedom.
This provides a sequence of tests corresponding to those in Section 3.
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