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Abstract 

The diagnosis of Parkinson’s disease (PD) is challenging at all stages due to variable symptomatology, comorbidities, 
and mimicking conditions. Postmortem assessment remains the gold standard for a definitive diagnosis. While it is 
well recognized that PD manifests pathologically in the central nervous system with aggregation of α-synuclein as 
Lewy bodies and neurites, similar Lewy-type synucleinopathy (LTS) is additionally found in the peripheral nervous 
system that may be useful as an antemortem biomarker. We have previously found that detection of LTS in sub‑
mandibular gland (SMG) biopsies is sensitive and specific for advanced PD; however, the sensitivity is suboptimal 
especially for early-stage disease. Further, visual microscopic assessment of biopsies by a neuropathologist to identify 
LTS is impractical for large-scale adoption. Here, we trained and validated a convolutional neural network (CNN) for 
detection of LTS on 283 digital whole slide images (WSI) from 95 unique SMG biopsies. A total of 8,450 LTS and 35,066 
background objects were annotated following an inter-rater reliability study with Fleiss Kappa = 0.72. We used transfer 
learning to train a CNN model to classify image patches (151 × 151 pixels at 20× magnification) with and without the 
presence of LTS objects. The trained CNN model showed the following performance on image patches: sensitivity: 
0.99, specificity: 0.99, precision: 0.81, accuracy: 0.99, and F-1 score: 0.89. We further tested the trained network on 1230 
naïve WSI from the same cohort of research subjects comprising 42 PD patients and 14 controls. Logistic regression 
models trained on features engineered from the CNN predictions on the WSI resulted in sensitivity: 0.71, specificity: 
0.65, precision: 0.86, accuracy: 0.69, and F-1 score: 0.76 in predicting clinical PD status, and 0.64 accuracy in predicting 
PD stage, outperforming expert neuropathologist LTS density scoring in terms of sensitivity but not specificity. These 
findings demonstrate the practical utility of a CNN detector in screening for LTS, which can translate into a computa‑
tional tool to facilitate the antemortem tissue-based diagnosis of PD in clinical settings.
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Introduction
Parkinson’s disease (PD), dementia with Lewy bodies, 
and multiple system atrophy, which are all characterized 
histologically by intracellular aggregates of misprocessed 
α-synuclein, are the most common among the spectrum 
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of synucleinopathies, and are the second most common 
neurodegenerative conditions after Alzheimer disease 
(AD), with PD being the most common in this group [23]. 
It is widely accepted that accurate and early diagnosis of 
PD is needed for meaningful therapeutic approaches for 
disease modification [30]. Postmortem assessment of 
brain tissue by an expert neuropathologist remains the 
only option and gold standard for a definitive diagnosis 
of PD [39]. The antemortem diagnosis is challenging due 
to a variable clinical presentation and several mimick-
ing conditions, exemplified most commonly by dementia 
with Lewy bodies, multiple system atrophy, and progres-
sive supranuclear palsy, obscuring the clinical picture, 
and delaying treatment [2, 44]. Many clinical trials in PD 
have failed to identify disease-modifying therapies [8]. 
Robust and accurate PD biomarkers are crucial to enable 
early diagnosis, test for target engagement, and serve as 
surrogate measures of disease in clinical trials.

While PD is diagnosed based on identification of mis-
processed α-synuclein in Lewy bodies and Lewy neurites 
in the central nervous system (CNS), these pathological 
changes can be also found in peripheral nerves [1, 4, 7, 9, 
11, 36, 42, 46]. The reports on occurrence of pathologic 
α-synuclein in peripheral tissue in PD are often con-
flicting [3, 4, 7, 15, 21, 22, 28, 32, 40, 42, 43, 50], which 
could be attributed to a range of methodological factors 
including specimen acquisition/processing, α-synuclein 
staining methods, uncertainty of clinical diagnosis, neu-
ropathologist expertise, and blinding [32]. The diagnos-
tic and prognostic value of peripheral biopsy in PD has 
gained recognition, including in the gastrointestinal tract, 
salivary glands, olfactory mucosa, and skin [36]. The sub-
mandibular gland has particular potential due to the high 
density of nerves containing pathological α-synuclein as 
well as its accessibility to biopsy [5, 13, 37, 38, 46]. Lewy-
type pathology in the submandibular gland has been 
detected and characterized in earlier PD stages [3, 15, 
21, 50], and its high specificity and good sensitivity has 
been shown [13, 36]. It has also been observed through 
systemic peripheral sampling that Lewy-type pathology 
generally follows a rostro-caudal distribution [3, 43]. The 
highest densities of Lewy type α-synucleinopathy (LTS) 
are in the lower esophagus and submandibular gland and 
lowest in the colon and rectum [3, 10, 43]. More recently, 
there has been increasing interest in using skin biopsies 
as a screening and prognostication tool in PD but the 
density of synuclein pathology-containing nerves is much 
lower, reducing diagnostic sensitivity [7, 18–22]. Such 
assessment is subject to inter- and intra-observer vari-
ability and represents a laborious and time-consuming 
process, which limits its practical applications.

Artificial intelligence (AI) in the context of computer 
vision could be employed to the improve diagnostic 

utility of peripheral biopsies in PD. AI has been shown to 
be promising in cancer pathology in screening, detection, 
and predictive modeling [25]. Its potential in medical 
imaging of the central nervous system, such as magnetic 
resonance imaging (MRI) and positron emission tomog-
raphy (PET), has been explored by many groups [6, 24, 
29, 31, 33, 34, 41]. However, the application of AI to 
histological preparations in neuropathology to date is 
limited. Our group developed and published the first 
neurofibrillary tangle classifier applicable to Alzheimer 
disease (AD), primary age-related tauopathy (PART), and 
other primary tauopathies [47]. Wurts et  al. [53] have 
presented a report on pathological histomorphological 
forms of tau in whole slide images (WSI) of AD brain 
samples. Similarly, Tang et  al. [49] have demonstrated 
that neuritic amyloid plaques and cerebral amyloid angi-
opathy can be detected with a high degree of precision 
and recall. This has been validated by Vizcarra et al. [52] 
in a multicenter study. Together, these studies reinforce 
the assertion that computer vision and machine learning 
will have broad applications in the histological assess-
ment of tissues from patients with neurodegenerative 
diseases.

Here, we applied deep-learning based classification to 
a collection of WSIs from the Systemic Synuclein Sam-
pling Study (S4), a large multicenter study initiated with 
the goal of assessing key gaps in knowledge by comparing 
inter- and intra-individual total α-synuclein in central and 
peripheral fluid compartments (i.e., cerebrospinal fluid, 
blood, saliva), and the occurrence of immunohistochem-
ically-defined α-synuclein pathology in three peripheral 
tissues (i.e., colon, skin, and submandibular gland) at dif-
ferent PD stages compared to controls [1, 11, 13, 14, 51]. 
Our previous results indicate that peripheral Lewy-type 
synucleinopathy (LTS) is present in early PD, suggesting 
its utility as a diagnostic and prognostic biomarker. The 
expert neuropathologist semi-quantitative assessment of 
LTS in peripheral biopsies was shown to have nearly per-
fect specificity in predicting clinical diagnosis and stages 
of PD; however, the sensitivity was moderate [11, 13]. We 
applied a trained convolutional neural network (CNN) to 
minimize barriers to wider application of LTS assessment 
for early diagnosis of PD. This approach provides robust 
and reliable quantitative measurements of an array of AI-
based features representing LTS burden and distribution 
on the digitized peripheral biopsy WSI, with potential to 
be further used as diagnostic, prognostic, and monitoring 
markers of PD.

Materials and methods
Case materials
The Systemic Synuclein Sampling Study (S4) was a cross-
sectional, observational six-site study. Methodology has 
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previously been described, including cohort inclusion/
exclusion criteria [13, 51]. Briefly, the study included 60 
individuals with idiopathic Parkinson’s disease and 20 
controls with specimens of submandibular gland (SMG), 
skin, colon, CSF, and blood. The PD group consisted of 
individuals with a clinical diagnosis of PD and abnor-
mal dopamine transporter SPECT imaging, with either 
early (2 or less years duration, untreated with dopamin-
ergic medication), moderate (2–5  years duration, with-
out motor fluctuations), or advanced (more than 5 years 
duration with motor fluctuations) disease. Controls con-
sisted of individuals with normal dopamine transporter 
imaging. Both groups had to be free of dementia and 
medical conditions that precluded study procedures. All 
participants underwent Movement Disorders Society 
Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) 
assessment, as previously described (Table  1) [13, 27]. 
Cerebrospinal fluid (CSF) was obtained via lumbar punc-
ture and total α-synuclein was measured using ELISA as 
described [14, 51]. Dopamine transporter SPECT scans 
were obtained and striatal specific binding ratio (SBR) 
was calculated as mean SBR for right and left puta-
men and caudate. Biopsies of SMG were obtained and 
stained as described [1, 11, 14, 51]. Briefly, up to 5 uni-
lateral biopsies per participant were fixed in 10% for-
malin, embedded in paraffin and cut into 4 μm sections 
that were then mounted on glass slides [1]. Up to 13 
slides from each paraffin block were then treated with a 
protease and stained with the 5C12 mouse monoclonal 
antibody. The 42 PD participants and 14 controls whose 
SMG biopsies yielded adequate tissue were included in 
the present analysis.

Slide digitization and image management
The stained glass slides were digitalized at 20× magnifi-
cation using Aperio scanners (Aperio, Leica Biosystems, 

Kassel, Germany) and the whole slide image (WSI) files 
were saved in.svs format. A total of 1513 WSIs were used 
in this study, with 283 used for the development of LTS 
detector (training and testing of the neural networks) and 
1230 for the feature generation and the development of 
PD status/stage prediction models. The WSI were then 
converted into a GeoTIFF format. Images were stored on 
a HIPAA-compliant server behind the hospital firewall 
for interactive display and annotation over the intranet 
using the Precise Informatics Platform (PIP), developed 
by the Center for Computational and Systems Pathology 
at Mount Sinai (MP, JK, JZ, and GF), which allows for the 
management of thousands of images with pathologist 
annotations.

Expert neuropathologist scoring
Digitized images were previously scored by three inde-
pendent neuropathologists blinded to diagnostic group 
as described [1, 11, 13]. Briefly, each WSI was classified 
as positive or negative for α-synuclein pathology and 
assigned an LTS score ranging from 0 to 3 (Fig. 1), where 
0 refers to being negative for α-synuclein, and scores 1–3 
refer to scoring density of sparse (1) moderate (2), and 
frequent (3). A final determination regarding IHC posi-
tivity for α-synuclein was made for each slide based on 
consensus rating of at least 2/3 pathologists; each study 
subject was assigned derivative score metrics, reflect-
ing cumulative α-synuclein positivity (Additional file  1: 
Table S2) [11, 13, 14].

Pathological annotations
Ground truth annotations were generated using the 
Precise Informatics Platform collaborative web-based 
user interface. We delineated operational morphologi-
cal definitions of the LTS based our previous studies 
(Fig. 1A–F) with modifications [1, 11]. Briefly, LTS was 

Table 1  Subject data

MDS-UPDRS Movement Disorders Society Unified Parkinson Disease Rating Scale

*Mean ± SD

Control Parkinson disease, total Parkinson disease, stage

Early Moderate Advanced

n (male/female) 14 (8/6) 42 (30/12) 15 (13/2) 13 (8/5) 14 (9/5)

Age (yr)* 62.5 ± 6.5 64.5 ± 9.2 63.8 ± 10.5 58.8 ± 6.6 70.5 ± 5.9

Disease duration (mo) – 61.1 ± 64.4 10.5 ± 7.2 44.8 ± 17.8 130.4 ± 56.2

MDS-UPDRS*

Part I 2.6 ± 2.4 8.0 ± 5.3 8.1 ± 6.0 7.1 ± 4.5 8.6 ± 5.7

Part II 0.1 ± 0.4 10.1 ± 6.4 8.9 ± 5.8 8.7 ± 4.0 12.7 ± 8.2

Part III 1.1 ± 2.7 26.1 ± 12.0 20.1 ± 9.9 27.1 ± 11.8 31.9 ± 12.1

Total 3.8 ± 4.0 44.0 ± 18.8 37.2 ± 17.7 42.9 ± 14.9 52.9 ± 21.1
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operationalized as an IHC α-synuclein-positive object, 
i.e. “foreground”, with a neurite-like morphology in an 
appropriate histological context (e.g., periacinar/gland 
parenchyma, perivascular, or within a nerve bundle). 
Given high histomorphological variability of LTS and 
their planes of section, each LTS object was assigned a 
confidence rank (i.e., definite, probable, and possible) 
reflecting an annotator’s confidence for further inclu-
sion in weighted computational modeling (Fig.  1D–I). 
Objects showing IHC α-synuclein-positive linear neu-
rites in an appropriate histological context were scored 
as “definite”. Single or multiple dot-like objects possibly 
representing a cross-section of α-synuclein-positive 
neurites were classified as “possible” reflecting the 
lower annotator’s confidence. The “probable” rank was 
used for intermediate confidence. Other α-synuclein 
immunopositive structures including granules/grains, 
macrophages, and artifacts were categorized as “back-
ground”. This approach increased the number of clas-
sifiable objects for training. To assess the annotated 
ground truth, we conducted annotator training and a 
concordance study to measure the inter-rater reliability, 
using a custom interface within the PIP platform, and 

compared them using a Fleiss’ kappa statistic and per-
centage agreement.

Neural network training
We used a convolutional neural network (CNN) architec-
ture (InceptionV4 [48]) to train the LTS detector (Fig. 2). 
The CNN was trained using a system with five NVIDIA 
Titan Xp GPUs and Intel(R) Xeon(R) CPU E5-2660 v4 
@ 2.00 GHz. The convolutional layers in the CNN were 
initialized with imagenet [16] pre-trained weights. We 
also modified the first convolutional layer in the Incep-
tionV4 architecture and set the stride equal to 1, which 
allowed us to use a smaller image size (151 × 151) than 
the original imagenet model (299 × 299). We used the 
PyTorch platform for training and creating the prediction 

Fig. 1  LTS object scoring and confidence ranking. Illustration 
of scoring density of sparse (A) moderate (B), and frequent (C). 
Submandibular gland biopsies immunohistochemically stained for 
α-synuclein with examples of sparse (D) moderate (E) and frequent 
(F). Examples of confidence ranking examples of definite (G), 
probable (H), and possible (I). LTS can be visualized and single or 
multiple immunopositive normal or misshapen axonal profiles in the 
submandibular gland parenchyma, nerve fascicles, or adjacent to 
blood vessels. LTS Lewy-type synucleinopathy

Fig. 2  Schematic overview of data annotation and deep learning 
pipeline. LTS are annotated using WSI. The CNN was trained to 
classify image patches containing LTS from other image patches 
including tissue, artifacts and background. Different weights were 
used for the annotated objects while training using the cross entropy 
loss function for the final network. Image patches are extracted for 
network training that generates pixel-wise segmentations for LTS and 
background. Performance is determined using a separate novel set 
of images (test set) by comparing expert annotation with the trained 
network. The resulting trained network is further deployed on the 
naive WSI dataset for assessment of the predictive power of clinical 
outcomes. LTS Lewy-type synucleinopathy, WSI whole slide image, 
CNN convolutional neural network
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masks. When training, various image augmentation 
methods were applied, including smoothing, sharpen-
ing, rotations, flips, jpeg compression, as well as con-
trast and brightness adjustments. An AdamW optimizer 
with a learning rate of 0.00001 and weight decay of 0.001 
was used for training the final CNN detector [35]. The 
mini-batch size was 32 per GPU and the network was 
trained 80 epochs. Definite, probable and possible LTS 
patches were assigned loss weights equal to 5, 4, and 3, 
respectively. False positive patches from earlier rounds 
of training were given a loss weight equal to 2. Artifacts, 
background and patches with no LTS objects were given 
a loss weight equal to 1. Higher weights corresponded to 
larger misclassification penalty. After the training of the 
CNN detector, we created the prediction masks on the 
whole slide images by performing the inference on over-
lapping patches with 40 pixels strides.

Derivation of image features
To assess the relationship between the detected Lewy-
type synucleinopathy objects in the whole slide images 
and the disease status and progression, we used 60 dif-
ferent image features based on not only the total detected 
LTS burden, but also their spatial distribution and stain-
ing variations to identify patterns similar to what experts 
consider when producing their assessment score (Addi-
tional file  1: Table  S3). The PreciseDx features describe 
the organization of the detected Lewy neurite objects 
in the whole slide. It includes the local relationship of 
each object to its neighbors, based on measures of the 
node degree property in a graph constructed from the 
objects. These measures provide summary descriptions 
on the patterns of Lewy neurites in tissue. It also includes 
descriptions on the separation of the detected objects, 
measuring the homogeneity of their distributions in tis-
sue. The collection of features can characterize the whole 
slide in regards to Lewy neurites and we investigate their 
clinical utility with disease burden. Number of detected 
LTS patches and the fraction of the detected LTS patches 
within the overall tissue region represent the LTS load 
for each slide. To assess the stain variations within the 
detected LTS patches, we separated the IHC/DAB stain-
ing (brown) from the hematoxylin counterstaining (blue) 
using color deconvolution [45]. After color deconvolu-
tion, we computed the sum, mean, median and stand-
ard deviation of the hematoxylin and DAB within the 
detected LTS patches for each slide.

To identify the spatially connected and coherent 
regions and their distribution patterns, we used affinity 
propagation to find clusters of the detected LTS patches 
within the WSI [12, 26]. From the resulting clusters, 
measures such as simple cluster counts as well as more 
complex characteristics showing cluster patterns and 

distributions were computed. The computed features 
include the mean and standard deviations of cluster size, 
within cluster dispersion, cluster extent and between 
cluster scatter [17]. We also computed the clustering 
indices such as Ball Hall, Banfeld-Raftery, LogSSRatio, 
Davies-Bouldin, Calinski-Harabasz, and C Index [17]. 
Moreover, we utilized proprietary graph features, which 
were constructed by analyzing the spatial relationships 
between the detected objects (PreciseDx, New York, NY).

Statistical analysis
We trained and validated machine learning-derived 
image features using logistic regression to predict the 
disease status and stage and compared to expert assess-
ments. There were 13 WSI per subject available for most 
cases, however, a few had more than 20 WSI. Each WSI 
was previously scored by three expert neuropathologists; 
the derivative scores were generated for each research 
subject [11, 13]. To generate one single feature vector 
for each subject, we used the maximum of each feature 
among all available slides, which performed better than 
the mean, median, and minimum.

We used a two-step process for selecting predictive fea-
tures among all 60 engineered features and then trained 
a predictive model. To avoid overfitting, we split the sub-
jects into train (80%) and test (20%) samples; then, used 
a logistic regression model with least absolute shrinkage 
and selection operator (LASSO) regularization to train a 
prediction model and select the most predictive features 
from the model. Since the number of subjects was lim-
ited (42 patients and 14 controls), the selected features 
would highly depend on the subjects in the training set. 
Hence, we repeated the random train/test split 1000 
times and recorded the selected features and their impor-
tance weights for each split. The most frequently selected 
features with the largest importance weights were used 
to train and validate prediction models. We trained and 
validated 1000 Logistic Regression models using ran-
dom train and test splits. We used an Elastic-Net penalty 
with l1_ratio = 0.01 (the Elastic-Net mixing parameter). 
Additional statistical analyses were performed using IBM 
SPSS Statistics version 26 and subscription for windows 
(IBM Corp., Armonk, NY, USA), which included Pear-
son and Spearman’s correlation analyses between AI 
features, expert scoring, and clinical characteristics; also 
Wilcoxon-Mann–Whitney rank-sum and Kruskal–Wallis 
analyses.

Results
Ground truth generation
First, to ensure reproducibility in our ground truth 
dataset used for training the neural network, we asked 
whether Lewy-type synucleinopathy (LTS) objects could 
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be annotated in a consistent fashion and a minimal inter-
observer variability bias. We performed a concordance 
study among five neuropathologists, using independ-
ent blinded assessments on 600 patches containing a 
range of LTS objects derived from a subset of the whole 
slide images (WSIs) of immunohistochemically stained 
submandibular gland biopsies from the Systemic Synu-
clein Sampling Study (S4) [1]. This balanced dataset 
was derived from prescreening and AI-detected false-
positives from pilot studies (data not shown). Overall, 
we found a high degree of agreement between raters 
(5-way Fleiss’ kappa of 0.70, range 0.60–0.89 between 
pairs of raters; Additional file 1: Table S1). When ambigu-
ous objects (“possible” LTS) were excluded, there was 
improvement in concordance of calls (Fleiss’ kappa of 
0.73, range 0.84–0.90). This analysis prompted us to 
introduce a weighted ranking system allowing us delin-
eate more concise operational definitions that included 
possible (1), probable (2), and definite (3) LTS ranked 
categories. These definitions were then deployed to 
generate the ground truth training dataset of annotated 
LTS objects from the training 283 WSI group from 56 
research subjects, in which each LTS object was addi-
tionally ranked. WSI were then randomly divided into 
80% for training and validation (i.e., model selection), 
with 20% reserved as a test set for performance evalua-
tion (Additional file  1: Table  S4). In total, we annotated 
8450 positive foreground LTS objects and assigned each 
a confidence rank alongside a total of 35,066 background 
objects (Additional file  1: Table  S5), which straightened 
the specificity of the detection.

Convolutional neural network (CNN) training 
and validation
For CNN training and validation, we conducted three 
rounds of annotation/training iterative cycles, triaging 
out false positives and triaging in false negatives, thus 
improving the ground truth and the accuracy of detec-
tion. The LTS detection time for a single WSI ranged 
from 10 to 40 min (averaging 18 min) with performance 
depending on the area of the tissue within the WSI. 
Examples of an annotated WSI with CNN inference, the 
40 × 40-pixel overlapping inference patch indication, and 
examples of overlapping and true/false positive CNN 
detection inferences are shown (Fig. 3).

Weighted CNN shows improved performance metrics
Each LTS object was assigned a confidence rank for 
weighted modeling to allow tunable penalties to improve 
network performance. This permitted us to train and 
compare weighted and unweighted CNNs (Table 2). We 
found that while both had excellent sensitivity/recall 
(0.99), the specificity was lower in the non-weighted 

version (0.92) compared to the weighted version (0.99). 
When the non-weighted and weighted network precision 
was compared there was a marked increase (0.41 vs. 0.81 
respectively), which was also seen in F1 scores (0.59 vs. 
0.89). Accuracy and area under the curve (AUC) receiver 
operating characteristics (ROC) were also higher in the 
weighted network. Thus, given the superior performance 
of the weighted CNN, it was used for further studies.

Comparison of the CNN with expert scores
We next compared annotation ground truth and the 
CNN LTS object detection with the expert scoring per-
formed in our previous study [13]. Ground truth annota-
tion follows the same trend and expert scoring with good 
distinction between scored groups (Fig. 4A). These expert 
scores represent the subjective assessment from the neu-
ropathologist evaluators, integrating rater confidence of 
object identity alongside other features such as cellular 
context. In the set of WSI used for network training that 
were scored as negative, on average 1.6 LTS objects were 
identified and included in our annotations, and 17 CNN 
detected LTS-positive patches (Fig. 4B, Additional file 1: 
Table S6). Overall, we found a highly significant correla-
tion between expert scores and annotated ground truth 
as well as the CNN LTS detection (4.3 × 10−69, Rho = 0.82 
and 9.9 × 10−12, 0.76 respectively). There was a highly 
significant difference in ground truth annotated objects 
count and CNN-detected LTS-positive patches count 
between expert scored groups (p = 4.7 × 10−7, Kruskal–
Wallis). The strong correlation between our ground truth 
object annotations and the expert LTS burden scores 
gave us further confidence in the quality of our ground 
truth. The strong correlation between both these meas-
ures and the CNN scores gave us further confidence in 
our network (Fig. 5).

CNN‑derived features improve prediction of clinical PD 
status
In order to comprehensively evaluate the LTS CNN, 
it was necessary to test it on a set of naïve images. 
We used WSI (n = 1230) of additional sections from 
the SMG tissue blocks also stained using α-synuclein 
immunohistochemistry derived from the cohort of PD 
patients (n = 42) and controls (n = 14). We used our 
CNN-derived LTS-positive patches to generate a set 
of features that could be used for correlation analyses 
with clinical outcomes and neuropathological assess-
ments, and improve the predictive power of our model. 
We selected 13 high-ranking features for PD status pre-
diction out of the initial set of 60 AI features using a 
logistic regression model and a least absolute shrink-
age and selection operator (LASSO) shrinkage method 
for pruning. The expert slide level score specificity 
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prediction of disease status is the same as reported pre-
viously [13] and higher than AI specificity in our series 
(Table  3). The logistic regression analysis showed that 
the prediction of PD status was slightly more accurate 
with AI features compared to the expert scoring and 

its derivatives. The mean and standard deviation of 
AI features performance metrics in predicting the PD 
status are compared to those of the models based on 
the expert assessment scores and derivative features 
(Table 3).

Fig. 3  Examples of CNN deployment on SMG biopsy WSI. A An example of annotated objects (blue) and CNN inference (grey shading). A 
40 × 40 pixel inference patch is shown. B An example of true positive CNN classification. C An example of false positive CNN classification. CNN, 
convolutional neural network; SMG, submandibular gland; LTS, Lewy-type synucleinopathy, WSI, whole slide image

Table 2  Performance of non-weighted and weighted CNN LTS detectors

*F1 score = 2 * Precision * Recall/(Precision + Recall)

**AUC: Area Under the Curve, Receiver Operating Characteristic

Sensitivity/recall Specificity Precision F1 score* Accuracy AUC**

Non-weighted 0.99 0.92 0.41 0.59 0.92 0.96

Weighted 0.99 0.99 0.81 0.89 0.99 0.99
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AI‑derived object features improve accuracy of PD stage 
prediction
In order to improve PD staging prediction modeling, we 

selected 5 high-ranking features for PD stage out of the 
initial set of 60 AI features using the same logistic regres-
sion model and a LASSO shrinkage method for pruning 

Fig. 4  Comparison of ground truth annotations and CNN detection with expert scoring. A Expert annotation distribution boxplot in test WSI 
cohort (n = 56), Mann–Whitney two-tailed U test between score groups p values; Kruskal–Wallis H test of annotated LTS between expert score 
groups, and Spearman correlation between LTS burden and expert scores. B CNN, 40 × 40 patches positive for LTS distribution boxplot in test WSI 
cohort (n = 56), Mann–Whitney two-tailed U test between score groups p values; Kruskal–Wallis H test of 40 × 40 patches between expert score 
groups, and Spearman correlation between 40 × 40 patches positive for LTS burden and a score in test cohort. Scoring was performed as follows: 
each WSI was classified as positive or negative for α-synuclein pathology and assigned an LTS score ranging from 0 to 3 (Fig. 1), where 0 refers 
to being negative for α-synuclein, and scores 1–3 refer to scoring density of sparse (1) moderate (2), and frequent (3). CNN convolutional neural 
network, SMG submandibular gland, LTS Lewy-type synucleinopathy

Fig. 5  Examples of CNN deployment on SMG biopsy WSI. A An Example of a WSI. B, C LTS patch detection and features generation (e.g., patches 
clustering, in color). CNN convolutional neural network, SMG submandibular gland, LTS Lewy-type synucleinopathy
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(Additional file  1: Table  S3). The accuracy of prediction 
of PD stage also increased with the use of AI compared to 
the models using expert scoring. This improvement was 
more prominent while assessing the difference between 
PD stages only (0.64 v. 0.59), whereas the difference in 
accuracy is lower (0.48 v. 0.45) when controls were taken 
into the analysis. Accuracy is based on both sensitivity 
and specificity, however, while AI had higher sensitivity, 
expert scoring has higher specificity, when distinction of 
PD from controls is the criterion (Table 4). To determine 
how well the selected 15 AI features, which are predictive 
of PD status and stage, correlate with expert scoring we 
applied Spearman’s correlation analysis. It showed that 14 
out 15 selected AI features were in significant (p < 0.001) 
correlation with expert scoring on individual slides and 
13 out of 15 were in significant (p < 0.001) correlation a 
summarized synuclein score per patient (Table 5).

AI‑derived object features distinguish between PD status 
and PD stages
To confirm that the 13 high-ranking AI features, derived 
with mathematical modeling, are capable of reliably 
distinguishing between PD and controls, we applied 
Wilcoxon–Mann–Whitney analysis, in which 8 of 13 
selected features have shown statistically significant dif-
ferences between PD patients and controls in selected 
ranked measures. Of note, all the most significant AI 
features correlates are reflecting the LTS clustering 
characteristics. Other features, unrelated to LTS objects 
clustering, that show the difference between PD and con-
trols, are reflecting the LTS burden: the standard devia-
tion of the DAB channel and the standard deviation of 

the hematoxylin channel (Table  6). We also applied the 
Kruskal–Wallis analysis to verify that those selected 
features are capable of reliably distinguishing among 
PD stages (early [1], moderate [2], and advanced [3]), in 
which 4 of 5 selected features, all reflecting the LTS clus-
tering characteristics, have shown statistically significant 
differences among the PD stages (Table 6).

AI‑derived features correlation with UPDRS, CSF 
α‑synuclein, and neuroimaging markers
We also explored the relationship between the set of 15 
selected AI features and clinical and biomarker meas-
ures of PD disease severity namely MDS-UPDRS total 
and part III scores (where higher values indicate more 
severe disease), CSF total α-synuclein, and dopamine 
transporter binding in striatum measured with SPECT 
(DAT-SBR; where lower values indicate lower (worse) 
DAT binding). Pearson correlation showed statistically 

Table 3  Prediction of Parkinson disease status, logistic regression, n = 56 (14 controls and 42 PD), Mean ± SD

*F1 score, harmonic mean is calculated as 2 * Precision * Recall/(Precision + Recall)

**Expert score specificity is the same as reported previously [6]

Sensitivity/recall Specificity Precision F1 score* Accuracy

13 AI features altogether 0.71 ± 0.16 0.65 ± 0.30 0.86 ± 0.13 0.76 ± 0.12 0.69 ± 0.13

Expert score and its derivatives 0.59 ± 0.16 0.88 ± 0.24 0.94 ± 0.13 0.71 ± 0.13 0.66 ± 0.13

Expert score 0.54 ± 0.16 0.93** ± 0.17 0.96 ± 0.10 0.68 ± 0.14 0.64 ± 0.13

Expert score derivatives 0.60 ± 0.16 0.89 ± 0.23 0.94 ± 0.11 0.72 ± 0.13 0.67 ± 0.13

Table 4  Accuracy of prediction of clinical Parkinson disease 
stage by the weighted CNN*

*Mean ± SD

Parkinson disease stages: early [1], moderate [2], advanced [3], and controls [0]

Stages 0–3 (n = 56) Stages 1–3 (n = 42)

Five AI features 0.48 ± 0.14 0.64 ± 0.16

Expert scoring and its 
derivatives

0.45 ± 0.14 0.59 ± 0.17

Table 5  Selected highest ranking AI features correlations with 
expert scoring, Spearman’s rank correlation coefficient Rho 

Statistically significant values are shown in bold

LTS Lewy type synucleinopathy

Per slide score, 
n = 1230

Per subject score, 
n = 56

Rho p Value Rho p Value

LTS cluster size SD 0.75 1.20E−225 0.84 4.83E−16
PreciseDx Graph Feature18 0.28 8.78E−24 0.70 1.54E−09
StDev of Hematoxylin Channel 0.61 1.82E−128 0.65 7.59E−08
PreciseDx Graph Feature5 0.77 4.18E−237 0.75 2.85E−11
PreciseDx Graph Feature29 0.69 1.44E−171 0.81 3.06E−14
PreciseDx Graph Feature11 0.60 4.50E−122 0.15 0.269

Davies-Bouldin Index 0.56 8.90E−101 0.53 3.23E−05
PreciseDx Graph Feature13 0.71 7.91E−189 0.79 5.02E−13
C Index 0.65 1.54E−150 0.28 0.035

PreciseDx Graph Feature28 0.71 1.06E−185 0.82 1.50E−14
PreciseDx Graph Feature14 0.36 3.91E−38 0.69 4.95E−09
PreciseDx Graph Feature10 0.04 0.159 − 0.22 0.106

Calinski-Harabasz index 0.66 3.58E−156 0.61 6.66E−07
PreciseDx Graph Feature3 0.75 1.20E−220 0.80 8.88E−14
PreciseDx Graph Feature27 0.73 6.00E−201 0.78 1.54E−12
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significant, although moderate, inverse relationships 
between some AI features and median bilateral stri-
atal DAT-SBR in PD patients. Lower correlations were 
observed between AI features and MDS-UPDRS scores 
and CSF α-synuclein biochemical values (Table 7).

Discussion
It is well established that while Parkinson’s disease 
pathologically manifests in the CNS with aggregation 
of α-synuclein as Lewy bodies and Lewy neurites, this 
pathology can also be found in the peripheral nervous 
system. Peripheral Lewy-type synucleinopathy objects 
(LTS) are present in PD, suggesting its utility as a diag-
nostic and prognostic biomarker [11]. Previous studies 
have shown that the expert neuropathologist semi-quan-
titative scoring of immunohistochemically stained WSI 
from PD patients, based on LTS density in the subman-
dibular gland has high specificity in diagnosing PD, but 

suboptimal sensitivity. In this study, we present a novel 
machine learning-based method using a total LTS burden 
as well as clustering characteristics reflecting LTS density 
and distribution on digitized IHC-stained preparations. 
Our study demonstrates that deep machine learning 
represents a feasible way to augment routine histologi-
cal examination, and trained neural networks could be 
deployed in detecting the peripheral LTS and improv-
ing accuracy for further confirmatory assessment by a 
neuropathologist.

A critical step for training a neural network is to mini-
mize the inter-observer variation to develop the most 
robust ground truth. We designed an inter-rater reliabil-
ity study and conducted consensus conferences among 
raters to improve the operational definitions for ground 
truth objects. We have achieved a high degree of agree-
ment among raters and went through iterative rounds of 
discussions about ambiguous and challenging objects. 
We trained a CNN to identify image patches that con-
tain LTS objects. We also conducted three rounds of 
annotation/training iterative cycles triaging out false 
positive and triaging in a false negative, which resulted 
in the high-quality ground truth and further translated 
into high accuracy of LTS detection (Table 2). Since there 
were many LTS objects on each slide, especially those 
with higher burden, comprehensive annotation of all 
individual LTS objects was not practical. Also, there were 
many small objects densely packed with larger objects 
that made it very difficult to localize and annotate them. 
Hence, rather than using object localization methods 
such as region-based CNN (RCNN) or single shot multi-
box detector (SSD), we opted to use CNN to determine 
whether an image patch contains any (one or multiple) 
LTS object. Using the confidence score of the anno-
tated objects as error weights in the loss function (when 
training the CNN classifier) also helped us to increase 
the sensitivity of the detector in identifying definite and 
probable LTS objects.

We showed that AI-based LTS detection and distribu-
tion characteristics correlate well with expert scoring 
performed in the previous study, but AI may offer greater 
speed and higher sensitivity. It currently takes our LTS 
classifier an average of 18 min to computationally screen 
an entire WSI and highlight the ROI with a high prob-
ability of LTS. Fully automatic detection of LTS at this 
performance level will enable large-scale screening of 
WSI for further confirmation by a human expert neuro-
pathologist. This illustrates the feasibility of applying this 
approach to large datasets and paves the road to further 
adopting this approach in clinical practice. We also dem-
onstrated that AI has higher accuracy, sensitivity, and F1 
score in predicting PD status than human expert scor-
ing; as well as higher overall accuracy in predicting PD 

Table 6  Selected highest ranking AI feature differences between 
Parkinson disease and controls (Mann–Whitney U test), and 
between stages (Kruskal–Wallis test)

Statistically significant values are shown in bold

Controls, n = 14; PD patients, n = 42; PD early stage patients, n = 15; PD 
moderate stage patients, n = 13; PD advanced stage patients, n = 14

LTS Lewy type synucleinopathy

AI features Mann–Whitney U test

U p Value

PreciseDx Graph Feature27 143.0 0.001
LTS cluster size StDev 122.0 0.001
PreciseDx Graph Feature3 138.0 0.002
PreciseDx Graph9 170.0 0.009
StDev of Hematoxylin Channel 175.5 0.025
PreciseDx Graph Feature14 210.0 0.027
Calinski-Harabasz index 179.5 0.030
PreciseDx Graph Feature13 201.5 0.047
PreciseDx Graph Feature28 208.5 0.056

Davies-Bouldin Index 204.0 0.088

PreciseDx Graph Feature11 249.0 0.338

PreciseDx Graph Feature10 268.0 0.419

C index 266.5 0.601

LTS pixel fraction 168.0 0.017
StDev of DAB channel (brown) 173.5 0.023
Number of LTS patches 153.0 0.008

Kruskal–Wallis test

Kruskal–Wallis H p Value

PreciseDx Graph Feature4 11.6 0.003
PreciseDx Graph Feature17 10.9 0.004
PreciseDx Graph Feature3 7.5 0.024
LTS cluster size StDev 7.0 0.03
PreciseDx Graph Feature27 4.8 0.089
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progression. Even though the specificity of an AI in pre-
dicting PD status was lower than expert neuropatholo-
gist scoring, the current version of trained AI shows to 
be promising in the ability to reproducibly identify high 
probability LTS foci on a digital slide.

We showed that LTS cluster size characteristics as well 
as the graph features reflecting the spatial relationships 
between the detected objects were the highest-ranking 
features that correlated the best with the expert score per 
slide and per patient (Table  5). The highest-ranking fea-
tures to differentiate the controls and PD and to detect the 
difference among the PD stages are all clustering charac-
teristics, whether they are well-known (e.g., Calinski-Har-
abasz index or LTS cluster size standard deviation) or the 
proprietary graph features newly developed by PreciseDx 
(Table  6). AI features, determined using mathematical 
modeling, can be potentially useful to clinical-pathologi-
cal-radiological correlations, exemplified with the statisti-
cally significant, although moderate, inverse relationships 
between selected AI features and median bilateral striatal 
DAT-SBR in PD patients (Table 7).

In our study, we showed that with our initial training 
of the CNN detector, it can achieve a similar outcome 
compared to the expert performance. However, the AI 
approach is shown to be more reliable, consistent, and 
cost-efficient compared to the old-fashioned way. The 
expert could be subjected to inter and intra-observer 

variation while AI is consistent and able to offer the 
most accurate result possible. To train a neuropatholo-
gist requires a considerable investment of both money 
and time. In addition to the extensive training, it could 
still take an expert a substantial time to fully annotate an 
entire WSI. While AI can annotate an entire WSI in mere 
minutes, and with a larger sample set AI can continue 
perfecting itself.

Expert scoring and AI-based LTS burden and cluster-
ing characteristics correlate well, but AI may have some 
advantages. On the currently limited dataset, AI has 
shown to have (1) high correlation with expert scoring; 
(2) higher accuracy, sensitivity, and F1 score in predicting 
PD status than expert scoring; (3) higher accuracy in pre-
dicting PD progression than expert scoring, albeit with 
less specificity. Overall, we found that LTS clustering 
characteristics are a better predictor of the outcome than 
crude LTS burden. Our trained weighted InceptionV4 
neural network is promising in its ability to reproduc-
ibly identify high probability LTS foci on a digital slide. 
Together with the subsequent mathematical modeling 
algorithms reflecting LTS clustering characteristics offer 
a useful tool in assessment and screening of histological 
slides for total α-synuclein burden and for prediction of 
PD status and stage of progression and for further utiliza-
tion in practical clinical applications.

Table 7  Selected highest ranking AI features correlation with UPDRS score, CSF biochemistry, and dopamine transporter SPECT, 
Pearson r 

Statistically significant values are shown in bold

LTS Lewy type synucleinopathy, MDS-UPDRS Movement Disorders Society Unified Parkinson Disease Rating Scale

*DAT-SBR, dopamine transporter mean striatum specific binding ratio

AI features MDS-UPDRS Part III, 
n = 55

MDS-UPDRS total, n = 55 DAT-SBR*, n = 56 CSF Synuclein, n = 53

r p Value r p Value r p Value r p Value

LTS cluster size StDev 0.35 0.010 0.33 0.014  − 0.39 0.003 0.08 0.556

PreciseDx Graph Feature18 0.39 0.003 0.37 0.005  − 0.50 8.21E−05 0.14 0.303

StDev of Hematoxylin Channel 0.16 0.259 0.14 0.312  − 0.29 0.033 0.13 0.369

PreciseDx Graph Feature5 0.35 0.009 0.29 0.031  − 0.43 0.001 0.05 0.728

PreciseDx Graph Feature29 0.38 0.004 0.36 0.007  − 0.43 0.001 0.09 0.504

PreciseDx Graph Feature11  − 0.07 0.609  − 0.13 0.361 0.01 0.928 0.19 0.173

Davies-Bouldin Index 0.09 0.510 0.08 0.547  − 0.30 0.025 0.25 0.066

PreciseDx Graph Feature13 0.27 0.044 0.23 0.086  − 0.35 0.009 0.11 0.454

C Index  − 0.16 0.259  − 0.14 0.318 0.06 0.671 0.07 0.616

PreciseDx Graph Feature28 0.31 0.022 0.33 0.014  − 0.41 0.002 0.12 0.408

PreciseDx Graph Feature14 0.32 0.016 0.30 0.026  − 0.35 0.007  − 0.14 0.333

PreciseDx Graph Feature10  − 0.11 0.443  − 0.11 0.444 0.11 0.423 0.27 0.049

Calinski-Harabasz index 0.31 0.021 0.27 0.044  − 0.32 0.017 0.07 0.616

PreciseDx Graph Feature3 0.44 0.001 0.40 0.003  − 0.50 7.48E−05 0.07 0.625

PreciseDx Graph Feature27 0.36 0.006 0.34 0.011  − 0.50 8.11E−05 0.07 0.629
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This study had several notable limitations. Of note, we 
had a relatively small dataset. In the future, larger data-
sets may allow us to develop more sensitive and specific 
tests. Another limitation is that we focused our effort on 
SMG biopsies stained with the 5C12 anti-α-synuclein 
antisera by immunohistochemistry. It is unclear if this 
approach would be valid in other tissues or other anti-
sera, which is a critical question as interest in skin biop-
sies for the diagnosis of PD is growing and expanding 
our analysis to skin and colon biopsies would be of value. 
Also, it is unclear whether other α-synuclein antibodies 
would give similar results. Potentially, we further plan 
to expand the subject cohort for better neural network 
training. Because of the nature of the study, there was 
no autopsy material available for definitive neuropatho-
logical diagnosis and clinical-pathological correlations. 
Expanding the project to include autopsy subjects will 
allow us to perform AI-clinical-pathological correlations.

In conclusion, we demonstrated the promise of AI in 
aiding an expert in making an antemortem diagnosis of 
definite PD, and potentially other synucleinopathies, such 
as dementia with Lewy bodies and multiple system atro-
phy. We will continue broaden and improve our research 
protocol and approach to the application of AI in neu-
ropathology. The application of AI in clinical pathology 
is limitless, the quantitative data uncovered by AI net-
works will not only augment the currently used qualita-
tive and semi-quantitative approach in the assessment of 
the pathognomonic features, but also be used for correla-
tive and association analyses with clinical, radiological, 
genetic, and biochemical data.
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