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Abstract—In this paper, Enhanced Practical Swarm Optimization
(EPSO) algorithm is proposed to be applied to pattern synthesis
of linear arrays. Updating formulas of global best particle position
and velocity are modified to improve the convergence accuracy of
classical Practical Swarm Optimization. The developed EPSO is
tested and compared with a standard benchmark to be validated as
an efficient optimization tool for beamforming applications. Different
numerical examples are presented to illustrate the capability of EPSO
for pattern synthesis with a prescribed wide nulls locations and
depths. Collective multiple deep nulls approach and direct weights
perturbations approach are considered to obtain adaptive wide null
steering subject to peak side lobe level and minimum main beam width
constraints. Starting from initial Chebyshev pattern, single or multiple
wide nulls are achieved by optimum perturbations of elements current
amplitude or complex weights to have either symmetric or asymmetric
nulls about the main beam. Proper formation of the cost function is
presented for all case studies as a key factor to include the pattern
constraints in the optimization process.

1. INTRODUCTION

Beamforming techniques that allow the placement of single or multiple
nulls in the antenna pattern at specific interference directions have
been extensively studied in the literature. Prescribed nulls in the
radiation pattern need to be formed to suppress interferences from
specific directions [1]. For broadband interference, nulls in the pattern
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should be wide and deep enough to suppress peak side lobe levels
(SLL) at the angular sector of arrival of the interference. Wide nulls
are formed in conventional techniques by placing multiple adjacent
nulls in the radiation pattern [1] or by using evolutional optimization
techniques [2]. The nulling methods are generally based on controlling
the complex weights (amplitude and the phase control) [3, 4], the
amplitude only [5, 6], the phase-only [7, 8], and the position only of the
array elements [9, 10]. Interference suppression with complex weights
is the most efficient because it has greater degrees of freedom for
the solution space. In this paper, special attention will be given to
optimize element coefficients that possess even symmetry about the
center of linear array as the number of attenuators/phase shifters and
the computational time are halved.

As the wide null steering is a highly nonlinear optimization
problem, evolutional optimization algorithms are proved to be a
capable method of obtaining best solutions for this kind of applications.
Evolutionary optimizations, such as the genetic algorithm [2, 7], ant
colony optimization [3, 10], differential evolution [11], particle swarm
optimization (PSO) [12], are used extensively to optimize and perturb
array parameters for null steering and pattern synthesis purposes.
PSO in particular shows superior solutions compared to conventional
analytical approaches, classical optimizations and other evolutionary
optimizations techniques. Previous trials to improve the performance
of the standard PSO have been reported in the literature [13–15].

In this paper, a modified version of PSO with enhanced searching
ability is introduced. New terms are added to the global best position
and the velocity updating equations. The new terms are based on
fitness to distance ratio of swarm particles; as will be shown this
method proves to give better results for global minimum. Subsequently,
the proposed enhanced version of PSO (EPSO) is applied to solve
the problem of synthesis antenna array patterns. The reminder of
the paper is organized as follows. A general overview of the classical
PSO scheme and proposed EPSO technique is introduced in Section 2.
Section 3 explains formulation of the pattern synthesis problem and the
wide nulling for linear antenna array. The cost function that is used in
the minimax optimization process for the control of the wide null and
synthesis the pattern shape is presented. In Section 4, the numerical
examples are provided to show the capability of EPSO, and numerical
results are discussed. Finally, the conclusion is made in Section 5.
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2. ENHANCED PARTICLE SWARM OPTIMIZATION
(EPSO)

Particle Swarm Optimization is a swarm intelligence method for global
optimization. Each individual, named particle, of the population,
called swarm, adjusts its trajectory toward its own previous best
position and toward the previous best position attained by any member
of its topological neighborhood. The basic PSO algorithm consists of
three steps:

1. The positions xi(k) and velocities vi(k) of the initial population
of particles are randomly generated for the ith particle at time
k. Where i is the current particle number in the swam; i ∈
{1, 2, . . . , S} and S is the swarm size.

2. Update velocities of all particles at time k + 1 as follows:

vi(k+1)=w·vi(k)+c1 ·r1 ·
(
pi(k)−xi(k)

)
+c2 ·r2 ·

(
pg(k)−xi(k)

)
(1)

where, r1 and r2 are uniformly distributed random variables in
[0, 1] range. The fitness function values determines which particle
has the best position value pi(k) over the current swarm and also
updates the global best position pi(k) for the current and all the
previous swarm moves. The three terms in the equation represent
the current motion, particle own memory, and swarm influence.
These parameters are summed with three weights, namely, inertia
factor, w, self confidence factor, c1, and swarm confidence factor,
c2, respectively. Velocity updates here are influenced by both
the best global solution and the best local solution in the current
population.

3. The position of each particle is updated using its velocity vector
at time k + 1 as:

xi(k + 1) = xi(k) + vi(k + 1) (2)

The three steps of velocity update, position update, and fitness
calculations are repeated until a desired convergence criterion is met.
Two modifications are proposed to enhance the performance of classical
PSO. Firstly, updating global best particle position with zero velocity
according to the following equation:

pg(k + 1) = [1 + λ · U ]pg(k) (3)

where U is chose to be a Gaussian random number with zero mean
and unit variance, and λ is a convergence acceleration parameter that
represents the weighting of stochastic acceleration term that pulls
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each particle towards global best location. Adding randomness to
the position of the global best location may lead to better value for
global best solution. This is proposed for classical PSO; some global
best particle solution could be trapped far away from other particles
solutions in the swarm. Secondly, two new terms in the velocity
updating Equation (1) are introduced as follows:

vi(k+1) = w · vi(k)+c1 · r1 ·
(
pi(k)−xi(k)

)
+c2 · r2 ·

(
pg(k)−xi(k)

)

+c3 · r3 ·
(
pi

fdr(k)−xi(k)
)
+c4 · r4 ·

(
pg

fdr(k)−xi(k)
)

(4)

where, c3 and c4 are acceleration constants; r3 and r4 are uniformly
distributed random variables in [0, 1] range. pi

fdr(k) and pg
fdr(k) are

two new local and global candidate positions that are selected by
locating the individual with minimum fitness to distance ratio (FDR)
over all particles in the swarm. The local and global FDR for each
particle at time k are defined as:

FDRi
local =

fitness (pg(k))− fitness
(
xi(k)

)

dist (pi(k), xi(k))
(5)

FDRi
global =

fitness (pg(k))− fitness
(
xi(k)

)

dist (pg(k), xi(k))
(6)

where fitness(·) is the cost function to be minimized, and
dist(pg(k), xi(k)) is a measure related to the distance between the
particle’s global best position and all other particles on the swarm,
which is defined as

dist
(
pg(k), xi(k)

)
=

∣∣∣∣∣
N∑

n=1

√
pz

n(k)2 − xi
n(k)2

∣∣∣∣∣ (7)

where pz(k) is either the local best pi(k) or global best pg(k) position
vector; pz

n(k) is the nth components of the global best vector. xi
n(k)

is the nth components of the ith particle position vector xi(k) which
is represented as xi(k) = (xi

1, xi
2, . . . xi

N ) in the N -dimensional search
space (particle size).

The added two terms in the proposed velocity updating
Equation (4) are influenced by the FDR measures which ensure the
selection of the candidate with fitness function value that is close
enough to global best solution. At the same time, the selected
candidate has a far enough distance from global and local best positions
as shown in (5) and (6). This way shows better perturbation for
individual particles in the swarm and leads to better search for global
minimum as will be shown in Section 4.
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3. OBJECTIVE FUNCTION FOR WIDE NULL
CONTROL OF LINEAR ANTENNA ARRAY

Adaptive wide nulling for broad-band interference suppression is
achieved by perturbing the current weights of array elements.
Simultaneously, it is always desirable to keep the main beam width
(directivity) and the peak SLL within a certain given level. This is
realized by solving minmax optimization problem that is subject to
three constrains for SLL limits, the prescribed depth of the wide null
and main beam acceptable broadening. The problem can be described
as:

minIn ∈ c {maxθmin≤θ≤θmax |AF(In, θ, dn)|}
s.t. MSL1 ≤ SLL &MSL2 ≤ wide null depth & ∆BW ≤ δ (8)

where AF(In, θ, d) is the array factor as a function of current
coefficients (In), the angle with respect to the direction of the antenna
array (θ) and distance between elements (dn). θmin and θmax are the
elevation angles’ minimum and maximum boundaries for the prescribed
wide null. s.t. is subject to constraint; C is the set of all vectors
with complex components. The complex vector In is the optimization
parameter. SLL is the pattern peak side lobe level; MSL1 is the
prescribed value for SLL excluding the main beam band; MSL2 is the
peak SLL in the region of wide null; ∆BW and δ are the change and
the maximum allowable change in the main beam width respectively.
Linear antenna array of 2N isotropic elements is considered in this
paper. The array is positioned symmetrically along the z axis, and the
array factor for this structure can be expressed as

AF(ψ) =
N∑

n=−N

Inejdnψ (9)

where In = IRe
n + j · IIm

n , (n = −N, . . . , −2, −1, 1, 2, . . . , N) are the
complex excitations of each element in the array, ψ = k · sin(θ) and
k is the wave number. Therefore, the real and imaginary parts of the
array factor are

Re{AF(ψ)} =
N∑

n=−N

IRe
n cos(dnψ)− IIm

n sin(dnψ) (10)

Im{AF(ψ)} =
N∑

n=−N

IIm
n cos(dnψ)− IRe

n sin(dnψ) (11)
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Two cases are considered for the current coefficients of the array
elements. Case 1 (amplitude only control): IRe−n = IRe

n , the
excitation coefficients are real and symmetrical around the center of
the array; this case gives symmetrical pattern about the main beam
direction (θm = 0). Since IIm

n = 0 and sin(−dnψ) = − sin(dnψ), the
imaginary part of AF in (11) equals 0. While, the real array factor (10)
is reduced as following

AF(ψ) = 2
∑N

n=1
IRe
n · cos (dnψ) (12)

Case 2 (full amplitude/phase control): I−n = I∗n the excitation
coefficients are complex and conjugate symmetrical around the center
of the array; this means that IRe−n = IRe

n and IIm−n = −IIm
n ; this case gives

anti-symmetrical pattern about the main beam direction (θm = 0). In
this case, also the imaginary part of (11) equals 0, and the real array
factor (10) can be written as

AF(ψ) = 2
N∑

n=1

IRe
n · cos (dnkψ)− IIm

n · sin (dnkψ) (13)

It is well known that the Chebyshev current distribution gives the
optimum pattern in terms of the sidelobe level and the main beam
width for equally spaced arrays. Starting from initial array factor
pattern of Chebyshev array AFi(ψ), the current coefficients (In) are
optimized to steer the wide null and achieve the required synthesized
pattern according to (8). Inspired by the cost function implemented
previously in [5], a novel best objective function is developed as
following:

Fitness =
θ= pi

2∑

θ=− pi
2

(|Wnull(θ) ·AFi(ψ)−AFi(ψ)|)2 + C(θ) (14)

where AFi(ψ) is the initial Chebyshev radiation pattern; Wnull(θ) is
the weighting function that specifies the wide nulls locations. The
objective function is built by adding two terms. The first term is
the summation (over all sample points) of the squared value for the
difference between the desired and the initial array factors. The second
term is a function that related to the SLL and the depth of the null
constraints. C(θ) is selected so that each constraint is weighted by a
coefficient to emphasize its relative importance. A computer program
has been developed to optimize (14) with array factors presented
in (9)–(13) for the two cases of amplitude only and complex coefficients
control using EPSO, and the results is discussed next.
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4. NUMERICAL RESULTS

The capabilities of the proposed EPSO technique for synthesis of the
radiation pattern of a linear array will be presented in this section.
Before undertaking the paper’s main synthesis problem, a validation
test for EPSO algorithm is performed. A canonical problem of N
elements linear array composed of isotropic elements with broadside
(θm = 90) is optimized in [16], and it is published to be used as
a benchmark that gives the global optimum array placement and
weighting. Optimum current weights and separation distances of
array elements are obtained using ESPO to minimize peak SLL and
compared with the results presented in [16] for N = 6 two case studies
that are proved to be global minimum solutions. As shown in Fig. 1,
the Magnitude of Array Factor obtained using the developed EPSO
coincides well with benchmark array factor patterns [16]. For a given
beam width (BW = 30◦) case, the obtained peak SLL is −24.2 dB, and
for a given (BW = 60◦) case, peak SLL = −51.2 dB is obtained. These
values are exactly the same as the results presented in [16].

For the purpose of wide null pattern synthesis, deterministic
method known as collective multiple deep nulls approach [2] is applied.
Nulls are imposed to the pattern with amplitude only control. Starting
with a given initial pattern AFi(ψ) with a given main beam and side
lobe envelop. The corresponding coefficients {Ino} that produce this
initial pattern are then perturbed such that the resultant pattern would
have nulls at the desired direction (ψm) according to the following
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Figure 1. Comparison between
the developed EPSO tool and Bal-
anis benchmark [1], Magnitude of
Array Factor for optimal array for
N = 6 elements, (a) BW = 30◦,
θd = 90◦, (b) BW = 60◦, θd =
90◦.
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collective multiple deep nulls ap-
proach.
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formula:
In = Ino −

∑M

n=1
γm · ejdnkψm (15)

where M is the number of nulls needed to be imposed to the original
pattern, and γm are constants that are obtained using PSO. For
all subsequent numerical examples the optimization process will be
initiated with a classic Chebyshev design of 20-element linear array
λ/2 inter-element spacing and SLL envelop not to exceed −30 dB.

Figure 2 shows the initial and perturbed (optimized) patterns
using collective multiple deep nulls approach with three prescribed
nulls imposed at θm = 14.49◦, 32.65◦ and 48.06◦. It should be
noted that symmetric nulls is observed at −θm locations since Case 1
(amplitude only control) with AF described in (12) is considered here.
The corresponding nulls are reduced to about −80 dB while the SLL
of the perturbed pattern is maintained at −30 dB except the first lobe
that becomes −26.5 dB, and the main beam width is almost unchanged
compared to the initial pattern.

Next, the problem of antenna pattern synthesis described in (8)
is investigated. The objective will be to synthesize a pattern that has
a broad null located at 35◦ with ∆θi = 30◦ with optimum peak side
lobe level and maximum directivity. The optimum target design will
be subject to the constraint that in the wide null region it is desired
to depress the SLL to less than −50 dB i.e., null depth −20 dB relative
to the side peak SLL. Also, we constrain the peak SLL to not exceed
−30 dB. Also, constraining the percentage of loss in directivity (main
beam widening) to a minimum value is an objective. The desired
pattern is achieved using firstly, the method of collective multiple deep
nulls (Fig. 3) then secondly, using EPSO (Figs. 4–6) to emphasize its
potential and capability for wide nulling and pattern synthesis.

Results of applying collective multiple deep nulls approach to form
a prescribed wide null are illustrated in Fig. 3. As shown five nulls are
imposed to realize the suppressed sector from 20◦ to 50◦. The SLL
at the target sector is found to be relatively high null depth (between
-35 dB and −66 dB) while the pattern peak SLL becomes −26 dB.
Having more deep SLL in the target sector region, number of imposed
nulls needs to be increased. However, this may lead to uncontrolled
values for the pattern peak SLL.

Continuing on the preceding synthesis example, the EPSO
algorithm presented in Section 2 is applied to impose the same wide null
with the objective of having more control on the peak SLL and getting
minimum null depth values using the cost function (14). Fig. 4 depicts
initial and optimized radiation patterns with the prescribed wide null
in the band [20◦, 50◦]. EPSO algorithm is implemented to optimize the
objective function (14) without the use of the term C(θ) which means
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main beam steered at 0◦ with
symmetrical wide null imposed at
θ = 20◦ to 50◦ but peak SLL >
−30.

no constraint on the peak SLL is applied. Amplitude only control (12)
is used here; therefore, a symmetric image wide null on the pattern is
observed at the sector [−20◦,−50◦]. The algorithm uses the following
parameters: swarm size = 20, number of generations = 100000, inertia
weight factor w = 0.5, acceleration constants c1 = 2, c2 = 2,
c3 = 0.5, c4 = 0.5. The dynamic range allowed for elements amplitude
perturbation (∆In) ∈ { − 1.5, 1.5}. As seen in Fig. 4, A perfect wide
null (-67 dB) in the target sector is achieved, and at the same time the
main beam width is unchanged. However, peak SLL becomes −20 dB
at the two close-in lobes next to the main beam.

Wnull(θ) =
{

100 if θ1 ≤ θ ≤ θ2 (wide null region)
50 otherwise (16)

To allow a full control of the peak SLL to be ≤ −30 dB and to have
wide-band null at the exact placement simultaneously, the following
term C(θ) is added to the cost function as in (14).

C(θ) =
{

5 if MSL1 ≤ −30 or MSL2 ≤ −50
0 otherwise , (17)

Figure 5 shows the initial pattern and two optimized patterns. As
can be seen the PSLL ≤ −30 dB is obtained successfully. However,
as expected it is found that as the wide null becomes deeper, more
broadening in the main beam width (BW) occurs. Maximum allowable
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tolerance in the main beam broadening is controlled in the EPSO
implementation by the definition of band range of MSL1 used in (17).
The initial Chebyshev AF has beam width of 16◦ centered about 0◦
at −30 dB. By allowing the beam width at −30 dB to become (BW =
18◦, 19◦ and 20◦), we achieved wide null depths of (MSL2 = −50,
−52 and −67 dB) respectively. The two patterns with deep nulls at
-50 dB and -67 dB are illustrated in Fig. 5.

To achieve non symmetrical null in the pattern with a deeper
null values, the synthesis of the elements with perturbing complex
weights (full amplitude and phase control case) as described in (13)
is applied. Assume initial array coefficients denoted as (IRe

no +jIIm
no ) for

the initial pattern. Besides changing the real part of roots to get the
wide null, ∆IRe

n ∈ {−1.5, 1.5}., small perturbations of the imaginary
parts ∆IIm

n ∈ {−0.15, 0.15} were found also to be necessary in order
to maintain the rest of the pattern side lobes under strict control. As
shown in Fig. 6. The pattern is non-symmetric about the main beam,
as null is imposed at only the positive band [20◦, 50◦]. Maximum deep
null is achieved in this case with the value of -70 dB with BW = 20◦.
The numerical results for previous EPSO implementations (Figs. 3–6)
that were performed are shown in Table 1. The table lists real/ complex
current excitations for the 20 elements of the initial and optimized
arrays. The main beam width for each case is presented in the first
row, and the wide null band depth (MSL2) and the peak SLL values
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Table 1. Currents of array elements for the initial Chebyshev pattern
and the optimized pattern to impose wide null at [20◦, 50◦] with null
depth, peak SLL and mainbeam width for different cases.

k

Perturbed pattern 
(amplitude only)

Perturbed pattern 
(amplitude only)

EPSO, Fig.4
 

Perturbed pattern 
(amplitude only) 

EPSO, Fig.5

Perturbed pattern
(complex current)

EPSO, Fig.6 

BW=16o

±1 4.8116 4.9208 5.0900 5.3070 5.4365 6.2905 6.7978  0.1486i

±2 4.6677 4.6143 5.4687 5.1075 5.3548 6.1638 6.5920  0.1486i

 

±3 4.3902 4.4148 5.0476 4.5588 4.7164 5.4365 5.7374  0.0725i

 

±4 3.9986 3.8150 5.4980 4.2159 4.4154 4.9786 4.8471  0.1430i

 

±5 3.5195 3.4841 4.1962 3.4458 3.3072 3.6969 3.6969  0.0436i

 

±6 2.9848 3.0849 3.9408 3.0911 2.8000 2.9858 2.8415 0.0338i 

±7 2.4280 2.4398 2.2183 2.1373 1.6531 1.7028 1.8583  0.0513i

 

±8 1.8815 2.2993 1.6624 1.6918 1.1790 1.1319 1.1112  0.0436i

 

±9 1.3741 1.1468 0.5479 0.7832 0.4432 0.3969 0.6122  0.1444i

 

±10 1.5667 0.8082 0.3038 0.4374 0.2313 0.1960 0.1261  0.1500i

 
MSL2

-30 -35 -67 -50 -52 -65 -70MSL1

-30 -28 -20 -30 -30 -30 -30

Initial chebyshev
pattern

MNM, Fig.3

BW=16o BW=16o BW=18o BW=19o
BW=20o BW=20o

+

+

+

+

+
+

+

+

+
+

(MSL1) are included in the last two rows.
Final example is presented to get more insight into the capability

of EPSO to synthesize the pattern with multiple non symmetrical wide
nulls while maintaining the peak SLL bounded to a given constraint
value. Multiple wide nulls with minimum SLL at the bands [−30◦,
−20◦] and [45◦, 60◦] are assumed to be imposed in the desired pattern.
For these assumptions, EPSO algorithm optimize the fitness function
in (14) with weighting function adopted as follows

Wnull(θ) =

{ 100 if − 30◦ ≤ θ ≤ −20◦ (wide null 1 region)
100 if 45◦ ≤ θ ≤ 60◦ (wide null 2 region)
50 otherwise

(18)

Figure 8 shows the accurately produced prescribed wide nulls with
null depth = −73 dB (with BW allowed to 20◦ at −30 dB) for Region
1 and Region 2 with complex weights control as in (13). The constraint
having peak SLL less than −30 dB is included in the C(θ) term in the
objective function (14).

Figure 7 shows the convergence of EPSO fitness values compared
with classical PSO for the case study in Fig. 6. History of fitness
values for the first 15000 swarm generations is illustrated for both
classical PSO and EPSO implementations. As can be seen classical
PSO has faster convergence than EPSO algorithm. However, EPSO
reaches lower values than the minimum that is obtained with PSO. The
previous numerical results obtained in this section show the superiority
of EPSO as an efficient tool for beamforming wide null and synthesis
of the pattern to have peak side lobe level fixed at a certain level
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with minimum changes in the main beam width (directivity). This is
performed by different perturbing techniques of amplitude or complex
weights of the current of array elements. Also, it is demonstrated
how to properly select the weighting function used in the objective
function (14) for different examples as it is the key factor for this type
of optimization problems.

5. CONCLUSION

An efficient enhanced version of particle swarm optimization algorithm
is presented for the purpose of suppressed SLL of wide region in the
pattern while preserving the peak side lobe level and main beam width
at prescribed values. The global search ability of available PSO has
been enhanced by adopting some modification to its updating formulas.
The robust EPSO algorithm was successfully applied for wide null
steering while preserving PSLL and BW, and this is proved by some
numerical examples. Without increase in the dimensions of the array,
EPSO algorithm enables the design of the linear array pattern with
accurate wide null steering and minimum null depth. In each of the
presented examples EPSO algorithm easily achieved the optimization
goal. By comparing with PSO, EPSO demonstrates superiority in
achieving optimum end result value and higher convergence accuracy.
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Errata to ANTENNA ARRAY PATTERN SYNTHESIS
AND WIDE NULL CONTROL USING ENHANCED
PARTICLE SWARM OPTIMIZATION by M. A.-A. Mangoud
and H. M. Elragal, in Progress In Electromagnetics Research B, Vol. 17,
1–14, 2009

1) In Fig. 8 legend PSO and EPSO are reversed and the curves should
be as follows:

PSO (x — red) and EPSO ( o — blue)
2) Replace the word Figure 7 by Figure 8 (and vice versa) in page 11.


