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Abstract

This thesis deals with the synchronization of one or several replicas of a known signal received in

a scenario with multipath propagation and directional interference. A connecting theme along

this work is the systematic application of the maximum likelihood (ML) principle together with

a signal model in which the spatial signatures are unstructured and the noise term is Gaussian-

distributed with an unknown correlation matrix. This last assumption is key in obtaining

estimators that are capable of mitigating the disturbing signals that exhibit a certain structure,

and this is achieved without resorting to the estimation of the parameters of those signals.

On the other hand, the assumption of unstructured spatial signatures is interesting from a

practical standpoint and facilitates the estimation problem since the estimates of these signatures

can be obtained in closed form. This constitutes a first step towards the elimination of the

multidimensional searches required by many estimators, which is one of the objectives pursued

in this work.

In the first part of the thesis, the maximum likelihood solution to the general time delay

estimation problem for the case of noise with unknown spatial correlation is derived. The

resulting criterion for the delays is shown to be consistent and asymptotically efficient; but it

is highly non-linear due to the presence of a matrix determinant operator, and does not lead

to simple optimization procedures. It is proven using systematic and heuristic methods that

the optimal ML criterion can be approximated by a simpler and asymptotically equivalent cost

function. Unlike many other estimation problems, the asymptotic efficiency is not maintained

if the optimal criterion is approximated by its first term in the Taylor series expansion. The

interesting feature of the new cost function is the fact that it depends linearly on the projection

matrix onto the subspace spanned by the signals, and hence it can be minimized using the

computationally efficient IQML algorithm. Furthermore, the existence of simple yet robust

against the interference initialization schemes based on identity weightings and possibly ESPRIT

makes the approach viable for practical implementation. The proposed cost function can be

applied identically to the estimation of the “frame delay” in a FIR channel. In this case,

the IQML algorithm is modified in such a way that each iteration comes down to rooting a

polynomial whose order is equal to the length of the FIR channel.
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The goal of the estimators presented in the second part of the thesis is to take advantage

of one particularity of the GNSS (Global Navigation Satellite Systems) systems consisting in

that the direction-of-arrival of the line-of-sight signal may be known a priori. Resting on this

additional information and assuming that the antenna is calibrated, a simplified and approximate

model for the received signal is proposed. It consists in gathering all the signals except for the

direct one into a equivalent term with unknown spatial correlation. The ML estimators of the

time delay and carrier phase of the line-of-sight signal derived under the simplified model are

analyzed. They largely reduce the bias produced by multipath components and, as a matter

of fact, their RMSE is in many situations very close to or even better than the best possible

performance attainable with more detailed models of the multipath channel. Two polynomial-

rooting algorithms for computing the time delay estimate are presented. It is also shown that

the ML estimates can be obtained from the output signal of a hybrid beamformer. Since the

beamformer itself depends on the time delay and amplitude estimates of the direct signal, an

iterative algorithm arises naturally. The hybrid beamformer provides insights into the ML

estimators and may be appropriate for a practical design. It is shown both analytically and

numerically that the proposed ML time delay estimator is robust against errors in the a priori

steering vector of the direct signal, and an approach to extend the range of tolerable pointing

errors is presented.

In the last part of the thesis, the synchronization of a desired user transmitting a known

training sequence in a DS-CDMA communication system is addressed. A model in which

the multiple-access interference, the external interference and the noise are included into an

equivalent disturbance term with unknown and arbitrary space-time correlation is considered.

Starting from this model, a large-sample ML code-timing estimator that operates in frequency-

nonselective, slowly fading channels is derived. It is a single-user and near-far resistant method.

The significance of the proposed estimator is that it takes advantage of the structure of the

signals in both the space and time domains, so it contrasts with other methods put forward up

to date that, while also employing antenna arrays, only exploit the structure of the signals in one

of the domains. In a CDMA communication system, the desired user is interfered by the signals

of a generally large number of users and by possible external interferers. In accordance with this

fact, numerical results show that the joint use of all the spatial and temporal degrees of freedom

is indispensable for the correct acquisition and tracking of the synchronization parameters in

heavily loaded systems and/or in the presence of external interference.



Resumen

Esta tesis aborda la sincronización de una o varias réplicas de una señal conocida recibidas

en un entorno con propagación multicamino e interferencias direccionales. Uno de los hilos

conductores de este trabajo es la aplicación sistemática del principio de máxima verosimilitud

(ML) junto con un modelo de señal en el cual las firmas espaciales no tienen estructura, y en cual

el ruido es Gaussiano y presenta una matriz de correlación desconocida. Esta última suposición

es fundamental a la hora de obtener estimadores capaces de atenuar las señales interferentes que

presentan algún tipo de estructura, y esto se consigue sin necesidad de recurrir a la estimación de

ciertos parámetros de dichas señales. Por otra parte, la suposición de que las firmas espaciales

carecen de estructura tiene ventajas desde un punto de vista práctico, al mismo tiempo que

simplifica la estimación del resto de parámetros ya que las estimaciones de estas firmas se

pueden calcular de forma cerrada. Esto constituye un primer paso hacia la eliminación de las

búsquedas en múltiples dimensiones, que es otro de los objetivos perseguidos en este trabajo.

En la primera parte de la tesis se deduce la solución de máxima verosimilitud para el problema

general de estimación de retardos cuando el ruido tiene correlación espacial desconocida. Se

demuestra que el criterio resultante para los retardos es consistente y asintóticamente eficiente,

pero también es altamente no-lineal debido a la presencia del determinante de una matriz y no

permite, por tanto, el uso de procedimientos sencillos de optimización. Asimismo, se demuestra

y se argumenta intuitivamente que el criterio óptimo ML se puede aproximar por una función

de coste más sencilla que es asintóticamente equivalente. A diferencia de otros problemas de

estimación, en el caso tratado aqúı, el primer término del desarrollo de Taylor del estimador

ML no conserva la eficiencia asintótica. La caracteŕıstica esencial de la nueva función de coste

es que depende linealmente de la matriz de proyección sobre el subespacio de las señales y, por

lo tanto, admite ser minimizada mediante el algoritmo IQML, que es eficiente desde el punto

de vista computacional. Además, la existencia de métodos de inicialización sencillos y robustos

a las interferencias, los cuales se basan en el uso de una matriz de pesos igual a la identidad y

posiblemente también en el algoritmo ESPRIT, hace que el esquema de estimación propuesto

pueda ser viable para un diseño práctico. La nueva función de coste se puede aplicar de la misma

manera a la estimación del retardo en un canal FIR. En este caso, el algoritmo IQML se puede

modificar de forma que, en cada iteración, la estimación del retardo se obtiene a partir de las

iii



iv

ráıces de un polinomio cuyo orden es igual a la longitud del canal.

El objetivo perseguido por los estimadores presentados en la segunda parte de la tesis es

aprovechar una particularidad de los sistemas GNSS (Global Navigation Satellite Systems), que

consiste en que la dirección de llegada de la señal directa puede ser conocida a priori. Basándose

en esta información adicional y suponiendo que el array está calibrado, se propone un modelo

simplificado, aunque al mismo tiempo aproximado, para la señal recibida. En este modelo

todas las señales excepto la señal directa se engloban en un término con correlación espacial

desconocida. Se analizan los estimadores ML del retardo y de la fase de portadora de la señal

directa. El sesgo producido por las componentes multicamino al utilizar estos estimadores se

reduce de forma muy importante con respecto al sesgo que sufren otros métodos. De hecho,

el error cuadrático medio de los estimadores propuestos es en muchas ocasiones muy próximo

o incluso inferior al mı́nimo error que se puede alcanzar con modelos más detallados del canal

multicamino. Asimismo, se presentan dos algoritmos de estimación del retardo basados en

el cálculo de las ráıces de un polinomio. Se demuestra también que las estimaciones ML se

pueden obtener a partir de la señal de salida de un conformador de haz h́ıbrido. Debido a que

el propio conformador depende de las estimaciones del retardo y de la amplitud de la señal

directa, el uso de un algoritmo iterativo surge de forma natural. La formulación mediante el

conformador h́ıbrido proporciona una interpretación alternativa interesante de la estimación ML,

y podŕıa ser apropiada para una realización práctica. Finalmente, se demuestra anaĺıticamente

y numéricamente que el estimador propuesto para el retardo es robusto frente a errores en el

valor nominal del vector de enfoque de la señal directa, y se presenta una manera de extender

el margen tolerable de errores de apuntamiento.

En la última parte de la tesis se trata la sincronización de un usuario deseado que trans-

mite una secuencia de entrenamiento conocida en un sistema de comunicaciones DS-CDMA.

El modelo de señal utilizado agrupa el ruido, y la interferencia externa y de acceso múltiple

en un término de ruido equivalente que presenta una matriz de correlación espacio-temporal

desconocida. Partiendo de este modelo, se deduce un estimador del retardo que es una aproxi-

mación para un número grande de muestras del estimador ML exacto y que es apropiado para

canales con desvanecimientos lentos y no selectivos en frecuencia. El estimador propuesto es una

técnica de un solo usuario y es resistente al efecto near-far. Su importancia radica en el hecho

de que aprovecha la estructura de las señales en el dominio temporal y espacial, lo que contrasta

con otros métodos existentes que, a pesar de utilizar un array de antenas, sólo utilizan la es-

tructura de las señales en uno de los dos dominios. En un sistema de comunicaciones móviles,

el usuario deseado está interferido por un número generalmente elevado de señales de otros

usuarios y por posibles interferencias externas. En concordancia con este hecho, los resultados

numéricos han mostrado que el uso conjunto de todos los grados de libertad espacio-temporales

es indispensable para la correcta adquisición y seguimiento del retardo en sistemas con una carga

elevada de usuarios y/o en presencia de interferencias externas.
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nombrarlas aqúı. Agradezco en primer lugar a mi director de tesis, Juan A. Fernández Rubio, su

apoyo y sus consejos. Creo que él siempre ha tenido mucha más confianza en mı́ que yo mismo.

Lee Swindlehurst, who has coauthored some of the work, also deserves my deepest appreciation.

He made my stay at BYU a pleasant and rewarding experience that was the beginning of a

fruitful collaboration. La puerta de Gregori Vázquez nunca ha estado cerrada. Entrar en su
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Chapter 1

Introduction

The focus of this thesis is on the use of antenna arrays for the synchronization of a known signal

in the presence of multipath propagation and directional interference. The primary framework

of this work has been the positioning systems. Notwithstanding, synchronization is a rather

general problem, common to communication, radar and sonar systems. Therefore, the gen-

eral design criteria, initially tailored to positioning systems, have been extended in order to

derive synchronization methods also for communications systems. In the sequel, the problems

associated with both types of systems are introduced, and subsequently the objectives and the

organization of this thesis are described.

1.1 Positioning Systems

There is hardly any doubt that Global Navigation Satellite Systems (GNSS) will complement

or even replace in a near future all other positioning, navigation and synchronization systems.

At the present time there are two such operative systems: the American GPS (Global Position-

ing System) and the Russian GLONASS (GLObal’naya NAvigasionnay Sputnikovaya Sistema).

Their deployment was started in the 70s and both of them consist basically of a constellation of

satellites and a set of terrestrial control stations. Under all weather conditions and everywhere

on and around the Earth, a user equipped with an adequate receiver can obtain round-the-clock

its position and the time [Kap96]. Originally developed as military systems, GPS and to a lesser

extent GLONASS have also attracted the attention of the civilian community. Indeed, in the

last decades there has been a surprising increase of their applications, to mention only a few:

surveying, atmospheric study, synchronization/time transfer, communications, fleet control, en

route/precise navigation, etc. Such a fast evolution has led to stringent requirements for GNSS

systems, particularly in regard to their accuracy. GPS and GLONASS have been augmented in

order to satisfy the requirements of some precise applications. The augmentation programs are
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2 CHAPTER 1. INTRODUCTION

the Wide/Local Area Augmentation System (WAAS, LAAS) in the USA, the MSAS in Japan,

and the GNSS1(EGNOS) in Europe. However, these improvements do not even allow the use

of present GNSS in the most demanding applications, such as airplane approaches of category

III, where the requirements are 60cm and 4m of vertical and lateral accuracy (2 sigma values),

respectively. This is one of the main reasons, together with the lack of civil control over the

systems, why Europe is contributing under the program GNSS2/GALILEO to build a new and

civil system [ESA96, FR97]. These facts show clearly the great interest that global navigation

satellite systems have arisen among the international community. Future systems will overcome

many of the limitations of present ones, but, besides the systems themselves, the receivers need

also to be improved. This is one of the general issues that is going to be studied in this thesis; the

reasons for that necessity, the existing approaches and our proposed methods will be explained.

The existing global navigation satellite systems (GPS and GLONASS) and the future GNSS2,

according to recent studies, share the same operating principle and the same guidelines in the

signal structure [Sch98a, Sch98b]. The fundamental signal(s) that each satellite transmits is one

(or several) direct sequence – spread spectrum signal(s) (DS–SS) [Hol90]. Modulated on that

signal or on another one, the satellite also sends precise information, named navigation message,

about its position and the time when a temporal mark in the DS-SS signal is transmitted. The

receiver obtains from the propagation delay of the direct signal (line-of-sight signal, LOSS) the

distance to each satellite. This is the essential task of a GNSS receiver, since the additional

information is provided by the system and its accuracy or availability cannot be improved in

the receiver. But, given a system configuration, the quality of the final data presented to the

user depends largely on the accuracy in the measurement of the propagation delay. Using the

navigation message and the propagation delay from as many satellites as unknowns (usually four:

three for the position coordinates and one for the receiver clock error), the antenna location can

be computed by means of a simple triangulation procedure. It is important to remark that

only the signal that propagates through the direct path carries information about the distance

between the satellite and the receiver.

The propagation delay is embedded in two parameters of the received signal: the delay

of the complex envelope and the carrier phase. The essential duty of the signal processing

unit of a GNSS receiver is to measure these two parameters (usually named observables in the

GNSS nomenclature), which reduces to the synchronization of the receiver clock and carrier

phase. Next, these measured parameters are fed to the navigation processor in order to com-

pute the position, time or any other final parameter. In formulae, if the complex transmitted

signal is a (t) ej2πfct, the received signal under ideal propagation conditions is proportional to

a (t − τ0) e−j2πfcτ0 ej2πfct. The value of τ0 (scaled by the light speed) obtained by comparing

the received complex envelope a (t − τ0) with a local replica of a (t) is called pseudorange, code

phase/range or time delay [Zhu95b, HW97]. It is virtually an absolute measure of the distance

since its possible ambiguity is easily solved, and its typical accuracy in GPS is about 3 meters
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(considering only thermal noise errors). Note that all the pseudoranges measured by a receiver

differ in a fixed quantity from the true distances because of the receiver clock offset, as the name

itself suggests. In the same way, the value of τ0 measured from the phase of the term e−j2πfcτ0

is referred to as carrier phase [Zhu96, HW97]. This observable is much more precise than the

pseudorange (the thermal noise produces an error on the order of 5 millimeters in GPS). On the

other hand it is an ambiguous measure, whose absolute determination (i.e., the computation of

the integer number of wavelengths) needs costly procedures [Teu97, Has98]. High-end receivers

use both pseudorange and carrier-phase ranging [Kap96].

Several errors degrade the accuracy of the global navigation satellite systems [ESA96,

Par96a]. A simple classification of the error sources can be presented according to their ori-

gin: i) satellite induced errors (e.g., ephemerides, clock errors and the recently turned off Se-

lective Availability), ii) propagation induced errors (variation of the propagation speed in the

ionosphere and the troposphere), and iii) receiver local errors (thermal noise, multipath prop-

agation and interferences). Whereas the first two types of errors can be almost completely

eliminated or, at least, reduced to centimeter level using certain augmentations such as differen-

tial operation (i.e., correction of the observables based on the measurements done by reference

stations at known positions) or observations at several frequencies, the receiver local errors can

only be reduced with an appropriate receiver design. Furthermore, if the differential corrections

generated by a reference station are based on multipath or interference corrupted observables,

the position accuracies of all the users connected to that station are deteriorated. These are

the reasons why multipath and interference remain as the dominant error sources in most high

precision applications and are the limiting factors in achieving the ultimate GNSS accuracy

[Wei97a, Nee95].

Specifically, multipath refers to the reception of replicas of the GNSS signal arriving at the

antenna by means of one or more reflected paths. Multipath signals are received with a delay

relative to the direct signal because they travel an extra path length, so they do not help in

determining the geometric distance between the receiver and the satellite, but quite the opposite.

Coherent multipath denotes those reflections that are correlated with the direct signal, and this

is the type of reflections considered in this thesis. These replicas satisfy two conditions: their

time delay and Doppler frequency differences with respect to the LOSS are on the order of or

smaller than the inverse of the signal bandwidth (approximately the chip period in a DS-SS

signal) and the inverse of the observation time (usually on the order of the symbol period),

respectively. Coherent multipath bias the pseudorange and carrier phase measurements because

synchronization methods in a conventional receiver lock to a combination of the direct signal

with the coherent reflections [Gau99, Nee93b, Zhu95a, Nee95, Mac99]. In other words, coherent

multipath introduces systematic errors in the measurements. It is worth remarking that, in

order to study the multipath problem in GNSS receivers, it is not appropriate to employ the

model usually adopted in communication systems, whereby the time delay differences between



4 CHAPTER 1. INTRODUCTION

coherent reflections and the direct signal are neglected so the coherent multipath is modeled as

multiplicative distortion (i.e., frequency-nonselective fading). On the other hand, non-coherent

multipath provides a source of diversity often used in communications systems to improve their

performance (basically the symbol error rate). However, this type of multipath components is

not so relevant in GNSS because they hardly influence the estimation of the LOSS parameters,

and moreover the bit error rate is not an essential performance measure of a GNSS receiver. To

make evident the importance of multipath errors it suffices to present their magnitude in the

particular case of GPS. The pseudorange error may be on the order of tens or even a hundred

meters, and the error in the carrier phase may reach some centimeters [Par96a, chapter 14],

[Wei94, Wei97a, Bra96, Bro97]. Moreover, these large multipath errors in the pseudorange

hamper the ambiguity resolution process needed for carrier phase ranging. Unlike kinematic

applications, in static ones the evolution of the multipath errors is so slow that they are not

averaged out [Nee95]. Those values contrast with the level of accuracy achieved in a multipath-

free scenario (on the order of a few meters) and with the sub-meter accuracy required by category

III airplane approaches [ESA96]. Furthermore, like any other system, the GNSS may also be

exposed to external interference. Indeed, specially designed interferers are already available on

the market. The interferences can increase the errors in the observables up to several magnitude

orders and can even turn the system useless, so receivers should be endowed with interference

cancelling techniques in order to make possible the use of GNSS in safety-critical applications,

such as automatic guidance and landing systems. GPS and GLONASS are very vulnerable to

intentional and also unintentional jamming sources, such as radar transmitters. Although the

spread-spectrum modulation provides some level of antijam capability, the received power is so

low (about -160dBW for GPS) that 1W of radiated power suffices to completely block the GPS

or GLONASS signals within a range of 30km.

1.2 Communication Systems

Precise synchronization is not only the key to obtaining location estimates with accuracies of a

few meters or better in GNSS receivers, but also a critical aspect of virtually all communication

systems. Accurate frame and symbol synchronization is especially important in time-division

multiple access (TDMA) and packet-based systems, or code-division multiple access systems

(CDMA). Timing information is also needed for any other application where range measurements

are made, as in active radar and sonar systems. In these fields the problem is usually referred

to as propagation delay or time delay estimation, but in mathematical terms there is little

difference between this and synchronization. We will use all these terms, along with code

timing, interchangeably.

The last part of this thesis addresses the problem of synchronization of DS-CDMA wireless
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communication systems, which use the same modulation format as the present positioning sys-

tems. Multiple-access interference (MAI) is inherent to asynchronous DS-CDMA systems, since

orthogonality among the users’ codes cannot in general be achieved. The MAI can make the

conventional detector (i.e., a bank of filters, each matched to a specific user’s code) become use-

less when the powers of the signals received from different users are unequal [Pro95]. This is the

so-called near-far problem. One alternative to overcome this problem is the use of power-control

schemes. However, these schemes have some limitations because they increase the overall com-

plexity of the system, do not guarantee an optimal performance (e.g., they limit the performance

of users with good channels, and some cross-talk still occurs even though power control is used),

and there are certain system configurations in which a proper power control cannot be employed

(e.g., when several receivers are used) [Par96b]. The use of multi-user detectors is, therefore, nec-

essary in most communication systems in order to combat the near-far problem. The optimum

receiver proposed in [Ver86] has been followed by a number of sub-optimum ones (see [Ver98]

for a review). All these receivers require the knowledge of one or several parameters, such as

the users’ code timings, powers and carrier phases. Moreover, the code timings generally need

to be estimated with high accuracy, since errors thereof have large impact on the performance

of many detectors [Par96c]. The employ of near-far resistant and accurate code synchronization

techniques for acquisition and tracking is therefore essential to achieve a correct performance

in a DS-CDMA system. This statement is corroborated by the suggestion in [Mad91], stating

that the capacity of a DS-CDMA system is limited by the ability to achieve code acquisition.

Besides, the MAI is not the only type of interference that may be received. The receiver can be

disturbed by any other intentional or fortuitous signal, which we will denote in general as ex-

ternal interference. Consequently, the design of synchronization techniques that are also robust

against external interference is of fundamental importance in many situations. There is a vast

literature on time delay estimation, the majority of which focuses on the case where the data

is measured from a single receiver. However, the performance of single channel timing recovery

methods is limited when multipath or co-channel interference (CCI) is present, such as in many

wireless communications applications. For this reason, attention has recently shifted to the use

of antenna arrays for addressing these problems. The spatial selectivity offered by an antenna

array can dramatically improve the performance in environments with severe CCI.

1.3 Objectives

Due to the limitations of the multipath and interference mitigating techniques proposed to

date for GNSS receivers, we find interesting to further investigate new methods to combat

those error sources. We will argue the shortcomings of the single-antenna methods, and the

use of an antenna array in the receiver will be proven as a highly effective alternative because

arrays can exploit the virtually sole diversity source, that is spatial diversity, present in GNSS
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scenarios subject to multipath propagation. Therefore, the overall objective of this thesis is

to study and propose estimators of the unknown parameters (time delay, and carrier phase

or spatial signature) of the incoming signals when an antenna array is used in the receiver,

and multipath components and interferences are present. Given the increase of the receiver

complexity introduced by an antenna array, it is worth investigating techniques that efficiently

exploit the use of the array and thus are able to combat those two main disturbing effects,

and not only one of them like many previous works. Note that we focus on signal processing

techniques and not on data/observables processing methods. The common thread of all the

proposed estimators is that they are derived using the Maximum Likelihood (ML) principle and

assuming an arbitrary unknown correlation of the noise. The ML principle is one of the chief

systematic approaches to many estimation problems. While ML estimators are often readily

derived, they usually lead to excessively complex problems. Therefore, interest is placed in

obtaining, either systematically or ad hoc, simpler techniques that may be viable for practical

implementation. However, a thorough analysis of the computational complexity of the different

techniques, as compared to present implementations limits, will not be carried out.

In order to overcome the limitations of many existing methods, an initial premise was to

impose no restrictions on the array geometry, along with reducing as much as possible the

number of variables of the resulting cost functions. The parameters that are not of interest in

our application have to be modeled in such a way that their contribution can be eliminated in

closed form. This refers especially to the directions-of-arrival (DOA) of the signals. Hence, the

estimators do not have to rely on DOA estimation procedures. The effort invested in estimating

the DOAs, which would be important because spatial searches are generally needed, could hardly

be justified since the parameters of interest in a GNSS application are not the DOAs themselves.

Another objective is the exploitation of a particularity of GNSS systems consisting in that the

positions of the transmitter and the receiver are approximately known. This will make possible

the derivation of a technique able to combat specular and diffuse multipath. The former refers

to a few reflections produced by smooth surfaces such as the wings of a plane, the sea or the

earth surface, and certain buildings. The diffuse reflections are produced by rough surfaces, and

are often modeled as a discrete summation of a large number of weak reflections.

The methodology of derivation of ML estimators can be also applied to DS-CDMA commu-

nication systems. However, there are some important differences between the communication

and navigation systems. In the latter, the focus is on combating the reflections of the direct

signal, in addition to the external interferences. Since the number of external interferences is

assumed small or comparable with the number of antennas, it is possible to largely mitigate

those interferences using only the spatial degrees of freedom, which is related to considering the

noise is correlated only in the spatial domain. Whereas, in CDMA communications systems, the

signal of a desired user is interfered by the signals of a large number of users. Since the number
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of disturbing signals usually exceeds the number of spatial or temporal degrees of freedom sep-

arately, it is necessary (at least in heavily loaded systems) to employ jointly all these degrees to

combat the MAI. Hence, the signal model has to be modified in order to take into account the

space-time correlation of the interference.

1.4 Organization of the Thesis

After the descriptive Chapter 2, the contributions of this thesis are included in Chapters 3-5.

These chapters are written so that they are essentially self-containing, avoiding continuous ref-

erences to previous definitions. This is done to help the reader interested in only one part of

the material, and to abstract the basic techniques from the surrounding details regarding the

application. As a result of this approach, some definitions or background material may occur

more than once.

Chapter 2 outlines the synchronization techniques used by conventional GNSS receivers and

the multipath-induced errors they experience. This chapter also reviews existing approaches to

the mitigation of multipath and interference errors in GNSS receivers, and techniques that exploit

antenna arrays for synchronization in a general framework. Next, some relevant parameters of

certain GNSS signals are presented. The general array signal model used in the following two

chapters and the main assumptions involved are introduced. The signal model employed in

chapter 5 is somewhat different, so its description is deferred to the corresponding chapter. The

relationships between the general model and the signals (before and after the despreading) in

a GNSS receiver are explored. A frequency-domain representation of the signal model is also

sketched. The use of a general model is useful because it makes the derivation of the techniques

in the following chapters independent of the particular type of employed signals, and it bears out

that the proposed estimators have a rather wide scope. Chapter 3 delves into the problem of

estimating the time delays of multiple replicas of a known signal received by an antenna array in

spatially colored noise. The highly non-linear ML criterion is approximated by an asymptotically

equivalent criterion. The new estimator allows the use of the computationally attractive iterative

quadratic maximum likelihood (IQML) algorithm. A modification of this algorithm when the

channel is modeled as a FIR filter is proposed. Based on the knowledge of the steering vector

of the direct signal, an estimator of the time delay and carrier phase of the LOSS is proposed

in Chapter 4. The estimator rests on a simplified and approximate model which gathers all

disturbing signals in a single term. It is argued that the knowledge of that steering vector is

essential for the suitability of the model, but at the same time the degree of accuracy of this

vector is not critical. Closed form and iterative variants of the estimator are presented. The

latter provides an interesting connection between the ML estimator and a hybrid beamformer.

Chapter 5 is devoted to the synchronization of a desired user transmitting a known training
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sequence in a DS-CDMA wireless communication system. It is assumed that the receiver consists

of an arbitrary antenna array and works in a near-far, frequency-nonselective, slowly fading

channel. The obtained estimator makes efficient use of the structure of the disturbing signals

in both the space and time domains in order to mitigate their effects. Finally, a brief summary

of the contributions, along with overall conclusions and possible topics for future research are

included in Chapter 6. A glossary and a list of usual notations can be found at the end of this

document.



Chapter 2

A Short Technical Background

This chapter provides some background material. Section 2.1 contains a description of the

synchronization techniques used in conventional GNSS receivers. It is followed by a review of

multipath and interference mitigation single-sensor methods in Section 2.2 and a survey of the

use of antenna arrays for synchronization in Section 2.3. Next, the parameters of some GNSS

signals are described in Section 2.4, and the array signal model employed in the following two

chapters is introduced in Section 2.5.

2.1 Conventional Code Timing and Carrier Phase Estimation

A direct-sequence spread-spectrum (DS-SS) signal q(t) can be expressed as

q (t) =

∞∑

l=−∞

d (l) p (t − lT ) . (2.1)

The sequence of symbols {d(l)} is transmitted at rate 1/T . Expression (2.1) actually represents

any linearly modulated signal. A distinctive characteristic of DS-SS signals is that p(t) is not a

simple shaping pulse, but a spreading waveform which can be written as

p (t) =

P−1∑

n=0

c (n) g (t − nTc) , (2.2)

where g(t) is the chip-shaping pulse, Tc is the chip period, and {c(n)} is the sequence of chips of

the pseudo-noise (PN) code, whose length is P = T/Tc. If d delayed replicas of the signal q(t)

arrive at a single sensor, the complex baseband received signal is

x (t) = α0 q (t − τ0) +
d−1∑

k=1

αk q (t − τk) + w (t) , (2.3)

9
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where αk and τk are the complex amplitude and propagation delay of the kth replica, respectively.

The term w(t) represents the additive noise and all other disturbing components. The subscript

0 stands for the line-of-sight signal (LOSS); the rest of replicas correspond to reflections, and

hence τ0 < τk, ∀k ≥ 1 due to clear physical reasons. The desired carried phase information ϕ0

is embedded into the phase of α0 (i.e., ϕ0 = ∠α0).

The conventional synchronization methods used by most GNSS receivers can be derived by

applying the maximum likelihood (ML) principle to the signal model in (2.3) with the assump-

tions that d = 1 and that w (t) is white Gaussian noise [Men97, Mey98]. With regard to the

estimation of the time delay, different cost functions to be maximized are obtained depending

on different assumptions about the other parameters. For instance,

Lc (τ0) = Re

{
∑

l

d̂∗ (l) e−j ϕ̂0 y (lT + τ0)

}
(2.4)

is used in a decision-directed, phase-directed case, and

Lnc (τ0) =
∑

l

∣∣y (lT + τ0)
∣∣2 (2.5)

corresponds to a non-data-aided, phase-independent criterion. In both cases, y (lT + τ0) are

samples of the output of the code matched filter p∗(−t) taken at instants lT+τ0. The summations

in these two cost functions cover a certain observation window. Estimates of the carrier phase,

ϕ̂0, and of the symbols, d̂(l), are needed in (2.4). In the terminology of DS-SS systems, the

matched filter is often named correlator and the processing it performs is called despreading .

Both cost functions are generally driven to the maximum using feedback loops that employ the

derivative of the lth term in the right-hand side of (2.4) or (2.5) as timing error detector. Since it

is convenient to dispense with the calculation of the derivative in order to simplify the receiver,

the derivative is approximated with a finite difference. Thus, the following two timing error

detectors or discriminators result from (2.4) and (2.5), respectively:

ec (l, τ0) = Re
{

d̂∗ (l) e−j ϕ̂0
(
y (lT + τ0 + δ Tc) − y (lT + τ0 − δ Tc)

)}
(2.6)

eeml (l, τ0) =
∣∣y (lT + τ0 + δ Tc)

∣∣2 −
∣∣y (lT + τ0 − δ Tc)

∣∣2 , (2.7)

which form the widespread coherent DLL (delay lock loop) and non-coherent early-minus-late

(EML) power DLL, respectively ([Die92, Zhu95b, Kap96, Fel97]). A variation of (2.7) is the

detector used by the dot-product DLL:

edot (l, τ0) = Re
{

y∗ (lT + τ0)
(
y (lT + τ0 + δ Tc) − y (lT + τ0 − δ Tc)

)}
. (2.8)

The value 2δ is usually named early-late spacing of the DLL, and 0 < δ < 1.

The expected value of the discriminator output, that is E{e (m)}, as a function of the trial

value τ0 is called discrimination curve or S-curve, and the position of its zero-crossing is the
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mean of the time-delay estimate [Sim85, Vol.3], [Zhu95b, Gau99]. In the absence of multipath

components, the DLL (any of them) provides unbiased estimates. However, the effect of the

reflections is to distort the S-curve in such a way that the zero-crossing is shifted away from

the true time-delay of the LOSS and the estimates obtained with the DLL become biased

[She94, Nee93b, Zhu95a, Nee95, Sec96]. It is straightforward that the S-curves of the coherent,

EML and dot product DLLs are [Gau99]

Sc (τ0) = σ2
d

d−1∑

k=0

|αk| cos (ϕk − ϕ̂0) Re
{
cpp (τ0 − τ̌k + δ Tc) − cpp (τ0 − τ̌k − δ Tc)

}
(2.9)

Seml (τ0) = σ2
d

∑

l

d−1∑

k=0

d−1∑

r=0

α∗

k αr c∗pp (l T + τ0 − τ̌k + δTc) cpp (l T + τ0 − τ̌r + δTc)

− σ2
d

∑

l

d−1∑

k=0

d−1∑

r=0

α∗

k αr c∗pp (l T + τ0 − τ̌k − δTc) cpp (l T + τ0 − τ̌r − δTc) (2.10)

Sdot (τ0) = σ2
d

∑

l

d−1∑

k=0

d−1∑

r=0

Re
{

α∗

k αr c∗pp (l T + τ0 − τ̌k) (2.11)

·
(
cpp (l T + τ0 − τ̌r + δTc) − cpp (l T + τ0 − τ̌r − δTc)

)}

where (̌·) is used to denote the true values of the parameters, and cpp (t) is the code autocorre-

lation, i.e.,

cpp (t) = p (t) ∗ p∗ (−t) . (2.12)

In computing (2.9)-(2.11) we have assumed that {d(l)} is a iid sequence with variance σ2
d, and

expression (2.9) is conditioned on ϕ̂0. In (2.9) we have also considered that d̂(l) = d(l). In

general, any of these S-curves satisfies S (τ̌0) = 0 only when d = 1.

In order to measure the carrier phase of the LOSS, conventional receivers employ different

types of phase lock loops (PLL), such as the well-known Costas loop [Hol90]. Despite the

fact that a complete analysis of such loops is involved, some insight can be gained by simply

considering that the carrier phase is estimated as the argument of the samples of the despread

signal taken at certain instants [Zhu96]:

ϕ̂0 (l) = ∠ y (l T + τ̂0) (2.13)

Again it is not difficult to show that the mean value of ϕ̂0 only coincides in general with

ϕ̌0 when no reflections are received, otherwise the carrier phase estimate is biased [Nee93b,

Zhu95a, Nee95]. The examples in Figure 2.1 are plotted to make clear how deleterious multipath

errors can be. These figures represent the maximum biases produced by a single reflection as a

function of its delay separation with respect to the LOSS. The large magnitude of these errors is

remarkable, since a chip period Tc of the GPS C/A code amounts to 300 meters approximately,

and a wavelength of the GPS L1 carrier is about 20 centimeters (see Section 2.4). The reduction



12 CHAPTER 2. A SHORT TECHNICAL BACKGROUND

0 0.5 1 1.5 2 2.5 3
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Delay of the Reflection / T
c

T
im

e
−

D
e

la
y
 E

s
ti
m

a
ti
o

n
 B

ia
s
 /

 T
c

In−phase reflection

Out−of−phase reflection

Refl. Atten.: −3dB, δ=0.5  
Refl. Atten.: −3dB, δ=0.05 
Refl. Atten.: −10dB, δ=0.5 
Refl. Atten.: −10dB, δ=0.05

The time-delay estimate is obtained with a DLL.

The absolute maximum biases are the same for

the three types of DLL presented above, and they

occur when the phase of the reflection with respect

to the LOSS is 0 or π. Different early-late spacings

are considered.

0 0.5 1 1.5 2 2.5 3
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Delay of the Reflection / T
c

C
a

rr
ie

r−
P

h
a

s
e

 E
s
ti
m

a
ti
o

n
 B

ia
s
 (

c
y
c
le

s
)

Refl. Atten.: −3dB 
Refl. Atten.: −5dB 
Refl. Atten.: −10dB

The carrier phase bias is computed in absence of

errors in the time-delay estimate of the LOSS. The

expression of the phase of the reflection that pro-

duces the maximum errors can be easily derived,

see e.g., [Nee93b].

Figure 2.1: Absolute maximum biases of the time-delay and carrier phase estimates produced

by a single reflection for different attenuations of the reflection. The chip shaping pulse is a

Nyquist square-root raised cosine pulse with 0.2 roll-off.

of the biases in the time-delay and carrier phase estimates produced by the multipath components

is one major objective of this thesis.

In addition to the bias, the other performance measure of the estimators is the variance,

which is produced by thermal noise, interferences and self-noise. The latter is negligible given

the long codes normally used in GNSS systems. The DLL and PLL used in most receivers are

designed under the assumption that white noise is the only disturbing received signal, so they

do not offer any protection against interferences, apart from the own protection of the DS-SS

signal. Then, the variances of the time-delay and carrier phase estimates are roughly inversely

proportional to the SINR (signal to interference plus noise ratio) and the performance of the

DLL and PLL may be seriously degraded in the presence of strong interferences [LA98a, LA98b].

The design of estimators with an intrinsic capability of cancelling interferences is another major

objective of this thesis.
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2.2 Review of the Single-Antenna Techniques

Although some studies about the effects of multipath and interferences on the observables were

already carried out in the 80s [Cou81], and even earlier, it is in the last decade when there

has been an increasing interest of the manufactures and the research community in reception

schemes capable of mitigating those effects. For certain, one of the reasons for this interest

arises from the present technological development that makes feasible the implementation of

more complex receivers. The methods proposed up till now differ in many aspects, such as the

application, the signal scenario or the type of receiver they are tailored to. Grouping some of

their common threads, these methods may be classified according to two criteria:

• use of one versus several antennas

• data processing versus signal processing techniques

Data or observables processing techniques are usually associated with post-processing meth-

ods. The idea behind this approach is to first measure the observables from the received signal

using a conventional receiver (i.e., a receiver without special capabilities to combat the multi-

path and interferences). Then, a set of raw observables is processed (usually not in real-time)

in order to obtain some new observables or final parameters (position, speed...) in which the

disturbing effects of those error sources have been mitigated. On the other hand, it is customary

to associate signal processing techniques with real-time techniques. They are the ones that lead

to the design of alternative reception schemes. These methods seek to obtain observables free

of the effects of the multipath and interferences starting from the GNSS signals corrupted by

those phenomena. Our work will center on signal processing techniques that employ antenna

arrays because this seems to be the choice with greatest potential and these techniques are also

more flexible than the post-processing ones. Below we review the state-of-the-art according to

the previous classification.

2.2.1 Post-Processing Techniques

The common basis of many of these techniques is that the changing geometry of the satellites

causes a slow change of the relative delays of the reflections, which in its turn produces low-

frequency variations in the carrier phase and in the signal-to-noise ratio of the composite signal

[Axe96, Bre97, Sle97, Com98]. The contribution of the dominant reflected path can be identified

from the variations of the signal-to-noise ratio and subtracted from the multipath corrupted

observables. The high-frequency error signals, that arise because of the receiver movement can

be filtered out by a low-pass filter in many applications [Zha96]. Since these procedures need data

recording for several minutes or hours, they are restricted to a small number of applications.
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Moreover, they can only cope with specular multipath and cannot combat the interferences.

Lately, a tool employing neural networks for detecting and mitigating in real-time the code

multipath in LEO (Low Earth Orbiter) has been proposed in [HP00].

2.2.2 Signal Processing Techniques

These techniques are often referred to as correlation methods or correlation technology because

most of them are modifications of the conventional delay lock loops presented in the previous

section. They emerge from an insightful inspection of the cross-correlation curve between the

received signal and the spreading code, in an attempt to find out which samples of this curve are

less distorted by the reflections or how the contribution of the multipath can be estimated and

eliminated [Dor95]. Major receiver manufacturers have devoted a great development and re-

search effort to these techniques, but often only limited simulated results and vague descriptions

are revealed.

The first and the undoubtedly most extended multipath mitigation technique is the Narrow

Correlator DLL [Die92, Nee92a]. It consists in using a precorrelation bandwidth as wide as

possible and a small value of the early-late spacing δ (introduced in Section 2.1), on the order

of 0.05 or 0.1, which contrasts with the usual value: 0.5, employed by first receivers. A wider

precorrelation bandwidth leads to a sharper cross-correlation curve, thus facilitating obviously

the time-delay measurement. With the small values of δ, the finite difference formed with

the early and late samples of the cross-correlation function becomes a better approximation

of the derivative of the correlator output. This reduces the variance of the DLL because the

correlation of the noise between the early and late samples increases, and also improves the

performance against multipath (only for non-bandlimited or rectangular chip-shaping pulses,

but not for square-root raised cosine pulses, see Figure 2.1 and [Sch98a]) since those samples

are closer to the correlation peak, where the distortion due to multipath signals is less severe.

The narrow spacing DLL can reduce the magnitude of the multipath errors (only for certain

pulses), but not the range of multipath delays that cause them. The Multipath Elimination

Technology (MET) is a slight improvement of the narrow spacing DLL, especially for large

multipath delays [Tow94]. One alternative to reduce that range of delays causing biases is the

Strobe correlatorTM (patented by Ashtech Inc.) [Gar96, Die97], which despreads the received

signal using a special waveform, as done also in [Wei97b]. Actually, the Strobe correlator rests

on the same principle as the high resolution correlator or compensated correlators [Dor97].

The compensated correlators employ more complex finite differences obtained using several

advanced and delayed samples of y (t) that yield a S-curve narrower than that of the conventional

DLL. Combining several samples of y(t) is equivalent to using a special despreading waveform.

The robustness gained by the Strobe correlator against long-delay reflections is at the price

of a certain (up to 10dB) noise amplification [Die97]. The Strobe correlator also recalls the
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second-derivative correlator [Wei97a], and some enhanced versions thereof have been proposed

[Gar97, Zhd99]. Other approaches that exploit the fact that the reflections are always delayed

with respect to the direct signal are the Edge CorrelatorTM (patented by Ashtech Inc.) and the

e1/e2 tracker [Gar96, Die97]. These last methods try to determine the location of the leading

edge of the cross-correlation, instead of attempting to estimate the location of its peak. Again

multipath mitigation is traded off against noise amplification.

An important limitation of all the correlation techniques presented up to this point is that

they only combat the multipath errors in the time-delay measurements, but not in the carrier

phase. This problem can be partially solved with the Multipath Estimating DLL (MEDLLTM),

which has been included in commercial receivers by Novatel Inc (although details are not avail-

able). From our point of view, the MEDLL was the first attempt of addressing the multipath

problem rigorously and was proposed by R. van Nee [Nee93a, Nee94, Nee95]. It is derived as

the maximum likelihood estimator of the delays and amplitudes of all the signals present in

model (2.3) when the noise w(t) is white and Gaussian. This means that, unlike the DLL, the

MEDLL is matched to a multipath scenario. Notwithstanding, its performance is excellent with

moderately or largely spaced (in delay) reflections [She98]; but in the presence of short-delay

multipath it suffers from convergence problems, its performance is comparable to that of the

narrow spacing DLL or the Strobe correlator, and its implementation needs some simplifying

assumptions [Lax97]. The estimation of the time delays of a superposition of closely spaced

signals with known shapes has also been considered in [Wu99a, Wu99b]. In these works, us-

ing a relaxation-based optimization approach, a multidimensional problem is reduced into a set

of 1-D (one-dimensional) problems that need to be solved iteratively. In [Wu99b], a method

to initialize the iterations is provided as well. The main difference between the estimators in

[Wu99a] and [Wu99b] is that the former can cope with noise correlated in the temporal domain,

so it is able to combat narrow-band interferences. The work of [Sou98] presents a Maximum

A Posteriori (MAP) estimator, obtained by introducing a priori distributions of the delay and

amplitude parameters into the MEDLL. To our knowledge, the employ of the Bayesian theory

for the estimation of the multipath parameters has hardly received attention in the literature

and remains an open topic of research.

Finally, several methods can be used to cancel narrow-band interferences in single antenna

receivers. The traditional approach is the linear interpolator-subtracter [Ilt84, Mou98, Lan97],

and recently extensions of multiuser detectors have appeared, e.g., [Poo97a, Poo97b]. The

linear interpolator-subtracter is simply an adaptive transversal notch filter applied before the

despreader. It minimizes the output total power, and thus places nulls at the frequencies where

the interferences are received.
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2.3 Review of Synchronization using Antenna Arrays

Spatial filtering is probably the most effective approach to overcome the limitations of the single-

antenna multipath mitigation techniques and to cancel wide-band interferences. Indeed, using

antennas with special reception patterns (choke rings) and locating them wisely have been,

among the GPS community, the traditional ways of filtering out spatially the undesired signals

[Cou98]. A much more powerful alternative is to employ adaptive arrays of antennas, as it was

proven in an initial work of the author [Sec96]. The spatial diversity introduced by the antenna

array can be used to discriminate the direct signal from the interferences and the reflections, so

the multiple antennas can be thought as forming a directional beam pattern responsive to the

LOSS but not to other disturbing signals.

However, the use of adaptive antenna arrays in GNSS receivers has not been deeply studied,

and most of the few approaches appeared in the literature have centered on interference mitiga-

tion. For instance, in [Zol95, Moe96b, Moe96a, Mou98, Fan98, Myr00] and [Hat98] the weight

vector of a beamformer is computed either as the one that maximizes a certain average SINR

or as the one that minimizes the output power subject to some constraints to avoid the null

solution. This yields in most cases the well-known minimum variance distortionless response

(MVDR) beamformer and the power inversion (or linear prediction) beamformer [Pil89]. When

these two beamformers are applied directly to the received signals, they cancel the interferences

but not the reflections of the GNSS signal, which are well below the noise floor. In [Mou98]

and [Fan98], the broad-band combiner structure is employed in order to cancel the narrow-band

interferences in the temporal domain and the wide-band ones in the spatial domain. Ramos et

al. presented in [Ram96] a prototype that performs the array processing after the despreading

using a pseudo-PRO-ESPRIT algorithm [Ram95]. This prototype can separate the GNSS signal

from other uncorrelated signals, but it combines the reflections with the direct signal, instead

of canceling them. Although this behavior is adequate with respect to the bit error rate, it is

inappropriate for the propagation delay estimation.

As stated above, an early paper of the author [Sec96] showed the significant benefits of using

an antenna array to combat both the interferences and the multipath in a GNSS application. In

order to cancel both types of disturbing components, the array processor has to operate with the

received signals after the despreading, what makes the array sensitive to the direct and reflected

GNSS signals thanks to the processing gain of the DS-SS system. Furthermore, processing the

despread signals, instead of directly the received ones, has the advantage that the array pro-

cessor handles a low-rate data stream. In that paper, a linearly constrained beamformer that

sets nulls in the directions of arrival (DOA) of the undesired signals and gain one for the LOSS

appears to be an effective choice. Thus, the design of an appropriate beamformer comes down to

a DOA estimation problem, which is a challenging task in coherent scenarios. The high degree of
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coherence between the LOSS and the reflections makes conventional DOA estimation algorithms

(e.g., MUSIC, minimum variance method) and conventional beamformers (e.g., MVDR beam-

former) completely fail [Pil89, Joh93]. All these methods only work properly if the signals are

decorrelated using, for instance, the spatial smoothing technique, which has two serious draw-

backs: it reduces the array aperture (the resolution worsens) and is restricted to arrays formed

by several identical translated subarrays. To overcome the limitations imposed by the spatial

smoothing it is possible to apply other DOA estimation algorithms that work with correlated

signals, such as the generalized MUSIC [Zol86] and the maximum likelihood DOA estimator

by alternating projection [Zis88]. The former requires multidimensional optimizations over the

DOAs of sets of coherent sources, whereas the latter brings forward an iterative algorithm that

transforms a multivariate nonlinear optimization problem into a sequence of much simpler one

or two-dimensional problems. Despite the good results reported in [Sec96], these algorithms

have several drawbacks that prevent them from being a definitive solution: the computational

load may be too high because spectral searches need to be performed, they can only cope with

specular multipath, and the number of received signals has to be bounded by the number of

antennas. Moreover, the performance of the methods based on DOA estimation is suboptimal

since they do not exploit the temporal structure of the signals. The methods developed in this

thesis aim at overcoming all these drawbacks and also the limitations of the spatial smoothing

technique.

To our knowledge, very few papers about the cancellation of multipath in GNSS using

antenna arrays have been published. Some of these papers, apart from the author’s work,

are: [Moe97, Ray98, Ray99a, Ray99b]. In [Moe97] two techniques are proposed. The first

simply averages the code and carrier measures obtained at different antennas, while the second

one uses a nulling beamformer computed from the estimated DOAs of the multipath signals.

The conventional MUSIC algorithm is applied to estimate the DOAs. The basic idea behind

this second technique is very similar to that employed in [Sec96], but it is much less developed

because many problems, such as the coherence of the signal scenario and the presence of external

interferences, are not addressed. A different method is proposed in [Ray98, Ray99a] to estimate

the parameters (amplitude, phase and DOA) of a single reflection which tries to model all

the actually received reflections. To this end, the actual phase evolution along the aperture

is compared with the theoretical phase evolution when only the LOSS and one reflection are

received, assuming that the direction of arrival of the direct signal and the array attitude are

known. In [Ray99b], the previous method is extended in order to take also into account the

evolution of the pseudorange and signal-to-noise ratio. Since these algorithms deal with the

phases, and possibly pseudoranges and SNR measurements, instead of the received signals, the

estimation process is highly non-linear; and they are not signal processing techniques but data

processing ones, though they can work in real-time. Moreover, none of these methods mitigates

the interferences.
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Unlike navigation systems, the employ of antenna arrays in wireless communication systems

has arisen lately great interest since the multiple benefits they provide (e.g., interference sup-

pression, fading diversity, transmit diversity) ultimately result in an improvement of the system

capacity, coverage and quality. A number of techniques that exploit antenna arrays for syn-

chronization have been developed, each differing from the others on its assumptions regarding

multipath, CCI (co-channel interference), signal parameterization, and computational load. One

of the first such techniques was presented in [Bre82] for DS-CDMA systems, in which a least-

squares beamformer is calculated for each possible location of the desired user’s codeword over

one symbol period, assuming no transition has occurred between consecutive symbols. A similar

approach was presented in [Lea96] for TDMA communication systems, using a minimum mean-

squared error (MMSE) beamformer calculated for each possible position of a training sequence

in a given frame of data. The beamformer that results in an output that is the most strongly

correlated with the training sequence is used to cancel CCI and any uncorrelated multipath. The

guard intervals present in such systems are also included in order to remove CCI not present

during the training interval. More recently, this approach has been revised and extended to

better deal with CCI [Kee98], and to handle very short bursts of training data [Kuz99]. In this

last paper, the ill-definition of the problem is avoided by regularizing the MMSE criterion with

a constant modulus condition.

Other researchers have taken a parameter estimation point of view, attempting to determine

the direction of arrival and time delay of each arrival of a given signal at the array. These

techniques exploit the full space-time structure of the multipath, but many of them do not take

CCI into account. The methods of [Vee98, CT99] do not operate directly on the data; instead,

they assume that the channel matrix has been estimated in a previous step. The DOAs and time

delays are then determined by fitting the model to the estimated channel. While suboptimal,

the advantage of this approach is that in certain cases, the channel estimate may be obtained

blindly, without the need for training data. In case a training sequence is available, it can be

used to obtain a least-square estimate of the channel. The algorithm of [CT99] requires either

a multidimensional (MD) search, or a series of suboptimal 1-D searches, while that of [Vee98]

assumes an array composed of shift-invariant subarrays (e.g., a uniform linear array (ULA))

and achieves closed-form estimates using a 2-D version of the ESPRIT technique [Roy86]. Since

in the 2-D ESPRIT the time delay and DOA estimations are decoupled, the time delays can

be computed even without knowledge of the array manifold [Van98]. However, the estimates

obtained with the method of [Vee98] are slightly biased and in general do not achieve the

Cramér-Rao Bound. The exploitation of the shift-invariances present in the data is carried one

step further in [Haa98], where a uniform rectangular array is used to estimate both azimuth and

elevation DOAs along with the time delays using a 3-D ESPRIT implementation. It should be

noted that [Haa98] works directly on the received data to estimate the parameters in a single

step.
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A maximum likelihood (ML) approach is taken in [Ced96, Wax97, Ber99, Fle99], in which

both the interference and noise are modeled together as a temporally white Gaussian process.

The methods of [Wax97, Ber99, Fle99] also assume spatial whiteness, so only [Ced96] is able

to combat the CCI. Actually, the work of [Ber99] is the extension of the well-known ML DOA

estimator in [Zis88] to a space-time manifold parameterized by the DOA and the time-delay.

The same concept of space-time manifold was already employed in [Ral98, Van98], and is further

extended to include polarization information in [Des99] using a well-known linear decomposition

of the array steering vector [Fer83]. The conceptual resemblance between the space-time mani-

fold and the space-only manifold employed in DOA estimation problems makes straightforward

the extension of some DOA estimators, such as the subspace fitting family [Ott93], to the delay-

DOA estimation problem. In [Pel99], the joint angle and delay estimation problem is solved

via weighted least squares (WLS), where the weighting matrices are designed to account for

spatial color, array calibration errors, etc. While offering some claim to optimality, the primary

drawback of the ML and WLS approaches is that complicated search procedures are required

to estimate the desired parameters.

To obtain DOA estimates of each arrival, the parametric approaches described above must

assume the availability of a calibrated antenna array, and a single arrival at each time delay.

Errors in the array calibration or deviations of the array from uniformity are inevitable, and

can lead to significant performance degradation. Furthermore, in multipath-rich propagation

environments, there may be numerous arrivals at each delay due to local scattering near the

array. To overcome these difficulties, an unstructured parameterization of the spatial response

can be used, as in [Swi98a]. While this leads to an increase in the number of parameters to

be estimated, the model is linear in the additional parameters, and they can be estimated in

closed form. Once the spatial parameters are eliminated from the ML criterion in [Swi98a], the

time delays are solved for iteratively using either IQML [Bre86] or MODE [Sto90c, Sto90b]. A

suboptimal delay estimator based on ESPRIT is also presented in [Swi98a]. These techniques

have recently been extended in [Swi99] to the blind case where no training data is available,

although without exploiting additional knowledge about the signal (e.g., known pulse shaping),

an absolute time base cannot be established in this case. Note that [Swi98a, Swi99] both assume

spatially and temporally white noise, and thus are not suited for situations involving strong CCI.

If the desired signal is digitally modulated with a known pulse shape, the iterative method of

[Pel98b] can be used to account for spatially colored interference via prewhitening. The algorithm

presented in [Ast99b] also allows for interference with arbitrary unknown spatial color as well

as an unstructured array response for the desired signal, although it assumes a slightly different

temporal model. Instead of modeling the multipath arrivals using arbitrary delays, the arrivals

are assumed to occur on a uniformly spaced time-domain grid with an unknown starting location.

This model leads to an ML solution requiring only a 1-D search for the starting position of the

training sequence.
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Other work has focused on the special nature of the synchronization problem in various

applications. The use of antenna arrays in code timing recovery for CDMA applications has been

addressed in [Bre82] as mentioned above, and more recently in [Dlu89, Liu98a, Jak98a, Che99].

Each of these approaches estimates the code timing for one user at a time while treating the

multiple access CCI as Gaussian interference with unknown spatial color. In [Dlu89, Liu98a]

the interference is restricted to be temporally white, while the other methods allow for CCI

with unknown temporal color. The methods described in [Dlu89, Jak98a] assume flat fading

and an unstructured spatial response model for the desired user, and use a maximum likelihood

approach that leads to a simple 1-D search for the location of the user’s codeword. The algorithm

in [Dlu89] is general enough for either case, but it operates using only one symbol’s worth of

data, and the time delay is restricted to be an integer multiple of the chip period. The estimator

in [Jak98a] is blind, but is also derived using only one symbol’s worth of data; however, an ad

hoc extension to several symbols is proposed. The approach described in [Liu98a] also assumes

flat fading and an unstructured array response, but it resorts to an unnecessary asymptotic

approximation of the ML criterion to achieve a 1-D parameter search. However, [Liu98a] does

present a method for transforming the 1-D search for the time delay into rooting a second order

polynomial if the chip-shaping pulse is rectangular. As an alternative to the above approaches,

[Che99] assumes a uniform linear array and processes the data in the frequency domain to

estimate the DOAs and time delays of all of the desired user’s multipath arrivals via 2-D ESPRIT,

while a pseudo-Procrustes-ESPRIT algorithm [Ram95] is used in [Ram00] to estimate the time

delays. The review of the synchronization in DS-CDMA communication systems continues in

the introduction of Chapter 5.

Finally, we also mention the work of [Bel96, Jak98b, Dog99], which focus on exploiting

antenna arrays not only for estimation of multipath time delays, but also Doppler shifts as well.

In [Bel96] the Expectation-Maximization (EM) algorithm is employed, while in [Jak98b] ML

and signal/noise subspace fitting estimators are proposed. A rather general study about the ML

estimation of signal parameters in unknown spatially correlated noise can be found in [Dog00].

The ML estimator presented therein can be particularized for specific scenarios resulting in

estimators already proposed in the literature. However, efficient optimization methods are not

addressed and the computation of the estimates involves a search in a large-dimensional space.

2.4 Examples of GNSS Signals

This section offers a brief survey of the parameters, especially concerning the transmitted sig-

nals, of the GPS, GLONASS and GALILEO systems. Although the methods presented in the

following chapters are rather general, this description is appropriate to contextualize this thesis.

To start with GPS, its nominal constellation consists of 24 satellites, placed in 6 nearly circular
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orbital planes with 60o separation in right ascension of the ascending node. Each plane contains 4

satellites which are not uniformly spaced. The orbits are inclined 55o and their altitude is about

20200km (26600km radius), which results in a period of half sidereal day. Each GPS satellite

transmits navigation signals at two frequencies: L1=154×10.23 MHz and L2=120×10.23 MHz.

The L1 carrier is modulated in quadrature by the C/A (coarse/acquisition) and P (precision)

codes. Both are binary codes (i.e., they take the values +1,−1), and are the pseudo-noise codes

employed to spread the spectrum. Therefore, the resulting signals are DS-SS signals. All the

GPS satellites transmit continuously and employ the same frequency bands, but utilize different

codes, which means that the multiplexing technique is CDMA. The L2 carrier is modulated by

either the P code or the C/A code. Normal operation would provide P-modulation on the L2

signal.

The C/A code is a Gold sequence with period P0 = 1023 chips (i.e., it is generated with

two feedback shift-registers of 10 cells each), and chip rate equal to 1.023 Mchips/s. Thus, a

period of the C/A code last 1 millisecond. The P code is faster and much longer than the C/A

code. The chip rate of the P code is 10.23 Mchips/s, and its length is 2.3547 · 1014 chips, which

corresponds to a time span of approximately 266.4 days. The total length code is partitioned

into 37 one-week segments, and each segment is assigned to a satellite during one week. Direct

synchronization to the P code is impossible due to its length, so the receivers have to synchronize

first to the C/A code and next to the P code. However, the P code is usually encrypted, and

in this case it receives the name of P(Y) code. The encryption, which is named Anti-Spoofing

(AS), consists in the module-2 addition of the P code with a W code known only by authorized

users. Therefore, civil users have only access to the C/A code. There are, however, on the

market codeless receivers capable of making certain measures at L2 without knowledge of the

P(Y) code [HW97], though with an important deterioration. The L1 carrier is also modulated

by a very low data-rate binary sequence named navigation message. The L2 signal may or may

not be modulated by this sequence. Since the navigation message is transmitted at 50 bits/s, the

spreading factor of the data spread with the C/A code is P = 1.023 · 106/50 = 20× 1023, while

the spreading factor is 10 times higher if the P code is used. The navigation message provides

the user with the data needed to perform the navigation computation: clock and position of

the satellite, atmospheric corrections, etc. The clock and the position information are received

every 30 seconds (the duration of one frame). The message also includes information that makes

possible the synchronization of the P code by indicating portion of this code that is transmitted

by the satellite. About 3% of bits of the navigation message are known (training bits). Indeed,

the redundancy is greater, since many bits, yet initially unknown, are repeated between frames

or subframes (see [Par96a, ch. 4, vol I] for a detailed description of the navigation message).

The minimum specified received power of the L1 C/A signal for a user employing a 0dBic

antenna for a satellite at elevation angles above 5o is -160dBW. If, as a simple example, the

equivalent noise temperature of the reception chain is 290K, the noise spectral density is N0 =
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−204dBW/Hz, and thus the carrier-to-noise spectral density ratio is CN0 = 44dB-Hz. The

actual received CN0 may vary with respect to this value due to many factors (e.g., variation of

the satellite transmitted power, antenna gain, polarization losses, foliage attenuation, reduced

path loss at high elevation angles, etc.), and the usual range of CN0 is approximately 40–

55dB-Hz. With CN0 = 44dB-Hz, the signal-to-noise ratio (SNR) in a bandwidth of 1.023MHz

is -16dB; similarly, if the bandwidth is taken as 20.46MHz, then the SNR is -29dB. This last

value of the bandwidth is meaningful because it is exactly the transmit bandwidth of the GPS

satellites at both the L1 and L2 bands. In any case, it is apparent that the received GPS signals

are completely buried, even at their spectral peaks, by the additive noise. The spreading gain of

the GPS, also of the other navigation systems, is very large. In particular, it is 10 log(P ) ≈ 43dB

for the C/A code, and is 10dB higher for the P code. Consequently, if the received SNR is -16dB,

after despreading it becomes 27dB (as a first approximation).

The effect of multiple access interference (MAI) does not need special consideration in GPS

because the signals from different satellites are received with similar powers (absence of near-far

effect) and because the PN codes are very long. That is to say, the inherent spreading gain of

the DS-SS signals suffices to attenuate the MAI to negligible levels. As a matter of fact, it is

shown in [Par96a, ch. 3, vol. I] that MAI introduces in the C/A signal only 0.8dB degradation

relative to the thermal noise when CN0=45.2dB, 11 satellites are in view and the power received

from all of them is the same.

GPS is almost a quarter century old, so the U.S. is moving ahead to modernize the system.

Part of that planned effort is the inclusion of the C/A code on the L2 frequency and the addition

of a new civil frequency (L5) centered at 1176.45MHz. C/A on L2 will constitute a second non-

safety-critical civil signal. It will support direct acquisition of the L2 signal during situations

where the L1 signal may not be available, such as in cases of interference, and will improve the

ionospheric delay correction for civilian users. The new signal on L5 meets the needs of critical

safety-of-life applications such as civil aviation. This signal will have increased power (+6dB)

relative to L1, two different channels in quadrature, a 24MHz bandwidth allocation, and the

potential for more accurate pseudorange resolution than can be obtained with the current C/A

and P codes. The proposed codes on L5 have a rate equal to 10.23Mchips/s and code length

between 4000 and 10.230 bits. To take full advantage of L5, it is planned to transmit two signals

in phase quadrature, only one of which would carry data modulation. All of this ensures a signal

that is very robust and very resilient against pulsed interference sources. And, most importantly,

the L5 frequency will allow dual widelaning. This will provide a major improvement to reliable,

single-epoch, carrier-phase positioning.

The nominal GLONASS constellation consists of 24 satellites, uniformly located in three

orbital planes 120o apart in right ascension. Unlike GPS, the actual GLONASS constellation

may have less than 24 satellites due to budget cuts. The orbits are circular with 64.8o inclination
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and 19100km altitude. Each satellite transmits at two bands: L1 between 1602.5625MHz and

1615.5MHz, and L2 between 1246.4375 and 1256.5MHz. Instead of using CDMA as GPS,

GLONASS is based on Frequency Division Multiple Access (FDMA), and hence all the satellites

can employ the same codes. The C/A code has a chip rate of 511Kchips/s and modulates the

L1 and L2 carriers, whereas the restricted-access P code, with chip rate 5.11MHz, modulates

only the L2 carrier. The navigation message is a 50bits/s data stream, as in GPS.

The study in [Sch98a] provides guidelines for the design of the signal and constellation of

the future GALILEO system. One of the targets in the design is to achieve a User Equivalent

Range Error (UERE) on the order of 1-2 meter with single carrier ranging and 1-2 cm with

three-carrier differential phase positioning techniques. There are basically two options for the

constellation. The first is a regional constellation formed by inclined geosynchronous and geo-

stationary satellites, whereas the second is a global constellation of medium orbit satellites. The

multiple access technique will be CDMA, which is preferred in front of a hybrid CDMA/FDMA

solution; and three carrier frequencies will be used. The possible candidates are: 1589.742,

1561.098, 1256.244, 1598.949, 1250.106 and 5014.746MHz. The data broadcasting capabilities

will be increased to 1.5, 3 and 24 Kbits/s. Since each satellite will transmit several signals,

different data rates could be used by different signals. In general complex spreading codes will

be considered, with rates 3.069, 15.345 and 24.552 Mchips/s. A significant characteristic is

the use of the Nyquist square-root raised-cosine pulse with roll-off factor equal to 0.2 as chip

shaping waveform. This fact contrasts with the lack of chip shaping in GPS, which amounts to

using “nearly” rectangular pulses. The study of [Sch98a] has proven that DS-SS signals with

square-root raised-cosine chip-shaping provide a timing jitter reduction compared with the con-

ventional rectangular shaping for a given CN0 and available bandwidth. Finally, coding and

interleaving of the data are also proposed in order to counteract certain effects, such as fading,

of the channel.

2.5 Array Signal Model

In this section, a general signal model for the signals received by an antenna array is pre-

sented along with some assumptions made throughout this thesis. This is intended to avoid the

repetition of some descriptions in the following chapters. The general model presented herein

corresponds basically to the ones used in Chapters 3-4. Nonetheless, the explanation or jus-

tification of some concrete hypothesis are deferred to the corresponding chapters. Finally, the

relationship between the model and the actual received signals is analyzed.
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2.5.1 General Signal Model

We assume that an arbitrary m element array receives d scaled and delayed replicas of a known

signal s(t). The baseband array output is modeled as the m × 1 complex vector

y[n] =

d−1∑

k=0

αks(nTs − τk) + e[n] , (2.14)

where Ts is the sampling period, αk ∈ CI m and τk are the spatial signature and time delay of

the kth arrival, and e[n] ∈ CI m represents additive noise and all other disturbing terms. We may

write (2.14) in matrix form as follows:

y [n] = As [n, τ ] + e [n] , (2.15)

where

τ = [τ0 · · · τd−1]
T d × 1 (2.16)

A = [α0 · · · αd−1] m × d (2.17)

s[n, τ ] =
[

s (nTs − τ0) s (nTs − τ1) · · · s (nTs − τd−1)

]T

d × 1 . (2.18)

If N samples are collected from the array, they all may be grouped together into the following

m × N matrix equation:

Y =
[
y[1] y[2] · · · y[N ]

]
= AS (τ ) + E , (2.19)

where S (τ ) ∈ CI d×N and E ∈ CI m×N are formed identically to Y.

It is clear from the above model that we are invoking the standard “narrowband assumption”

common to many array signal processing problems; i.e., we assume that the time required for

the signal to propagate across the array is much smaller than its inverse bandwidth. As such, a

phase shift can be used to describe the effect of the propagation from one antenna to the next.

This assumption is natural for the parameters of the navigation systems, since the bandwidth

of the GNSS signals is on the order of some MHz, while the size of the array (e.g., less than

ten wavelengths) is smaller than a few (e.g., two) meters given a carrier frequency on the order

one or two GHz. The lth element of αk, denoted by [αk]l, represents the amplitude of the

kth replica at the lth antenna, and gathers all the effects of the attenuation and phase shift

during propagation, the transmitted power, the reception pattern of the antenna, etc. Hence,

the argument of [αk]l is the value of the carrier phase of the kth signal at the corresponding

antenna. The narrowband model does not introduce necessarily an error in the value of the

carrier phases. Since each baseband signal is represented with the same delay τk in all the

antennas, this introduces an uncertainty in the value of the time delay equal to the propagation

time across the array. However, this uncertainty is always neglected because its value is smaller

than the standard deviation of the time delay estimates caused by other disturbing effects.
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An additional technical assumption is needed for the asymptotic results presented in next

chapters.

Assumption A1: s (t) is a band-limited finite-average-power signal, and is sampled above the

Nyquist rate. Therefore, its analog autocorrelation function

css (τ) = lim
Tobs→∞

1

Tobs

∫

Tobs

s (t + τ) s∗ (t) dt (2.20)

is assumed to be continuous with continuous derivatives. Since the sampling period Ts satisfies

the Nyquist criterion, then

lim
N→∞

1

N

∑

N

s (nTs − τl) s∗ (nTs − τk) = css (τk − τl) . (2.21)

The next assumption involves the statistical characterization of the signal, which is necessary

for the formulation of maximum likelihood methods.

Assumption A2: Since the “noise” e[n] may include in general the contribution of several

phenomena, we model it as a complex, circularly symmetric Gaussian vector process. It is

moreover assumed to be zero-mean, temporally white, and with spatial correlation matrix Q;

that is,

E
{
e [n]

}
= 0, E {e [n] eT [l]} = 0, Ree [n − l] = E {e [n] e∗ [l]} = Q δn,l . (2.22)

The estimators derived with the assumption of temporally white noise undergo certain degra-

dation if the noise is actually colored, but they retain the capacity of spatially mitigating the

undesired signals. Moreover, the hypothesis of temporal whiteness is not as restrictive as it could

seem at first glance, because some other cases can be transformed into this one. In this section

and in the next one, we briefly comment on other temporal models of the noise, but it should

be kept in mind that, unless otherwise stated, in the following chapters the noise model that

we consider to be valid is that in assumption (A2). For example, let us now consider that e[n]

is a wide-sense stationary process with a correlation that can be split into a spatial correlation

matrix Q and into a temporal correlation sequence t[n], i.e.,

Ree [n − l] = Q t [n − l] . (2.23)

Then, the signals are made temporally white by multiplying with a decorrelating matrix, that

is to say, Y and S (τ ) are replaced by Y T−
1
2 and S(τ )T−

1
2 , respectively, where

T =




t [0] t [1] · · · t [N − 1]

t [−1] t [0] · · · t [N − 2]
...

. . .
...

t [1 − N ] t [2 − N ] · · · t [0]




. (2.24)
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The decomposition of the correlation in (2.23) means that the space-time correlation of vector

vec (E) is not completely arbitrary, but it can be expressed as the Kronecker product of two

matrices: TT ⊗ Q. It is clear that in this prewhitening approach the sequence t[n] has to be

known or estimated. In [Jak98a], an approximate method for estimating t[n] in the frequency

domain is provided. A computationally attractive alternative to carry out the prewhitening is

presented in [Swi98b]. It assumes a vector autoregressive (VAR) model for the temporal variation

of the noise. This method can be used even when (2.23) is not satisfied, which means that the

space-time correlation of the noise is completely arbitrary. In this situation, the computational

advantage stems from the fact that a small number of VAR parameters need to be estimated,

rather than a large number of temporal covariance lags. Once the VAR parameters are obtained,

the signal is whitened by simply applying the inverse VAR filter. In [Swi98b], an algorithm for

estimating the VAR parameters using data without the contribution of the desired signals is

outlined. However, the extension of this algorithm to other situations is not clear.

Finally, note that the signals are only parameterized by the time delay, and not by the

Doppler frequencies. This fact implicitly means that the signals are assumed to be approximately

Doppler compensated (i.e., the Doppler frequency has been roughly estimated and corrected),

which is an usual assumption in most works. The residual Doppler frequency has to be small

compared with the reciprocal of the observation interval. Hence, the amplitudes of the signals,

that is, the elements of A vary so slowly that can be taken as constant during one observation

interval, although they can vary between different intervals. As a matter of fact, only the direct

signal is necessarily required to satisfy the previous condition of the Doppler frequency. If the

difference between the Doppler of one reflection and that of the direct signal is on the order of

or greater than the reciprocal of the observation interval, then this reflection cannot be modeled

by the signal component AS(τ ) and is included in the noise term E. This is the reason why

the performance of the estimator presented in Chapter 4 improves when the residual Doppler

frequencies of the reflections are large. The difference between the Doppler frequencies of the

reflections and that of the direct signal depends on the geometry (satellite - receiver - reflectors)

and on the velocity of the reflectors and the receiver [Nee92b].

2.5.2 Frequency-Domain Representation

Some methods presented in the next chapters take advantage of the special dependence of the

signals upon the time delays when a frequency-domain representation is employed. The time-

domain samples are transformed into the frequency domain using the Discrete Fourier Transform

(DFT); that is to say, the DFT is applied to each row of Y. Let F be the N ×N unitary Fourier
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matrix1; then, recalling (2.19), the frequency samples of the signal are

YF " Y FT =
(
AS (τ ) + E

)
FT = ASF (τ ) + EF , (2.25)

where we have defined SF (τ ) and EF in an evident way. If the frequency bins are ordered so

that their frequencies appear in increasing order, the signals satisfy the following relationship:

S∗

F (τ ) = S∗

ω V(τ ) , (2.26)

where Sω is a diagonal matrix whose entries are the DFT of the vector samples

[s (Ts) , · · · , s (N Ts)], and

V(τ ) =
[

v (τ0) · · · v (τd−1)
]

(2.27)

v (τk) =
[

exp (jω1τk) · · · exp (jωNτk)

]T

(2.28)

ωi =
2π

N Ts

(
i − 1 −

⌊
N

2

⌋)
. (2.29)

Actually, the transformation of the delays into linear phase shifts in (2.26) is only approximate.

It is asymptotically (large N) exact whenever the sampling rate is above the Nyquist frequency.

For a finite number of samples, it is exact only for certain special cases involving, for example,

a periodic signal (if (N − 1)Ts is a multiple of the period) or a signal with finite time support,

since a linear phase shift equals a circular shift of the time-domain samples. However, provided

that NTs ) maxk τk and that the Nyquist criterion is satisfied, the error induced by the finite

length DFT is negligible (as illustrated by the simulation results), and the relation (2.26) will

be taken as exact.

Since F is a unitary transform, if the noise is white in the time-domain, it is also white in the

frequency-domain, and the spatial correlation matrix Q is exactly the same in both domains.

In other words, if the columns of E satisfy the assumption (A2), then the columns of EF satisfy

the same assumption as well. Therefore, from the statistical point of view there is no difference

between E and EF , and the maximum likelihood estimators can be indifferently applied to the

time- or frequency-domain data. This is the reason why the same notation (Y and S(τ )) will

be used in the following chapters for both domains. It should be clear from the context the

cases in which only one domain is referred to because a specific dependence on the delays is to

be exploited.

Let us now assume that the noise satisfies (2.23), instead of being white. The signals trans-

formed into the frequency domain, after temporal prewhitening, would be: YF = Y T−
1
2 FT . It

is well known that [Bri81]

FTT F∗ → D as N → ∞ , (2.30)

1The r, s th element of F is 1/
√

Ne−j 2π

N
(r−1−⌊N/2⌋) (s−1), for r, s = 1, . . . , N .
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where D is a diagonal matrix whose entries are the Fourier Transform of t[n] (that is, the

power spectral density of a process with autocorrelation function t[n]) evaluated at the DFT

frequencies. Expression (2.30) implies that asymptotically the columns of EFT are uncorrelated,

and the spatial autocorrelation of any column is proportional to Q. If we consider (2.30) to be

also valid in the finite-sample case, which is a good approximation when the data record length

N is much greater than the effective duration of t[n], it follows that the matrix that prewhitens

and transforms the signals to the frequency domain is

T−
1
2 FT = FT D−

1
2 . (2.31)

This last equation implies that the temporal prewhitening can be easily done after computing

DFT, since it simple amounts to an appropriate scaling of the frequency bins.

2.5.3 Relationship with the Received Signals

In this section, we show how the general model sketched in Section 2.5.1 unifies the representation

of the signals before and after the despreading operation. The expression of the signal received

by a single antenna before the despreading, presented in (2.3), can be readily extended for an

antenna array, as follows:

x [n] = Aq [n, τ ] + w [n] , (2.32)

where A was defined in (2.17), q [n, τ ] is constructed similarly to s [n, τ ], and w[n] represents

the disturbing components received at each antenna. The parallelism between (2.32) and the

model in (2.15) is complete.

In order to formulate the signals after the despreading process, it is necessary to recall the

expression of the DS-SS signal q(t) given by (2.1) and (2.2). For clarity in the discussion,

let assume the received signals are sampled twice per chip, i.e., Ts = Tc/2. Nevertheless, the

development below can be easily extended to any sampling frequency equal to a rational fraction

of the chip rate. We consider that the duration of the chip-shaping waveform, g(t − τ), is at

most (L − 1)Tc/2, with L odd. Therefore, the whole contribution of the lth symbol, d(l), in

q(t − τ) is confined to the following set of 2P + L − 2 samples2:

ql (τ) =




q
(
lT − (L − 1) Tc/4 − τ

)

q
(
lT − (L − 3) Tc/4 − τ

)

...

q
(
lT + (P − 1) Tc + (L − 1) Tc/4 − τ

)




. (2.33)

2As it was explained in Section 2.1, P is the spreading factor, i.e., the number of chips in one symbol.
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This vector can be expressed as

qT
l (τ) = d (l) gT (τ) C + d (l − 1) . . . + d (l + 1) . . . , (2.34)

where the L×1 vector g (τ) contains shifted samples of the shaping pulse and the L×(2P +L−2)

Toeplitz matrix C is formed by the chips of the PN code as follows

g (τ) =
[

g (− (L − 1) Tc/4 − τ) g (− (L − 3) Tc/4 − τ) . . . g ((L − 1) Tc/4 − τ)

]T

(2.35)

C =




c (0) 0 c (1) 0 c (2)
. . .

. . . 0 0 0

0 c (0) 0 c (1) 0
. . . c (P − 1)

. . .
. . .

...

0 0 c (0) 0 c (1)
. . . 0 c (P − 1) 0 0

...
. . .

. . .
. . . 0

. . . c (P − 2) 0 c (P − 1) 0

0 0 0 0
. . .

. . . 0 c (P − 2) 0 c (P − 1)




.

(2.36)

The value of L has to be chosen large enough to assure that ql (τ) contains the totality (or the

most) of the contribution of the lth symbol, what is equivalent to assuring that g (τ) includes

all the non-zero (or the significant) samples of the chip-shaping pulse. In order to prevent L

from being too large (i.e., much larger than the value determined by the actual duration of

g(t)), the range of possible values of τ has to be limited to a few chip periods, which amounts

to considering that a rough previous synchronization has been achieved. When processing the

despread signals, we will assume that this previous synchronization has been already carried

out. Since it is a very coarse synchronization (the time-delay error can be larger than Tc), it

does not involves in general any difficulty.

In (2.34) only the contribution of the “central” symbol has been written explicitly; the terms

corresponding to the adjacent symbols are negligible with respect to the central one given the

large spreading factors employed by GNSS systems. The samples of x[n] in (2.32) received

during the lth symbol interval (i.e., at the sampling points lT − (L − 1)Tc/4, lT − (L − 3)Tc/4,

..., lT + (P − 1)Tc + (L − 1)Tc/4) can be arranged in the following m × (2P + L − 2) matrix

Xl = AQl(τ ) + Wl , (2.37)

where the columns of Wl are the vectors w[n] at the corresponding sampling instants, and

Ql(τ ) =
[

ql (τ0) ql (τ1) . . . ql (τd−1)

]T

d × (2P + L − 2) . (2.38)

Using (2.34), the matrix Xl can be written as

Xl = d (l) AG(τ )C + Vl , (2.39)
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where

G(τ ) =
[

g (τ0) g (τ1) . . . g (τd−1)

]T

d × L . (2.40)

To be exact, the matrix Vl is equal to Wl plus the negligible contribution of the “interfering”

symbols d(l−1) and d(l+1). This description of the signals allows to formulate the despreading

operation simply as the product by the matrix C∗/P . Therefore, the signals despread during

the lth symbol interval are

Yl =
1

P
Xl C

∗ = d (l) AG(τ ) + El , (2.41)

where the “equivalent” noise term is El = Vl C
∗/P , and we have used that

CC∗ ≈ P I , (2.42)

which is a very good approximation for the long PN codes used in GNSS. If the columns of Vl

satisfy the assumption (A2) (see Section 2.5.1) with a spatial correlation matrix denoted as QV ,

it is easy to show that, thanks to (2.42), the columns of El also satisfy the assumption (A2)

with a spatial correlation matrix Q = QV /P . Next, considering that the observation interval

spans M symbol intervals, the matrices Yl, ..., Yl+M−1 given by (2.41) can be concatenated as

follows

Y =
[

Yl . . . Yl+M−1

]
= A

[
d (l) G(τ ) . . . d (l + M − 1) G(τ )

]

︸ ︷︷ ︸
S(τ)

+
[

El . . . El+M−1

]

︸ ︷︷ ︸
E

. (2.43)

As a consequence of this, comparing the equations (2.43) and (2.19), along with the fact that

El also satisfies assumption (A2), it becomes clear that the general model of Section 2.5.1 can

also represent the signals after the despreading operation. The number of columns of Y is

N = L · M . The underlying signal whose samples form S(τ ) in (2.43) is a finite-average-power

signal, as required by assumption (A1), when M → ∞ (but not when L → ∞). Hence, the

limit N → ∞ involved by some the asymptotic results actually is M → ∞. A final remark is

that S(τ ) represents the contribution of only one of the DS-SS signals transmitted by a given

satellite. The contributions of the signals transmitted by this satellite using other codes and/or

other frequency bands, and those of the signals from other satellites are negligible thanks to the

despreading operation (see the example concerning the effect of the MAI in Section 2.4); and in

any case they can be included into the term E since they are uncorrelated with S(τ ).

Note that the despreading process, which consists in multiplying the received sampled signals

by C∗/P (see equation (2.41)), can also be interpreted as filtering the analog received signals at
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Figure 2.2: Qualitative example of the despread signals.

each antenna with the filter

h (t) =
P−1∑

n=0

c∗ (n) δ (t + nTc) , (2.44)

followed by sampling the output of this filter. This approach allows to consider any sampling

frequency, since the output of h(t) need not be sampled at a rational fraction of the chip rate.

The output of this filter consists of train of pulses spaced T apart (see Figure 2.2). Each pulse

is usually named finger, and appears at the instant when the code of the incoming signal and

the code of h(t) are aligned. The coarse synchronization commented on above, which is needed

to process the despread signals, is as simple as locating the fingers at the output of h(t).

In general, processing the despread signals may have some advantages, apart from reducing

the rate of the samples delivered to the array processor since L , P . Those advantages stem

from the improvement of the SNR provided by the despreading process, and are specially man-

ifest when the system is under-modeled (i.e., the assumed value of d is smaller than the true

one), as happens in Chapter 4.

The estimators proposed in the two following chapters require the knowledge of S(τ ) as

a function of τ . Given the expression of S(τ ) in (2.43), this implies that the chip-shaping

waveform g(t) and the corresponding symbols have to be known. Actually, only the changes

between symbols are needed, since it will be possible to include any unknown multiplicative

constant of S(τ ) into the spatial signatures. During the transmission of training sequences,

the receiver has an exact knowledge of the symbols. However, when data symbols are being

transmitted, symbols’ decisions (possibly differential) have to be used. This situation should

not represent a serious limitation in real scenarios since the symbol error probability usually is

very low [Par96a, Sch98a]. On the other hand, when the observation interval spans only one

symbol (i.e., M = 1), the value of this symbol need not be known. As an exception to the
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need for the knowledge of the symbols when M > 1, an estimator that does not require this

information is outlined in Chapter 3.



Chapter 3

Time Delay Estimation of Multiple

Replicas of a Signal

The goal pursued in this chapter is to present an asymptotically efficient approximation to the

maximum likelihood estimator of the time delays of multiple replicas of a known signal received

in a noise field with unknown spatial correlation. Several ways of deriving the new estimator are

presented, and its performance is analyzed theoretically and using simulation results. The form

of this estimator makes possible the use of computationally appealing optimization algorithms.

3.1 Introduction

The estimation of the parameters of multipath channels has arisen an important interest.

These parameters can be used for a number of purposes: localization, adjusting a space-time

RAKE receiver in the uplink, selective transmission in the downlink, etc. A rather exhaus-

tive review of the techniques that exploit antenna arrays for estimating the channel param-

eters can be found in Section 2.3. Some work has focused on determining the direction-of-

arrival (DOA) and time delay of each arrival of a given signal at the array; some examples are

[Vee98, CT99, Ced96, Wax97, Ber99, Fle99]. Except for some cases that resort to a particular

configuration of the antenna array [Vee98], the primary drawback of these approaches is that

they lead to the optimization of multidimensional criteria. This is caused in part by the fact

that the DOAs are estimated, which, on the other hand, is advantageous because it allows to

fully exploit the spatial structure of the signals. Moreover, to obtain the DOA estimates it

is necessary to have a calibrated antenna array, and a relatively small number of rays with a

perfect pairing between time delays and DOAs. Errors in the array calibration are inevitable,

and the latter assumption is unlikely to be valid in a multipath-rich propagation environment.

The failure of these two assumptions can lead to significant performance degradation in practical

33
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scenarios. Apart from gradient-search algorithms, other methods have been used to solve the

multidimensional optimizations needed by the approaches above. The common thread of some

methods is to split the initial problem into several problems of smaller dimensionality that are

solved iteratively. For instance, the EM (Expectation Maximization) algorithm is employed in

[Bel96], and a modification thereof, named SAGE (Space-Alternating Generalized Expectation-

Maximization), is used in [Fle99]. The work of [Wax97] is based on the technique of alternating

projections. Other optimization methods that have been proposed for the single-antenna esti-

mators could be also applied to the multi-channel case. An example is the relaxation technique

utilized in [Wu99a, Wu99b]. A different alternative to solve multidimensional problems is pro-

posed in [Fuc98, Fuc99]. The search over the parameter space is replaced by an overdetermined

deconvolution approach which is regularized by a criterion that introduces parsimony in the

representation of the data. The result is a linear or quadratic programing problem.

To alleviate the difficulties associated with the estimation of the directions of arrival and to

avoid the optimization multidimensional functions, two key modeling features are introduced in

[Swi98a], namely: i) the spatial signatures are taken as unstructured vectors, ii) the noise is con-

sidered to be spatially white. With these two assumptions, and interchanging the roles of space

and time, the time delay estimation problem becomes formally identical to the more familiar

framework of DOA estimation. Thus, using a frequency-domain representation of the signals,

the computationally efficient algorithms IQML and ESPRIT can also be applied for time delay

estimation. Since IQML and ESPRIT estimate all parameters jointly, these algorithms are be-

lieved to be less exposed to convergence difficulties than the EM and the alternating-projection

methods. However, due to the assumption of spatial whiteness, the techniques in [Swi98a] are

not suited for scenarios with strong CCI (co-channel interference). This is a clear limitation

of these techniques, since it is always desirable that an antenna array should provide the re-

ceiver with certain interference mitigation capability. Therefore, in this chapter the approach of

[Swi98a] is extended to the case of noise with arbitrary spatial correlation, in such a way that

the resulting estimators are robust against the CCI. However, it is no longer possible to estab-

lish a parallelism between the usual ML DOA estimator and the ML time delay estimator in

spatially correlated noise. The latter does not allow the use of simple minimization procedures.

The main contribution of this chapter is a new estimator that is asymptotically efficient (and

asymptotically equivalent to the ML solution), and whose form lends itself to minimization with

the computationally attractive IQML and ESPRIT algorithms. Simulation results show that

the new estimator and the ML one perform nearly identically, and both of them are very close

to the Cramér-Rao bound even for small sample sizes.

The chapter is organized as follows. In the next section, the data model is briefly described.

In Section 3.3, the maximum likelihood estimator for the previous data model is presented along

with its statistical characterization. The new time delay estimator is introduced in Section 3.4,

and systematic and heuristic derivations thereof can be found in Sections 3.5 and 3.6. The
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application of IQML and ESPRIT to the new cost function is dealt with in Section 3.7, and

simulation results are included in Section 3.8. It is sketched in Section 3.9 how the proposed

estimator can be applied when the signal is composed of several portions which are known up

to a scaling factor. Section 3.10 is concerned with a modification of the data model, so that

it takes into account the propagation of the signal through a FIR channel. It is assumed that

the arrivals are uniformly spaced, so only the first time delay needs to be determined. It is

shown in Section 3.11 that the IQML algorithm can be applied in this case as well, and the time

delay estimate is obtained by rooting a polynomial. Simulation results for the FIR channel are

provided in Section 3.12. Finally, conclusions are drawn in Section 3.13.

3.2 Data Model

The data model employed in the first part of this chapter coincides exactly with the general

model presented in Section 2.5.1. The principal equations are written below to facilitate the

reading (for more details refer to the previous chapter). If an arbitrary m element array receives

d scaled and delayed replicas of a known signal s(t), the baseband array output can be expressed

as the following m × 1 vector:

y [n] = As [n, τ ] + e [n] , (3.1)

where

τ = [τ0 · · · τd−1]
T d × 1 (3.2)

A = [α0 · · · αd−1] m × d (3.3)

s[n, τ ] =
[

s (nTs − τ0) s (nTs − τ1) · · · s (nTs − τd−1)

]T

d × 1 . (3.4)

The sampling period is Ts, αk ∈ CI m and τk are the spatial signature and time delay of the kth

arrival, and e[n] ∈ CI m represents additive noise and all other disturbing terms. If N samples

are collected from the array, they all may be grouped together into the following m×N matrix

equation:

Y =
[
y[1] y[2] · · · y[N ]

]
= AS (τ ) + E , (3.5)

where S (τ ) ∈ CI d×N and E ∈ CI m×N are formed identically to Y.

Rather than parameterizing the array response αk in terms of one or more DOAs, we treat

it as an unstructured deterministic vector. Note also that we assume that the received signal

can be described by discrete arrivals with distinct delays. This is obviously an approximation,

especially in the multipath rich environments often encountered in wireless communications. In

situations where temporally and spatially diffuse arrivals are present, the above model is still

quite reasonable since arrivals that have nearly the same delay τ (i.e., arrivals whose delays are
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separated by less than the resolution of the estimator, due for example to a cluster of closely

spaced scatterers) can be grouped together into a single term. The temporal spread in a given

cluster and the total number of clusters d will then depend on the bandwidth of the transmitted

signal; the wider the signal bandwidth, the more clusters that may be necessary. The singular

values of the data matrix Y formed from several snapshots of data can be used to determine d

for a given scenario.

This approach is advantageous from a modeling and estimation point of view, as it leads

to algorithms with a more reasonable computational cost. In a fully parameterized model, the

spatial signature would be decomposed as

αk =

dk∑

i=1

αi,ka(θi,k) , (3.6)

where a(θ) represents the far-field array response to a unit amplitude plane wave arriving from

DOA θ, and dk,αi,k and θi,k denote the total number of multipaths associated with arrival k, their

complex amplitudes, and their DOAs, respectively. While perhaps more concise than assuming

an unstructured αk (unless dk is large), such a model requires in general a more complicated

estimator due its non-linear dependence on the DOA parameters. In addition, estimation of the

DOAs necessitates that the array response a(θ) be accurately calibrated, which is a problematic

assumption. For these reasons, we feel that the use of an unstructured spatial response model

leads to a much more practical approach. If DOA information is needed (e.g., in forming transmit

beamformer weights for downlink communication in frequency division duplex communications

systems), the directions can be determined from the estimated spatial signatures using a simple

least-squares fit, provided that dk is not too large (i.e., dk < (m + 1)/2). See [Swi98a, Xu95] for

more information on this approach.

Errors in the above model, together with the effects of background noise and co-channel

interference, are all lumped together in the error term e[n]. The CCI contribution to e[n]

could be parameterized in some way, e.g., as several delayed versions of certain signal or as a

finite alphabet sequence. However, taking the CCI structure into account in this way will lead

to a search over a larger set of parameters which are of no interest, such as the finite alphabet

sequences transmitted by the interferers. Instead of such a computationally demanding strategy,

we model the CCI contribution, along with additive noise and model errors, as complex Gaussian.

This assumption is primarily for modeling purposes, and allows us to develop a metric that takes

the spatial covariance of the CCI into account. Thus, e[n] is modeled as a complex, circularly-

symmetric, zero-mean Gaussian process. For simplicity the process is assumed to be temporally

white. However, as in, e.g., [Li95, Ced96, Swi98b, Vib97, Ast99b, Dlu89, Liu98a, Mol98], the

CCI is accounted for by modeling the process as spatially colored with an arbitrary unknown

correlation matrix (assumption (A2) in Section 2.5.1):

E {e[n]e∗[l]} = Q δn,l . (3.7)
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While such a model for e[n] is clearly only approximate, it captures the most significant effects of

the noise and interference, and leads to tractable algorithms. The Gaussian hypothesis may be

justified from different points of view. The usual one relies on the Central Limit Theorem based

on the fact that many sources contribute to e[n], or it can simply be said that it is model that

is expected to work. From a practical standpoint, assuming that the noise is Gaussian allows

to deal with the ML estimator analytically. Although the resulting estimator is not optimum

(or at least ML) unless the interferers are Gaussian, it is able to combat directional interferers

independently of their particular statistics. As a result, we believe that the model used in this

chapter offers an excellent compromise between model realism and computational complexity.

With the above mathematical model in hand, we can succinctly state the problem addressed

in this work:

Problem P1 – Given N snapshots of data in the matrix Y described by equa-

tions (3.1)-(3.5) and (3.7), estimate the spatial signatures A and time delays τ of

the arrivals, as well as the spatial covariance Q of the noise and interference.

As a final modeling issue, note that in the above discussion we have implicitly assumed that

d, the number of rays or clusters (or also the length of the FIR channels in Sections 3.10–3.11),

is known. Determining d is a non-trivial problem that is beyond the scope of this thesis. A

number of possibilities exist, including simple rank tests on Y, use of the Minimum Description

Length (MDL) [Ris78, Wax85] or Akaike’s criterion (AIC) [Aka74], sequential tests based on

the asymptotic distribution of a given criterion function [Vib91b, Ott93, Wu94, Pel98a] [Ran99,

chapter 5], robust bootstrap techniques [Vib99], among many others.

3.3 Maximum Likelihood Estimator

Let p(·|Q) denote the probability density function (pdf) of a complex Gaussian vector with zero

mean and covariance Q. Under the previous model for e[n], the negative log-likelihood function1

for N observations of y[n] is given by

fN(τ ,A,Q) = −
N∑

n=1

ln p (y[n] − As[n, τ ] |Q) . (3.8)

The subscript N is used to explicitly denote the number of data samples used to form the crite-

rion. The maximum likelihood estimates of the parameters are those values that minimize (3.8).

Making use of the expression for the complex Gaussian pdf [Kay93] and neglecting irrelevant

additive and multiplicative constants, we obtain

fN(τ ,A,Q) = ln |Q| + Tr
{
C(τ ,A)Q−1

}
, (3.9)

1The likelihood function is simply the probability density function considered as a function of the parameters.
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where

C(τ ,A) = R̂yy − AR̂∗

ys(τ ) − R̂ys(τ )A∗ + AR̂ss(τ )A∗ (3.10)

R̂yy =
1

N
YY∗ (3.11)

R̂ys(τ ) =
1

N
YS∗(τ ) (3.12)

R̂ss(τ ) =
1

N
S(τ )S∗(τ ) . (3.13)

The minimization of (3.9) with respect to Q and A may be performed explicitly. Using

standard matrix calculus results (see e.g., [Gra81, Bre78]), the gradient of the criterion with

respect to Q is easily shown to be

∂fN(τ ,A,Q)

∂Q
= Q−1 − Q−1C(τ ,A)Q−1 , (3.14)

from which it is clear that the ML estimate of Q is given by2

Q̂ML(τ ,A) = C(τ ,A) . (3.15)

Replacing Q in (3.9) with (3.15) and neglecting the resulting constant term yields

fN(τ ,A) = ln
∣∣∣R̂yy − AR̂∗

ys(τ ) − R̂ys(τ )A∗ + AR̂ss(τ )A∗

∣∣∣ (3.16)

= ln
∣∣∣R̂yy − R̂ys(τ )R̂−1

ss (τ )R̂∗

ys(τ )

+
(
A− R̂ys(τ )R̂−1

ss (τ )
)

R̂ss

(
A − R̂ys(τ )R̂−1

ss (τ )
)∗

∣∣∣ (3.17)

≥ ln
∣∣∣R̂yy − R̂ys(τ )R̂−1

ss (τ )R̂∗

ys(τ )
∣∣∣ , (3.18)

where in the second equation we have added and subtracted the term

R̂ys(τ )R̂−1
ss (τ )R̂∗

ys(τ ) .

We have used in writing (3.18) that the determinant is a nondecreasing function. This means that

for any positive definite matrix G and any non-negative definite matrix ∆G, the determinant

satisfies

|G + ∆G| =
∣∣G(I + G−1

∆G)
∣∣

= |G|
∣∣I + G−1

∆G
∣∣

≥ |G| ,

since the eigenvalues of I + G−1
∆G are ≥ 1. Note that the equality only holds for ∆G = 0.

For every τ , the lower bound of (3.18) is clearly achieved if A = R̂ys(τ )R̂−1
ss (τ ), so the ML

estimates of A and Q may be expressed as

ÂML(τ ) = R̂ys(τ )R̂−1
ss (τ ) (3.19)

Q̂ML(τ ) = R̂yy − R̂ys(τ )R̂−1
ss (τ )R̂∗

ys(τ ) . (3.20)
2We assume that N ≥ m + d so that the matrix C(τ ,A) is invertible with probability one.
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Although it is not explicitly adverted above, it is unequivocal that in order to obtain the ML

estimates of A and Q, (3.19)-(3.20) have to be evaluated at the ML estimate of the delays. The

resulting criterion for τ is then

fN(τ ) = ln
∣∣∣R̂yy − R̂ys(τ )R̂−1

ss (τ )R̂∗

ys(τ )
∣∣∣ = ln

∣∣∣Q̂ML(τ )
∣∣∣ . (3.21)

Thus, the maximum likelihood estimate of the spatial signatures, ÂML(τ ), is given by a least

squares fit to the data, and the ML estimate of the spatial noise covariance, Q̂ML(τ ), is simply

the sample covariance of the residuals. The delays for which the determinant of the sample

covariance of the residuals is minimized are the estimates of the propagation delays.

Using the following standard properties of the matrix determinant:

|XZ| = |X| · |Z| (3.22)

|I − XZ| = |I − ZX| , (3.23)

where X and Z are appropriately dimensioned matrices, it is straightforward to show that

fN(τ ) = ln
∣∣∣R̂yy

∣∣∣ + ln
∣∣∣I − R̂−1

yy R̂ys(τ )R̂−1
ss (τ )R̂∗

ys(τ )
∣∣∣ (3.24)

= ln
∣∣∣R̂yy

∣∣∣ + ln

∣∣∣∣I − R̂
−

1
2

yy R̂ys(τ )R̂−1
ss (τ )R̂∗

ys(τ )R̂
−

1
2

yy

∣∣∣∣ (3.25)

" ln
∣∣∣R̂yy

∣∣∣ + ln |I− BN(τ )| , (3.26)

where we have defined BN(τ ) in an obvious way. Note that the first term involving the determi-

nant of R̂yy can be ignored when minimizing with respect to τ since it is parameter independent.

We will define VN(τ ) as the criterion obtained by ignoring the first term:

VN(τ ) = ln |I − BN(τ )| .

Consequently, the proposed maximum likelihood synchronization approach can be summarized

as in Table 3.1. Some properties of the algorithm are discussed below.

3.3.1 Consistency

The consistency of the ML time delay estimator follows from the fact that as N → ∞, VN(τ )

converges with probability one and uniformly in τ to its limiting value V∞(τ ), which is minimized

by the true values of the time delays (if certain condition is satisfied), denoted by the vector

τ̌ . In this section and in all the following ones involving asymptotic results, it is assumed that

assumption (A1), presented in Section 2.5.1, is satisfied.

Now, we prove that the limiting criterion is minimized by the true delays. By (2.21), the
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τ̂ML = arg min
τ

VN(τ ) (3.27)

= arg min
τ

ln |I − BN(τ )| (3.28)

BN(τ ) = R̂
−

1
2

yy R̂ys(τ )R̂−1
ss (τ )R̂∗

ys(τ )R̂
−

1
2

yy (3.29)

ÂML(τ ML) = R̂ys(τ̂ ML)R̂−1
ss (τ̂ ML) (3.30)

Q̂ML(τ ML) = R̂yy − R̂ys(τ̂ ML)R̂−1
ss (τ̂ ML)R̂∗

ys(τ̂ ML) (3.31)

Table 3.1: Summary of the Maximum Likelihood Synchronization Algorithm for Spa-

tially Colored Noise and Interference.

limiting value of the cost function is

V∞(τ ) = ln

∣∣∣∣I −R
−

1
2

yy ACss (τ̌ , τ )C−1
ss (τ , τ )C∗

ss (τ̌ , τ )A∗R
−

1
2

yy

∣∣∣∣

= ln

∣∣∣∣I −R
−

1
2

yy ACss (τ̌ , τ̌ )A∗R
−

1
2

yy

+ R
−

1
2

yy A
(
Css (τ̌ , τ̌ ) − Css (τ̌ , τ )C−1

ss (τ , τ )C∗

ss (τ̌ , τ )
)
A∗R

−
1
2

yy

∣∣∣∣ (3.32)

where Ryy is the limiting value of R̂yy and the k,l-th element of the matrix Css (τ ,λ) is

css (λl − τk) (recall that css (τ) was defined in (2.20)). At this point we have to use that the

determinant is a nondecreasing function, and that the matrix

M (τ̌ , τ ) = Css (τ̌ , τ̌ ) − Css (τ̌ , τ )C−1
ss (τ , τ )C∗

ss (τ̌ , τ )

is non-negative definite because it is the Schur complement of Css (τ , τ ) in the following ma-

trix [Hor85]:


 Css (τ , τ ) C∗

ss (τ̌ , τ )

Css (τ̌ , τ ) Css (τ̌ , τ̌ )


 = lim

N→∞

1

N

∑

N


 s [n, τ ]

s [n, τ̌ ]




[
s∗ [n, τ ] s∗ [n, τ̌ ]

]
, (3.33)

which is clearly non-negative definite. Therefore, the limiting cost function satisfies

V∞(τ ) ≥ ln

∣∣∣∣I − R
−

1
2

yy ACss (τ̌ , τ̌ )A∗R
−

1
2

yy

∣∣∣∣ = V∞ (τ̌ ) (3.34)

The equality in (3.34) holds if the Schur complement M (τ̌ , τ ) is zero. This is only possible

for τ = τ̌ if the following non-ambiguity condition is fulfilled: The matrix Css (τ̃ , τ̃ ) is positive

definite for any vector τ̃ of length 2d whose elements are all distinct. This condition recalls

the one presented in [Vib95] for the estimation of directions of arrival with large arrays. The

consistency of ÂML and Q̂ML follows immediately from (3.30)-(3.31) and the consistency of τ̂ ML.
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3.3.2 Cramér-Rao Bound

Since the ML estimates of all of the parameters are consistent, they will also be asymptotically

(large N , hereafter) efficient (i.e., their asymptotic covariance coincides with the Cramér-Rao

bound (CRB)) [Leh83, section 6.4]. The CRB for the time delays is (Appendix 3.A)

CRB−1(τ ) = 2Re
{(

D(τ )P⊥

S∗(τ) D
∗(τ )

)
-

(
A∗ Q−1 A

)T
}

(3.35)

where

D(τ ) =
[

d (τ0) · · · d (τd−1)

]T

(3.36)

d (τi) = −
[

d s(t)
d t

∣∣∣
Ts−τi

· · · d s(t)
d t

∣∣∣
NTs−τi

]T

(3.37)

P⊥

S∗(τ) = I− PS∗(τ) = I − S∗(τ ) (S(τ )S∗(τ ))−1 S(τ ) . (3.38)

3.3.3 Computation of the Estimates

The complicated non-linear dependence of VN on τ , especially due to the presence of the de-

terminant, implies that a multidimensional search is the only method that can be used to find

the estimates. Although the search might be implemented in more sophisticated ways than

brute force evaluation of the cost function on a multidimensional grid (using, for example, gra-

dient methods, expectation-maximization, or alternating projections), a more computationally

efficient solution is still desirable.

A simpler solution is possible if the interference and noise are assumed to be spatially white

(e.g., no CCI). Under this assumption, the criterion reduces to a trace rather than determinant

operation. By transforming the data to the frequency domain, an iterative solution based on the

so-called IQML (Iterative Quadratic Maximum Likelihood) [Bre86] or MODE [Sto90c, Sto90b]

can be used. The computational advantage of these techniques results because the cost function

depends linearly on the signal projection matrix PS∗(τ). By reparameterizing the matrix PS∗(τ)

according to the coefficients of a certain polynomial, and assuming a previous estimate of these

coefficients is available, the dependence of PS∗(τ) on some trial coefficients and hence the cost

function become quadratic. The quadratic optimization problem is then solved in closed form

(see [Swi98a] for details).

The ML cost function for both spatially and temporally white noise is

fw
N (τ ) = −Tr

{
R̂ys(τ ) R̂−1

ss (τ ) R̂∗

ys(τ )
}

= − 1

N
Tr

{
YPS∗(τ) Y

∗
}

(3.39)

which satisfies the condition of linear dependence on PS∗(τ) stated above. Note that (3.39)

is equal up to an additive constant to Tr
{
Q̂ML(τ )

}
, while for unknown correlated noise the

cost function is
∣∣∣Q̂ML(τ )

∣∣∣. Both criteria are measures of the “magnitude” of the correlation
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matrix of the residuals. In the white-noise case, the measure is equal to the arithmetic mean

of the eigenvalues of Q̂ML(τ ), whereas the geometric mean is used in the correlated-noise case.

Although it might not be expected at first glance, the change of the trace for the determinant, or

the arithmetic mean for the geometric mean results in a drastic improvement of the performance

of estimator in the presence of CCI. On the other hand, this change also results in a “increased

non-linearity” of the cost function. Moreover, the performance of the ML cost function for

unknown correlated noise does not undergo asymptotically any deterioration with respect to the

ML criterion for white noise when the received noise is indeed spatially white. The proof of this

statement is evident from the derivation of the CRB in Appendix 3.A. This result is virtually

valid also in the finite-sample case, as illustrated in [Sec99b], given the proximity between

the finite-sample performance of the estimator and the CRB, which can be also observed in

Section 3.8.

As pointed out in [Ast99b], the cost function fw
N (τ ) is equal to minus the energy of the

spatial signatures’ estimates, ÂML(τ ), in the norm of R̂−1
ss (τ ). Actually, fw

N (τ ) can be viewed

as a extension of the MEDLL [Nee93a, Nee94] when an antenna array is used. The author of

the MEDLL does not propose any computational efficient method for the optimization, apart

from an approach based on the alternating projection paradigm. Futhermore, in the MEDLL

the amplitudes are not eliminated analytically. This fact increases the number of parameters of

the final cost function, and makes the convergence problems more severe.

The important issue is that the condition of linear dependence on PS∗(τ) is not fulfilled by

the ML cost function for unknown correlated noise in (3.28) due to the determinant operation.

Consequently, an IQML-like algorithm cannot be directly applied to (3.28). The main goal of

this chapter is to present and analyze a cost function that is asymptotically equivalent to the

original ML criterion (3.28), but that is linear in the signal projection matrix and, therefore

makes possible the computation of the estimates using an IQML approach.

3.4 An Asymptotically Equivalent Estimator

We propose computing the delay estimates as the minimizing arguments of the following criterion

function:

gN (τ ,Wop) = −Tr {Wop BN(τ )} (3.40)

where

Wop " (I − BN (τ̌ ))−1 (3.41)

and BN(τ̌ ) is defined as in (3.29). A proof that this criterion yields asymptotically efficient

delay estimates is given below.
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3.4.1 Proof of the Asymptotic Equivalence

To begin, we note that it can be shown that the estimates obtained with (3.40) are consistent.

The proof is similar to that in Section 3.3.1 and will be omitted. The only difference is that the

nondecreasing property of the trace, instead of that of the determinant, is employed. We will

now establish the asymptotic equivalence between

τ̂ 1 = arg min
τ

VN(τ ) (3.42)

τ̂ 2 = arg min
τ

gN (τ ,Wop) , (3.43)

which means that

τ̂ 2 = τ̂ 1 + op

(
N−1/2

)
, (3.44)

A sufficient condition for (3.44) to hold is that [Ott93]

gi
N (τ̌ ,Wop) = V i

N (τ̌ ) + op

(
N−1/2

)
(3.45)

gij
N (τ̌ ,Wop) = V ij

N (τ̌ ) + op (1) (3.46)

where the superscript (·)i denotes the derivative with respect to τi. A double superscript denotes

the corresponding second derivatives.

The proof of (3.45) is immediate since

V i
N (τ̌ ) = −Tr

{
(I − BN (τ̌ ))−1 Bi

N (τ̌ )
}

= gi
N (τ̌ ,Wop) . (3.47)

The second derivatives also satisfy the equivalence condition (3.46) because

V ij
N (τ̌ ) = −Tr

{
(I− BN (τ̌ ))−1 Bij

N (τ̌ )
}

+Tr
{
(I− BN (τ̌ ))−1 Bi

N (τ̌ ) (I − BN (τ̌ ))−1 Bj
N (τ̌ )

}

= gij
N (τ̌ ,Wop)

+Tr
{
(I− BN (τ̌ ))−1 Bi

N (τ̌ ) (I − BN (τ̌ ))−1 Bj
N (τ̌ )

}
(3.48)

and the last term in (3.48) is (at least) op (1) since, as shown in Appendix 3.B, Bi
N (τ̌ ) =

Op

(
N−1/2

)
.

3.4.2 Calculation of the Weighting Matrix

The weighting matrix Wop appearing in the proposed cost function depends on the true value

of the delays, and hence is unknown. However, it is a standard result that we can replace it with

a consistent estimate Ŵ without affecting the asymptotic properties of the delay estimates. If

τ̂ is a consistent estimate of τ̌ , then we can construct the practical weighting matrix as

Ŵ =
(
I − BN (τ̂ )

)−1
. (3.49)
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The estimates obtained from gN(τ ,Wop) and gN(τ ,Ŵ) are asymptotically equivalent be-

cause the derivatives of these cost functions satisfy conditions similar to those stated in (3.45)

and (3.46). The proof is immediate since Ŵ = Wop + op (1) (by the definition of consistency),

gi
N (τ̌ ,Wop) = Op

(
N−1/2

)
and gij

N (τ̌ ,Wop) = Op (1). It is worth remarking that the practical

cost function admits the following expression:

gN(τ ,Ŵ) = −Tr
{
Q̂−1/2 R̂ys(τ ) R̂−1

ss (τ ) R̂∗

ys(τ ) Q̂−1/2
}

(3.50)

since

BN(τ̂ ) = I − R̂−1/2
yy Q̂ R̂−1/2

yy (3.51)

Q̂ = R̂yy − R̂ys(τ̂ ) R̂−1
ss (τ̂ ) R̂∗

ys(τ̂ ) (3.52)

Note that Q̂ is a consistent estimate of the correlation matrix of the noise. The criterion in

(3.50) above resembles the one in the white-noise case (3.39); the difference is that now the

signals are prewhitened using an estimate of the noise correlation. While the function in (3.50)

could have been derived using purely heuristic reasoning, the development followed herein has

allowed us to prove the equivalence between (3.50) and the original criterion (3.28), which would

have been difficult to do from a simple inspection of those cost functions. More iterations of the

estimator (that is, using the time-delay estimates obtained from gN(τ ,Ŵ) to compute a new

weighting matrix, which is substituted back into gN and then new estimates are calculated, ...)

do not improve the large sample accuracy of the estimates, since gN(τ ,Ŵ) already provides

asymptotically efficient estimates. Besides, interestingly enough, simulation results have shown

that the additional iterations do not improve the performance either in the finite-sample case.

The consistent estimate of the time delays, τ̂ , needed to construct Ŵ can be obtained as

the minimizing argument of

hN(τ ) " gN (τ , I) = −Tr {BN(τ )} (3.53)

= −Tr
{
R̂−1/2

yy R̂ys(τ ) R̂−1
ss (τ ) R̂∗

ys(τ ) R̂−1/2
yy

}
, (3.54)

in which the unknown weighting matrix is replaced by the identity, which amounts to prewhiten-

ing the signals according to the total correlation matrix R̂yy instead of the correlation of the

noise, as done in (3.50). Again, the proof of the consistency of hN(τ ) is similar to that in Sec-

tion 3.3.1 and will be omitted. Note that the criterion fw
N (τ ) obtained for spatially white noise

also provides consistent estimates. Nevertheless, as illustrated in the simulations of Section 3.8,

its variance will be much larger than that of the estimates obtained with (3.54) when the noise is

not spatially white since fw
N (τ ) makes no attempt to prewhiten the signals. Therefore, there is

no advantage in employing fw
N (τ ) instead of hN(τ ) (apart from a slightly reduced computational

complexity), and the latter is preferred.
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3.5 Systematic Derivation

In Section 3.4, rather than deriving the new estimator, we nearly postulated it. And the simple

conditions of Section 3.4.1 served to prove its asymptotic efficiency. A more systematic approach

would have been the following one. As stated above, the premise that a cost function has to

satisfy in order to allow the application of IQML is that the dependence on PS∗(τ) and, hence,

on BN(τ ) has to be linear. Then, gN (τ ,W) defined as in (3.40), where W is a positive definite

Hermitic matrix, is a logical choice since it is the most general linear function of the elements of

BN(τ ). Again, the proof that the estimates are consistent for any choice of W follows closely

that of Section 3.3.1. The next step is to compute the asymptotic covariance of the estimates

obtained from gN (τ ,W) as a function of the weighting matrix, which we denote as C (W). It

is a well known result that [Söd89]

NC (W) = H−1 GH−1 (3.55)

where

G = lim
N→∞

N E
{

g′ (τ̌ ,W)
(
g′ (τ̌ ,W)

)T
}

(3.56)

H = lim
N→∞

g′′ (τ̌ ,W) , (3.57)

and g′ and g′′ denote the gradient and the Hessian of g (τ ,W). The Hessian and the covariance

of the gradient are given by (proof in Appendix 3.C)

H =
2

N
Re

{(
DP⊥

S∗ D∗

)
-

(
A∗ R−1/2

yy WR−1/2
yy A

)T }
(3.58)

G =
2

N
Re

{(
DP⊥

S∗ D∗

)
-

(
A∗ R−1/2

yy WR−1/2
yy QR−1/2

yy WR−1/2
yy A

)T}
(3.59)

where D, which was defined in (3.36), and S are evaluated at τ̌ . Using a straightforward

modification of [Sto90a, Lemma A.2] (see also [Swi92, Theorem 5.1]) we get

C (W) ≥ 1

2
Re

{(
D (τ̌ ) P⊥

S∗(τ̌) D
∗ (τ̌ )

)
-

(
A∗ Q−1 A

)T
}−1

. (3.60)

Note that the right-hand expression of (3.60) is exactly the CRB, as written in (3.35). To

minimize C (W), it would be sufficient to find a W for which the equality was obtained in

(3.60). It is clear that this happens for

Wmin = R1/2
yy Q−1 R1/2

yy . (3.61)

This result is perfectly coherent with the optimum weights defined by (3.41), since Wop =

Wmin + op (1) and, as stated above, a term of order op (1) in the weighting matrix does not

affect the asymptotic accuracy of the estimator. For the simple case of d = 1, W = I also yields

the minimum variance. This is a logical result since, for d = 1, it is verified that VN (τ0) =

ln (1 + gN (τ0, I)).
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3.6 Heuristic Derivations

In this section, three different heuristic ways of deriving the new cost function gN(τ ,Ŵ) are

presented. These approaches do not intend to be rigorous proofs. However, they are rather

general and may thus be of interest for other problems as well.

3.6.1 Series Expansion of the Logarithm

Note that

BN(τ ) = R̂
−

1
2

yy R̂ys(τ )R̂−1
ss (τ )R̂∗

ys(τ )R̂
−

1
2

yy

= (YY∗)−1/2YS∗(τ ) (S(τ )S∗(τ ))−1 S(τ )︸ ︷︷ ︸
X

·Y∗(YY∗)−1/2

︸ ︷︷ ︸
Z

.

If we compare the above equation with

PY∗ PS∗(τ) = Y∗ (Y Y∗)−1 YS∗(τ ) (S(τ )S∗(τ ))−1 S(τ )

= Y∗(YY∗)−1/2

︸ ︷︷ ︸
Z

· (YY∗)−1/2YS∗(τ ) (S(τ )S∗(τ ))−1 S(τ )︸ ︷︷ ︸
X

,

we see that BN(τ ) and the product of the two projection matrices above must share the same

non-zero eigenvalues. Thus, the eigenvalues of BN(τ ) satisfy 0 ≤ λi ≤ 1, or in the presence of

noise λi < 1. Therefore, we can use the series expansion of the logarithm to express the original

ML criterion as follows:

VN(τ ) = −Tr {BN(τ )}− 1

2
Tr

{
B2

N (τ )
}
− 1

3
Tr

{
B3

N(τ )
}

+ · · · . (3.62)

The function hN (τ ), which we have proposed to use in obtaining the initial consistent estimates,

is the first term of this expansion. Unlike many other estimation problems (see e.g., [Li95, Vib97,

Zhe97], and Chapter 5 of this thesis), the first-order term is not asymptotically equivalent to the

original function because limN→∞ BN (τ̌ ) = I−R
−1/2
yy QR

−1/2
yy is not equal to zero. The error in

this first order approximation is “small” when all the eigenvalues of Q are large with respect to

the power of the signals (e.g., the SNR regarding the spatially white noise is very poor). However,

this situation will seldom be encountered in practice, where usually only some of eigenvalues

of Q are large, due to the reception of directional interferers. In order to maintain not only

consistency but also asymptotic efficiency, all of the terms in the expansion (3.62) must be kept.

Since the second and higher-order terms are the ones that introduce the undesirable nonlinear

dependence on the matrix PS∗(τ), we decide to approximate them. The approximation is not

done directly over VN(τ ), but over its derivative. If we differentiate (3.62) and replace BN(τ )

by BN(τ̂ ) in all the second and higher-order terms (this is justified since Bi
N (τ̌ ) = Op

(
N−1/2

)
),
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it results that

V i
N(τ ) ≃ −Tr

{
Bi

N(τ )
(
I + BN(τ̂ ) + B2

N(τ̂ ) + · · ·
)}

(3.63)

= −Tr
{

(I − BN(τ̂ ))−1 Bi
N(τ )

}
. (3.64)

Thus we retrieve the new criterion presented in Section 3.4 since the value of τ that minimizes

gN(τ ,Ŵ) also nulls (3.64).

3.6.2 Eigenvalue Weighting

The derivative of the original ML criterion can be written as

V i
N(τ ) = −

m∑

k=1

λi
k(τ )

1 − λk(τ )
, (3.65)

while the derivative of the cost function that provides only consistent estimates is

hi
N(τ ) = −

m∑

k=1

λi
k(τ ) , (3.66)

where λk(τ ) are the eigenvalues of BN(τ ). We notice that the difference between the estimator

that is asymptotically efficient and the one that is not lies in an appropriate weighting of the

eigenvalues. The second criterion (3.66) approaches the original one (3.65) when all the nonzero

eigenvalues are much smaller than one, or when all of them have similar values. Again, this

only happens in general if all the eigenvalues of Q are much larger than the power of the desired

signals. A reasonable approach to approximating the optimal weighting would be to replace the

eigenvalues λk(τ ) in (3.65) by the eigenvalues of BN(τ̂ ). Using (3.65) and the eigendecomposition

BN(τ ) = U(τ )Λ(τ )U∗(τ ), this approach results in

VN(τ ) ≃ −Tr
{

(I − Λ(τ̂ ))−1
Λ(τ )

}
(3.67)

= −Tr
{
U(τ ) (I − Λ(τ̂ ))−1 U∗(τ )U(τ )Λ(τ )U∗(τ )

}
(3.68)

≃ −Tr
{
U(τ̂ ) (I − Λ(τ̂ ))−1 U∗(τ̂ )BN (τ )

}
(3.69)

= −Tr
{

(I − BN(τ̂ ))−1 BN(τ )
}

= gN(τ ,Ŵ) (3.70)

which is the cost function proposed in Section 3.4.

Note that in the two approaches above the approximations are always carried out on the

derivative of the ML cost function, and next the function gN(τ ,Ŵ) results by integration. If

the approximations had been performed directly on the ML cost function, the resulting criterion

would not have been asymptotically efficient.
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3.6.3 Modified First Order Approximation

As stated above, a direct first-order approximation of the ML cost function does not yield an

asymptotically efficient estimator. However, using a simple trick we can write the ML cost

function as

VN(τ ) = ln |I − BN(τ̂ ) + BN(τ̂ ) − BN(τ )|

= ln |I − BN(τ̂ )| + ln
∣∣∣I + (I− BN(τ̂ ))−1 (BN(τ̂ ) − BN(τ ))

∣∣∣ (3.71)

Since limN→∞ (BN(τ̂ ) − BN (τ̌ )) = 0 and Bi
N (τ̌ ) = Op

(
N−1/2

)
, it is possible to maintain the

asymptotic efficiency by only keeping the first-order term in the series expansion of (3.71), which

is

VN(τ ) ≃
first order

term

ln |I −BN (τ̂ )| + Tr
{
ŴBN(τ̂ )

}
− Tr

{
ŴBN(τ )

}
= c + gN(τ ,Ŵ) , (3.72)

where c is a constant, and Ŵ was defined in (3.49). Once more, this coincides with the alternative

function we have proposed.

3.7 Calculating the Estimates with IQML and ESPRIT

In this section we outline how the IQML and ESPRIT algorithms can be applied to the cost

functions that have appeared in the previous sections. Since the objective in the preceding sec-

tions has been to reduce the complexity involved in a direct minimization of a multidimensional

criterion, it does not make sense to optimize the new cost functions using a search; instead, the

use of computationally efficient algorithms is more appropriate.

The general expression of the cost function we consider is that given in (3.40), which can be

written as

gN (τ ,W) = − 1

N
Tr

{
W1/2 R̂−1/2

yy Y PS∗(τ) Y
∗ R̂−1/2

yy W1/2
}

. (3.73)

Different criteria are obtained from different choices of the matrix W. That is, if W is a

consistent estimate of Wop in (3.41) then the asymptotically efficient estimator is obtained; if

W is equal to the identity matrix or equal to R̂yy then the consistent estimator hN(τ ) or the

white-noise estimator fw
N (τ ) result, respectively.

The IQML and ESPRIT algorithms work with a frequency representation of the data. This

representation was already described in Section 2.5.2. However, the main equation are summa-

rized below. If the N temporal samples are transformed into the frequency domain using the

DFT, the signals approximately satisfy the following relationship:

S∗(τ ) = S∗

ω V(τ ) (3.74)
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where Sω is a diagonal matrix whose entries are the DFT of the vector samples

[s (Ts) , · · · , s (N Ts)], and

V(τ ) =
[

v (τ0) · · · v (τd−1)

]
(3.75)

v (τk) =
[

exp (jω1τk) · · · exp (jωNτk)

]T

(3.76)

ωi =
2π

N Ts

(
i − 1 −

⌊
N

2

⌋)
. (3.77)

Note that the same notation, S(τ ) and Y, is used for both the time and frequency domain. Since

the noise is assumed to be white in time, it is also white in frequency, so all of the estimators

above can be applied in an identical fashion to the frequency rather than time samples.

3.7.1 IQML Algorithm

Let the elements of the vector g = [g0 · · · gd]
T be taken from the coefficients of the polynomial

G (z) = g0 zd + g1 zd−1 + · · · + gd (3.78)

whose roots are

exp (j2πτ0/NTs) , · · · , exp (j2πτd−1/NTs) . (3.79)

Since the roots lie on the unit circle, the coefficients satisfy the so-called conjugate symmetry

constraint:

gk = g∗d−k, k = 0, 1, · · · , d . (3.80)

The class of polynomials that satisfies (3.80) contains not only polynomials with roots on the

unit circle, but also all polynomials with roots symmetrical (inverted and conjugated) with

respect to the unit circle. Since the conjugate symmetry constraint on the coefficients is less

restrictive than the unit norm constraint on the roots, some performance loss might occur when

the cost function is parameterized by the coefficients g subject to (3.80), instead of the time

delays τ . However, when evaluated in simulations concerning the problem of DOA estimation

[Sto90c, Kri98], the performance degradation has been shown to be negligible in most cases.

This can be explained by the fact that when the constraint in (3.80) is used, the roots stay on

the unit circle for small perturbations in the coefficients (see [Sto88]). Thus, for a consistent

estimator this reparameterization is asymptotically equivalent to a parameterization where the

unit norm on the roots is included.

It is straightforward to prove the following equality of projection matrices [Swi98a]:

P⊥

S∗(τ) = P
S
−1
ω G

= S−1
ω G

(
G∗ S−∗

ω S−1
ω G

)−1
G∗ S−∗

ω (3.81)
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where the N × N − d Sylvester matrix G is given by

G =




gd gd−1 · · · g0 0

0 gd gd−1 · · · g0 0

. . .
. . .

. . .
. . .

. . . 0

0 gd gd−1 · · · g0




∗

(3.82)

Therefore, minimizing the cost function in (3.73) is equivalent to minimizing

g̃N (g,W) =
1

N
Tr

{
W

1
2 R̂

−
1
2

yy Y S−1
ω G

(
G∗ S−∗

ω S−1
ω G

)−1
G∗ S−∗

ω Y∗ R̂
−

1
2

yy W
1
2

}
(3.83)

In the IQML (Iterative Quadratic Maximum Likelihood) algorithm the minimization of (3.83)

is done iteratively. That is, the matrix
(
G∗

k S−∗
ω S−1

ω Gk

)−1
is computed using a given esti-

mate gk and held fixed. Then, the resulting criterion is quadratic in gk and can be solved

in closed-form. Details on the implementation of this step subject to the conjugate symmetry

constraint (3.80) and to a certain constraint that avoids the trivial solution (e.g., ‖gk‖2 = 1,

or Re {g0} = 1) can be found in [Swi98a, Bre86, Hua94]. The resulting vector gk+1 is used to

fix
(
G∗

k+1 S−∗
ω S−1

ω Gk+1

)−1
, and the process is repeated until a certain convergence or failure

criterion is satisfied (see Section 3.8.1).

If we want the matrix W to be a consistent estimate of Wop, then we have two iterative

processes: the IQML algorithm itself and the computation of the matrix W. Since these two

processes can be coupled or not, we can choose two different approaches to implement the

complete estimation procedure:

A) Coupled iterations

1. Initialize k = 0, W0 = I and g0 (see Section 3.8.1).

2. Do only one iteration of the IQML algorithm and obtain gk+1.

3. Compute τ k+1 from gk+1 using (3.78)-(3.79).

4. Compute the weighting matrix Wk+1 using τ k+1 and expression (3.49). Substitute

Wk+1 in the cost function that is being minimized (3.83).

5. If the convergence / failure condition is satisfied, take the final estimate of the delays

as τ̂ = τ k+1. If not, set k = k + 1 and return to step 2.

B) Decoupled iterations

1. Initialize W0 = I and g0 (see Section 3.8.1).

2. Perform all iterations of the IQML algorithm until it converges or fails (not only one

iteration as in the procedure A). The result is the vector g1, and the corresponding

time-delay estimate τ 1 is obtained using (3.78)-(3.79).
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3. Compute the weighting matrix W1 using τ 1 and expression (3.49). Introduce W1 in

the cost function (3.83).

4. Again perform all iterations of the IQML algorithm until convergence or failure oc-

curs. The result is the vector g2, and the corresponding time-delay estimate is the

final estimate: τ̂ = τ 2.

As we will show in the simulation results, the method A presents a lower estimation error

and requires less iterations of the IQML algorithm to converge than the method B. On the

other hand, their computational loads are similar, since in the method B the weighting matrix

is computed only once (but the total number of iterations is greater). Note that the decoupled

iterations method is the one that stems directly from the theoretical results. That is, the delay

estimation is divided into two stages: i) obtaining the consistent estimate, ii) obtaining the

asymptotically efficient estimate. However, the coupled iteration method is a logical ad hoc

modification of the decoupled one given the two iterative processes needed by the proposed

estimator. The coupled iterations method does not stem directly from the theoretical study, but

it happens to have certain advantages and is preferred in front of the decoupled one.

3.7.2 ESPRIT Algorithm

If d < m, d < N and A is full column-rank, it is possible to exploit the Vandermonde structure

of V(τ ) using the ESPRIT algorithm [Roy86]. The application of this method to time-delay

estimation in the white-noise case is detailed in [Swi98a]. Given the similarity between the cost

functions fw
N (τ ) in (3.39) and gN (τ ,W) in (3.73), the extension of ESPRIT to the new criterion

is immediate. In our case, the matrix F = Y∗ R̂
−1/2
yy W1/2 plays exactly the same role as Y∗ in

the white-noise case.

Let U denote the d singular vectors of F associated with the largest singular values. Next,

U1 (resp. U2) is constructed by taking the first (resp. last) N − δ rows of U. The diagonal

matrices Sω1 and Sω2 are built from the first and last N − δ elements of the diagonal of Sω,

respectively. Let the d × d matrix Ψ be the solution of the following overdetermined system of

linear equations:

S∗

ω1 U2 = S∗

ω2 U1 Ψ (3.84)

The time-delay estimates can be determined from the phase of the eigenvalues λi of Ψ (see

[Roy86, Swi98a]):

τ̂i =
N Ts ∠λi

2π δ
i = 0, · · · , d − 1 . (3.85)

The shift parameter δ must satisfy two conditions:

δ ≤ N − d , δ <
NTs

2maxi |τi|
(3.86)
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The first one prevents the system (3.84) from being indefinite, while the second guarantees that

the association between eigenvalues and delays is unique. It is possible to solve the system of

equations (3.84) using either Least Squares (LS) or Total Least Squares (TLS) [Gol96].

3.8 Simulation Results

In this section we analyze the performance of the cost functions proposed above by means of

numerical simulations. Our performance metric is the Root Mean Squared Error (RMSE) of

the delay estimates produced by each algorithm. We calculate the RMSE for a wide variety

of scenarios as a function of the number of samples N , the number of sensors m, the signal to

interference ratio, the signal to noise ratio, and the relative delay and DOA of the multipath

reflections.

3.8.1 Simulation Parameters

All simulations are conducted assuming that d = 2 delayed versions of a known signal are

received by a uniform linear array with antennas spaced 0.5 wavelengths apart. This known

signal is a concatenation of M truncated and sampled Nyquist square-root raised cosine pulses3.

Each pulse has a bandwidth equal to (1 + ̺) /2Tc, is truncated to the interval [−3Tc, 3Tc], and

the sampling period is Tc/2, so there are L = 13 samples in each pulse (see Figure 3.1). Note

that Tc acts simply as a normalization constant, and ̺ is the roll-off factor which we set equal to

0.2. The use of this type of signal is of interest because each pulse may represent the output of

the despreader at every symbol period in a DS-CDMA system (refer to Section 2.5.3 for further

details).

The noise plus interference field in which the array operates consists of: i) spatially and

temporally white Gaussian noise, and ii) a temporally white Gaussian interference at DOA

−30o relative to the array broadside, which is responsible for the spatial correlation of the noise

plus interference field. Both the noise and the interference are uncorrelated with the desired

signal. The remaining scenario parameters, except when one of them is varied, are as follows:

m = 6 antennas; M = 3 pulses constituting each signal; delays of the two signals equal to 0

and 0.4Tc; DOAs of those signals: 0o, 10o, respectively; Signal to Noise Ratio (SNR) of the first

signal4: 15.87 dB; Signal to Interference Ratio (SIR) of the first signal: −3.13 dB; the second

signal is attenuated 3 dB with respect to the first, and they are in phase at the first sensor. In

all cases, only the 7 DFT bins with the strongest signal content are employed by IQML and

3The expression of the derivative of the Nyquist square-root raised cosine pulse, which is needed to compute the

CRB, has been included in Appendix 3 .D, since it presents some indeterminations that need special consideration.
4The power of the signals is averaged over all the observation window.
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Figure 3.1: Samples of a single pulse and the underlying analog signal.

ESPRIT for estimation of the time delays.

In the figures below, we show the RMSE of the estimate of the time-delay of the first

signal (the time-delay estimate of the second signal behaves similarly) obtained from different

cost functions and optimization algorithms. The RMSEs are computed from 500 Monte Carlo

realizations of the noise and interference, and they are compared to the CRB given by (3.35).

Each curve in the figures corresponds to one of the following methods:

1. Asymptotically efficient estimator gN(τ ,Ŵ) given by (3.50). The minimization is carried

out using IQML, with the weight matrix Ŵ recomputed at every IQML iteration (i.e., the

coupled iteration method A of Section 3.7.1).

2. Consistent estimator gN (τ , I) given by (3.54). The estimates are calculated using LS-

ESPRIT, since we have observed that in this case ESPRIT somewhat surprisingly yields

a lower RMSE than IQML.

3. ML estimator in spatially white noise fw
N (τ ) given by (3.39), with the estimates obtained

via IQML as in [Swi98a].

4. Asymptotically efficient estimator gN(τ ,Ŵ) given by (3.50). The minimization is carried

out using IQML twice, but the matrix Ŵ is computed after the first IQML has converged

(i.e., the decoupled iteration method B in Section 3.7.1). The performance of this method

is shown only in Figure 3.2, and it is referred to as IQML “2 iterations”.
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Only the RMSEs are plotted because these four methods are essentially unbiased (i.e., their

biases are much smaller than their standard deviations). The initial value of Ŵ used in meth-

ods 1 and 4 above is the identity matrix. In these methods and also in method 3, the matrix

G∗S−∗
ω S−1

ω G appearing in the IQML algorithm is initialized using estimates obtained with ES-

PRIT. We have noticed that the alternative of initializing this matrix to the identity results in an

increased RMSE. In all cases, LS-ESPRIT is used since the more complicated TLS-ESPRIT does

not provide an appreciable performance improvement. The displacement between the two data

structures in ESPRIT is δ = 2. IQML is implemented with the quadratic constraint ‖g‖2 = 1,

since it seems to give better results than the linear constraint Re {g0} = 1. The IQML iterations

are terminated when either of the following is satisfied:

• ‖gk − gk−1‖2 < ε = 10−4. (Any value of ε between 10−2 and 10−4 provides essentially the

same performance.)

• the number of iterations > 50

3.8.2 Effect of the Number of Samples

The finite-sample and asymptotic performance of the four methods above is illustrated in Fig-

ure 3.2. As predicted by the theoretical study, the RMSE of the proposed cost functions (meth-

ods 1 and 4) tend to the CRB as the number of samples (equivalently, as the number of pulses)

increases. Although both methods are asymptotically efficient, method 1 shows a lower RMSE

than method 4 for a small number of samples (e.g., the former attains the CRB for 4 or more

pulses, whereas the latter needs at least 7 pulses). Another advantage of method 1 over method 4

is that fewer iterations of IQML are required for convergence. For instance, when the number

of received pulses is 3, the number of iterations required by method 1 is 5.59 ± 0.93 (mean ±

standard deviation), while method 4 needs 7.66 ± 1.18 iterations. All the same, both methods

have converged in all the runs. Though the number of iterations varies depending on the sce-

nario, in the vast majority of the cases we have simulated it is less than 15 and the difference

between method 1 and 4 is approximately constant. Thus, the computational time required

for the optimization is reduced by several orders of magnitude thanks to the use of IQML and

ESPRIT instead of minimizing (3.28) or (3.50) via a search.

Since method 1 has some advantages over method 4, the former is used for the rest of the

simulations. The small difference between its RMSE and the CRB visible in Figures 3.3-3.7

occurs because the method has not achieved its asymptotic behavior for signals formed by only

3 pulses. Also as predicted by the theoretical study, method 2 does not attain the CRB, but

performs much better than the estimator designed for the white-noise case (method 3). This

occurs because method 2 (cost function gN(τ , I)) takes into account the spatial correlation of the

noise field, though not in an optimal way. It is worth remarking that, because of its simplicity
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Figure 3.2: RMSE of the proposed estimators as a function of the number of train-

ing pulses. Parameters: θ̌0 = 0o, θ̌1 = 10o, θ̌i = −30o, τ̌0 = 0, τ̌1 = 0.4Tc, m =

6 antennas, SNR0 = 15.87 dB, SIR0 = −3.13 dB, SNR0/SNR1 = 3dB.

(only ESPRIT is applied) and its low RMSE, method 2 is an excellent initialization scheme

for the asymptotically efficient estimators based on IQML. The RMSE obtained with the white-

noise estimator is plotted for comparison purposes, and the severe degradation that it undergoes

when the noise field is spatially correlated is evident in all the simulations.

3.8.3 Effect of the Number of Sensors

Results showing the effect of varying the number of sensors are given in Figure 3.3. In all cases,

method 1 outperforms method 2, and both are clearly superior to the white-noise estimator.

For the number of sensors shown in the figure, the CRB decreases slightly faster than 1/m.

Now, however, the RMSE of the estimates obtained with gN(τ ,Ŵ) does not approach the

CRB as the number of sensors increases. This behavior coincides with two well-known results

in sensor array processing: As the data grows in a dimension different from the dimension in

which the parameters are estimated, i) the deterministic ML estimator is not asymptotically

efficient [Sto90a, Sto89], and ii) the IQML algorithm is inconsistent [Sto97] and its RMSE does

not necessarily decrease [Li98]. Moreover, in our problem another deleterious effect is added;

namely, the estimation errors of the covariance matrices R̂yy or Q̂ increase as the number of

antennas increases for a fixed number of samples.
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Figure 3.3: RMSE of the proposed estimators as a function of the number of sensors.

Parameters: θ̌0 = 0o, θ̌1 = 10o, θ̌i = −30o, τ̌0 = 0, τ̌1 = 0.4Tc, M = 3 pulses, SNR0 =

15.87 dB, SIR0 = −3.13 dB, SNR0/SNR1 = 3dB.

Another effect is that the number of iterations needed by IQML to converge increases with

the number of sensors. Although beyond the scope of this thesis, it is worth noting that the

performance of the method 4, which is the most sensitive to the increase of the array size, can

be improved for a large number of antennas using a low-rank modification of the signal matrix

similar to that in the MODE and WSF (weighted subspace fitting) algorithms. That is, the term

Z = Y∗R̂
−1/2
yy Ŵ R̂

−1/2
yy Y appearing in g(τ ,Ŵ) can be replaced by Ê Λ̃ Ê∗, where Ê represents

the eigenvectors of Z associated with the d largest eigenvalues, and Λ̃ is a certain diagonal

weighting matrix [Sto90c, Ott93, Vib91a]. The study of the performance using the low-rank

matrix is left as a topic for future research.

3.8.4 Effect of the SIR and SNR

The objective of the first simulation, whose results are given in Figure 3.4, is to show that

the RMSE of the consistent and asymptotically efficient estimators proposed herein are robust

against arbitrarily strong interferers. Therefore, they are valid approaches for time-delay esti-

mation in interference-limited situations, such as most mobile communication systems. Note

that the estimator designed for a white-noise scenario completely fails for SIR < −10 dB. Next,

observe in Figure 3.5 the effect of varying the power of the white noise. As it could be expected,
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the improvement obtained using gN(τ ,W) and gN(τ , I) instead of fw
N (τ ) is increasingly more

significant as the SNR increases. Similarly, the superiority of the asymptotically efficient esti-

mator to the consistent estimator becomes slightly more noticeable for high SNR. Actually, this

behavior was justified theoretically in Sections 3.6.1 and 3.6.2, where the condition needed by

the consistent estimator to approach the exact ML method was presented.
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Figure 3.4: RMSE of the proposed estimators as a function of the interference power.

Parameters: θ̌0 = 0o, θ̌1 = 10o, θ̌i = −30o, τ̌0 = 0, τ̌1 = 0.4Tc, m = 6 antennas, M =

3 pulses, SNR0 = 15.87 dB, SNR0/SNR1 = 3dB.

3.8.5 Closely Spaced Signals

In Figures 3.6 and 3.7, we investigate the ability of the different methods to resolve closely-

spaced signals in the temporal and spatial domains. As with all time-delay estimators that do

not assume parameterized spatial signatures, the CRB grows without limit as the relative delay

of the signals decreases. We observe that the estimator we have proposed is always very close

to the CRB, except for the case of relative delays smaller than 0.1Tc. However, this range of

delays lacks practical interest because reliable unbiased delay estimates cannot be expected for

any method; i.e., in this range the best achievable standard deviation for any unbiased estimator

is larger than half the time-delay separation between the two signals [Vib91b]. It is remarkable

that the RMSE can be largely reduced in this range of delays by allowing a small bias for the

estimates, as shown in Chapter 4.
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Figure 3.5: RMSE of the proposed estimators as a function of the white-noise power.

Parameters: θ̌0 = 0o, θ̌1 = 10o, θ̌i = −30o, τ̌0 = 0, τ̌1 = 0.4Tc, m = 6 antennas, M =

3 pulses, SIR0 = −3.13 dB, SNR0/SNR1 = 3dB.

When the DOA separation of the signals is smaller than the beamwidth of the sensor array

(in our case, about 9o at -3dB), the CRB increases as the DOA separation decreases; but it does

not tend to infinity as in the case of delay separation. Also when the DOA separation is smaller

than the beamwidth, ESPRIT undergoes a severe degradation because the matrix A tends to

be rank deficient. However, the performance of the proposed method is always very close to the

CRB, even though it is initialized with ESPRIT.

3.8.6 Performance Using a Search

We have also analyzed the RMSEs obtained when the criteria VN(τ ) in (3.28), gN(τ ,Ŵ) in

(3.50), gN(τ , I) in (3.54), and fw
N (τ ) in (3.39) are minimized using a search. We have observed

that direct minimization of VN(τ ) and gN(τ ,Ŵ) and method 1 all yield nearly the same RMSE

even for a small number of samples (see Figure 3.8). Therefore, the new cost function we have

proposed, besides being asymptotically efficient, does not entail any degradation in the finite-

sample case with respect to the exact ML estimator (3.28). Moreover, the minimization using

IQML does not introduce any impairment with respect to the use of a search. Secondly, the

minimization of gN (τ , I) by means of a search or using ESPRIT (i.e., method 2) results in

approximately the same RMSE. On the contrary, the RMSE obtained from the minimization
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Figure 3.6: RMSE of the proposed estimators as a function of time-delay separa-

tion. Parameters: θ̌0 = 0o, θ̌1 = 10o, θ̌i = −30o, τ̌0 = 0, m = 6 antennas, M =

3 pulses, SNR0 = 15.87 dB, SIR0 = −3 dB, SNR0/SNR1 = 3dB.

of fw
N (τ ) using a search is slightly smaller than that obtained using IQML (i.e., method 3).

Numerical results supporting these last claims are provided in Figure 3.9.

3.9 Use of Multiple Incoherent Bursts

The asymptotically efficient approximation to the exact ML estimator proposed in this chapter

also serves to simplify the ML estimator obtained when the data is constituted by multiple

“incoherent bursts”. This situation consists in that the received signals can be divided into

several portions or “bursts”. The waveform of the desired signals is known during any of those

portions, but the signals are multiplied by different unknown constants in each portion, so the

waveform is not known along the whole observation interval. The data corresponding to the lth

burst is represented by the following m × L matrix

Yl = γl AS(τ ) + El l = 1 . . . M ′ , (3.87)

where M ′ is the number of bursts, and {γl} are the unknown constants multiplying the corre-

sponding portions of the signal. Since the spatial signatures are unstructured, we can arbitrarily

fix the value of one of those constants, e.g., we fix γ1 = 1. The assumption of multiple inco-

herent bursts may be suitable to model the despread signals when the transmitted symbols are
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Figure 3.7: RMSE of the proposed estimators as a function of DOA separation. Param-

eters: θ̌0 = 0o, θ̌i = −30o, τ̌0 = 0, τ̌1 = 0.4Tc, m = 6 antennas, M = 3 pulses, SNR0 =

15.87 dB, SIR0 = −3.13 dB, SNR0/SNR1 = 3dB.

unknown. It is clear that the model in (3.87) is equivalent to that in (2.43) when the symbols

are unknown (making an evident identification between S(τ ) and G(τ )). Another situation

where the use of multiple bursts is appropriate arises when the Doppler frequency is not small

compared with the reciprocal of the observation interval. In this case, the whole observation

interval may be divided into several portions, in such a way that the amplitudes can be taken as

constant during each portion. Thus, the carrier-phase shift produced by the Doppler frequency

from portion to portion is modeled by the coefficients {γl}.

The spatial correlation matrix of the noise in the lth interval is named Ql. This matrix may

be either equal or not for all the bursts, depending on the degree of variability of the scenario.

For instance, if the variation of the number, DOA or power of the interferences is slow with

respect to the observation interval, it is logical that the correlation matrix be the same for all

the bursts.

The application of the ML principle to (3.87) does not lead to an estimator in which A and

{γl} can be eliminated analytically in an easy manner, and the estimator does not seem to admit

an approximation similar to the one presented in Section 3.4. To circumvent this problem, we

make a simplifying assumption. It consists in considering that the matrices of spatial signatures

are arbitrary at each burst, so they are not necessarily related by a multiplicative constant.
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Figure 3.9: Comparison with the search-based estimators. Parameters: θ̌0 = 0o, θ̌1 =

10o, θ̌i = −30o, τ̌0 = 0, τ̌1 = 0.4Tc, m = 6 antennas, SNR0 = 15.87 dB, SIR0 =

−3.13 dB, SNR0/SNR1 = 3dB.
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Therefore, the model that we adopt in order to apply the ML approach is

Yl = Al S(τ ) + El l = 1 . . . M ′ . (3.88)

If the correlation matrices of the noise are the same for all the bursts, the ML cost function to

be minimized is

f(τ ) = ln
∣∣Y1 Y∗

1 + . . . + YM′ Y∗

M′ −Y1 PS∗(τ) Y
∗

1 − . . . − YM′ PS∗(τ) Y
∗

M′

∣∣ . (3.89)

The derivation is omitted because it follows closely the steps of that in Section 3.3. The minimiza-

tion of this function is computationally expensive. However, using the results of Sections 3.4–3.6,

it is reasonable to consider the following approximate criterion

g(τ ) = −Tr
{
PS∗(τ)

(
Y∗

1 Q̂−1 Y1 + . . . + Y∗

M′ Q̂−1 YM′

)}
, (3.90)

where Q̂ is an estimate of the noise correlation matrix. The interesting feature is that g(τ )

admits the use of the IQML algorithm, since it depends linearly on PS∗(τ), and also the use of

the ESPRIT algorithm (by performing an eigendecomposition of the matrix between parentheses

in (3.90)).

Similar results are obtained when the noise correlation matrices differ from burst to burst.

In this case, it is again straightforward to show that the ML criterion is

f(τ ) = ln
∣∣Y1 Y∗

1 − Y1 PS∗(τ) Y
∗

1

∣∣ + . . . + ln
∣∣YM ′ Y∗

M ′ − YM ′ PS∗(τ) Y
∗

M ′

∣∣ . (3.91)

Approximating each term in (3.91) according to the results in Sections 3.4–3.6 yields

g(τ ) = −Tr
{
PS∗(τ)

(
Y∗

1 Q̂−1
1 Y1 + . . . + Y∗

M′ Q̂−1
M′ YM′

)}
, (3.92)

where Q̂l is an estimate of the noise correlation matrix during the lth interval.

The ML estimators of (3.89) and (3.91) are not asymptotically efficient as M ′ → ∞, because

the number of unknowns increases linearly with M ′ (the estimates of Al will not be consistent).

Indeed, the performance analysis of Sections 3.3–3.4 is only valid when the number of samples

per burst (for a fixed number of bursts) tends to infinity. Similarly, the approximations of (3.89)

and (3.91) by (3.90) and (3.92), respectively, cannot be claimed to be (asymptotically) equivalent

as M ′ → ∞. They are simply ad hoc approximations which offer a computational advantage.

An open research topic is the study of the time delay estimation problem when a stochastic

model for the spatial signatures is used. That is, instead of treating the spatial signatures are

deterministic quantities, the rows of Al are considered as random vectors drawn from a Gaussian

distribution with d × d correlation matrix RA. Then, the problem is to estimate RA in place

of the particular value of the spatial signatures. It is probable that the ML estimator derived

for that signal model be asymptotically efficient as the number of bursts increases (assuming

that the noise correlation is the same for all the bursts). In relation to this, it would be also
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interesting to analyze if there exist some low-rank modification (e.g., similar to the MODE or

subspace weighting methods) of the matrix Y∗
1 Q̂−1 Y1 + . . . + Y∗

M′ Q̂−1 YM′ that makes the

estimator g(τ ) in (3.90) asymptotically (in M ′) efficient.

3.10 Data Model for FIR Channels

In this and the following two sections, we consider a slight variation of the problem (P1) pre-

sented in Section 3.2 that results when a small but significant modification to the signal model is

used. In this approach, the effect of the multipath channel is modeled as a finite impulse response

(FIR) filter with order d. Thus, as an alternative to (3.4), consider the following definition for

s[n, τ ]:

s[n, τ ] =
[

s
(
nTs − τ

)
s
(
nTs − τ − T0

)
· · · s

(
nTs − τ − (d − 1) T0

) ]T

d × 1 , (3.93)

where T0 is the temporal spacing of the FIR channel and can be freely chosen, together with d,

when setting up the model. In order to further differentiate the model employed herein from

that in previous sections, the matrix of spatial signatures A is replaced by a channel matrix

named H. Therefore, the set of received samples is written as

Y = HS (τ) + E , (3.94)

where the nth column of S (τ) is s[n, τ ]. The kth row of H contains the FIR filter coefficients for

the channel separating the source and the kth antenna. That is, the m× d matrix H represents

the single-input-multiple-output (SIMO) channel for the signal of interest. A motivation for this

model arises from the fact that sometimes receivers combine the different rays of the signals

using a RAKE structure before detecting the symbols. The RAKE structure is indeed a bank

of filters with a fixed delay (typically the inverse of the signal bandwidth or a fraction thereof)

between consecutive taps, that is to say, it is a FIR filter. Hence, it seems logical to extend this

structure also to the timing synchronization.

The scalar time delay parameter τ is referred to as frame delay in order to differentiate it

from the propagation delays in the model of (3.4). For the model of (3.93), we word the problem

statement as follows:

Problem P2 – Given N snapshots of data in the matrix Y described by equa-

tions (3.93), (3.94), and (3.7), estimate the FIR channel matrix H and frame delay

τ of the signal, as well as the spatial covariance Q of the noise and interference.

Although in the FIR case the effects of temporal oversampling or a pulse shaping filter (for

digitally modulated signals) could be factored into the channel matrix H, we will assume that the
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elements of s[n, τ ] are samples of the continuous modulated waveform s(t) rather than discrete

symbols (this applies to the model in (3.4) as well). As such, the matrix H only describes the

propagation effects of the channel, and τ is a continuous-valued variable. This assumption is

somewhat different than that made in [Ast99b] and in other work on blind equalization of FIR

channels (e.g., [Ton94, Slo94, Mou95, Tug95, Din97]).

A relation between the FIR model in (3.94) and the model used for the estimation of the

delays of several replicas can be established. In the latter, the contribution of the signals is

expressed as AS̃(τ ), as shown in (3.1)-(3.5). Now, we consider that the number of columns

of A (i.e., the number of rows of S̃(τ )) is d′. Assuming that the underlying signal s(t) is

band-limited and T0 satisfies the Nyquist criterion, the k, lth element of S̃(τ ) can be expressed

approximately as a linear combination of the lth-column elements of S (τ) [Laa96]. Therefore,

there exists a d′ × d interpolating matrix J such that

S̃(τ ) ≈ JS (τ) . (3.95)

For (3.95) to be exact in a general case, the number of columns of rows of S (τ), that is d,

should be infinite. However, very good approximations can be obtained for a finite d [Laa96].

Therefore, we can write AS̃(τ ) ≈ AJS (τ), and identifying the channel matrix as H = AJ,

the relation between the FIR model and the multiple-delays model becomes apparent.

The CRB for the problem at hand can be readily obtained from the derivation in Ap-

pendix 3.A. It suffices to express the delays’ vector as

τ =
[

τ τ + T0 . . . τ + (d − 1)T0

]T

, (3.96)

and apply the chain rule for the derivative (taking into account that the elements of the Fisher in-

formation matrix (FIM) are minus the expectation of the Hessian of the log-likelihood function).

Thus, the FIM of the signal parameters

ηs =
[

Re {vec {H}}T Im {vec {H}}T τ

]T

(3.97)

is

FIM (ηs) =




Re {F1} −Im {F1} Re {F3 1}

Im {F1} Re {F1} Im {F3 1}

Re {F3 1}T Im {F3 1}T Re {1T F2 1}




, (3.98)

where F1, F2 and F3 are defined as in (3.113)–(3.115) (with the change of A by H). Hence, the

CRB for the frame delay is

CRB−1 (τ) = 2 · 1T

((
D(τ )P⊥

S∗(τ) D
∗(τ )

)
-

(
H∗ Q−1 H

)T

)
1

= 2Tr

{(
D(τ )P⊥

S∗(τ) D
∗(τ )

) (
H∗ Q−1 H

) }
. (3.99)
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3.11 Polynomial Rooting Approach

The mathematical approach to the exact ML estimator and the asymptotically equivalent one

for problems (P1) and (P2) is identical. Therefore, the derivations throughout Sections 3.3–3.5

apply for both problems; the only difference is that for (P2), τ is a scalar variable. As a result,

the ML criterion for the frame delay requires only a one-dimensional search, and thus is not

overly burdensome. However, we find interesting to propose an algorithm that provides the frame

delay estimate by rooting a low-order polynomial. Such an algorithm may be useful, for instance,

in applications where fast feedforward synchronization is needed (e.g., burst transmissions).

The polynomial rooting-algorithm stems from a modification of the IQML algorithm. Ac-

cording to the results of this chapter, we are concerned with the minimization of

gN (τ,W) = − 1

N
Tr

{
W1/2 R̂−1/2

yy Y PS∗(τ) Y
∗ R̂−1/2

yy W1/2
}

. (3.100)

for a certain weighting matrix W. Similarly to (3.74)–(3.77), the frequency representation of

the signal satisfies

S∗ (τ) = S∗

ω V (τ) , (3.101)

where

V (τ) =
[

v (τ) v (τ + T0) . . . v (τ + (d − 1) T0)

]
. (3.102)

The criterion in (3.100) can be expressed as a function of x " exp(j2πτ/(NTs)), resulting in

a polynomial in x of order 2N − 2, since the matrix (V∗ (τ) Sω S∗
ω V (τ)) that appears in the

projection matrix does not depend on τ . Instead of this approach, we describe below a method

that leads to the rooting of polynomials of order 2d, and it is natural that d , N .

As in the IQML algorithm, let the elements of the vector g = [1 g1 · · · gd]
T be taken from

the coefficients of the polynomial

G (z) = zd + g1 zd−1 + · · · + gd =

d−1∏

n=0

(z − x rn) , (3.103)

where r " exp (j2πT0/ (NTs)). Let us also define

Ω = S−∗

ω Y∗ R̂−1/2
yy W1/2/

√
N (3.104)

Υ =
(
G∗ S−∗

ω S−1
ω G

)−1
, (3.105)

The matrix G was defined (3.82). Using the same reasoning as in Section 3.7.1, minimizing

(3.100) is equivalent to minimizing

g̃ (g,W) = Tr {Ω∗ GΥG∗
Ω} . (3.106)
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It can be readily shown starting from (3.103) that vector g satisfies

g = Kt (x) , (3.107)

where K is a diagonal matrix whose elements are the coefficients of the polynomial G(z) for the

case x = 1, and

t (x) =
[

1 x . . . xd
]T

. (3.108)

Therefore, if the term Υ is held fixed, the cost function in (3.106) can be written as a polynomial

in x of order 2d, as follows:

g̃ (x,W) = tT (1/x) K∗ CKt (x) (3.109)

for some matrix C obtained from Ω and Υ (see Appendix 3.E). The minimum of g̃ (x,W) on

the unit circle is computed by first finding the roots of its derivative. Next, (3.109) is evaluated

at the set of roots that lie on the unit circle, and the one giving the minimum is selected.

Using this root and the definition of x, the delay estimate is easily obtained. This procedure

is repeated until certain convergence or failure conditions are satisfied (e.g., in the simulations

these conditions are: change in x smaller than 10−4, number of iterations larger than 50). At

each iteration, the matrix Υ is recomputed using the previous estimate of x; and in the first

iteration, Υ is taken equal to the identity. An essential feature of this algorithm is that the

inverse matrix operation required by the computation of Υ needs to be calculated only once,

and this can be done off-line. The matrix to be inverted depends exclusively on some design

parameters, and the update of Υ at each iteration only involves the left- and right-hand product

of a fixed matrix by diagonal ones that solely depend on x (see Appendix 3.E).

3.12 Simulation Results for FIR Channels

In this section, we analyze and compare with the CRB the performance of several estimators for

the FIR model. Specifically, we consider the exact ML estimator, its asymptotically equivalent

approximation presented in this chapter, and the ML estimator derived under the assumption of

white noise. The cost function of the first one is minimized by means of a search. Whereas, the

polynomial rooting algorithm proposed in the previous section is applied to the latter two. Under

the white-noise assumption, the weighting matrix is W = R̂
1/2
yy . In the case of the approximate

estimator for colored noise, we have chosen to update the matrix W at each iteration of the

algorithm using (3.49) and (3.96). That is to say, we use the coupled iteration procedure A

described in Section 3.7.1.

The characteristics of the signal scenario essentially coincide with those in Section 3.8.1. A

few parameters are different, and their default values are described below. The signals are formed
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(b) M = 4 pulses

Figure 3.10: RMSE of several estimators as a function of the number of training pulses and

the interference power. Parameters: θ̌0 = 0o, θ̌1 = 10o, θ̌i = −30o, τ̌0 = 0, τ̌1 = 0.5Tc, m =

6 antennas, d = 2, SNR0 = 13.8 dB, SNR0/SNR1 = 3dB, T0 = 0.5Tc.

by the concatenation of M = 4 pulses. Each square-root raised cosine pulse is truncated to the

interval [−5Tc, 5Tc], so it consists of L = 21 samples. The delays of the two arrivals are τ̌0 = 0

and τ̌1 = 0.5Tc. The signal to noise ratio for the first (strongest) ray is SNR0=13.8dB, which is

lower than that used in Section 3.8.1 because the length of the pulses has been increased. This

effect together with an increase of the interference power itself reduces the signal to interference

ratio to SIR0 = −7.2dB. Finally, the model assumes that the temporal spacing of the FIR

channel is T0 = 0.5Tc, and the number of taps is d = 2 (excepting in Figure 3.11b).

In Figure 3.10a, the performance of the different estimators in the absence of model errors

(i.e., T0 = τ̌1 − τ̌0 and the length of the FIR filter d is equal to the number of arrivals) versus

the length of the signal is illustrated. The RMSEs of the exact ML estimator and the proposed

approximation reach the CRB for small sample sizes. This fact proves that neither the cost

function g(τ,Ŵ) itself nor the subsequent minimization using the polynomial rooting approach

entail a significant degradation with respect to the exact search-based ML estimator. Moreover,

the number of iterations required by proposed algorithm is rather modest. For instance, when

the number of received pulses is 4, the number of iterations is 8.41 ± 2.77 (mean ± standard

deviation), and the algorithm converged in all realizations. Figure 3.10b bears out that the

methods that take into account the spatial correlation of the interference are practically insen-

sitive to the CCI level, whenever enough degrees of freedom are available. On the other hand,

under the rather usual assumption of white noise, the resulting estimator is deteriorated for

signal to interference ratios below 10dB. In Figure 3.11a, we investigate the performance of the

estimator when the number of taps of the model is d = 4 and the delay difference between the

signal arrivals, τ̌1 − τ̌0, does not necessarily coincide with the spacing of the FIR channel, T0.
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(b) τ̌1 = 0.5Tc

Figure 3.11: RMSE of several estimators as a function of the delay separation of the two arrivals

and the number of taps of the model. Parameters: θ̌0 = 0o, θ̌1 = 10o, θ̌i = −30o, τ̌0 = 0, M =

4 pulses, m = 6 antennas, SNR0 = 13.8 dB, SIR0 = −7.2 dB, SNR0/SNR1 = 3dB, T0 = 0.5Tc.

As expected, the RMSE presents minima when the former is a multiple of the latter. In the

other cases, the model in (3.94) is only approximate, which results in a higher RMSE. Finally,

increasing the length of the FIR filter beyond the necessary minimum (d = 2 in this case) impairs

the performance, as shown in Figure 3.11b.

3.13 Concluding Remarks

Synchronization and time delay estimation are important components of many signal process-

ing, navigation and communications systems. This chapter has focused on how multiple receive

antennas can be efficiently used in interference-limited scenarios in order to estimate the time

delays of multiple replicas of a known signal. The spatial selectivity of the array provides an

additional dimension in which to differentiate the desired signal from the noise and interfer-

ence. Under the assumption that the noise and CCI are spatially colored but temporally white

Gaussian processes, and that the spatial signatures are unstructured, the maximum likelihood

solution to the time delay estimation problem was derived. It was proven that the ML estimator

is consistent and asymptotically efficient. However, the resulting concentrated criterion for the

delays is highly non-linear, and not conducive to simple minimization procedures. Using vari-

ous systematic and heuristic techniques, it was shown how the optimal ML criterion could be

approximated by a simpler cost function that was shown to provide asymptotically equivalent

(and hence statistically efficient) delay estimates. The form of the new criterion lends itself to

minimization by the IQML algorithm, an iterative approach that avoids the need for gradient-
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based or exhaustive searches. The existence of simple yet accurate initialization schemes based

on ESPRIT or identity weightings makes the approach viable for practical implementation. Two

different procedures to implement the IQML algorithm in the new cost function were discussed.

The one that updates the noise correlation matrix at each iteration of the IQML algorithm is

preferred. A number of simulation studies were presented that demonstrate the performance

advantage of the proposed technique over related delay estimators, and also analyze its optimal-

ity in the finite-sample case. Finally, the new cost function was also applied to the estimation

of the frame delay in a FIR channel. In this case, an appropriate formulation of the matrix that

spans the subspace orthogonal to the signals reduces each iteration of the IQML algorithm to

the rooting of a polynomial, being its order equal to the length of the FIR channel.

Appendix 3.A Derivation of the Cramér-Rao Bound

The Cramér-Rao Bound can be derived using directly its definition [Kay93], as done in [Sto89],

or using the Bangs-Slepian’s formula [Ban71, Kay93]. We follow herein the second approach

because it makes the derivation somewhat easier. According to the Bangs-Slepian’s formula,

and using equations (3.1)–(3.4), the k, lth element of the Fisher Information Matrix (FIM),

which is the inverse of the CRB matrix, is

[FIM]kl = N Tr
{
Q−1 Qk Q−1 Ql

}
+ 2 Re

{
N∑

n=1

(
µ

k (n)
)∗

Q−1
µ

l (n)

}
, (3.110)

where µ(n) = As[n, τ ] and (·)k denotes the derivative with respect to the kth parameter. Since

µ(n) and Q depend on different parameters, the FIM is block diagonal with respect to the signal

parameters

ηs =
[

Re {α0}
T . . . Re {αd−1}

T Im {α0}
T . . . Im {αd−1}

T
τ T

]T

(3.111)

and the noise parameters (i.e., the real and imaginary parts of the elements of Q). Therefore,

the CRB for the signal parameters is the inverse of the corresponding (2m + 1)d × (2m + 1)d

block of the FIM, which is partitioned as follows

FIM (ηs) =




Re {F1} −Im {F1} Re {F3}

Im {F1} Re {F1} Im {F3}

Re {F3}
T Im {F3}

T Re {F2}




. (3.112)
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The blocks of this matrix are computed using the last term of (3.110). After straightforward

but lengthy calculations, we get

F1 = 2 (Sc(τ )ST (τ )) ⊗ Q−1 (3.113)

F2 = 2 (Dc(τ )DT (τ )) -
(
A∗ Q−1 A

)
(3.114)

F3 =




2Q−1 Adiag {s∗ (τ0) DT (τ )}
...

2Q−1 Adiag {s∗ (τd−1) DT (τ )}


 , (3.115)

where D(τ ) was defined in (3.36), and

s (τi) =
[

s (Ts − τi) s (2Ts − τi) . . . s (NTs − τi)

]T

. (3.116)

Next, we need the following two results, valid for non-singular matrices:

 Re {X} −Im {X}

Im {X} Re {X}



−1

=


 Re

{
X−1

}
−Im

{
X−1

}

Im
{
X−1

}
Re

{
X−1

}


 (3.117)

(X⊗ Z)−1 = X−1 ⊗ Z−1 . (3.118)

The proofs can be found in [Sto89, Appendix E] and [Gra81], respectively. The CRB for the

time delays is the d× d trailing block of the inverse of FIM (ηs). Using the well known formula

of the inverse of a partitioned matrix and (3.117), this CRB can be written as

CRB−1(τ ) = Re {F2}− Re {F3}
T Re

{
F−1

1

}
Re {F3} + Re {F3}

T Im
{
F−1

1

}
Im {F3}

− Im {F3}
T Im

{
F−1

1

}
Re {F3}− Im {F3}

T Re
{
F−1

1

}
Im {F3} (3.119)

= Re {F2}− Re
{
F∗

3 F−1
1 F3

}
(3.120)

Taking into account (3.118) in the computation of F−1
1 , and also the structure of F3, we obtain

CRB−1(τ ) = Re {F2}− 2
d−1∑

i=0

d−1∑

j=0

Re

{ [(
Sc(τ )ST (τ )

)−1
]

i,j

diag
{
Dc(τ )s (τi)

}

·
(
A∗ Q−1 A

)
diag

{
s∗ (τj) DT (τ )

}}
(3.121)

= Re {F2}− 2

d−1∑

i=0

d−1∑

j=0

Re

{(
A∗ Q−1 A

)

-
((

Dc(τ )s (τi)
) [(

Sc(τ )ST (τ )
)−1

]

i,j

(
s∗ (τj)D

T (τ )
))

(3.122)

= 2Re

{(
Dc(τ )DT (τ )

)
-

(
A∗ Q−1 A

) }

− 2Re

{(
Dc(τ )ST (τ )

(
Sc(τ )ST (τ )

)−1
Sc(τ )DT (τ )

)
-

(
A∗ Q−1 A

)}
,

(3.123)
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where (3.122) is obtained from (3.121) by making use of the property: diag(x) z = x - z, valid

for arbitrary vectors of the same length. Finally, it is evident that equation (3.123) is identical

to (3.35) since CRB(τ ) is a symmetric matrix.

Appendix 3.B Asymptotic Order of the Derivative of B

In this appendix we compute the order of the convergence in probability of the matrix Bi
N(τ̌ ).

Using (3.5), (3.11)–(3.13), (3.29), and the expression for the derivative of a projection ma-

trix [Ott93]

Pi
S∗ = P⊥

S∗ (S∗)i (S∗)† + (· · · )∗ , (3.124)

we get

Bi
N(τ̌ ) =

1

N
R̂−1/2

yy EP⊥

S∗ (S∗)i A∗R̂−1/2
yy + (· · · )∗ (3.125)

+
1

N
R̂−1/2

yy EP⊥

S∗ (S∗)i (S∗)† E∗R̂−1/2
yy + (· · · )∗ , (3.126)

where all functions of τ are evaluated at τ̌ , the relation SP⊥

S∗ = 0 has been used, and the

notation (· · · )∗ means that the same expression appears again transposed and conjugated. In

order to obtain an asymptotic expression, the matrix R̂yy is replaced by Ryy and the terms in

(3.126) are neglected since they converge faster to zero than those in (3.125). Thus, we can

write up to first order

Bi
N(τ̌ ) ≈ 1

N
R−1/2

yy EP⊥

S∗ (S∗)i A∗R−1/2
yy + (· · · )∗ . (3.127)

The correlation between the k,l th element of Bi
N(τ̌ ) and the r,s th element of Bj

N(τ̌ ) for any

value k, l, r, s = 1, · · · ,m and i, j = 0, · · · , d − 1 is

ΨB′ (k, l, r, s; i, j) " E

{[
Bi

N(τ̌ )
]
k,l

[
Bj

N(τ̌ )
]∗
r,s

}
= (3.128)

=
1

N2

[
R

−
1
2

yy

]∗

:,s

ASj P⊥

S∗E

{
E∗

[
R

−
1
2

yy

]

:,r

[
R

−
1
2

yy

]∗

:,k

E

}
P⊥

S∗ (S∗)i A∗

[
R

−
1
2

yy

]

:,l

+
1

N2

[
R

−
1
2

yy

]∗

:,k

ASi P⊥

S∗E

{
E∗

[
R

−
1
2

yy

]

:,l

[
R

−
1
2

yy

]∗

:,s

E

}
P⊥

S∗ (S∗)j A∗

[
R

−
1
2

yy

]

:,r

.

The expectation of the terms containing twice E or E∗ is zero, because the noise is circularly

symmetric, and hence it has not been written in (3.128). For the noise model that we have

considered,

E

{
E∗

[
R

−
1
2

yy

]

:,r

[
R

−
1
2

yy

]∗

:,k

E

}
= I

([
R

−
1
2

yy

]∗

:,k

Q

[
R

−
1
2

yy

]

:,r

)
= I

[
R

−
1
2

yy QR
−

1
2

yy

]

k,r

. (3.129)
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This result and the fact that each row of S only depends on one variable yield

ΨB′ (k, l, r, s; i, j) =

1

N2

[
R

−
1
2

yy QR
−

1
2

yy

]

k,r

[
R

−
1
2

yy A

]

s,j

[
A∗ R

−
1
2

yy

]

i,l

(
dT (τj)P

⊥

S∗dc (τi)
)

+ · · · (3.130)

where the second term has been omitted because it can be readily obtained from the first one

and (3.128) by an appropriate change of subscripts. Vector d (τ) was defined in (3.37). Since

we have assumed that s (t) is a finite-average-power signal and is sampled above the Nyquist

rate, the order of dT (τj)P
⊥

S∗dc (τi) is O (N). Therefore, the correlation (3.128) of the elements

of BN(τ̌ )i is O
(
N−1

)
, which completes the proof that Bi

N(τ̌ ) = Op

(
N−1/2

)
.

Appendix 3.C Hessian and Covariance of the Gradient

We need the following expression for the second derivative of a projection matrix [Ott93]

Pij
S∗ = − P⊥

S∗ (S∗)j (S∗)† (S∗)i (S∗)† −
(
(S∗)†

)∗

(S)i P⊥

S∗ (S∗)j (S∗)† + P⊥

S∗ (S∗)ij (S∗)†

+ P⊥

S∗ (S∗)i (SS∗)−1 (S)j P⊥

S∗ − P⊥

S∗ (S∗)i (S∗)† (S∗)j (S∗)† + (· · · )∗ , (3.131)

where the notation (. . .)∗ means that the same expression appears again transposed. Next, using

(3.5), (3.11)-(3.13), (3.29), we get

lim
N→∞

Bij
N (τ̌ ) = − 1

N
R−1/2

yy ASi P⊥

S∗ (S∗)j AR−1/2
yy + (. . .)∗ , (3.132)

where all functions of τ are evaluated at τ̌ , and the relation SP⊥

S∗ = 0 has been used. Only the

contribution of the signal, and not that of the noise, appears in (3.132) because this expression

is a limit for N tending to infinity. Then, the i, jth element of the limiting Hessian of gN (τ ,W)

is

[H]ij =
1

N
Tr

{
Si P⊥

S∗ (S∗)j A∗ R−1/2
yy WR−1/2

yy A + (. . .)∗
}

. (3.133)

The fact that each row of S(τ ) only depends on one time delay, in such a way that only the

i, jth element of Si P⊥

S∗ (S∗)j is non-zero, yields

[H]ij =
2

N
Re

{[
DP⊥

S∗ D∗

]
i,j

[
A∗ R−1/2

yy WR−1/2
yy A

]
j,i

}
. (3.134)

The i, jth element of the covariance of the gradient is

[G]i,j = lim
N→∞

N E

{
Tr

{
WBi

N(τ̌ )
}

Tr
{
W∗

(
Bj

N(τ̌ )
)∗} }

(3.135)

=
m∑

k=1

m∑

l=1

m∑

r=1

m∑

s=1

[W]l,k [W]∗s,r lim
N→∞

N E

{[
Bi

N(τ̌ )
]
k,l

[
Bj

N(τ̌ )
]∗
r,s

}
(3.136)

=
m∑

k=1

m∑

l=1

m∑

r=1

m∑

s=1

[W]l,k [W]∗s,r N ΨB′ (k, l, r, s; i, j) , (3.137)
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where we have used the definition of the asymptotic correlation ΨB′ in (3.128). Finally, using

equation (3.130) and expressing the summations as matrix products, we obtain

[G]i,j =
2

N
Re

{[
DP⊥

S∗ D∗

]
i,j

[
A∗ R−1/2

yy WR−1/2
yy QR−1/2

yy WR−1/2
yy A

]
j,i

}
. (3.138)

Appendix 3.D Derivative of the Nyquist Square-Root Raised-

Cosine Pulse

It is well known that the expression of the Nyquist square-root raised-cosine pulse of bandwidth

(1 + ̺)/2T , where ̺ is the roll-off factor, is

g (t) =
1√
T

sin ((1 − ̺) πt/T ) + 4̺t cos ((1 + ̺)πt/T ) /T(
1 − (4̺t/T )2

)
πt/T

. (3.139)

Simple calculations lead to the expression of the derivative

g′ (t) =
d g (t)

d t
=

1√
T

(1 − ̺)π cos ((1 − ̺)πt/T ) /T(
1 − (4̺t/T )2

)
πt/T

+
1√
T

sin ((1 − ̺)πt/T )
(
32̺2πt2/T 3 −

(
1 − (4̺t/T )2

)
π/T

)

(
1 − (4̺t/T )2

)2
(πt/T )2

− 1√
T

4̺ (1 + ̺) sin ((1 + ̺)πt/T ) /T

1 − (4̺t/T )2

+
1√
T

128̺3t cos ((1 + ̺)πt/T ) /
(
πT 2

)
(
1 − (4̺t/T )2

)2 . (3.140)

When programming (3.140) in a computer, care has to be taken with the indeterminations,

which are located at the points t = 0, ±T/(4̺). Computing directly the limits of (3.140)

seems a formidable task. Instead, we will compute the limits starting from the numerator and

denominator of g(t). To this end, we use the following result. If f(t) and h(t) are arbitrary

functions such that

z (t) =
f (t)

h (t)
, f (t0) = h (t0) = 0 (3.141)

then

lim
t→t0

d z (t)

d t
=

1

2

f ′′ (t0) h′ (t0) − f ′ (t0) h′′ (t0)

(h′ (t0))
2 . (3.142)

Thus, it can be easily shown that

g′ (0) = 0 (3.143)

g′ (±T/ (4̺)) = ±
̺√

2TTπ

( (
2π − 4̺π − 12̺ − π2

)
sin (π/ (4̺))

+
(
π2 + 2π − 4̺π + 12̺

)
cos (π/ (4̺))

)
. (3.144)



74 CHAPTER 3. TIME DELAY ESTIMATION OF MULTIPLE REPLICAS

Appendix 3.E Structure of Matrices C and Υ

The cost function in (3.106) can be written as

g̃ (g,W) =
m∑

n=1

[Ω]∗:,n GΥG∗ [Ω]:,n . (3.145)

Given the structure of matrix G in (3.82), it is satisfied that

G∗ [Ω]:,n = Ω̄n g , (3.146)

where

Ω̄n "




[Ω]d+1,n [Ω]d,n . . . [Ω]1,n

[Ω]d+2,n [Ω]d+1,n . . . [Ω]2,n

...
...

...
...

[Ω]N,n [Ω]N−1,n . . . [Ω]N−d,n




(N − d) × (d + 1) . (3.147)

Therefore, we get

g̃ (g,W) = g∗

(
m∑

n=0

Ω̄
∗

n ΥΩ̄n

)

︸ ︷︷ ︸
C

g . (3.148)

Next, we consider the structure of matrix Υ defined in (3.105). Using the definition of matrix

G, the factorization of vector g according to (3.107), and the fact that x is on the unit circle, it

is straightforward to prove that Υ can be decomposed as

Υ (x) = Σ (x) Υ1 Σ
∗ (x) , (3.149)

where Υ1 is the value of Υ for x = 1, and

Σ (x) = diag
{

1, x, . . . , xN−d−1
}

. (3.150)



Chapter 4

Time Delay and Carrier Phase

Estimation of One Replica with

Known Steering Vector

The goal of the estimators presented in this chapter is to take advantage of one particularity of

GNSS systems, which consists in that the direction-of-arrival (DOA) of the line-of-sight signal

(LOSS) may be known a priori. Based on this fact, a simplified and approximate model for the

received signal is proposed. In this model, all disturbing signals are gathered together into a

Gaussian term with unknown spatial correlation. The maximum likelihood (ML) estimator of

the time delay and carrier phase of the LOSS is derived from the simplified model, and some

possible implementations thereof are analyzed.

The chapter is organized as follows. Section 4.1 sets up and justifies the simplified signal

model on which the rest of the chapter is based. In Section 4.2, the ML estimator is derived.

Other related estimators obtained from slightly different assumptions are reviewed. Closed

form and iterative algorithms for computing the ML estimates are presented in Sections 4.3

and 4.4, respectively. In the latter, the relationship between the ML estimator and a certain

hybrid beamformer is explored. Section 4.5 reports on some simulation experiments, which

show the performance of the proposed methods in a large variety of scenarios. The sensitivity

of the proposed ML estimator to errors in the assumed steering vector of the LOSS is analyzed

is Section 4.6. A modification of the ML estimator that takes into account the presence of

calibration or pointing errors is presented in Section 4.7, and simulation results concerning the

effects of such errors can be found in Section 4.8. Finally, Section 4.9 contains our conclusions.

75
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4.1 Simplified Signal Model

In this section, a simplified signal model for the received signals is described. Not only is

this model justified by practical considerations, but also by the fact that the knowledge of the

steering vector of the direct signal does not provide a significant performance improvement of

the estimators based on more complex models, and however this additional information increases

the complexity of such estimators.

We start by considering the same model as the one employed in the previous chapter. That

it to say, when an antenna array composed of m elements arranged in an arbitrary geometry

receives d copies of a known signal s(t), the baseband array output is

y [n] = As [n, τ ] + e [n] (4.1)

= α0 s (nTs − τ0) + Ar sr [n, τ r] + e [n] , (4.2)

where

τ = [τ0 · · · τd−1]
T d × 1 (4.3)

A = [α0 · · · αd−1] m × d (4.4)

s[n, τ ] =
[

s (nTs − τ0) s (nTs − τ1) · · · s (nTs − τd−1)

]T

d × 1 . (4.5)

The sampling period is denoted by Ts. αk and τk are the spatial signature and time delay of the

kth arrival, and e[n] represents the background noise and all other interfering terms. In (4.2),

the contribution of the line-of-sight signal (LOSS) is separated from that of the reflections. The

subscript 0 stands for the LOSS; whereas the subscript r corresponds to the reflections, which

are the 1, . . . , (d− 1)th replicas. Thus, the definition of Ar, τ r and sr [n, τ r] flows directly from

(4.3)–(4.5).

A particularity of GNSS systems, which we seek to exploit in this chapter, is that the receiver

has very accurate estimates of its own position and the satellite position. Therefore, the DOA of

the direct signal can be computed beforehand, and assuming that the antenna array is calibrated,

it is possible to know the steering vector (or spatial signature) of the LOSS up to a scaling factor.

We will assume that the following relation holds

α0 = α0 a0 , (4.6)

where a0 is the known steering vector of the LOSS and α0 is an unknown complex amplitude.

The attitude (or orientation) of the antenna array is also needed for the computation of a0, but

this information is available in most cases. The way in which it is obtained depends on the

particular application. It is apparent that in a static array, which may be found for instance

in differential reference stations, knowing the attitude does not represent any difficulty. In a

dynamic array, it usually requires the use of an attitude sensor or data from the navigation unit.
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However, in aeronautical applications the attitude is mostly available. Even in very adverse

multipath scenarios, the inaccuracies of the satellite and receiver positions, which are at most

on the order of a few tens or a hundred of meters, result in negligible errors in the calculation

of the DOA of the LOSS because the distance between the receiver and the satellites is about

20000 km. Moreover, it will be proven in Section 4.6 and Section 4.8 that the ML estimator

proposed in this chapter is robust to errors in the steering vector of the LOSS. For all these

reasons, assuming that a0 is known is fully justified in the problem under consideration, and this

hypothesis has also been made in other work, such as in [Zol95, Moe96b, Ray98, Hat98, Fan98].

Indeed, having the knowledge of the DOA of the direct signal is not a situation that is found

only in GNSS systems. For instance, in a radar system, one of the parameters of interest is the

distance to the target, whose angular location is approximately given by the transmit direction

of the radar.

Now, we analyze the effect that the knowledge of a0 has over the Cramér-Rao Bound (CRB).

To this end, the spatial signatures of the reflections Ar are treated as arbitrary deterministic

vectors. Following the common thread along this thesis (assumption (A2) in Section 2.5.1),

e[n] is considered to be a complex, circularly symmetric Gaussian vector, which is zero-mean,

spatially white, uncorrelated with the signal terms in (4.2), and has an arbitrary unknown spatial

correlation:

E {e[n]e∗[l]} = Q δn,l . (4.7)

We also assume that N samples of the signals are collected. The CRB for the signal model in

(4.2) with the additional information in (4.6) is derived in Appendix 4.A. On the other hand,

for the case in which the knowledge of a0 is not available and, hence, α0 is treated as an

unstructured vector, the CRB was derived in Section 3.3.2 and Appendix 3.A. In Figure 4.1, we

compare the CRBs for the time delay of the direct signal in both cases. The description of the

signals employed in obtaining these results can be found in Section 4.5.1, and the corresponding

parameters are detailed in the caption of the figure. Although this figure is only a particular

example, it summarizes the main features that we want to highlight. It has been observed that

both CRBs (the one that takes into account the knowledge of a0 and the one that does not)

are generally very close, nearly indistinguishable. In particular, it can be shown starting from

(4.124) that when a0 is orthogonal to the columns of Ar (in the norm of Q−1) both CRBs

for the time delay of the direct signal are identical (a similar result for DOA estimation was

presented in [Li93]). There exists a slight difference between the CRBs solely when the DOA of

the direct signal is very close to one of the reflections, as it happens in the scenario of Figure 4.1,

where the DOA separation is only 5o. Therefore, the knowledge of a0 does not supply essential

information and does not allow to improve significantly the performance of the estimator. A

different situation arises when, besides the spatial signature, the modulus of the amplitude |α0|

is known. As shown in Figure 4.1, the CRB is greatly reduced and does not tend to infinity as
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the delays approach one another. However, this situation is not addressed in this thesis.
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Figure 4.1: Cramér-Rao Bound for the time-delay of the LOSS as a function of the delay

of the reflection. Different types of additional information are considered. Parameters:

θ̌0 = 0o, τ̌0 = 0, θ̌1 = 5o, α̌0/α̌1 =
√

2, M = 3 pulses, m = 6 antennas, SNR0 =

15.87 dB.

Moreover, the ML estimator for the model in (4.2) with the constraint in (4.6) is highly non-

linear and requires computationally expensive minimization algorithms since the IQML-based

algorithm presented in the previous chapter cannot be applied in this case. This ML estimator

can readily be derived starting from (3.17). Since an overall objective of this work is to avoid

multidimensional searches, and given the tiny improvement to be expected with respect to the

estimators in Chapter 3, we conclude that it is not worth introducing the knowledge of a0 into

the model in (4.2). Instead, we propose to use this additional information to simplify the model

itself. In the simplified model (as opposed to the detailed model in (4.2)) the contribution of the

reflections is included into the error term (or “equivalent” noise) e[n]. Hence, the array output

can be expressed as

y[n] = α0 a0 s (nTs − τ0) + e[n] , (4.8)

which amounts to considering that d = 1 in (4.2). The vector a0 acts as a spatial reference to

the LOSS, which allows to identify if from among all the other components. This fact provides

additional support for separating the contribution of the direct signal from that of the rest. On

the other hand, if the spatial signature of the LOSS were unknown, it would not be possible to

select which component is modeled by the first term on the right-hand side of (4.8), and which
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ones are modeled by e[n].

The complexity of the estimators based on detailed signal models (i.e., those that take

explicitly into account the presence of reflections, such as (4.2)) proceeds from the fact that an

important effort is devoted to estimating the parameters of the reflections (a review of these

estimators can be found in Section 2.3). In the simplified model, however, only the parameters

that are essential for a GNSS application (i.e., the delay and the amplitude of the LOSS) remain

explicitly. Note that the argument of α0 is the carrier phase. The estimation of the reflections’

parameters is avoided by lumping all the reflections together in the equivalent noise term. Such

a “non-parametric modeling” of the reflections presents also the advantage that d need not

be known or estimated, and hence the estimators derived from the simplified model are not

restricted to scenarios involving a discrete number of reflections (or clusters of reflections). It

is worth remarking that the synchronization of the direct signal is a problem of interest in the

downlink of a satellite communication system as well, since the signal that propagates through

the direct path does not suffer from severe fading.

The statistical model considered for e[n] in the simplified signal model coincides with the

one stated above in this section (see equation (4.7) and the paragraph preceding this equation).

The matrix Q attempts to model the directional or spatial characteristics of both the inter-

ferences and the multipath components. Indeed, it is the fact that the correlation matrix is

unknown and has to be estimated what will make the estimator capable of using the diversity

introduced by the antenna array to discriminate the signals in the spatial dimension, despite

the approximate modeling of e[n]. The simplification of the signal model is clearly at the ex-

pense of a certain mismatch between the model and the actual received signal, because none of

the previous assumptions about the equivalent noise is necessarily satisfied in a real scenario,

and this could result in a certain impairment (increased bias and/or variance) of the estimates.

Clearly, the weakest assumption is that e[n] is uncorrelated with the direct signal, which actually

does not occur when e[n] contains the contribution of (coherent) reflections. The failure of this

assumption will bias the estimates as it will be shown by the numerical results. The Gaussian

hypothesis for the equivalent noise is of interest because it allows to simplify analytically the

ML estimator presented in this chapter. Moreover, the Gaussian hypothesis is not crucial as far

as the ability of the estimator to mitigate spatially the undesired signals is concerned, since this

ability is retained independently of the actual statistics of the noise plus interference. The ex-

tension to non-circularly symmetric noise consists simply in working with an observation vector

formed by stacking the real and imaginary parts of y[n] on top of one another. The estimator

presented in the next section can be modified to take into account this situation, but there is

not any proof or experimental evidence that this strategy leads to better performance (similar

assertions were reported [Ran99, chapters 2 and 4] for somewhat related problems). All the

same, the use of the simplified signal model is completely justified from a practical standpoint

since it allows to derive simple algorithms whose performance is excellent, as it is shown by the
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results in Section 4.5, although no a priori claims to the optimality of the estimates can be made

in the general case.

The estimators proposed in this chapter mitigate the effects of the reflections in accordance

with their contribution to the correlation matrix of the equivalent noise. At this point, it is

necessary to recall that in the systems under consideration the received power of the direct

signal and its reflections is more than 10 or 20dB below the white noise level (see Section 2.4). If

the correlation matrix were computed before the despreading, the contribution of the reflections

to that matrix would be imperceptible compared with that of the white noise and interferences

(which are generally stronger than the white noise), and it would be impossible to infer any

spatial information about the reflected replicas from that correlation matrix. In other words, if

the estimators proposed herein were applied to the signals before the despreading, they would

be insensitive to the reflections, and they would be able to cancel only powerful interferences,

as happens in [Zol95, Moe96b, Moe96a, Hat98, Myr00]. Since our overall objective is to use the

spatial dimension to mitigate both the multipath components and the interferences, some kind

of preprocessing (prior to the techniques proposed in this chapter) that increases the signal-to-

noise ratio (SNR) of the desired signal is mandatory. The increase of the SNR may be achieved

by means of the despreading process of the DS-SS signals, as it was detailed in Section 2.5.3.

Nonetheless, the derivation and formulation of the different techniques presented in the following

sections are independent of the particular way in which y[n] and s(t) are obtained.

The N samples of y[n] in (4.8) collected during an observation interval may be arranged into

the following m × N matrix

Y =
[
y [1] y [2] · · · y [N ]

]
= α0 a0 s

T (τ0) + E , (4.9)

where E is formed identically to Y and we have defined the signal vector

s (τ) =
[

s (Ts − τ) s (2Ts − τ) . . . s (NTs − τ)

]T

. (4.10)

4.2 Maximum Likelihood Time Delay and Carrier Phase Esti-

mator

The problem addressed in this section may be stated as follows: given the collection of data Y

modeled by (4.9), the vector a0 and the signal s(t), estimate the unknown parameters τ0, α0

and Q. To this end, the maximum likelihood principle is applied [Sch90]. The reciprocal of the

likelihood function1 of the data is

Λ1 (τ0,α0,Q) = |Q| exp
{

Tr
{
Q−1 C (τ0,α0)

}}
, (4.11)

1Parameter-independent additive or multiplicative constants in the cost functions are neglected throughout

the chapter.
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where

C (τ0,α0) =
1

N
(Y − α0 a0 sT (τ0)) (Y − α0 a0 sT (τ0))

∗
. (4.12)

The dimensionality of the parameter space can be reduced to one by eliminating analytically all

the unknowns except for τ0. The gradient of (4.11) with respect to Q is [Mag99]

∂ Λ1 (τ0,α0,Q)

∂ Q
= Λ1 (τ0,α0,Q)

(
Q−1 − Q−1 C (τ0,α0) Q−1

)
. (4.13)

The value of Q that nulls (4.13) and also the ML estimate (as long as it is evaluated at the ML

estimates of τ0 and α0), is given by

Q̂ML = C (τ0,α0) , (4.14)

where we have assumed that N ≥ m + 1 in order that C (τ0,α0) be invertible with probability

one.

Let us define the following sample correlations

R̂yy =
1

N
Y Y∗ r̂ys (τ0) =

1

N
Y sc (τ0) (4.15)

P̂s =
1

N
s∗ (τ0) s (τ0) Ŵ (τ0) = R̂yy − P̂−1

s r̂ys (τ0) r̂∗ys (τ0) . (4.16)

The matrix Ŵ (τ0) is an unstructured estimate of the noise correlation matrix Q. It is referred to

as unstructured because, unlike C (τ0,α0), it does not use the knowledge of the spatial signature

of the LOSS. Substituting (4.14) into (4.11) yields the following concentrated inverse likelihood

function

Λ2 (τ0,α0) =
∣∣∣R̂yy − α0 a0 r̂∗ys (τ0) − α∗

0 r̂ys (τ0) a∗

0 + |α0|
2 P̂s a0 a∗

0

∣∣∣ (4.17)

=
∣∣∣Ŵ (τ0) +

(
α0 a0 − r̂ys (τ0) P̂−1

s

)
P̂s

(
α0 a0 − r̂ys (τ0) P̂−1

s

)∗
∣∣∣ (4.18)

=
∣∣∣Ŵ (τ0)

∣∣∣ ·
(

1 + P̂s

(
α0 a0 − r̂ys (τ0) P̂−1

s

)∗

Ŵ−1 (τ0)
(
α0 a0 − r̂ys (τ0) P̂−1

s

) )
.

(4.19)

Equation (4.19) stems directly from the standard properties of the determinant (3.22) and (3.23).

Note that the problem addressed in Chapter 3 would have led to a cost function equal to the

determinant in (4.19). Now, thanks to the knowledge of a0, the resulting cost function also

depends on the second term in that equation. A straightforward minimization of (4.19) with

respect to α0 results in the ML estimate of the LOSS amplitude:

α̂0,ML =
a∗

0 Ŵ−1 (τ0) r̂ys (τ0)

P̂s a∗
0 Ŵ−1 (τ0) a0

∣∣∣∣∣
τ0=τ̂0,ML

. (4.20)
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Note that this expression has to be evaluated at τ̂0,ML, which is the ML estimate of τ0. Thanks

to the invariance principle of the ML estimates [Sch90, Kay93], the ML estimate of the carrier

phase is directly the argument of α̂0,ML. After plain but lengthy calculations, in which (4.20) is

substituted into (4.19) and Ŵ−1 (τ0) is expanded using the matrix inversion lemma, i.e.,

Ŵ−1 (τ0) = R̂−1
yy +

R̂−1
yy r̂ys (τ0) r̂∗ys (τ0) R̂

−1
yy

P̂s − r̂∗ys (τ0) R̂−1
yy r̂ys (τ0)

, (4.21)

the criterion in (4.19) can be expressed as a function of only τ0:

Λ3 (τ0) = Λ2 (τ0, α̂0,ML) =
∣∣∣R̂yy

∣∣∣ ·
(
1 − α̂∗

0,ML r̂∗ys R̂−1
yy a0

)
(4.22)

=
∣∣∣R̂yy

∣∣∣ ·


1 +

∣∣∣a∗
0 R̂−1

yy r̂ys (τ0)
∣∣∣
2

(
P̂s − r̂∗ys (τ0) R̂−1

yy r̂ys (τ0)
) (

a∗
0 R̂−1

yy a0

)




−1

. (4.23)

Therefore, the ML estimate of the time delay, that is to say the value that minimizes Λ3 (τ0), is

τ̂0,ML = arg max
τ0

ΛML (τ0) (4.24)

" arg max
τ0

∣∣∣a∗
0 R̂−1

yy r̂ys (τ0)
∣∣∣
2

P̂s − r̂∗ys (τ0) R̂−1
yy r̂ys (τ0)

. (4.25)

The computation of the ML estimates only involves the search of the maximum of the one-

dimensional (1-D) function ΛML (τ0), so the complexity is comparable to that of the well-known

single-sensor matched filter approach. Moreover, this ML estimator is applicable in the same way

in the presence of any type (specular or diffuse) of multipath, which is an important advantage

with respect to methods based on the detailed model in (4.2). An expression analogous to (4.25)

was already presented in [Swi98b] for a similar problem: the estimation of the direction-of-arrival

and the Doppler frequency of a desired signal in a noise field with unknown spatial correlation.

If the received signal is exactly described by the simplified model (4.8) and the assump-

tion (A1) in Section 2.5.1 holds, the limiting or asymptotic (large N throughout the chapter)

expression of the cost function in (4.25) is

∣∣a∗
0 R−1

yy α0

∣∣2 |css (τ0 − τ̌0)|
2

Ps − α∗
0 R−1

yy α0 |css (τ0 − τ̌0)|
2 (4.26)

with probability one. τ̌0 denotes the true value of the delay, and Ps = css (0) and Ryy represent

the limiting values of the corresponding quantities. It is clear that (4.26) is maximum at τ0 = τ̌0,

since the numerator and denominator are maximum and minimum, respectively, at this value of

the delay. Subsequently, the consistency of α̂0,ML and Q̂ML follows from (4.20) and (4.14), and
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the consistency of τ̂0,ML. Therefore, if the model (4.8) holds exactly, the ML estimators of Q,

α0 and τ0 are also asymptotically efficient [Leh83, section 6.4]. A direct proof of the asymptotic

efficiency of τ̂0,ML is also provided in Section 4.6.

Below, we analyze the asymptotic expression of the cost function in (4.25) when the actual

received signal follows the “detailed” signal model in (4.1)–(4.5), being τ̌ the true value of the

delays. Besides, we assume that the signal-to-noise ratio (SNR) is high. This analysis does not

intend to be a rigorous study, but only a way to gain insight into the ML cost function.

First, the denominator of (4.25) can be written as

P̂s∣∣∣R̂yy

∣∣∣

∣∣∣R̂yy

∣∣∣ ·
(

1 − 1

P̂s

r̂∗ys (τ0) R̂−1
yy r̂ys (τ0)

)
=

P̂s∣∣∣R̂yy

∣∣∣

∣∣∣Ŵ (τ0)
∣∣∣ . (4.27)

Under the detailed model hypothesis, the limiting value of (4.27) is

css (0)

|Ryy|

∣∣Ryy − ACss (τ̌ , τ0) c−1
ss (0) C∗

ss (τ̌ , τ0) A∗
∣∣ (4.28)

with probability one. Css (τ ,λ) is a matrix whose k, l-th element is css (λl − τk), and

Ryy = ACss (τ̌ , τ̌ ) A∗ + Q . (4.29)

If we define

M (τ̌ , τ0) = Css (τ̌ , τ̌ ) − Css (τ̌ , τ0) c−1
ss (0) C∗

ss (τ̌ , τ0) , (4.30)

then the second determinant in (4.28) can be expressed as

|Q + AM (τ̌ , τ0) A∗| = |Q|
∣∣I + A∗ Q−1 AM (τ̌ , τ0)

∣∣ (4.31)

≈ |Q|
∣∣A∗ Q−1 A

∣∣ |M (τ̌ , τ0)| . (4.32)

The approximation in (4.32) is based on the assumption of high SNR. Note that for this approxi-

mation to be valid, A∗ Q−1 A has to be full-rank. The matrix M (τ̌ , τ0) is the Schur complement

of css (0) in

Css (τ a, τ a) =


 Css (τ̌ , τ̌ ) Css (τ̌ , τ0)

C∗
ss (τ̌ , τ0) css (0)


 , (4.33)

where τ a = [τ̌ T τ0]
T . Since css (0) is strictly greater than zero, M (τ̌ , τ0) is singular if and

only if Css (τ a, τ a) is singular. At this point, we need to consider that the following mild

non-ambiguity condition of the “time manifold” is satisfied: the matrix C (τ̃ , τ̃ ) is non-singular

(positive definite) for any vector τ̃ of length d + 1 whose elements are all distinct. Therefore,

equation (4.32) is zero when Css (τ̃ , τ̃ ) is singular; and this can only happen when τ0 coincides

with any of the elements of τ̌ , since the elements of τ̌ are all distinct.
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In the second place, we analyze the asymptotic expression of the numerator of (4.25). Ap-

plying the matrix inversion lemma to (4.29) yields

R−1
yy = Q−1 − Q−1 A

(
C−1

ss (τ̌ , τ̌ ) + A∗ Q−1 A
)−1

A∗ Q−1 (4.34)

= Q−1 − Q−1 A
(
A∗ Q−1 A

)−1
(
I + C−1

ss (τ̌ , τ̌ )
(
A∗ Q−1 A

)−1
)−1

A∗ Q−1 . (4.35)

In (4.35), we have again implicitly considered that A∗ Q−1 A is non-singular. Taking into

account that the SNR is high, we perform the following Taylor expansion

(
I + C−1

ss (τ̌ , τ̌ )
(
A∗ Q−1 A

)−1
)−1

≈ I − C−1
ss (τ̌ , τ̌ )

(
A∗ Q−1 A

)−1
. (4.36)

After substituting this expansion into (4.35), we get

R−1
yy ≈ Q−1 − Q−1 A

(
A∗ Q−1 A

)−1
A∗ Q−1

− Q−1 A
(
A∗ Q−1 A

)−1
C−1

ss (τ̌ , τ̌ )
(
A∗ Q−1 A

)−1
A∗ Q−1 . (4.37)

Using this approximation of R−1
yy for high SNR, the asymptotic expression of the numerator of

ΛML (τ0) is

1

|α0|
2

∣∣eT
1 C−1

ss (τ̌ , τ̌ ) Css (τ̌ , τ0)
∣∣2 , (4.38)

where ei is a vector whose i-th element is 1 and the others are zero. The maximum of (4.38) is

not in general attained at the true delay of the LOSS. However, the important property is that

equation (4.38) is different from zero at τ0 = τ̌0, and zero at τ0 = τ̌k for k = 1, . . . , d − 1. This

statement comes readily from the fact that

Css (τ̌ , τ̌ ) =
[

Css (τ̌ , τ̌0) Css (τ̌ , τ̌1) · · · Css (τ̌ , τ̌d−1)

]
(4.39)

and, hence, C−1
ss (τ̌ , τ̌ ) Css (τ̌ , τ̌k) = ek+1.

To sum up, the limiting expressions of both the numerator and denominator of ΛML (τ0)

approximated for high SNR cancel at the true delays of the reflections (i.e., at τ0 = τ̌k for

k = 1, . . . , d − 1); whereas only the denominator is zero at the true delay of the direct signal

(i.e., at τ0 = τ̌0). This behavior of the numerator and denominator occurs thanks to the presence

of the matrix R−1
yy . This matrix appears in the ML cost function because the correlation of the

noise has been assumed to be unknown. When the noise is considered spatially white the

resulting cost functions are ΛWH (τ0) and ΛWH−TE (τ0), which are presented in the next section

in equations (4.43) and (4.44). The asymptotic value of these two costs functions is independent

of the SNR, and they do not present the interesting properties of the numerator and denominator

of the ΛML (τ0).
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4.2.1 Related Estimators

The performance of the ML estimators above will be compared in Section 4.5 with that of other

methods. In this section, we outline four different estimators that are obtained from simplifying

considerations about the signal model or from an ad-hoc reasoning. The first of these estimators

stems from the assumption that the steering vector of the LOSS is arbitrary and unknown, along

with the model (4.8). The minimization of (4.19) with respect to (α0 a0) is trivial, and therefore

ML time-delay estimate using only temporal reference is

τ̂0,TE = arg max
τ0

ΛTE (τ0) " arg max
τ0

r̂∗ys (τ0) R̂−1
yy r̂ys (τ0)

P̂s

. (4.40)

It is worth noting that ΛTE (τ0) is the sum of the m single-sensor ML time-delay estimators

obtained from each of the antennas, having previously whitened the signals according to the

inverse of the total correlation matrix. Indeed, this is the ML estimator derived in Chapter 3 for

the particular case of d = 1. An alternative expression that provides insights into this estimator

is

ΛTE (τ0) =
sT (τ0) PY∗ sc (τ0)

sT (τ0) sc (τ0)
, (4.41)

where PY∗ = Y∗ (Y Y∗)−1 Y. Expression (4.41) implies that τ̂0,TE is estimated as the delay

that yields the vector sc (τ0) closest to the column span of Y∗.

The second method rests on the same simplified model as the ML estimator proposed in this

chapter, but with the additional assumption that the noise is spatially white. In this method,

the vector a0 is considered again to be known. The derivation of the ML estimates when Q is

replaced by σ2 I is simple and yields

α̂0,WH =
a∗

0 r̂ys (τ0)

P̂s a∗
0 a0

∣∣∣∣∣
τ0=τ̂0,WH

(4.42)

τ̂0,WH = arg max
τ0

ΛWH (τ0) " arg max
τ0

|a∗
0 r̂ys (τ0)|

2

P̂s

. (4.43)

On the other hand, if the steering vector is unknown, the resulting time-delay estimator is

τ̂0,WH−TE = arg max
τ0

ΛWH−TE (τ0) " arg max
τ0

r̂∗ys (τ0) r̂ys (τ0)

P̂s

. (4.44)

The last approach involves spatially filtering the received signals using the classical minimum

variance or Capon’s beamformer (MVB) :

ŵMV =
R̂−1

yy a0

a∗
0 R̂−1

yy a0

(4.45)
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At first glance, this may seem a logical solution and it has been proposed for the problem under

consideration in some works, such as [Zol95] and [Hat98]. If the ML criterion is applied to the

output signal of the beamformer (yT
MV = ŵ∗

MV Y), the resulting estimates are

α̂0,MV =
a∗

0 R̂−1
yy r̂ys (τ0)

P̂s a∗
0 R̂−1

yy a0

∣∣∣∣∣
τ0=τ̂0,MV

(4.46)

τ̂0,MV = arg max
τ0

ΛMV (τ0) " arg max
τ0

∣∣∣a∗
0 R̂−1

yy r̂ys (τ0)
∣∣∣
2

P̂s

. (4.47)

It is interesting to note that the ML criterion proposed in this chapter can be expressed as

a function of the ML criterion using only temporal information and the cost function based on

the MVB:

ΛML (τ0) =
ΛMV (τ0)

1 − ΛTE (τ0)
. (4.48)

Nonetheless, simulation results will show that the estimates obtained from ΛML (τ0) largely

outperform those obtained from ΛMV (τ0) and ΛTE (τ0) separately. Substituting (4.21) into

(4.20) yields an equivalent expression for the ML amplitude estimate:

α̂0,ML =
a∗

0 R̂−1
yy r̂ys (τ0)

P̂s a∗
0 R̂−1

yy a0 −
(
r̂∗ys (τ0) R̂−1

yy r̂ys (τ0)
)(

a∗
0 R̂−1

yy a0

)
+

∣∣∣a∗
0 R̂−1

yy r̂ys (τ0)
∣∣∣
2

∣∣∣∣∣∣∣
τ0=τ̂0,ML

.

(4.49)

It is clear that the amplitude estimates obtained from the ML and MV criteria would satisfy

the following relations

|α̂0,ML| ≥ |α̂0,MV |

∠α̂0,ML = ∠α̂0,MV

if τ̂0,MV = τ̂0,ML . (4.50)

If this were the case (namely, if τ̂0,MV = τ̂0,ML), the carrier phase measurements obtained with

both criteria would be exactly the same. However, in reality the errors of τ̂0,MV are much larger

than those of τ̂0,ML, as it will be shown in Section 4.5, what makes the estimator α̂0,MV perform

generally worse than α̂0,ML. In a different framework, an ML amplitude estimator similar to

(4.20), named APES (Amplitude and Phase EStimator) was proposed in [Li96], and compared

in [Jak00] with an estimator based on the Capon’s beamformer, like (4.46), for the spectral

estimation problem.

4.3 Closed Form Algorithms

It may be useful for certain practical designs even to eliminate the 1-D maximization involved by

(4.25), and several strategies can be devised to achieve such objective. The standard approach
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consists in searching the zero-crossing of the derivative of ΛML (τ0), which is approximated as

dΛML (τ0)

d τ0
≈ ΛML (τ0 + δ Tc) − ΛML (τ0 − δ Tc)

2δ Tc
, (4.51)

where usually δ ∈ (0, 1). This approximation of the derivative may be used as the controlling

error signal of a timing closed loop and, hence, may appropriate for a feedback implementation

[Spi77, Sim85]. This scheme, which shares the same idea as the DLL, was studied in [Sec97b].

In this section, we present two algorithms that bring forward, in our opinion, a more inter-

esting contribution than that provided by the derivative approximation and that are valid for

feedforward designs.

4.3.1 Polynomial-Rooting in the Frequency Domain

In this technique, the linear phase dependence on the delay of the frequency-domain represen-

tation of the signal is exploited. If the N temporal samples are transformed into the frequency

domain using the DFT, the signal vector approximately satisfies the following relation (see

Section 2.5.2 for further details)

s (τ0) = ej φ Sω u (exp (−j 2πτ0/ (NTs))) , (4.52)

where Sω is a diagonal matrix whose elements are the DFT of [s(Ts), s(2Ts), . . . , s(NTs)], and

φ =
2πτ0

NTs
⌊N/2⌋ , (4.53)

u (z) =
[

1 z z2 . . . zN−1
]T

. (4.54)

Since the DFT is a unitary transform, the ML estimator presented in Section 4.2 can be

applied identically in the frequency domain. Therefore, considering that at this point the matrix

Y contains the frequency samples of the signals and that the relationship (4.52) is exact, the

ML cost function in (4.25) can be expressed as the quotient of (2N − 2)th order polynomials

evaluated on the unit circle as follows

ΛML (τ0) = ΛMLF (z)
∣∣
z=exp(j 2πτ0/NTs)

, (4.55)

where we have defined

ΛMLF (z) "
uT (z−1) Sω Y∗ R̂−1

yy a0 a∗
0 R̂−1

yy Y S∗
ω u (z)

uT (z−1) Sω

(
N I − Y∗ R̂−1

yy Y
)
S∗

ω u (z)
. (4.56)

Finding the values that null the derivative of ΛML (τ0) can be replaced by finding the values that

null the derivative of ΛMLF (z) since

d ΛML (τ0)

d τ0
= j

2π

NTs
exp

(
j
2πτ0

NTs

)
d ΛMLF (z)

d z

∣∣∣∣
z=exp(j 2πτ0/NTs)

. (4.57)
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Therefore, the maximization of ΛML (τ0) amounts to rooting a (4N − 6)th order polynomial,

named p(z), which is the numerator of the derivative of ΛMLF (z) with respect to z. The

polynomial p(z) can be computed in closed form. Only the subset of roots lying on the unit

circle is considered. After evaluating the cost function ΛMLF (z) at the elements of this subset,

the one yielding the maximum is selected and designated ẑ0. Then, the time-delay estimate is

τ̂0,MLF =
N Ts

2π
∠ẑ0 . (4.58)

It may be argued that the order of the polynomial p(z) can be large. However, there exist

computationally efficient rooting algorithms for high-order polynomials; see, e.g., [Pre95, Hot99,

Hot00] and references therein. Moreover, simulation results have shown that the absolute value of

the coefficients of p(z) spans several orders of magnitude (usually about 15), and only a very small

portion of the coefficients is representative (see Section 4.5 for further details). Consequently,

p(z) can be truncated and also decimated so as to retain only its significant coefficients, and

then the order of the resulting polynomial is largely reduced.

4.3.2 Linearization of the Signal Vector

The basis of the algorithm presented in this section is a piecewise linear approximation of the

vector s (τ0). Let us divide the range of uncertainty2 of τ0 into intervals of length T0, so that

we can write τ0 = (p + δ) T0, where p is an integer and δ ∈ [0, 1). Using a first-order Taylor

expansion, the signal vector can be expressed in each interval τ0 ∈
[
p T0, (p + 1) T0

)
as

s (τ0) ≈ s (p T0) + δ T0
d s (τ)

d τ

∣∣∣∣
τ=p T0

(4.59)

or, using a piecewise linear interpolation, as

s (τ0) ≈ (1 − δ) s (p T0) + δ s
(
(p + 1) T0

)
. (4.60)

Some numerical examples concerning the selection of the value of T0, which has to be small

enough to assure that the errors in (4.59) and (4.60) are not excessive, are shown in Section 4.5.

Both approximations become exact when the received chip-shaping pulse is triangular. This is

the case, for instance, when the transmitted chip-shaping pulse is rectangular, and it is filtered

with a rectangular matched filter before applying of the estimation algorithm, as in [Str96,

Par96b, Zhe97, Liu98a, Ben98, Liu98b]. This situation could be encountered in a GPS receiver,

because GPS satellites transmit nearly rectangular pulses given that the chip rate (1/Tc) of the

C/A code is 1.023Mchips/s and the bandwidth is about 20MHz. What is more important is that

2The range of possible delays is usually on the order of or smaller than two times the chip interval, 2Tc,

because it is assumed that previous coarse synchronization has been achieved or a previous time-delay estimate

is available.
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simulation results have shown that the approximations above also yield satisfactory results for

rounder pulses, such as Nyquist pulses. Consequently, even though those approximations may

seem not to have a sound foundation, they allow the derivation of an algorithm with practical

interest.

In the sequel, we only consider the expression (4.60) and we define

V (p) =
[

s (τ0) s
(
(p + 1) T0

) ]
and µ (δ) =

[
1 − δ δ

]T

. (4.61)

These definitions are trivially modified in order to use the approximation (4.59). Substituting

(4.60) into (4.25) and using (4.61) yield the following expression of the ML cost function

ΛMLL (δ, p) "
P (δ, p)

Q (δ, p)
=

µ
T (δ) VT (p) Y∗ R̂−1

yy a0 a∗
0 R̂−1

yy Y Vc (p) µ (δ)

µT (δ) VT (p)
(
N I − Y∗ R̂−1

yy Y
)

Vc (p) µ (δ)
, (4.62)

which is, for a fixed interval p, a quotient of second-order polynomials in δ. Therefore, the local

extrema of the ML function in the pth interval are the roots of the quadratic polynomial

R (δ, p) =
dP (δ, p)

d δ
Q (δ, p) − dQ (δ, p)

d δ
P (δ, p) (4.63)

which are real and belong to the interval [0, 1). Since the absolute maximum of the cost function

has to be either one of the local extrema or one of the points between intervals, the algorithm

for finding the absolute maximum is as follows

1. Let Ω be the set of pairs
{

(pmin, δ = 0) , (pmin+1, δ = 0) , . . . , (pmax, δ = 0)
}
, where

{pmin, . . . , pmax} correspond to the intervals of length T0 needed to cover the range of

uncertainty of τ0.

2. For each value of p = pmin, . . . , pmax

a. Find the roots δ1 and δ2 of R (δ, p).

b. If any root δi (i = 1, 2) belongs to [0, 1), then add the pair (p, δi) to Ω.

3. Evaluate ΛMLL (δ, p) at all the elements in Ω, and choose the pair
(
δ̂, p̂

)
that yields the

maximum cost. Finally, form the estimate of the time-delay as τ̂0,MLL =
(
p̂ + δ̂

)
T0.

Table 4.1: Algorithm based on the linearization of the signal vector.
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4.4 Iterative Algorithm: Hybrid Beamforming

In this section, the equivalence between the maximum likelihood estimation and a specific type

of beamforming is presented. Not only does this equivalence shed light on the performance

of the systematic, yet non-intuitive, ML estimators of the code (4.25) and carrier (4.20) phases

presented above, but it is also the basis for an iterative realization of those ML estimators. From

the beamforming viewpoint, the cost function to be optimized has a clear interpretation, and

can be written without the need for a probabilistic description of the data. These are the reasons

why according to the beamforming approach it is easier to understand how the signals received

at different antennas are processed in order to mitigate the effects of the undesired components.

However, no a priori claims to the optimality of the estimates obtained from that approach

can be done. On the other hand, the maximum likelihood principle provides a procedure to

obtain optimum estimates (in the sense that usually they are asymptotically efficient) based on

a probabilistic setting, but sometimes it fails in giving an understandable interpretation on how

the signals are processed. This is exactly what happens with the ML estimators studied above,

especially with the expression (4.25).

First, we prove the equivalence between the ML and the beamforming approaches, and then

we present the iterative algorithm. The mean squared error (MSE) between the output of a

beamformer with weights w and the reference signal α0 s (τ0) is

J1 (w,α0, τ0) =
1

N

∥∥w∗ Y − α0 sT (τ0)
∥∥2

2
. (4.64)

Even though expression (4.64) recalls the one that is minimized in the design of a conventional

temporal-reference beamformer, there is an important difference: In (4.64) the reference signal

is not completely known, but it is parameterized by the delay of the direct signal (τ0), which

has to be estimated together with the optimum weight vector. If (4.64) were minimized with

the constraint |α0|
2 = 1/P̂s, the resulting criterion for the delay would be ΛTE (τ0). However,

since the steering vector of the line-of-sight signal is known, we will impose a spatial constraint

on w in order to force the beamformer to always point this signal. This is how the beamformer

is made to extract the direct signal and not any other reflection. Thus, the optimum weight

vector (ŵhMSE), and the estimates of the amplitude (α̂0,hMSE) and the delay (τ̂0,hMSE) obtained

with the new criterion are the solutions of the following constrained optimization problem:

ŵhMSE, α̂0,hMSE, τ̂0,hMSE = arg min
w,α0,τ0

J1 (w,α0, τ0) (4.65)

subject to w∗ a0 = 1 . (4.66)

Note that, due to the spatial constraint, now it is not convenient to fix the value of the ampli-

tude. The resulting ŵhMSE is a hybrid beamformer, because it is derived using both temporal

and spatial references [Hon87]. Also note that no assumptions about the spatial or statistical
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properties of the noise have been needed to phrase this new problem. It is straightforward that

the amplitude that minimizes the cost J1 for fixed w and τ0 is

α̂0, hMSE =
w∗ r̂ys (τ0)

P̂s

, (4.67)

which substituted into (4.64) and using (4.16) results in3

J2 (w, τ0) =
1

N

∥∥∥∥w
∗

(
Y − rys (τ0)

P̂s

sT (τ0)

)∥∥∥∥
2

2

= w∗ Ŵ (τ0) w . (4.68)

The weight vector for which (4.68) is minimized with the constraint in (4.66), for a fixed τ0, is

ŵhMSE =
Ŵ−1 (τ0) a0

a∗
0 Ŵ−1 (τ0) a0

. (4.69)

After replacing w in (4.68) with (4.69) and using the identity (4.21), we get the expression of

the MSE that has to be minimized in order to obtain τ̂0,hMSE:

JhMSE (τ0) =
1

a∗
0 Ŵ−1 (τ0) a0

=
1

a∗
0 R̂−1

yy a0 + ΛML (τ0)
. (4.70)

This expression proves that the ML and the beamforming approaches yield identical time delay

estimates, i.e., τ̂0,hMSE = τ̂0,ML. The proof of the equivalence concludes by noting that, after

substituting (4.69) into (4.67), the amplitude estimates are also identical, i.e., α̂0,hMSE = α̂0,ML.

In order to derive an iterative version of the ML estimator, the mean squared error in (4.64)

subject to the spatial constraint in (4.66) is minimized with respect to each parameter in an

order different from the one followed above (the estimates obtained with this second approach

are differentiated using (·)•). First, the optimum beamformer for given τ0 and α0 is computed,

which is denoted by ŵ•

hMSE. Applying the Lagrange’s multipliers technique, it is easily shown

that

ŵ•

hMSE (τ0,α0) = α∗

0 ŵTE (τ0) + β (τ0,α0) ŵMV (4.71)

β (τ0,α0) = 1 − α∗

0 a∗

0 R̂−1
yy r̂ys (τ0) , (4.72)

where the minimum variance (or spatial-reference) beamformer ŵMV was defined in (4.45), and

the temporal-reference beamformer ŵTE is

ŵTE (τ0) = R̂−1
yy r̂ys (τ0) . (4.73)

The hybrid beamformer ŵ•

hMSE, which is a weighted linear combination of the minimum MSE

beamformer calculated with only the temporal reference (ŵTE) and the minimum variance or

Capon’s beamformer calculated with only the spatial reference (ŵMV ), performs much better

than its two components in scenarios with multipath propagation. While the hybrid beamformer

3The matrix Ŵ (τ0) was defined in (4.16).
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tries to attenuate the reflections of the GNSS signal, the MV beamformer combines destructively

the reflections with the direct signal attempting to minimize the total power (it suffers the so-

called desired-signal cancellation phenomenon), and the temporal-reference beamformer may

tend to combine constructively the reflections with the direct signal in order to increase the

total signal-to-noise-plus-interference ration (SNIR) of the GNSS components. Note that if

the coefficient β (τ0,α0), which multiplies the MVB, is evaluated at the ML estimate of the

amplitude, then it is proportional to the inverse ML function Λ3 (τ0) in (4.22). In the second

place, the time delay and amplitude estimates are the values that minimize J1 (ŵ•

hMSE,α0, τ0).

Considering that the hybrid beamformer is fixed, i.e., not taking into account the dependence

of ŵ•

hMSE on τ0 or α0, it is straightforward that the estimates are

τ̂ •

0,hMSE = arg max
τ0

∣∣yT
h sc (τ0)

∣∣2

P̂s

(4.74)

α̂•

0,hMSE =
yT

h sc (τ0)

P̂s

∣∣∣∣
τ0=τ̂•0,hMSE

, (4.75)

where yT
h = ŵ•H

hMSE Y is the beamformer output. Estimating τ0 and α0 from the signal yh

is actually the process realized by any GNSS receiver, since the beamformer output can be

considered to be the signal received by a single equivalent antenna. Consequently, the estimators

in (4.74) and (4.75) could be replaced by any of the single-sensor methods implemented in

conventional receivers, such as the DLL [Par96a] or the MEDLL [Nee94, Lax97], even though

in this case the resulting estimates may not be the ML ones any longer. At this point, the

formulation of an iterative algorithm for the computation of the hybrid beamformer, and the

time delay and amplitude estimates is immediate, and it is summarized by the following steps:

1. Choose an initial value of the beamformer w0). With the available information, the

delay-and-sum beamformer is a convenient choice: w0) = a0/ (a∗
0 a0).

2. For k = 1, 2, 3, . . .

a. Determine the new estimates τ̂
k)
0 and α̂

k)
0 from the output of the beam-

former wk−1). This estimates can be obtained using (4.74) and (4.75),

or any other algorithm.

b. Update the beamformer using equation (4.71), that is,

wk) = w•

hMSE

(
τ̂

k)
0 , α̂

k)
0

)
.

Table 4.2: Iterative estimation algorithm based on the hybrid beamforming.

This algorithm can be applied either in block-mode or adaptively. In the former, the itera-
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tions are carried out using fixed batches of data, one after another; while in the latter, the data

received up to a given instant are used to adaptively update R̂yy and r̂ys in the step 2b, and

to compute the estimates in the step 2a. Following this last approach, the calculation of the

weight vector in (4.71) could be also done adaptively by employing the LMS or RLS algorithms

[Hay96], and also the GSLC (Generalized Side Lobe Canceller) structure [Joh93]. As a result,

the iterative algorithm presented herein admits of a large number of practical implementations.

We will only focus in the next section on the performance of the algorithm when applied in

block-mode, for coherence with the whole of the thesis; and the possible implementations, which

are related to specific designs, are left outside the scope of this work. Finally, it is remarkable

that the relationship between the ML estimator and the hybrid beamformer described in this

section offers an interesting view of the estimation process, since it separates in two different,

yet coupled, stages the spatial filtering and the temporal processing.

4.5 Simulation Results

In order to gain clear insight into the ML estimator, and its closed-form and iterative variants

proposed in the preceding sections, their performance is evaluated and compared with that of

other techniques in two types of scenarios. In the first, a wide-band (i.e., temporally white)

interference is received; in the second, the effect of the multipath propagation is addressed. The

LOSS, and temporally and spatially white noise are present in all cases.

4.5.1 Simulation Parameters

The input signal s (τ0) to the estimators is the concatenation of M truncated and sampled

Nyquist square-root raised cosine pulses. Each pulse has a bandwidth equal to (1 + ̺) /2Tc

and is truncated to the interval [−3Tc, 3Tc]. The sampling period is Ts = Tc/2, so there are

13 samples in each pulse and the total number of samples is N = 13M (see Figure 3.1). The

roll-off factor ̺ is set equal to 0.2. The choice of this pulse is of interest because it is the one

proposed for the future system GNSS2 [Sch98a]. Each pulse in s (τ0) is often called finger , and

represents a portion of the result of filtering a DS-SS signal with a code-matched filter. It is

assumed that the length of this filter is one symbol period T . Therefore, the vector s (τ0) is

not a continuous part of the matched filter output, but only the concatenation of those portions

spaced T seconds apart, in which the alignment error between the code of the received DS-SS

signal and the local code is within ±3Tc. Note that the matched filter does not include the

chip-shaping waveform, but only the effect of the pseudo-random code, that is, the sequence of

chips (see Section 2.5.3 for further details). All results are calculated by averaging 500 Monte

Carlo runs, and the simulation conditions, except when one of them is varied, are as follows:
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• The observation interval comprises M = 3 pulses.

• The array is uniform and linear (only for simplicity), with m = 6 antennas spaced half

wavelength apart.

• The DOA of the LOSS is θ̌0 = 0o relative to the array broadside. The delay of LOSS is

taken as τ̌0 = 0.

• The SNR for the LOSS averaged over all the observation window is 15.87dB, which is

equivalent to 24dB when it is averaged only over the Tc–length intervals containing the

maximum of each Nyquist pulse. This value of SNR is obtained with an usual set of

system parameters, such as a Carrier-to-Noise spectral density (CNo) of 44dB-Hz, and a

chip rate and spreading factor equal to those of the GPS system: 1/Tc = 1.023Mchips/s,

P = 20460 chips/bit.

• The interference, when it is present, arrives from DOA θ̌i = −30o. The Signal-to-

Interference Ratio (SIR) for the LOSS, averaged over all the observation window is -3.13dB,

which means that the interference is 19dB above the noise level.

• The specular reflection, when it is present, arrives from DOA θ̌1 = 10o, it is attenuated

−3dB and delayed τ̌1 = 0.25Tc or 0.4Tc with respect to the LOSS; and both signals are

in phase at the first antenna.

In many of the figures below, there are some lines designated “CRB for the detailed model”

(CRB-D) and the “CRB for the simplified model” (CRB-S). The first refers to the Cramér-Rao

Bound (CRB) derived under the model in (4.2), while the second one is derived under the model

in (4.8). Both of them assume that steering vector of the LOSS, a0, is known, and they coincide

when no reflections are received. The CRB-D is derived in Appendix 4.A, and the derivatives

of Nyquist pulses can be found in Appendix 3.D. The CRB-S is given by expressions (4.126)-

(4.128). However, in order to compute the CRB-S, not only is the contribution of the noise plus

interference included in the matrix Q like it is done for the CRB-D, but also the contribution

of the reflections. This way of computing Q amounts to considering that the reflections are

uncorrelated with the LOSS, but this does not happen with the actual received signals (the

reflections are uncorrelated with the direct signal when the delay or Doppler differences are

large compared with Tc or the inverse of the observation interval, respectively).

It is important to remark that the results obtained with the frequency-domain polynomial-

rooting algorithm described in Section 4.3.1 have not been included in the figures because there

is no appreciable difference between them and those obtained with the exact ML estimator in

(4.25). In the implementation of the polynomial-rooting algorithm, the polynomial p(z) has

been truncated and decimated, neglecting the coefficients {pi} that satisfy 10 log(|pi/pmax|) <

−45, where pmax is the coefficient with the largest modulus. Typically, the number of retained
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coefficients has been approximately 25. This similarity of the results signifies that neither the

approximation (4.52) nor the reduction of the polynomial order involve a sensible performance

impairment. As an example, a realization of the polynomial coefficients is shown in Figure 4.2.
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Figure 4.2: One realization of the coefficients of p (z). Parameters: θ̌0 = 0o, θ̌i =

−30o, τ̌0 = 0, m = 6antennas, M = 1pulse, SNR0 = 15.87 dB, SIR0 = −3.13 dB.

4.5.2 Interference Effects

First, we consider that one interference is received apart from the LOSS and the noise. Only

the errors in the time delay and carrier phase estimates are considered, because these are the

two essential parameters in a GNSS receiver. In the absence of reflections, all methods are

essentially unbiased, i.e., their biases are negligible as compared to their standard deviations

(STD). Therefore, the Root Mean Squared Error (RMSE) coincides with the STD for all practical

purposes, and suffices to characterize the accuracy attainable with each method. The RMSEs of

different estimators as a function of the number of pulses M (equivalently, as a function of the

number of samples N) are plotted in Figure 4.3. In particular, we consider the ML estimator

(MLE) in (4.20) and (4.25), the estimator based on the MV beamformer (MVBE) in (4.46) and

(4.47), and the ML estimator derived under the white-noise hypothesis (ML-WHE) in (4.42) and

(4.43). It is observed that only the MLE attains the CRB for the time delay, and this is achieved

for a small (5 or more) number of pulses. For shorter signals, there is a slight deterioration,

which causes the tiny difference between the RMSE of the MLE and the CRB present in many

of the next figures. The MVBE performs as well as the MLE with regard to the carrier phase
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estimation and both attain the CRB (at least for the number of antennas used in Figure 4.3),

but it performs much worse as far as the estimation of the time delay is concerned. It will be

proven in Section 4.6 that the time delay RMSE of the MVBE really tends to the CRB but, as

shown by the results, it has a very unsatisfactory finite-sample behavior, and needs too large

a number of samples to reach the CRB. On the other hand, the MLE lacks particular finite-

sample characteristics, since it attains the asymptotic behavior practically from the beginning.

It is interesting to remark that the MLE does not inherit the poor performance of the MVBE

even though the cost function of the MVBE (ΛMV (τ0)) is the numerator of the ML cost function

(ΛML (τ0)), see equation (4.48). The ML-WHE is severely degraded by the interference. The

use of this estimator is equivalent to filtering the signals with the delay-and-sum beamformer,

which comes down to attenuating the interference in -12.5dB. It is shown in Figure 4.4 that for

a high number of antennas, the MLE and the MVBE become separated from their asymptotic

behavior. While the MLE is reasonably close to the CRB up to 12 antennas approximately (for

a total number of samples equal to N = 39), the MVB-based estimators of the time delay and

the carrier phase follow the CRB only up to 2 and 8 antennas, respectively, and moreover they

diverge much faster than the MLE.
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(a) Time-Delay RMSE.
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Figure 4.3: Effect of varying the observation length of the signal. Parameters: θ̌0 = 0o, τ̌0 = 0,

θ̌i = −30o, m = 6 antennas, SNR0 = 15.87 dB, SIR0 = −3.13dB.

Note that results regarding the ML estimator with only temporal reference (ML-TEE), which

was introduced in (4.40), have not been included in Figures 4.3a–4.4a since they virtually coincide

with those of the MLE. This means that, in the absence of reflections, the temporal information

(i.e., the shape of s (τ0)) suffices to discriminate the LOSS from the noise and interference. This

fact is corroborated by the interference nulling capabilities of the different beamformers. In

Figure 4.5, the attenuation applied to the interference with respect to the LOSS is shown for

the MVB in (4.45), and for the temporal-reference (TRB) and hybrid (HB) beamformers in
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Figure 4.4: Effect of varying the number of antennas. Parameters: θ̌0 = 0o, τ̌0 = 0, θ̌i = −30o,

M = 3 pulses, SNR0 = 15.87 dB, SIR0 = −3.13dB.

(4.73) and (4.71), respectively. The hybrid beamformer is computed after 25 iterations of the

algorithm presented in Table 4.2. Simulation results have shown that the algorithm typically

converges in less than 10 iterations in the scenario under consideration. Two different TRBs

are considered indeed. One is simply obtained at the end of the iterative process involved in

computing the hybrid beamformer. The other is calculated by applying (4.73) with the time-

delay estimate provided by the ML-TEE. Both TRBs and the HB result in the same attenuation,

which means that the additional spatial information (a0) employed by the HB does not result

in a performance improvement. It is known that the MVB is optimum with perfectly averaged

correlation matrices (i.e., with an infinite number of samples), but Figure 4.5 shows again that

it performs poorly in the finite-sample case, being the difference of the attenuations larger than

20dB with respect the TRB and HB. This result is coherent with the analysis carried out in

[Wax96a] and is also related to the results in [Har00].

The effect of varying the power of the interference for two sizes of the antenna array is in-

vestigated in Figure 4.6. The MLE and MVBE are nearly insensitive to the SIR, although the

former always outperforms the latter, especially as for the time delay estimation. The RMSE

of the MVBE with 6 antennas is lower than that with 10. This occurs because the minimum

variance beamformer is limited by its finite-sample effects, which makes necessary to increase

the number of samples proportionally to the number of antennas in order to maintain the same

performance [Wax96a]. The ML-WHE undergoes a rapid degradation when the SIR < 10dB, so

it is not a convenient method to operate in a scenario with arbitrarily strong interferers. There-

fore, it is clear from all the results above that the assumption of an unknown noise correlation

matrix is appropriate for deriving an ML estimator that greatly mitigates the interferences and

achieves the best possible performance, given by the CRB.
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Figure 4.5: Comparison of the interference cancellation capability of different beam-

formers for different lengths of the signal. Parameters: θ̌0 = 0o, τ̌0 = 0, θ̌i = −30o,

m = 6 antennas, SNR0 = 15.87 dB, SIR0 = −3.13dB, 25 iterations.
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Figure 4.6: Study of robustness against interference. Parameters: θ̌0 = 0o, τ̌0 = 0, θ̌i = −30o,

m = 6 antennas, SNR0 = 15.87 dB, M = 3 pulses.

Figure 4.7 compares the linearization-based algorithm proposed in Section 4.3.2 with the

exact MLE for different values of the linearization spacing , T0. It is shown that values of T0 up

to Tc/2 can be used without a significant performance impairment despite the round shape of
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the Nyquist pulses.
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Figure 4.7: Performance of the algorithm based on the linear interpolation of the

signal vector as a function of the interpolation grid spacing, and in the presence of one

interference. Parameters: θ̌0 = 0o, τ̌0 = 0, θ̌i = −30o, M = 3 pulses, m = 6 antennas,

SNR0 = 15.87 dB, SIR0 = −3.13dB, 25 iterations.

4.5.3 Multipath Effects

In the second set of simulations, the specular reflection is received instead of the interference,

and hence all the estimators are in general biased. A rather usual way of assessing the robustness

of a certain technique against multipath propagation is to evaluate the biases produced by a

single reflection as a function of its delay separation with respect to the LOSS. These results are

shown in Figure 4.8. As expected, the ML-WHE provides severely biased estimates (the method

derived under the white-noise hypothesis and without knowledge of a0 performs even worse). It

is well known that single-sensor methods are seriously impaired by multipath, and therefore the

poor performance of the ML-WHE is readily justified by the fact that it comes down to a single-

sensor ML estimator in which the reflection has been previously attenuated −4.2dB using the

delay-and-sum beamformer. The range of reflection delays that cause a significant time delay

bias can be shortened by employing the ML-TEE. However, a very important reduction of the

magnitude of the bias is only achieved with the MLE proposed in this chapter. Its performance

regarding the carrier phase bias is also excellent, even though the LOSS and the reflection arrive
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from close directions-of-arrival. Thanks to the use of temporal and spatial information, the

MLE is able to model a large part of the contribution of the reflection with the unknown noise

correlation matrix. This part of the reflection is considered as an uncorrelated interference, and

therefore it is attenuated. Obviously, how large is the portion of the reflection modeled as an

interference depends on the degree of correlation with the LOSS, and this is a function of the

delay separation between the two signals. In fact, for separations larger than 0.6Tc, the MLE

is capable of cancelling nearly completely the contribution of the reflection to the extent that

the estimates are practically unbiased. Results illustrating the bias of the MLE as a function of

the reflection delay for different array sizes and directions-of-arrival of the reflection are given

in Figure 4.9.
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Figure 4.8: Bias of several estimators produced by a specular reflection as a function of its delay

relative to the direct signal. Parameters: θ̌0 = 0o, τ̌0 = 0, θ̌1 = 10o, α̌0/α̌1 =
√

2, M = 3 pulses,

m = 6 antennas, SNR0 = 15.87 dB.

Next, the RMSEs as a function of the reflection delay are represented in Figure 4.10. Al-

though the estimators are biased, the comparison with the CRB-D is still meaningful in the

sense that the CRB-D represents the best performance that can be achieved with more com-

plex unbiased estimators based on the detailed model. The CRB-S is only meaningful for large

delays (Tc or greater) of the reflection, since in these cases the degree of correlation between

the reflection and the LOSS is small. Note also that for delays τ̌1 > Tc, it is satisfied that

CRB-D < CRB-S. This inequality means that it should be possible to obtain in this range of

delays a slight performance improvement by exploiting the temporal structure of the reflection,

given that the LOSS and the reflection arrive from very close DOAs. If the angular separation

is larger, approximately
∣∣θ̌1 − θ̌0

∣∣ > 15o, the two CRBs practically coincide which means that

the temporal structure of the reflection need not be exploited when τ̌1 > Tc. The RMSE of the

MLE is smaller than that of the other methods, and tends to the CRB-S for large delays, which
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Figure 4.9: Bias produced by a specular reflection as a function of its delay, for different number

of antennas and different angular separations. Parameters: θ̌0 = 0o, τ̌0 = 0, α̌0/α̌1 =
√

2, M = 3

pulses, SNR0 = 15.87 dB.
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Figure 4.10: RMSE as a function of the delay of the reflection with respect to the direct signal.

Parameters: θ̌0 = 0o, τ̌0 = 0, θ̌1 = 10o, α̌0/α̌1 =
√

2, M = 3 pulses, m = 6 antennas,

SNR0 = 15.87 dB.

is logical since the MLE does not profit from the temporal structure of the reflection. On the

other hand, the RMSE of the MLE nearly reaches the CRB-D if τ̌1 < Tc as regards the time

delay, or τ̌1 < 0.7Tc as regards the carrier phase, which is a rather surprising result. However,

the RMSE does not go to infinity when the delay spacing tends to zero, as it happens with

the CRB-D. This is an apparent advantage of the MLE proposed herein with respect to more

complex unbiased estimators. By allowing a small bias, the RMSE may be smaller than the

CRB-D for very closely-spaced reflections, as it is clear especially in Figure 4.10a. As a result,
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although the simplified model is only an approximate one when reflections are received, as stated

in Section 4.1, it makes possible the derivation of an ML estimator whose performance is very

close to that of other more complex methods that estimate the parameters of the reflections.

Besides, the MLE offers a reasonable trade-off between bias and RMSE for highly coherent (i.e.,

very small relative delay) reflections. Using the results of [Her96], future work may go deeply

into this trade-off. That is to say, it may be interesting to investigate the maximum reduction

of the variance that can be obtained at the expense of a certain bias gradient.

The results obtained with the minimum variance beamformer have not been included in

Figures 4.8 and 4.10 because the MVBE fails in scenarios with multipath propagation. For

instance, if τ̌1 = 0.2Tc, the time-delay bias is about 0.5Tc. A similar result will be observed in

Figure 4.15a. The failure of the MVBE can also be explained in view of Figure 4.11a, where the

cancellation of the reflection provided by different beamformers is shown. For small delays, the

MVB amplifies the reflection. The hybrid beamformer presents the higher cancellation, which

increases with the separation between the LOSS and the reflection, and it is closely followed

by the TRB computed in the iterative process of Table 4.2 (100 iterations are realized). It is

significant that the HB attains an attenuation of −15dB when the reflection delay τ̌1 is only

0.2Tc. On the other hand, the TRB computed with the ML-TEE estimates performs worse than

the TRB in the iterative process. The explanation of this difference may be that the latter can

be thought as being computed with the delay estimates provided by the MLE (as it will be

proven by convergence study in Figures 4.18 and 4.19), and these estimates outperform those

provided by the ML-TEE, as shown in Figures 4.8 and 4.10.
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Figure 4.11: Analysis of different beamformers as a function of the relative delay of the reflection.

Parameters: θ̌0 = 0o, τ̌0 = 0, θ̌1 = 10o, α̌0/α̌1 =
√

2, M = 3 pulses, m = 6 antennas,

SNR0 = 15.87 dB, 100 iterations.
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Recall that the hybrid beamformer is computed as a linear combination of other two beam-

formers, see equation (4.71). The mean of the absolute value of the coefficients in this linear

combination (i.e., |α0| and |β (τ0,α0)|) is plotted in Figure 4.11b as a function of the reflection

delay. The variability of these coefficients is indicated by the vertical lines, whose length is equal

to twice the standard deviation. Again, 100 iterations of the hybrid beamformer algorithm are

performed; and the true value of the amplitude is α̌0 = 1. The coefficient |β (τ0,α0)| is between

one and two magnitude orders smaller than the estimated |α0|, and decreases along with the

reflection delay. This means that in the hybrid beamformer, the contribution of the TRB pre-

dominates. The contribution of the MVB is especially small when the reflection is separated

more than 0.7Tc.
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Figure 4.12: Asymptotic shape of the cost functions. Parameters: θ̌0 = 0o, τ̌0 = 0,

θ̌1 = 10o, τ̌1 = 0.6Tc, α̌0/α̌1 =
√

2, M = ∞ pulses, m = 6 antennas, SNR0 = 15.87 dB.

To gain insight into why the MLE (or the HB) is preferred to both the ML-TEE (or the

TRB) and the MVBE, the shape of the cost functions ΛML (τ0), (1 − ΛTE (τ0))
−1 and ΛMV (τ0)

is compared in Figure 4.12. In this simulation, we have considered that τ̌1 = 0.6Tc and that

the number of samples is infinite (i.e., the asymptotic cost functions are plotted). The ML-

TEE is capable of discriminating the LOSS and the reflection, since it presents a peak for each

signal. On the other hand, the MVBE is fairly flat in the vicinity of τ̌0, and presents a deep null

at τ̌1. These results, therefore, corroborate the theoretical analysis carried out in Section 4.2.

The MLE inherits the best characteristics of the ML-TEE and the MVBE, which are combined

according to (4.48). The MVBE selects the appropriate peak of the ML-TEE (namely, the one

corresponding to the LOSS) and places a null at the peak corresponding to the reflection. Thus,



104 CHAPTER 4. ESTIMATION OF ONE REPLICA WITH KNOWN SIGNATURE

the MLE presents a single peak located near the delay of the direct signal. Note that the position

of the maximum of MLE is mainly given by the position of the corresponding peak of ML-TEE.

Nonetheless, the maximum of MLE is slightly closer to τ̌0 than that of ML-TEE. At the same

time, the maximum of MVBE is far from τ̌0, which results in the unsatisfactory performance of

the MVBE, as commented above. This large error of the MVBE, however, does not affect the

MLE, since the goal of the MVBE is simply to identify the contribution of the LOSS in the cost

function of the ML-TEE.

In Figure 4.13, we examine the dependence of the time delay and carrier phase biases upon the

DOA of the reflection. Unlike the previous simulations, at each DOA the maximum absolute

bias for all possible phase shifts between the reflection and the LOSS is plotted, and this is

referred to as “worst bias”. The overall trend of the bias of MLE is to decrease as the angular

separation of the reflection increases, but it is also influenced by the shape of the reception

pattern of the delay-and-sum beamformer. On the other hand, the time delay bias of ML-TEE

is nearly constant, except for very small angular separations. It is also remarkable the large

superiority of the MLE to the ML-WHE as regards the carrier phase bias. Note that we have

considered a highly correlated reflection with a delay τ̌1 = 0.25Tc. This is the most unfavorable

situation for the MLE as far as the time delay estimate is concerned, but not for the ML-WHE,

which experiences the largest bias for τ̌1 around 0.5Tc (see Figure 4.8a). Consequently, it can be

concluded from Figures 4.8, 4.9 and 4.13 that the MLE reduces the bias to nearly insignificant

levels (although this level depends on the particular GNSS application), as long as the reflection

is not spatially and temporally very close to the LOSS.
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(a) “Worst” Time-Delay Bias.
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Figure 4.13: Dependence of the bias on the angular separation between the reflection and the

direct signal. Parameters: θ̌0 = 0o, τ̌0 = 0, τ̌1 = 0.25Tc, |α̌0|/|α̌1| =
√

2, M = ∞ pulses, m = 6

antennas, SNR0 = 15.87 dB.

Figure 4.14 compares the biases for different sizes of the antenna array. It also proves that
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(a) “Worst” Time-Delay Bias.
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Figure 4.14: Dependence of the bias produced by one specular reflection upon the size of the

antenna array. Parameters: θ̌0 = 0o, τ̌0 = 0, θ̌1 = 10o, τ̌1 = 0.25Tc, M = ∞ pulses, |α̌0|/|α̌1| =√
2, SNR0 = 15.87 dB.

a substantial reduction of the biases can be achieved by using a moderate number of antennas.

For instance, the time-delay and carrier-phase mean errors of the MLE can be reduced in more

than one and two orders of magnitude, respectively, with respect to the single-sensor case by

employing a 10-sensor array. The MLE clearly outperforms the other estimators, and the bias

of the ML-TEE decreases slowly with the number of antennas.

To complete the study of the estimators, their performance as a function of the SNR (aver-

aged over all the observation window) is illustrated in Figures 4.15–4.16. As the SNR becomes

very small, the performance of all the algorithms tends to be the same because the reflection

turns out to be irrelevant with respect to the contribution of the noise, and hence the use of

the ML-WHE (delay-and-sum beamformer) becomes the best solution. This also explains that

the RMSE of all the estimators approaches the CRB-S for very low SNR. The bias of the ML-

WHE is constant, which results in an irreducible floor-level in the RMSE for high signal-to-noise

ratios. It is corroborated that the performance of the MVBE is absolutely unsatisfactory in

virtually all the range of SNR, since the time delay bias is about −0.45Tc for moderate or high

SNR. Although the carrier phase bias of the MVBE is not so high, its carrier phase RMSE also

presents an irreducible floor-level. An important characteristic appreciable in these figures is

that the MLE and the ML-TEE are asymptotically in SNR unbiased. Note that the RMSE of

the MLE (also that of the ML-TEE) tends to the CRB derived for the detailed signal model as

the SNR increases. As stated above, this is a remarkable and quite surprising result, because the

MLE is derived starting from the simplified model of the signals, and hence does not estimate

the parameters of the reflections. Nonetheless, the RMSE of the MLE is smaller than that of

the ML-TEE in all the range of SNR, thanks mainly to its reduced bias. The bias of the MLE
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starts decreasing at SNR=0dB, which contrasts with the 20dB required by the ML-TEE. Unlike

in the absence of reflections, now the spatial reference a0 to the LOSS is essential to improve

the performance (especially to reduce the bias) of the estimates; see e.g., Figures 4.8a, 4.11a,

4.13a, 4.14a, and 4.15a.

−20 −10 0 10 20 30 40 50
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Signal to Noise Ratio (SNR) of the direct signal (dB)

T
im

e
−

D
e

la
y
 E

s
ti
m

a
ti
o

n
 B

ia
s
 /

 T
c

ML                             
ML only with temporal reference
MV beamformer                  
ML for white noise             

(a) Time-Delay Bias.

−20 −10 0 10 20 30 40 50
10

−4

10
−3

10
−2

10
−1

10
0

Signal to Noise Ratio (SNR) of the direct signal (dB)

R
M

S
 T

im
e
−

D
e

la
y
 E

s
ti
m

a
ti
o

n
 E

rr
o

r 
/ 

T c
CRB for the detailed model     
CRB for the simplified model   
ML                             
ML only with temporal reference
MV beamformer                  
ML for white noise             
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Figure 4.15: Performance of the proposed ML time-delay estimator as a function of the SNR

(averaged over all the observation window) in the presence of one specular reflection. Parameters:

θ̌0 = 0o, τ̌0 = 0, θ̌1 = 10o, τ̌1 = 0.25Tc, α̌0/α̌1 =
√

2, M = 3 pulses, m = 6 antennas.

The performance of the linearization-based algorithm (Table 4.1) in the presence of one

reflection is examined in Figure 4.17. While the standard deviation of the estimates is nearly

insensitive to the value of T0, the bias increases with this parameter. A maximum value of T0

about Tc/5 can be employed without an excessive penalty in the RMSE. This value is smaller

than the maximum value (Tc/2) that was possible in a reflection-free scenario (Figure 4.7), and

seems reasonable given the shape of the Nyquist pulses. Therefore, assuming an uncertainty

range of the delay equal to 2Tc and that T0 = Tc/5, the estimation process can be reduced to

the simple rooting of 10 second-order polynomials.

The convergence of the estimates obtained with the iterative hybrid-beamforming algorithm

in Section 4.4 is investigated in Figures 4.18–4.19. Moreover, Figure 4.20 illustrates the evolution

of the reflection cancellation achieved by the HB and its two constituting components, together

with the evolution of the combining coefficients corresponding to the MVB and TRB (i.e.,

β (τ0,α0) and α0). The simulations are carried out for two different delays of the reflection,

0.4Tc and Tc. Figures 4.18–4.19 show that the mean and standard deviation of the estimates

obtained with the iterative algorithm tend to those of the ML estimates. As a matter of fact, not

only is this a property valid for the mean and standard deviation, but also at every realization

the estimates provided by the iterative algorithm tend to the ML estimates, although this

is not shown in the figures below. Therefore, the iterative hybrid beamformer is really a valid
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(a) Carrier-Phase Bias.
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Figure 4.16: Performance of the proposed ML carrier-phase estimator as a function of the SNR

(averaged over all the observation window) in the presence of one specular reflection. Parameters:

θ̌0 = 0o, τ̌0 = 0, θ̌1 = 10o, τ̌1 = 0.25Tc, α̌0/α̌1 =
√

2, M = 3 pulses, m = 6 antennas.
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Figure 4.17: Performance of the algorithm based on the linear interpolation of the

signal vector as a function of the interpolation grid spacing, and in the presence of one

specular reflection. Parameters: θ̌0 = 0o, τ̌0 = 0, θ̌1 = 10o, τ̌1 = 0.25Tc, α̌0/α̌1 =
√

2,

M = 3 pulses, m = 6 antennas, SNR0 = 15.87 dB.

implementation of the exact MLE. It is observed that the carrier phase converges faster than the

time delay (note the different scaling of the horizontal axis in Figures 4.18–4.19), and also that
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the smaller the delay separation of the reflection, the slower the convergence. The convergence

speed is important during the acquisition stage, but not during the tracking operation of the

receiver (unless the scenario is rapidly variant). Despite the similar reflection cancellation offered

by the HB and the TRB (Figure 4.20a), the knowledge of a0 is essential since it makes the

iterative computation of the hybrid beamformer converge to the extraction of the parameters

of the LOSS. If the hybrid beamformer were replaced by the temporal-reference beamformer,

the iterative algorithm might converge to the parameters of one of the reflections. This fact is

related to the number of local maxima in the cost functions of the MLE and ML-TEE, as shown

in Figure 4.12.
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Figure 4.18: Convergence of the time delay estimates along the iterative algorithm in the presence

of one specular reflection. Parameters: θ̌0 = 0o, τ̌0 = 0, θ̌1 = 10o, τ̌1 = 0.4Tc, Tc, α̌0/α̌1 =
√

2,

M = 3 pulses, m = 6 antennas, SNR0 = 15.87 dB

The goal of the last simulation, whose results are plotted in Figure 4.21, is to show that

the MLE method proposed in this chapter also performs satisfactorily in the presence of a large

number of reflections (or diffuse reflections). In particular, ten reflections are received, and their

parameters are described in Table 4.3 (the LOSS and all the reflections are in phase at the first

antenna). Although the delays of the reflections cover all the range between 0.1Tc and Tc and

the array (6 antennas) does not have enough degrees of freedom to cancel all the reflections,

the MLE is able to mitigate to a large extend their contributions. The time delay bias of the

MLE is lower than 0.02Tc, and also lower than the bias of the ML-TEE and the ML-WHE. The

estimate provided by the HB starts from the value obtained with the delay-and-sum beamformer

and reaches the ML estimate. Also in such a complex scenario, the iterative algorithm based on

the HB converges to the ML solution.
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Figure 4.19: Convergence of the carrier phase estimates along the iterative algorithm in the

presence of one specular reflection. Parameters: Identical to Figure 4.18.
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Figure 4.20: Convergence of the hybrid beamformer along the iterative algorithm in the presence

of one specular reflection. Parameters: Identical to Figure 4.18.

4.6 Asymptotic Variance of the Maximum–Likelihood Time De-

lay Estimator

The effect of calibration or pointing errors is a subject of primary interest in any method that

relies on the a priori knowledge of a steering vector, such as the ML estimator presented in

Section 4.2. We will derive here the asymptotic variance of the time delay estimates obtained

with that method, that is to say, obtained using the cost function ΛML (τ0) in (4.25). To this
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Delay/Tc 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

DOA (degrees) 60 -30 -60 30 -10 10 -40 40 75 -25

Attenuation (dB) -4.5 -5 -5.5 -6 -6.5 -7 -7.5 -8 -8.5 -9

Table 4.3: Parameters of the diffuse reflections.
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Figure 4.21: Performance of the ML estimator and convergence of the time delay

estimates obtained from the iterative hybrid beamformer in an scenario with multiple

reflections. Parameters: θ̌0 = 0o, τ̌0 = 0, M = 3 pulses, m = 6 antennas, SNR0 =

15.87 dB, and the parameters of the reflections are in Table 4.3.

end, we assume that the received signal satisfies the simplified model set up in Section 4.1, but

with a small difference. In other words, no reflection is present and the actual received signal is

y[n] = α0 s (nTs − τ0) + e[n]. (4.76)

Now, α0 is the actual spatial signature of the direct signal, whereas a0 will denote the nominal

or a priori steering vector assumed by the receiver. The vector a0 need not be proportional to

α0, that is to say, only in the absence of pointing or calibration errors, a0 and α0 are parallel.

In order to derive the asymptotic variance associated with the cost function ΛML (τ0), we

firstly obtain the asymptotic variances corresponding to ΛTE (τ0) and ΛMV (τ0), which were

defined in equation (4.40) and (4.47), respectively. For any of these three functions (denoted by
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Λt (τ0) in general), the asymptotic variance of the time delay estimates is given by [Söd89]

N σ2
t =

gt

h2
t

, (4.77)

where

gt = lim
N→∞

N E
{(

Λ
′

t (τ̌0)
)2

}
(4.78)

ht = lim
N→∞

Λ
′′

t (τ̌0) , (4.79)

where Λ
′
t and Λ

′′
t denote the first and the second derivative of the cost function, respectively.

Since the function ΛTE (τ0) can also be expressed as

ΛTE (τ0) =
1

N
Tr

{
R̂−1/2

yy Y Psc(τ0) Y
∗ R̂−1/2

yy

}
, (4.80)

using the results of Section 3.5, it is immediate that4

gTE =
2

N

(
d∗ (τ̌0) P⊥

s(τ̌0) d (τ̌0)
) (

α∗

0 R−1
yy QR−1

yy α0

)
(4.81)

hTE = − 2

N

(
d∗ (τ̌0) P⊥

s(τ̌0) d (τ̌0)
) (

α∗

0 R−1
yy α0

)
, (4.82)

and hence

σ2
TE =

α∗
0 R−1

yy QR−1
yy α0

2
(
d∗ (τ̌0) P⊥

s(τ̌0) d (τ̌0)
) (

α∗
0 R−1

yy α0

)2
(4.83)

=
1

2
(
d∗ (τ̌0) P⊥

s(τ̌0) d (τ̌0)
)

(α∗
0 Q−1 α0)

. (4.84)

Equation (4.84) is derived from (4.83) by taking into account that for the simplified model

Ryy = Ps α0 α∗
0 +Q and by applying the matrix inversion lemma to this matrix. Note that σ2

TE

coincides with the CRB presented in (4.126).

The asymptotic variance of the gradient and Hessian of ΛMV (τ0) are derived in Appendix 4.B,

and they are

gMV =
2

N

(
d∗ (τ̌0) P⊥

s(τ̌0)
d (τ̌0)

) ∣∣a∗

0 R−1
yy α0

∣∣2 (
a∗

0 R−1
yy QR−1

yy a0

)
(4.85)

hMV = − 2

N

(
d∗ (τ̌0) P⊥

s(τ̌0) d (τ̌0)
) ∣∣a∗

0 R−1
yy α0

∣∣2 . (4.86)

Therefore, the variance of the estimates obtained with the MVB is

σ2
MV =

a∗
0 R−1

yy QR−1
yy a0

2
(
d∗ (τ̌0) P⊥

s(τ̌0) d (τ̌0)
) ∣∣a∗

0 R−1
yy α0

∣∣2
. (4.87)

4Recall that d (τ0) = d s(τ0)
d τ0

.
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If a0 is parallel to α0, then σ2
MV coincides with the CRB. However, σ2

MV is extremely sensitive

to errors in a0. When this vector has a component orthogonal to α0, this component lies

in the noise subspace of Ryy, and hence the numerator of (4.87) rapidly increases. Defining

χ " Ps α∗
0 Q−1 α0, we arrive at the following alternative expression

σ2
MV =

1

2
(
d∗ (τ̌0) P⊥

s(τ̌0) d (τ̌0)
)

[
a∗

0 Q−1 a0

|a∗
0 Q−1 α0|

2 (1 + χ)2 − Ps (2 + χ)

]
, (4.88)

which makes clear the high sensitivity to errors in a0 since χ is a measure of the SNR and usually

it is χ ) 1. This result is coherent with the results in [Wax96b].

The computation of the asymptotic variance of the estimates obtained with ΛML (τ0) using

(4.77) together with the expression of this cost function in (4.25) seems to be too cumbersome.

Instead, we will take advantage of the expression (4.48), which relates ΛML (τ0) to ΛTE (τ0) and

ΛMV (τ0). Using this relationship, we get

Λ
′

ML (τ̌0) =
Λ
′
MV (τ̌0) (1 − ΛTE (τ̌0)) + ΛMV (τ̌0) Λ

′
TE (τ̌0)

(1 − ΛTE (τ̌0))
2 (4.89)

Λ
′′

ML (τ̌0) = (1 − ΛTE (τ̌0))
−4

[
(1 − ΛTE (τ̌0))

2 (
Λ
′′

MV (τ̌0) (1 − ΛTE (τ̌0)) + ΛMV (τ̌0) Λ
′′

TE (τ̌0)
)

+ 2
(
Λ
′

MV (τ̌0) (1 − ΛTE (τ̌0)) + ΛMV (τ̌0) Λ
′

TE (τ̌0)
)

(1 − ΛTE (τ̌0)) Λ
′

TE (τ̌0)
]

. (4.90)

Since Λ
′
TE (τ̌0) and Λ

′
MV (τ̌0) are terms of order Op

(
N−1/2

)
, the asymptotic Hessian of the ML

function is

hML =
hMV

(
1 − Λ̄TE (τ̌0)

)
+ Λ̄MV (τ̌0) hTE(

1 − Λ̄TE (τ̌0)
)2 , (4.91)

where

Λ̄TE (τ̌0) " lim
N→∞

ΛTE (τ̌0) = Ps α∗

0 R−1
yy α0 (4.92)

Λ̄MV (τ̌0) " lim
N→∞

ΛMV (τ̌0) = Ps

∣∣a∗

0 R−1
yy α0

∣∣2 . (4.93)

Similarly, the asymptotic variance of the gradient is

gML =

(
1 − Λ̄TE (τ̌0)

)2
gMV + gTE Λ̄

2
MV (τ̌0) + 2

(
1 − Λ̄TE (τ̌0)

)
Λ̄MV (τ̌0) gTE,MV(

1 − Λ̄TE (τ̌0)
)4 , (4.94)

where the term

gTE,MV = lim
N→∞

N E
{
Λ
′

TE (τ̌0) Λ
′

MV (τ̌0)
}

(4.95)

is computed in Appendix 4.B. After lengthy expansions of hML and gML using (4.81), (4.82),

(4.85), (4.86), (4.92), (4.93) and (4.95), the following expression for the asymptotic variance of

the ML estimates results:

σ2
ML =

gML

N h2
ML

=
a∗

0 Q−1 a0

2
(
d∗ (τ̌0) P⊥

s(τ̌0) d (τ̌0)
)
|a∗

0 Q−1 α0|
2

. (4.96)
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The variance σ2
ML coincides with the CRB when a0 is parallel to α0. The interesting result

herein is that σ2
ML, unlike σ2

MV , is not very sensitive to errors in a0, even though ΛMV (τ0) is the

numerator of ΛML (τ0). The sensitivity of σ2
ML is independent of the SNR and is simply given

by the array beam-pattern in the norm of Q−1. The ML estimator presented in [Swi98b] for the

estimation of the Doppler frequency and DOA of the direct signal was shown to be, however, very

sensitive to calibration errors. This behavior is seemingly in contradiction with the analysis in

this section and with the numerical results presented in Section 4.8. The study of such disparity

constitutes an open issue which is beyond the scope of this thesis. Nevertheless, we can point

out some reasons that might justify those different behaviors. The estimator in [Swi98b] that

undergoes a severe deterioration due to calibration errors is the one that performs a 2-D search

over the DOA and the Doppler of the desired signal. If the 2-D search is, however, replaced by

two 1-D searches (first the Doppler is estimated, and next the DOA), the effect of calibration

errors is quite small. In our case, the ML estimator is computed for a fixed steering vector a0,

and solely a 1-D search over the time delay is performed. This approach is somewhat similar

to the approach in [Swi98b] based on the two 1-D searches, and both approaches are rather

insensitive to errors in a0. On the other hand, the performance of the estimator in [Swi98b] that

requires a 2-D search is not necessarily comparable to the performance 1-D ML estimator used in

this chapter. This explanation hints that the results presented herein and in the aforementioned

paper need not be contradictory. In the second place, note that the results in [Swi98b] and

Section 4.8 consider different types of error. While in [Swi98b] calibration errors are generated

by adding to the nominal response of the array a Gaussian vector with iid components; in

Section 4.8, errors in the nominal DOA of the direct signal are considered.

4.7 Reducing the Sensitivity to Errors in the LOSS Steering

Vector

Although the ML estimator presents an inherent low sensitivity to errors in the nominal steering

vector of the direct signal, it might be worth investigating methods in order to further improve

its robustness. Moreover, the analysis carried out in the previous section is not valid when

reflections are received, so it does not guarantee that the ML estimator is robust in this case as

well. Simulation results will show, however, that the ML estimator is rather insensitive to errors

in a0 also in the presence of reflections.

In this section, we address the problem of designing an estimator that assumes that the

steering vector of the LOSS is close to a nominal one. Let us consider that this steering vector

is parameterized by an unknown nuisance/perturbation real parameter5 ρ. That is to say, the

steering vector is a (ρ), in such a way that a (0) = a0 is the nominal vector. It is possible to

5The extension to the multi-parameter case is not difficult but obscures the exposition.
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deal with the nuisance parameter following two approaches. The first, usually referred to as

autocalibration, attempts to estimate the value of ρ that optimizes a given criterion [Vib94,

Er94, Ast98]. On the other hand, in the second approach a probability density function (pdf) is

assigned to the nuisance parameter, and a certain criterion is averaged over the distribution of

the parameter [Rib97, Bel00]. We are going to apply this second approach to the ML time delay

estimator. The expression of ΛML (τ0) in (4.25) is not appropriate because it does not include

the contribution of all terms containing a0. Instead, a more convenient expression for the ML

criterion is the following Rayleigh quotient

Λ
•

ML (τ0; ρ) =
a∗ (ρ) Ŵ−1 (τ0) a (ρ)

a∗ (ρ) R̂−1
yy a (ρ)

, (4.97)

where Ŵ (τ0) was defined in (4.16). It is apparent that Λ
•

ML (τ0; ρ) is exactly the reciprocal of

the second factor in (4.23).

The cost function averaged over the uncertainty in the steering vector is

Ψ (τ0) = Eρ {Λ
•

ML (τ0; ρ)} . (4.98)

This is the criterion to be maximized in order to estimate the time delay. In general, the

expectation in (4.98) presents impassable obstacles. Since, in cases of practical interest, ρ has

zero mean and small variance σ2
ρ, it is possible to derive an approximation of (4.98) regardless

of the particular distribution of the nuisance parameter. To this end, the following second-order

series expansions are employed:

a (ρ) ≈ a0 + ρb0 +
ρ2

2
h0

1

1 + x
≈ 1 − x + x2 , (4.99)

where

b0 =
da (ρ)

d ρ

∣∣∣∣
ρ=0

h0 =
d2 a (ρ)

dρ2

∣∣∣∣
ρ=0

. (4.100)

Thus, an approximation of Ψ (τ0) is obtained after developing Λ
•

ML (τ0; ρ) with (4.99). The

resulting cost function is exact up to the second-order moment. A case with special interest is

that in which the array is uniform and linear with antennas spaced δ wavelengths apart, and ρ

represents the pointing direction with respect to the nominal DOA, θ0. Then, the pth element

of the steering vector is

[a (ρ)]p = e−j 2πδ sin(θ0+ρ) . (4.101)

After lengthy but facile calculations, we get

Ψ (τ0) ≈
a∗

0

(
Ŵ−1 (τ0) - B

)
a0

a∗
0

(
R̂−1

yy - B
)

a0

(
1 + 4σ2

ρ

Re2
{
a∗

0 R̂−1
yy b0

}

(
a∗

0 R̂−1
yy a0

)2

− 4σ2
ρ

Re
{
a∗

0 R̂−1
yy b0

}
Re

{
a∗

0 Ŵ−1 (τ0) b0

}

(
a∗

0 R̂−1
yy a0

) (
a∗

0 Ŵ−1 (τ0) a0

)
)

, (4.102)
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Figure 4.22: Effect of the pointing error on the time-delay RMSE when an interference

is received. Parameters: θ̌0 = 0o, τ̌0 = 0, θ̌i = −30o, M = 3 pulses, m = 6 antennas,

SNR0 = 15.87 dB, SIR0 = −3.13dB, σρ = 8π/180.

where we have assumed that the odd-order moments of the pdf of ρ are zero, and the p, qth

element of B is

[B]p,q = e−2π2δ2 cos2(θ0)σ2
ρ
(p−q)2+jπδσ2

ρ
sin(θ0)(q−p) . (4.103)

Note that the terms in (4.102) of order σ2
ρ are exact, whereas only the components involving σ4

ρ,

σ6
ρ, ... are approximated.

4.8 Simulation Results concerning the Effect of Pointing Errors

in the LOSS Steering Vector

The characteristics of the signal scenario essentially coincide with those described in Section 4.5,

and they are summarized in the figures’ captions. Only the parameters that are different will

be pointed out below. The robust estimator in (4.102) is designed using a standard deviation

equal to σρ = 8π/180; and ρ symbolizes the direction-of-arrival relative to the nominal one.

The pointing error, which is in the x-axis of the following figures, is defined as the difference

between the nominal (or a priori) DOA and the true DOA of the direct signal, namely, θ0 − θ̌0.

In the first experiment, a wide-band Gaussian interference impinging from a DOA equal to -30o

is received with a SIR of -3.13dB. This scenario satisfies the conditions for which the results in
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Figure 4.23: Effect of the pointing error on the number of outlayers when an interfer-

ence is received. Parameters: Identical to Figure 4.22.

Section 4.6 were derived. The simulated (using 500 Monte Carlo runs) and theoretical RMSEs

of the minimum variance beamformer-based estimator (MVBE) and the MLE are shown in

Figure 4.22. Also the simulated RMSE of the robust estimator Ψ (τ0) is presented in this figure.

The probabilities of outlayers (Pout) of the same techniques are plotted in Figure 4.23. In the

ML and robust methods, an estimate is considered to be an outlayer when its distance to the

true value is greater than min {0.5Tc, 6σt}, where σt is the theoretical variance of the method

under consideration as derived in Section 4.6. In the MVBE, the threshold for the outlayers is

simply 0.5Tc. It can be observed that the simulated RMSEs agree with the values predicted by

(4.87) and (4.96). An exception is the MVBE in the absence of pointing errors, which has worse

finite-sample performance that the ML approach, as it was already shown by the numerical

results in Section 4.5. Furthermore, the RMSE and the Pout of the MVBE undergo a severe

degradation for tiny pointing errors, whereas the ML estimator tolerates errors even larger than

10o. The robust estimator still outperforms the ML method. The improvement is especially

important in the probability of outlayers, since the Pout of the robust method is smaller than

1.5% in all the ±20o simulated range of pointing errors.

In the second experiment, whose results are shown in Figures 4.24 and 4.25, a reflection is

received instead of an interference. It arrives from a DOA of 30o, is attenuated -3dB and delayed

0.25Tc with respect to the LOSS; and both signals are in phase at the first antenna. Unlike

in the first experiment, all the estimators are in general biased, so the difference between the
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Figure 4.24: Time-delay standard deviation and RMSE as a function of the pointing

error when a reflection is received. Parameters: θ̌0 = 0o, τ̌0 = 0, θ̌1 = 30o, τ̌1 = 0.25Tc,

α̌0/α̌1 =
√

2, M = 3 pulses, m = 6 antennas, SNR0 = 15.87 dB, SIR0 = −3.13dB,

σρ = 8π/180.

RMSE and the standard deviation (STD) gives information about the bias. To compute these

metrics, the outlayers are removed, being the threshold 0.5Tc. We have omitted the MVBE

because it fails due to the multipath propagation. Even in the presence of the reflection, the

performance of the ML estimator is virtually insensitive to errors up to ±10
o
. This flat region

is further extended for 5o approximately using the robust estimator, whose Pout is smaller than

or equal to 1% in all the plotted range. Note that for pointing errors larger than 15o, the bias of

the MLE and the MVBE approaches 0.25Tc. This means that both methods tend to estimate

the time delay of the reflection, what is a logical result since the nominal steering vector is closer

to the steering vector of the reflection than to that of the direct signal.

4.9 Conclusions

An estimator of the time delay (pseudorange) and carrier phase of the line-of-sight signal received

from a GNSS satellite has been proposed. The estimator is derived by applying the ML principle

to a simplified and approximate signal model, in which all the signals other than the desired

one are modeled as Gaussian term with unknown and arbitrary spatial correlation matrix. A

particularity of many GNSS applications, consisting in that the direction-of-arrival of the direct
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Figure 4.25: Number of outlayers as a function of the pointing error when a reflection

is received. Parameters: Identical to Figure 4.24.

signal is known, is exploited by the estimator. As long as the antenna array is calibrated and

has known attitude, the knowledge of this direction-of-arrival allows to compute beforehand

the steering vector of the direct signal, which acts as a spatial reference to this signal and

makes feasible the use of the simplified model. The estimator presented herein outperforms

the estimators obtained with additional simplifying assumptions, such as that the noise field

is spatially white or that the spatial signature of the direct signal is unknown. Actually, it

is shown that the proposed ML cost function is the quotient between the ML cost function

obtained at the output of the minimum variance beamformer and the ML cost function obtained

without knowledge of the steering vector of the direct signal. Moreover, the performance of the

ML estimator proposed in this chapter is very close in many situations to the best possible

performance of more complex methods based on an exact description of the multipath channel.

This is a remarkable result taking into account that the technique has low complexity because

only the parameters of the line-of-sight signal are estimated. In particular, the ML estimator

is robust against arbitrarily strong interferences and reduces in several orders of magnitude the

errors produced by the reflections of the GNSS signal. This proves that although the simplified

model is approximate in the presence of reflections, as long as it is combined with a spatial

reference to the line-of-sight signal, it makes possible the derivation of an estimator that mitigates

interference- and multipath-induced errors, and offers a reasonable trade-off between bias and

RMSE for highly coherent reflections. Furthermore, this estimator is applicable identically in the

presence of any type (specular or diffuse) of multipath, which is another advantage with respect
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to methods based on the exact description of the multipath channel. Two polynomial-rooting

algorithms for computing the time delay estimate have been presented. The first exploits the

linear dependence on the delay of the signals’ phase in the frequency domain, while the second

employs a linear interpolation of the signal vector. It is also shown that the ML estimates can be

computed from the output signal of a certain beamformer. This is a hybrid beamformer, which

is computed iteratively. The resulting iterative algorithm provides an insight into the estimation

problem and may be appropriate for a practical implementation. We have also shown that the

ML time delay estimator, unlike the estimator based on the MVB, is inherently robust against

errors in the nominal steering vector of the direct signal. Finally, a modification of this ML

estimator that further extends the range of tolerable pointing errors has been presented. It is

based on averaging the original estimator according to the uncertainty in the nominal steering

vector.

Appendix 4.A Cramér-Rao Bound with Knowledge of the LOSS

Steering Vector

In this appendix, we derive the CRB for the model that assumes the knowledge of steering vector

of the direct signal. In this case, the unknown signal parameters are

ηs =
[
|α0| ϕ0 Re {α1}

T . . . Re {αd−1}
T Im {α1}

T . . . Im {αd−1}
T

τ T

]T

,

(4.104)

where ϕ0 = ∠α0. The Fisher Information Matrix (FIM) is computed used the Bangs-Slepian’s

formula [Sch90, Section 6.7]. The FIM is block-diagonal with respect to the signal and noise

parameters, so that only the block corresponding to ηs needs to be computed (see Appendix 3.A

for further details). Let us first define

Sr (τ r) =
[

sr [1, τ r] · · · sr [N, τ r]

]
=




sT (τ1)
...

sT (τd−1)


 (d − 1) × N , (4.105)

where s (τ) was defined in (4.10), and

D(τ ) =
[

d (τ0) · · · d (τd−1)

]T

(4.106)

d (τ) =
d s (τ)

d τ
. (4.107)
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The signal parameters’ block of the FIM can be partitioned as follows

FIM (ηs) =




F1 F2 F3

FT
2 F4 F5

FT
3 FT

5 F6




, (4.108)

where

F1 =


 2 (s∗ (τ0) s (τ0))

(
a∗

0 Q−0 a0

)
0

0 2 (s∗ (τ0) s (τ0))
(
α∗

0 Q−0 α0

)


 2 × 2 (4.109)

F2 =


 2Re

{
e−jϕ0 (s∗ (τ0) ST

r (τ r)) ⊗
(
a∗

0 Q−1
)}

2 Im
{
(s∗ (τ0) ST

r (τ r)) ⊗
(
α∗

0 Q−1
)} · · ·

−2 Im
{
e−jϕ0 (s∗ (τ0) ST

r (τ r)) ⊗
(
a∗

0 Q−1
)}

2Re
{
(s∗ (τ0) ST

r (τ r)) ⊗
(
α∗

0 Q−1
)}


 2 × 2m (d − 1) (4.110)

F3 =


 2Re

{
e−jϕ0 (s∗ (τ0) DT (τ )) -

(
a∗

0 Q−1 A
)}

2 Im
{
(s∗ (τ0) DT (τ )) -

(
α∗

0 Q−1 A
)}


 2 × d (4.111)

F4 =


 2Re

{
(Sc

r (τ r) ST
r (τ r)) ⊗ Q−1

}
−2 Im

{
(Sc

r (τ r) ST
r (τ r)) ⊗Q−1

}

2 Im
{
(Sc

r (τ r) ST
r (τ r)) ⊗ Q−1

}
2Re

{
(Sc

r (τ r) ST
r (τ r)) ⊗Q−1

}




2m (d − 1) × 2m (d − 1) (4.112)

F5 =




2Re
{(

Q−1 A
)

diag (s∗ (τ1) DT (τ ))
}

...

2Re
{(

Q−1 A
)

diag (s∗ (τd−1) DT (τ ))
}

2 Im
{(

Q−1 A
)

diag (s∗ (τ1) DT (τ ))
}

...

2 Im
{(

Q−1 A
)

diag (s∗ (τd−1) DT (τ ))
}




2m (d − 1) × d (4.113)

F6 = 2Re
{
(Dc(τ )DT (τ )) -

(
A∗ Q−1 A

)}
d × d . (4.114)
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Using twice the formula of the inverse of a partitioned matrix, the CRB for the time delays can

be written as

CRB−1(τ ) = F6 −
[

FT
3 FT

5

]

 F1 F2

FT
2 F4



−1 

 F3

F5


 (4.115)

= F6 −
[

FT
3 FT

5

]

·




(
F1 − F2 F−1

4 FT
2

)−1 −
(
F1 − F2 F−1

4 FT
2

)−1
F2 F−1

4

−F−1
4 FT

2

(
F1 − F2 F−1

4 FT
2

)−1
F−1

4 + F−1
4 FT

2

(
F1 − F2 F−1

4 FT
2

)−1
F2 F−1

4





 F3

F5




(4.116)

= F6 −FT
5 F−1

4 F5 −
(
F3 − F2 F−1

4 F5

)T (
F1 − F2 F−1

4 FT
2

)−1 (
F3 −F2 F−1

4 F5

)
. (4.117)

The developments of Appendix 3.A can be easily applied to the term F6−FT
5 F−1

4 F5, and hence

it is expressed as

F6 − FT
5 F−1

4 F5 = 2Re
{(

Dc(τ )P⊥

ST
r (τr) D

T (τ )
)
-

(
A∗ Q−1 A

)}
, (4.118)

where P⊥

ST
r (τr)

is the orthogonal projector onto the orthogonal complement of the columns of

ST
r (τ r). In order to derive appropriate expressions for the rest of the terms in (4.117), the

following three identities along with (3.117)-(3.118) are used:

Re {XZV∗} = Re {X}Re {Z}Re {V}T − Im {X} Im {Z}Re {V}T

+ Im {X}Re {Z} Im {V}T + Re {X} Im {Z} Im {V}T (4.119)

Im {XZV∗} = Im {X}Re {Z}Re {V}T + Re {X} Im {Z}Re {V}T

+ Im {X} Im {Z} Im {V}T − Re {X}Re {Z} Im {V}T (4.120)

(X⊗ Z) (U⊗ V) = (XU) ⊗ (ZV) , (4.121)

which are valid for arbitrary matrices (with the appropriate dimensions). The proof of equation

(4.121) can be found in [Gra81, Bre78]. After lengthy calculations, we get

F1 − F2 F−1
4 FT

2 = 2
(
s∗ (τ0) P⊥

ST
r (τr) s (τ0)

) (
a∗

0 Q−1 a0

)

 1 0

0 |α0|
2


 (4.122)

F3 − F2 F−1
4 F5 =




2Re
{

e−jϕ0

(
s∗ (τ0) P⊥

ST
r (τr)

DT (τ )
)
-

(
a∗

0 Q−1 A
)}

2Re
{(

s∗ (τ0) P⊥

ST
r (τr)

DT (τ )
)
-

(
α∗ Q−1 A

)}


 . (4.123)

Finally, substituting (4.118), (4.122) and (4.123) into (4.117) yields

CRB−1(τ ) = 2Re
{(

Dc(τ )P⊥

ST
r (τr) D

T (τ )
)
-

(
A∗ Q−1 A

)}

− 2
(
s∗ (τ0) P⊥

ST
r (τr) s (τ0)

)−1 (
α∗

0 Q−1 α0

)−1
(4.124)

· Re
{((

A∗ Q−1 α0

)
-

(
Dc(τ )P⊥

ST
r (τr) s (τ0)

)) ((
s∗ (τ0) P⊥

ST
r (τr) D

T (τ )
)
-

(
α∗

0 Q−1 A
))}

.
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A similar result to this one was reported in [Li93] for a somewhat dual problem: estimation of

directions-of-arrival using the knowledge of the waveform of the desired signal in spatially and

temporally white noise. Using (4.118), (4.122) and (4.123), an expression of the 2× 2 upper-left

block of the CRB matrix can also be derived since

CRB−1 ([|α0|, ϕ0]) = F1 − F2 F−1
4 FT

2

−
(
F3 − F2 F−1

4 F5

) (
F6 − FT

5 F−1
4 F5

)−1 (
F3 − F2 F−1

4 F5

)T
. (4.125)

When d = 1, (4.124) adopts the following expression

CRB−1 (τ0) = 2
(
α∗

0 Q−1 α0

) (
d∗ (τ0) P⊥

s(τ0) d (τ0)
)

, (4.126)

which coincides with the CRB obtained for a signal with unknown steering vector. In the case

of d = 1, the CRB for the modulus and argument of the amplitude can also be easily obtained,

and their expressions are

CRB−1 (ϕ0) = 2
(
α∗

0 Q−1 α0

) (
s∗ (τ0) P⊥

d(τ0) s (τ0)
) (

1 − Re2 {s∗ (τ0) d (τ0)}

‖s (τ0)‖2 ‖d (τ0)‖2

)−1

(4.127)

CRB−1 (|α0|) = 2
(
a∗

0 Q−1 a0

) (
s∗ (τ0) P⊥

d(τ0) s (τ0)
) (

1 − Im2 {s∗ (τ0) d (τ0)}

‖s (τ0)‖2 ‖d (τ0)‖2

)−1

. (4.128)

Appendix 4.B A Few Asymptotic Expressions

The cost function of the time delay estimator based on the minimum variance beamformer was

presented in (4.47) and can also be written as

ΛMV (τ0) =
1

N
a∗

0 R̂−1
yy Y Psc(τ0) Y

∗ R̂−1
yy a0 . (4.129)

Using the expression (3.131) of the second derivative of a projection matrix [Ott93] along with

the model in (4.76), and retaining only the desired signal contribution because the limit N → ∞
is performed, it is straightforward that

hMV = − 2

N
a∗

0 R̂−1
yy α0 dT (τ̌0) P⊥

sc(τ̌0) d
c (τ̌0) α∗

0 R̂−1
yy a0 . (4.130)

The first derivative of the cost function can be written as

Λ
′

MV (τ̌0) =
2

N
Re

{
a∗

0 R̂−1
yy α0 dT (τ̌0) P⊥

sc(τ̌0) E
∗ R̂−1

yy a0

+
1

N P̂s

a∗

0 R̂−1
yy Esc(τ̌0)d

T (τ̌0) P⊥

sc(τ̌0)
E∗ R̂−1

yy a0

}
, (4.131)

where we have used the formula (3.124) of the first derivative of a projection matrix [Ott93]. In

order to obtain asymptotic results, Λ
′
MV (τ̌0) can be approximated as

Λ
′

MV (τ̌0) ≈
2

N
Re

{
Tr

{
R−1

yy a0 a∗

0 R−1
yy α0 dT (τ̌0) P⊥

sc(τ̌0) E
∗

} }
. (4.132)
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Taking into account that noise is circularly symmetric, the variance of (4.132) is

gMV /N =
2

N2
Re

{
m∑

r=1

m∑

s=1

[
R−1

yy

]
r,:

a0 a∗

0 R−1
yy α0 dT (τ̌0) P⊥

sc(τ̌0) E
{

[E∗]:,r [E]s,:

}

︸ ︷︷ ︸
[Q]s,r I

·

· P⊥

sc(τ̌0) d
c(τ̌0)α∗

0 R−1
yy a0 a∗

0

[
R−1

yy

]
:,s

}
(4.133)

=
2

N2

(
dT (τ̌0)P

⊥

sc(τ̌0) d
c(τ̌0)

) ∣∣a∗ R−1
yy α0

∣∣2 Re

{
m∑

r=1

m∑

s=1

[
R−1

yy

]
r,:

a0 [Q]s,r a∗

0

[
R−1

yy

]
:,s

}

(4.134)

=
2

N2

(
dT (τ̌0)P

⊥

sc(τ̌0) d
c(τ̌0)

) ∣∣a∗ R−1
yy α0

∣∣2 (
a∗

0 R−1
yy QR−1

yy a0

)
. (4.135)

An approximate expression of the derivative of ΛTE (τ0) valid for deriving asymptotic re-

sults is

Λ
′

TE(τ̌0) ≈
2

N
Re

{
Tr

{
R−1

yy α0 dT (τ̌0)P
⊥

sc(τ̌0) E
∗

}}
, (4.136)

which can be readily obtained from (4.80) using the same steps as those employed for Λ
′
MV (τ0),

or from Appendix 3.B. Then, the asymptotic cross-covariance between the derivatives of the

temporal-reference and the minimum-variance-beamforming criteria is given by

gTE,MV /N =
2

N2
Re

{
m∑

r=1

m∑

s=1

[
R−1

yy

]
r,:

α0 dT (τ̌0)P
⊥

sc(τ̌0) E
{
[E∗]:,r [E]s,:

}
·

· P⊥

sc(τ̌0) d
c(τ̌0)α∗

0 R−1
yy a0 a∗

0

[
R−1

yy

]
:,s

}
(4.137)

=
2

N2

(
dT (τ̌0)P

⊥

sc(τ̌0) d
c(τ̌0)

)
Re

{
α∗

0 R−1
yy a0

m∑

r=1

m∑

s=1

[
R−1

yy

]
r,:

α0 [Q]s,r a∗

0

[
R−1

yy

]
:,s

}

(4.138)

=
2

N2

(
dT (τ̌0)P

⊥

sc(τ̌0) d
c(τ̌0)

)
Re

{(
α∗

0 R−1
yy a0

) (
a∗

0 R−1
yy QR−1

yy α0

)}
(4.139)

=
2

N2

(
dT (τ̌0)P

⊥

sc(τ̌0) d
c(τ̌0)

) ∣∣α∗
0 Q−1 a0

∣∣2

(1 + Ps α∗
0 Q−1 α0)

3 . (4.140)

The last equation is obtained by applying the matrix inversion lemma to Ryy = Ps α0 α∗
0 + Q.





Chapter 5

Code-Timing Synchronization in

DS-CDMA Communication Systems

Using Space-Time Diversity

In this chapter, the synchronization of a desired user transmitting a known training sequence in a

direct-sequence (DS) asynchronous code-division multiple-access (CDMA) system is addressed.

It is assumed that the receiver consists of an arbitrary antenna array and works in a near-far,

frequency-nonselective, slowly fading channel. The estimator that we propose is derived by

applying the maximum likelihood (ML) principle to a signal model in which the contribution

of all the interfering components (e.g., multiple-access interference, external interference and

noise) is modeled as a Gaussian term with an unknown and arbitrary space-time correlation

matrix. A large sample approximation of the exact ML estimator is actually employed. The

main contribution of this chapter is the fact that the estimator makes efficient use of the structure

of the signals in both the space and time domains. The performance of the proposed estimator

is compared with the Cramér-Rao Bound, and with the performance of other methods recently

proposed that also employ an antenna array but only exploit the structure of the signals in one

of the two domains, while using the other simply as a means of path diversity. It is shown that

the use of the temporal and spatial structures is necessary to achieve synchronization in heavily

loaded systems or in the presence of directional external interference.

5.1 Introduction

The importance in communication systems of near-far resistant timing synchronization tech-

niques that are also robust to external interference was already addressed in Section 1.2. The
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conventional approaches to timing acquisition and tracking in DS-CDMA systems are the slid-

ing correlator and the delay lock loop (DLL), respectively [Hol90]. These approaches are only

well suited for an additive white Gaussian noise channel. Extensions of the DLL which are

appropriate for a frequency-selective channel were developed in [She95, She98]. Nevertheless,

these modified loops are not able to combat the multiple-access interference (MAI). Several

near-far resistant timing estimators have recently been proposed in the literature for a single-

antenna receiver [Smi94, Str96, Zhe97, Ben96, Ben98, Öst99, Ert00, Ran00]. Some of them are

derived from the maximum likelihood principle and require training sequences. Others exploit

the eigenstructure of the correlation matrix of the received signals. While these last estima-

tors do not need training sequences, their performance is poorer than that of the ML-based

ones. In [Zhe97], a large sample ML estimator was proposed, and a comparison with many

other methods revealed that the ML estimator is preferred for moderate or large lengths of the

training sequence. Its performance can be largely improved for short training sequences using a

structured estimate of the correlation matrix, as suggested in [Ben98, Ert00]. This approximate

ML estimator has been extended to the case of frequency-selective channels in [Ert00, Ran00].

However, the resulting criterion involves a complex multidimensional search, and therefore iter-

ative optimization algorithms (e.g., the expectation-maximization or the alternating-projection

methods) are considered. The techniques presented in [Ben98, Ert00] are claimed to be exact

maximum likelihood estimators. However, they are large-sample approximations. The lapse lies

in assuming that the correlation matrix of the noise-plus-interference is known, when it was

indeed unknown.

It is well known that detection performance in DS-CDMA can be greatly improved through

the use of antenna arrays [Pau97, Muñ97, Mol98]. Similarly, the synchronization problem can

also benefit from using multiple antennas, as shown in [Liu98a, Liu98b, Jak98a, Sen98]. More-

over, given the lack of temporal structure of wide-band (i.e., temporally white) external in-

terferers, the use of an antenna array is mandatory to achieve robustness against this type of

interferers. In this chapter, we propose a method for estimating the timing of a certain user that

transmits a known training sequence. We will focus on the code synchronization because several

algorithms for estimating the remaining parameters given reliable estimates of the code-timings

exist [Xie93]. In fact, the expression of the ML estimates of the amplitudes and phases of the

signals will be obtained as a by-product of the derivation of the timing estimator in Section 5.4.1.

We assume that the receiver consists of an arbitrary antenna array that operates in a frequency-

nonselective (or flat), slowly fading channel [Pro95]. Actually, the estimator proposed herein

could also be used in frequency-selective channels, but we will restrict our analysis to the nons-

elective case for the sake of simplicity. Flat-fading channels are common in situations where the

distance between the users and the base station is relatively small (e.g., in a microcell), or when

the multipath is due to local scatterers near the remote user or the base station. Note that the

availability of a training sequence is not a too stringent assumption, since most communications
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systems transmit these sequences during certain intervals. Besides, once a reliable estimate of

the timing is formed, the estimator can be switched to a decision-directed mode. The fact that

the method estimates the parameters of only one user while retaining near-far resistance (i.e.,

belongs to the class of the so-called single-user estimators) is also of interest, because it leads to

decentralized implementations and dramatically reduces the complexity with respect to methods

that estimate the parameters of all users jointly (see, for instance, [Str96]).

In accordance with the connecting theme along this thesis, all signals excepting that of the de-

sired user are modeled as a Gaussian component with an arbitrary and unknown correlation ma-

trix. This idea has been used for the problem at hand in [Zhe97, Ben98, Liu98a, Jak98a, Sen98]

among others; for Doppler and direction-of-arrival estimation in radar systems in [Swi98b]; and

for time-delay estimation in a general framework and in navigation systems particularly (see

the two previous chapters). An extension of [Zhe97, Ben98] for a multiple-sensor receiver can

be found in [Liu98b]. However, as this extension assumes that the interfering signals are un-

correlated among antennas, it reduces to several single-sensor estimators applied in parallel to

several independent channels. Hence the effect of the antenna array is only to increase the

signal-to-noise ratio (SNR) and to provide diversity in order to combat the fading of the desired

user’s signal at different antennas (i.e., maximal ratio combining); but the array does not use the

directional properties of the interfering signals in order to cancel them. Indeed, as pointed out

by the authors themselves, the performance of the estimator in [Liu98b] cannot be significantly

improved by increasing the number of antennas, when for fair comparisons with single-antenna

methods, the interference power is proportional to the number of sensors used in the receiver.

In a slowly fading environment, the assumption of uncorrelation among antennas is not appro-

priate at all, because the signals present definite spatial signatures, as it will be justified in the

next section. This fact is exploited by the estimator proposed in [Liu98a]. Nevertheless, this

estimator assumes that the interfering signals are white in the temporal domain, so only the

spatial structure of the MAI is used to combat it. As a result, a prohibitively large number of

antennas may be needed to achieve near-far resistance.

The significance of this chapter lies in that we consider a space-time correlation matrix for

the disturbing signals, which allows both the temporal (provided by the codes) and spatial

structure (provided by the antenna array) of the received signals to be exploited. The benefits

in symbol detection of exploiting the joint space-time signature have been analyzed thoroughly

in [Ast99a]. However, the use of the space-time signature in synchronization is an open issue.

The method proposed herein extends and outperforms those presented in previous works. It will

be shown that the use of the spatial and temporal structure of the interference is indispensable

in achieving code synchronization in some scenarios, and this can be accomplished with a small

number of antennas. Note that the technique in [Sen98] also takes into account the spatial

and temporal structure of the interference. But it considers a frequency-selective channel and

is limited to estimating the overall channel response, since the estimation of the time delays is



128 CHAPTER 5. SYNCHRONIZATION IN DS-CDMA COMMUNICATION SYSTEMS

computationally too complex.

This chapter is organized as follows. In Section 5.2, the signal model is introduced. Sec-

tion 5.3 justifies the essential assumption on which the estimator rests and compares it with

those made in related work. The derivation of the ML estimator and some alternatives to im-

prove the estimate of correlation matrix are presented in Section 5.4. Section 5.5 is concerned

with the Cramér-Rao Bound for the problem at hand. Finally, numerical results are analyzed

in Section 5.6; and Section 5.7 summarizes our conclusions.

5.2 Signal Model

Consider an asynchronous DS-CDMA system with K users and an arbitrary receiving antenna

array of m sensors, which satisfies the standard narrow-band array condition common to many

array signal processing problems. We assume a flat-fading channel, which means that for each

user the time-delay differences between different propagation paths are negligible compared with

the reciprocal of the signal bandwidth [Pro95]. For this channel, the received complex baseband

signal (after down-conversion and chip-matched filtering) at the lth sensor is

yl (t) =

K∑

k=1

αl,k qk (t − τk) + wl (t) l = 1, 2...m , (5.1)

where αl,k is the complex fading coefficient for the kth user at the lth antenna, τk is the delay

associated with the kth user, and wl (t) represents the thermal noise and all other external

interferences. The expression in (5.1) and the development below would also be valid for the

received signal before chip-matched filtering. However, we have not considered this case for

coherence with the existing literature, and because dealing with the signals after filtering makes

possible to work with transmitted rectangular chip-pulses in a natural way [Str96].

The term in (5.1) corresponding to the kth user is:

qk (t) =
M−1∑

i=−1

dk (i) pk (t − iT ) , (5.2)

where

pk(t) =

P−1∑

n=0

ck (n) g (t − nTc) (5.3)

is the spreading waveform. The symbols dk (i) are transmitted at a rate 1/T , constitute an

iid sequence with variance σ2
d, and are independent for different users. The length of the chip

sequence ck (n) is P = T/Tc, the chip rate is 1/Tc and g (t) represents an arbitrary chip-shaping

waveform. The signal is observed during an interval of M +1 symbols (Tobs = (M +1)T ), which

is the length of the training sequence.
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The coefficients αl,k include the effects of the propagation, transmitted power, carrier phase

and Doppler frequency. Their temporal evolution is characterized by the coherence time Tcoh,

which is defined as the time interval during which a given fading coefficient is highly correlated

with itself, and it is in general inversely proportional to the maximum Doppler frequency [Pro95].

Since we consider a slowly fading channel (i.e., Tcoh ) Tobs), for the estimator derivation we

will assume that the fading coefficients are constant during the observation interval, as in many

other works (e.g., [Zhe97, Liu98a, Jak98a, Sen98, Ert00]). This assumption is for mathematical

convenience, and it will be shown that the performance of the proposed estimator is also highly

satisfactory in more realistic scenarios. The condition for slow fading places restrictions on the

length of the training sequence M and on the maximum Doppler frequency. However, these are

mild restrictions, which are satisfied by the parameters in a large number of practical situations

and do not represent a significant limitation of our approach, as shown by the numerical examples

of Section 5.7. The relevant implication of having fairly constant fading coefficients during Tobs

is that the signals show rather definite spatial signatures, which can be used to differentiate the

desired user’s signal from the MAI and external interference. It is important to remark that

this property holds independently of the statistical correlation between the fading coefficients

at different antennas.

The signals in (5.1) are sampled at a rate 1/Ts = Q/Tc, where Q is an integer and is referred

to as the oversampling factor. Each set of P ·Q consecutive samples received at the lth antenna

is stacked into a column vector:

yl (i) =
[

yl (iT + Ts) ... yl (iT + PQTs)

]T

. (5.4)

The sampling is completely asynchronous, and the single condition is that previous bit

synchronization of the desired user has been achieved, i.e., τ1 ∈ [0, T ), where without loss of

generality we have assumed that the first user is the desired one. If the duration of the trans-

mitted chip-shaping waveform is Tc, or smaller, only two consecutive symbols from the desired

user contribute to yl (i). For instance, this occurs with rectangular chip-shaping transmitted

pulses and is a good approximation for other pulse types as well. In any case, if the adjacent

bits are also present in that vector due to the tails of the chip-shaping pulse, then their tiny

contribution will be lumped together in the noise term, as justified in [Mad97]. Therefore, the

desired contribution of the first user to the vector yl (i) can be expressed as follows

yl,1 (i) = αl,1A
(1) (τ1)d1 (i) , (5.5)
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where

d1(i) =
[

d1 (i) d1 (i − 1)

]T

(5.6)

A(1) (τ1) =
[

a
(1)
+ (τ1) a

(1)
− (τ1)

]
(5.7)

[
a

(1)
+ (τ1)

]

r
= p1 (rTs − τ1) r = 1...PQ (5.8)

[
a

(1)
−

(τ1)
]

r
= p1 (rTs + T − τ1) r = 1...PQ . (5.9)

The matrix A(1) (τ1) contains the temporal signatures of the desired user. To simplify our

notation, in the sequel we will drop the superscript (·)(1). At this point, we can write the

received PQ × 1 vector at the lth sensor as

yl (i) = αl,1 A (τ1) d1(i) + el (i) i = 0, 1...M − 1 . (5.10)

The vector el (i) includes the MAI, the thermal noise, the possible contribution of the adjacent

bits, and all other interferences.

5.3 Space-Time Model of the Interference

If the temporal vectors received from every antenna are stacked into a space-time mPQ × 1

vector:

y (i) =
[

yT
1 (i) yT

2 (i) ... yT
m (i)

]T

, (5.11)

then equation (5.10) can be rewritten in a compact form as

y (i) = (α ⊗ A (τ1))d1 (i) + e (i) , (5.12)

where e (i) is formed similarly to y (i), and

α =
[

α1,1 α2,1 ... αm,1

]T

(5.13)

is the spatial signature of the first user. As outlined in the introduction, we model e (i) as a zero-

mean, circularly symmetric, complex Gaussian mPQ × 1 vector, which is independent of d1(i)

and independent for different samples. Besides, it has an arbitrary and unknown space-time

covariance matrix:

E {e (i)} = 0 E {e (i) e∗ (l)} = Q δi,l . (5.14)

There is no doubt that this model is only approximate. Nevertheless, it gathers the most

significant effects of all the disturbing signals, and allows us to derive manageable algorithms.
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The problem addressed in this chapter may be stated as follows. Estimate τ1, given the set of

samples

Y =
[

y (0) y (1) · · · y (M − 1)

]
(5.15)

and assuming that {c1 (n)}P−1
n=0 and {d1 (i)}M−1

i=−1 are known, or in other words, that the spreading

sequence and the training bit sequence for the desired user are available. Estimates of α and Q,

which are taken as deterministic and unstructured parameters, will also be derived. Although

we do not parameterize the spatial signature in terms of one or several directions-of-arrival

and amplitudes, the array keeps its ability to discriminate the signals in the spatial domain.

Assuming an unstructured α eliminates the need for a calibrated antenna array, and allows us

to model a cluster of coherent arrivals that share the same time delay, without estimating the

individual parameters of each arrival. The unstructured modeling of the spatial signatures is

another connecting theme of this thesis, and further remarks on this topic can be found on

Chapters 2 and 3.

It is well known that the assumption that the MAI is white in a sample-by-sample basis

is a misconception [Ver97] that leads to non near-far resistant estimators because it neglects

the temporal structure of the MAI. Although the estimator proposed herein assumes that the

interference is Gaussian, it does not suffer from the same misconception since it retains the

structure of the MAI in the matrix Q, and so it is near-far resistant. Actually, it is the fact

that an unknown correlation matrix Q is considered for the equivalent noise e(i) that makes

the estimator able to attenuate any interfering signal that exhibits a certain structure in the

temporal and/or spatial domains. In this chapter, we present the estimator that results from an

arbitrary matrix Q, in contrast to previous work that has solved the problem stated herein for

simplified structures of that matrix. The signal model proposed in [Liu98a] may seem at first

glance rather different from the one proposed above. Nonetheless, it can be shown that they are

closely related. In [Liu98a], it is implicitly assumed that the space-time correlation matrix can

be decomposed as Q = Qsp ⊗ IPQ, where Qsp is an arbitrary m × m matrix that corresponds

to the spatial correlation of the interference. It is apparent that the estimator in [Liu98a] yields

suboptimal performance since it ignores the inherent temporal structure of the CDMA signals.

A dual decomposition is considered in [Liu98b]. In this case, the matrix Q is expressed as

Q = Im ⊗ Qte, where Qte is a PQ × PQ matrix representing the temporal structure of the

interference. This model amounts to presuming that the fading coefficients αl,k for all users

are uncorrelated between different antennas and that the observation interval is long enough

(compared with Tcoh) to apply ergodicity; but this last condition is not satisfied in the case of

slow fading.
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5.4 Maximum Likelihood Estimator

In this section, the estimator of the code-timing of the desired user is derived by applying the

ML principle [Kay93, Sch90] to the signal model described above. Next, several techniques that

may serve to improve the quality of the estimate of the noise-plus-interference correlation matrix

are discussed.

5.4.1 Derivation

Ignoring in the sequel parameter-independent additive and multiplicative terms, the negative

log-likelihood function of the observed data Y is easily shown to be

Λ1 (τ1,α,Q) = ln |Q| + Tr
{
Q−1 C (τ1,α)

}
, (5.16)

where we have defined

C (τ1,α) =
1

M

M−1∑

i=0

(
y (i) − B (τ1,α) d1 (i)

) (
y (i) − B (τ1,α) d1 (i)

)∗
mPQ × mPQ (5.17)

B (τ1,α) = α ⊗ A (τ1) mPQ × 2 . (5.18)

Note that the columns of B (τ1,α) are the joint space-time signatures of the desired user.

Assuming for the moment that C (τ1,α) is non-singular and using the results of the two previous

chapters, it is immediate that the ML estimate of Q is

Q̂ML (τ1,α) = C (τ1,α) . (5.19)

Let us define the following matrices

B̂ =
[

b̂+ b̂−

]
= R̂yd R̂−1

dd (5.20)

R̂yy =
1

M

M−1∑

i=0

y (i) y∗ (i) R̂dd =
1

M

M−1∑

i=0

d1 (i) d∗

1 (i) (5.21)

R̂yd =
1

M

M−1∑

i=0

y (i) d∗

1 (i) Ŵ = R̂yy − R̂yd R̂−1
dd R̂∗

yd = R̂yy − B̂ R̂dd B∗ . (5.22)

Matrices B̂ and Ŵ are unstructured estimates of B and the noise correlation matrix Q, respec-

tively. They are called unstructured because they do not exploit the space-time structure of

the desired user’s signature. When (5.19) is substituted into (5.16), the following concentrated



5.4. MAXIMUM LIKELIHOOD ESTIMATOR 133

likelihood function results

Λ2 (τ1,α) = ln |C (τ1,α)|

= ln
∣∣∣R̂yy − B (τ1,α) R̂∗

yd − R̂yd B∗ (τ1,α) + B (τ1,α) R̂dd B∗ (τ1,α)
∣∣∣ (5.23)

= ln
∣∣∣Ŵ +

(
B (τ1,α) − B̂

)
R̂dd

(
B (τ1,α) − B̂

)∗
∣∣∣ (5.24)

= ln
∣∣∣Ŵ

∣∣∣ + ln
∣∣∣I + Ŵ−1

(
B (τ1,α) − B̂

)
R̂dd

(
D (τ1,α) − B̂

)∗
∣∣∣ (5.25)

= ln
∣∣∣Ŵ

∣∣∣ + ln
∣∣∣I +

(
B (τ1,α) − B̂

)∗

Ŵ−1
(
B (τ1,α) − B̂

)
R̂dd

∣∣∣ . (5.26)

A significant difference between the problem addressed in this chapter and those addressed in the

previous two is that now the matrix Ŵ is independent of the parameters, and the dependence

on the desired-signal parameters is restricted to the signatures B (τ1,α). Only the last term of

(5.26) is parameter-dependent. On the other hand, in the problem addressed in Chapter 3, the

ML cost function was the determinant of the estimated correlation matrix (see equation (3.21)),

which in the present case would be the first term of (5.26). And in the problem of Chapter 4,

both terms depended on the parameters.

The function in (5.26) can be minimized in closed-form with respect to α. However, the

derivation is very cumbersome yet not complicate, and it will not be presented herein. The

resulting estimate of α could be substituted back into (5.26), and a one-dimensional criterion

for the estimation of the delay would result. Instead of minimizing Λ2 (τ1,α), we will transform

this function into another that is asymptotically (in M , throughout the chapter) equivalent and

allows a simpler derivation of the estimates, as in [Zhe97, Liu98b]. An asymptotic approximation

is also used in [Liu98a], but it can be easily shown that the approximation is unnecessary in

that case. It may be argued that since M is the length of the training sequence, we will never

reach asymptotics in M . Nevertheless, the development below is completely meaningful because

numerical results show that the asymptotic behavior is reached for rather modest sample sizes.

According to the Weak Law of Large Numbers:

B̂ = B (τ̌1, α̌) + Op

(
1/
√

M
)

(5.27)

R̂dd = σ2
d I + Op

(
1/
√

M
)

, (5.28)

where τ̌1 and α̌ are the true values of the parameters. Thanks to equation (5.27), we can replace

R̂dd by its asymptotic value and neglect the second- and higher-order terms in the Taylor

expansion of the second logarithm in (5.26), while retaining the same asymptotic accuracy of

the estimates. The Taylor expansion of the logarithm of the determinant is

ln |I + X| = Tr {X}− 1

2
Tr

{
X2

}
+ · · · , (5.29)

which is valid whenever the absolute values of the eigenvalues of X are bounded by one. There-
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fore, the asymptotically equivalent ML criterion can be expressed as follows

Λ3 (τ1,α) = Tr
{(

B (τ1,α) − B̂
)∗

Ŵ−1
(
B (τ1,α) − B̂

)}
(5.30)

=
(
α ⊗ a+ (τ1) − b̂+

)∗

Ŵ−1
(
α ⊗ a+ (τ1) − b̂+

)

+
(
α ⊗ a− (τ1) − b̂−

)∗

Ŵ−1
(
α ⊗ a− (τ1) − b̂−

)
. (5.31)

It is convenient to write this cost function in such a way that the linear and quadratic depen-

dences on α are made more explicit, which will facilitate the minimization with respect to this

vector. An equivalent expression for (5.31) is

Λ3 (τ1,α) = − 2Re {α∗ p+ (τ1)} + α∗ F+ (τ1) α

− 2Re {α∗ p− (τ1)} + α∗ F− (τ1) α

+ b̂∗

+ Ŵ−1 b̂+ + b̂∗

− Ŵ−1 b̂− , (5.32)

where we have defined1

p± (τ1) = matT
PQ×m

{
Ŵ−1 b̂±

}
ac
± (τ1) (5.33)

F± (τ1) =
(
Im ⊗ a∗

± (τ1)
)

Ŵ−1 (Im ⊗ a± (τ1)) . (5.34)

At this point, the minimization of (5.32) with respect to α is immediate and yields

α̂ML = (F+ (τ1) + F− (τ1))
−1 (p+ (τ1) + p− (τ1)) . (5.35)

After substituting (5.35) into (5.32), the timing estimator is obtained as

τ̂1,ML = arg max
τ1

(p+ (τ1) + p− (τ1))
∗ (F+ (τ1) + F− (τ1))

−1 (p+ (τ1) + p− (τ1)) , (5.36)

which only involves the minimization of a one-dimensional cost function.

A possible approach to extend this estimator to frequency-selective channels consists in

modifying the signal model in (5.12). The new model should take explicitly into account the fact

the signal of the desired user arrives at the antenna array through R1 propagation paths having

different delays and different spatial signatures. This is the approach followed in [Ert00, Ran00]

for a single-antenna receiver. Its serious drawback is that the application of the ML principle

to the new signal model results in a highly complex multidimensional optimization problem.

However, it is important to remark that a much simpler alternative is also possible. It simply

boils down to employing the cost function derived for flat-fading channels, given by (5.36), also

for frequency-selective channels. The estimates of the delays of the R1 propagation paths are

1The definition of matPQ×m{·} is in Appendix A.
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obtained as the values that yield the largest R1 maxima of that cost function, while in the flat-

fading case only the absolute maximum is picked. This simple modification is meaningful when

the delay-spacing between the different propagation paths is greater than the reciprocal of the

signal bandwidth (see [Par96b]). A similar approach was used in [Par96b] to extend a MUSIC-

based estimator, initially derived for flat-fading channels, to frequency-selective channels. In

any case, this chapter is focused on the flat-fading case, and a deeper analysis for another type

of channels is out of scope.

5.4.2 Covariance Matrix Estimation

The advantage of exploiting the space-time structure of the signals is that every antenna adds

PQ degrees of freedom to the system, whereas each user occupies only two degrees and each

external punctual interferer occupies between 1 and PQ depending on its bandwidth. As angular

and/or Doppler spread of the channel increases, the number of degrees of freedom used by each

user or interferer also increases. Using space-time diversity, a large number of degrees of freedom

is achieved with few sensors. The price to be paid is that a longer training sequence may be

needed, at least theoretically, with respect to other approaches that only exploit one source

of diversity but provide a much smaller number of degrees of freedom. In order that Ŵ be

non-singular with probability one, we need M ≥ mPQ + 2, which may result in too large of a

training sequence. To shed light on how this restriction on M can be alleviated, it is convenient

to analyze the eigenstructure of the correlation matrix Q. The eigendecomposition of Q is given

by

Q = VΣV∗ , (5.37)

where Σ is a diagonal matrix made up of the eigenvalues {λi} of Q in descending order, and the

columns of V are the corresponding eigenvectors. The eigenvalues satisfy the following relation

λ1 ≥ · · · ≥ λL ≥ λL+1 = · · · = λmPQ = σ2
w , (5.38)

where L is the dimension of the interference subspace, which is spanned by the first L columns

of V, and σ2
w is the power of the white noise. The subspace spanned by the last mPQ − L

columns of V is referred to as noise subspace.

Since Ŵ is a consistent estimate of Q, the eigenvalues of Ŵ tend to those of Q when M

grows without limit. However, if M < mPQ+2, some eigenvalues of Ŵ are zero, and hence the

inverse of this matrix does not exist. Moreover, when M is only slightly greater that mPQ + 2,

some eigenvalues of Ŵ may be very small. The inversion of an ill-conditioned matrix can cause

numerical unstability and impair the performance of the estimator. Nevertheless, the inequality

M ≥ mPQ+2 should not be a necessary condition for the application of the estimator, since as

long as M is much greater than L, appropriate estimates of the interference and noise subspaces
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of Q can be obtained. To this end, a parametric (or structured) estimate of Q is derived, which

we designate Ŵs. This new estimate is obtained from Ŵ, but we force it to have the structure

given by (5.37) and (5.38), instead of being fully unstructured. The matrix Ŵs is taken as the

one that is closest to Ŵ in the sense of the Frobenius-norm. Thus, assuming that Ŵs = P̂+ σ̂2I

and that the rank of P̂ is L, the problem that we have to solve can be stated as

[
P̂ σ̂2

]
= arg min

σ2,P |rank{P}=L

∥∥∥Ŵ −P − σ2 I
∥∥∥

2

F

. (5.39)

It is well-known that the solution of this problem is given by

P̂ =
L∑

k=1

(
λ̂k − σ̂2

)
v̂kv̂

∗

k (5.40)

σ̂2 =
1

mPQ − L

mPQ∑

k=L+1

λ̂k , (5.41)

where v̂k and λ̂k are the eigenvectors and eigenvalues of Ŵ in decreasing order. The use in

(5.35) and (5.36) of the structured estimate Ŵs not only avoids the previous bound on M for the

application of the estimator, but also improves the performance for all values of M . We assume

that an estimate of the dimension L is available. It can be inferred either from the knowledge of

certain system parameters, such as the number of active users, angular spread, etc., or applying

multiplicity tests on the smallest eigenvalues of Ŵ [Ris78, Aka74, Wax85]. This is a non-trivial

issue that will not be addressed in this thesis. The same approach to obtain a structured estimate

of the correlation matrix was applied in [Ben98, Ert00], but instead the 2-norm was used. In

[Har00] a related method, known as “eigenvalue thresholding”, is proposed and derived using

the ML principle with a noise floor constraint. It involves an eigendecomposition and requires

the knowledge of the white noise power, but not the knowledge of the rank of the interference

subspace.

Another alternative for eliminating the problems related to the inversion of Ŵ is to use the

widespread diagonal loading technique [Car88]. It simply consists in replacing Ŵ by another

estimate Ŵd obtained as

Ŵd = Ŵ + λ I , (5.42)

where λ should be on the order of σ2
w. This is an ad hoc technique whose interest lies in

its simplicity. However, simulation results have shown that the previous eigenanalysis method

performs slightly better. In [Ben98], it is suggested that this improvement is due to the fact that

the noise subspace of Ŵs is white (i.e., flat eigenvalue spectrum), whereas the noise subspaces

of Ŵ and Ŵd are colored.

An approach that may seem logical at first glance is to replace the inverse of Ŵ, when

this matrix is singular, by its Moore-Penrose pseudo-inverse Ŵ†. Nevertheless, the use of the
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pseudo-inverse is not recommended at all because, as shown in Section 5.6, it yields a notably

worse performance than the two previous approaches, and besides, its calculation is computa-

tionally complex. It requires eigendecomposition and rank determination, like the minimization

of the Frobenius-norm. The explanation of the bad performance is simple. In order to miti-

gate the effect of the interference, the received signals are prewhitened with the inverse of the

noise-plus-interference correlation matrix, as shown in (5.33). The dominant component after

prewhitening should be the projection onto the noise subspace, since it is orthogonal to the

interferences2. Whenever the matrix Ŵ is non-singular, this desired property is satisfied by any

of the approaches above (that is, using Ŵ−1 = Ŵ†, Ŵ−1
s or Ŵ−1

d ), since the eigenvalues of the

noise subspace are much smaller than the rest. Nevertheless, when any of the noise eigenval-

ues are zero, the pseudo-inverse disregards the projection onto the corresponding eigenvectors.

On the contrary, the eigenanalysis method and the diagonal loading assign small values to the

null eigenvalues, so that the projection onto the corresponding eigenvectors is emphasized. The

poor performance obtained with the pseudo-inverse was also reported in [Ayo99] for a different

problem in which a correlation matrix was also estimated using a reduced sample support.

The discussion above does not intend to be a formal or complete study of the application

of the ML principle with singular or ill-conditioned correlation matrices. This is a open issue

that deserves a much deeper analysis. Our goal has only been to show that the unstructured

estimate of the correlation matrix can be suitably transformed in order to deal with short training

sequences.

5.5 Cramér-Rao Bound

It can be proven that the ML estimators (5.35), (5.19) and (5.36) are consistent as long as

the signals to which they are applied satisfy the model presented in Sections 5.2 and 5.3 (see,

e.g., [Söd89]). The consistency of τ̂1,ML and α̂ML follows immediately from equations (5.27) and

(5.31). The consistency of Q̂ML is a direct implication of the consistency of τ̂1,ML and α̂ML, and

equation (5.19). Since all the ML estimates are consistent, they are also asymptotically efficient

[Leh83, Section 6.4], that is, their asymptotic covariance coincides with the Cramér-Rao Bound

(CRB).

According to the model under consideration, the M observations of y(i) are independent

circular Gaussian vectors with mean µ(i) = B (τ1,α)d1 (i) and covariance Q. The parameters3

of this model are ηs = [Re {αT } , Im {αT } , τ1]
T and Q. The Bangs-Slepian’s formula [Kay93,

2In this discussion we are implicitly assuming that interferences are much powerful than the background noise.

This situation is habitual in mobile communication systems, since they usually are limited by interferences.
3Actually, the parameters corresponding to Q are its real and imaginary parts. For the sake of simplicity, this

fact is not detailed since it does not affect the computation of the CRB for ηs.
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chapter 15] for the k, lth element of the Fisher Information Matrix (FIM) is

[FIM]kl = M Tr
{
Q−1 Q′

k Q−1 Q′

l

}
+ 2Re

{
M−1∑

i=0

(
µ
′

k (i)
)∗

Q−1
µ
′

l (i)

}
, (5.43)

where (·)′k denotes the derivative with respect to the kth parameter. Since µ (i) and Q depend

on different parameters, the FIM is block diagonal with respect to ηs and Q. Therefore, the

CRB for ηs is the same whether Q is known or not, and vice versa. As we are concerned only

with the CRB for the signal parameters (ηs), we need only consider the second term in (5.43).

The CRB for ηs is the inverse of the corresponding block of the FIM, and it can be written as

CRB−1 (ηs) = 2Re








F1 jF1 F2 α

−jF∗
1 F1 −jF2 α

α∗F∗
2 jα∗F∗

2 α∗F3 α








, (5.44)

where

F1 =

M−1∑

i=0

(
Im ⊗

(
A (τ1) d1 (i)

)∗)
Q−1

(
Im ⊗

(
A (τ1) d1 (i)

))
(5.45)

F2 =
M−1∑

i=0

(
Im ⊗

(
A (τ1) d1 (i)

)∗)
Q−1

(
Im ⊗

(
D (τ1) d1 (i)

))
(5.46)

F3 =

M−1∑

i=0

(
Im ⊗

(
D (τ1) d1 (i)

)∗)
Q−1

(
Im ⊗

(
D (τ1) d1 (i)

))
(5.47)

D (τ1) "

[
d+ (τ1) d− (τ1)

]
=

dA (τ1)

dτ1
. (5.48)

It is possible to compute the asymptotic values of (5.45)-(5.47). Recalling that R̂dd → σ2
d I, it

is not hard to verify that

F̄1 = M lim
M→∞

F1

M
= M σ2

d

((
Im ⊗ a∗

+ (τ1)
)
Q−1

(
Im ⊗ a+ (τ1)

)

+
(
Im ⊗ a∗

− (τ1)
)
Q−1

(
Im ⊗ a− (τ1)

))
(5.49)

F̄2 = M lim
M→∞

F2

M
= M σ2

d

((
Im ⊗ a∗

+ (τ1)
)
Q−1

(
Im ⊗ d+ (τ1)

)

+
(
Im ⊗ a∗

− (τ1)
)
Q−1

(
Im ⊗ d− (τ1)

))
(5.50)

F̄3 = M lim
M→∞

F3

M
= M σ2

d

((
Im ⊗ d∗

+ (τ1)
)
Q−1

(
Im ⊗ d+ (τ1)

)

+
(
Im ⊗ d∗

− (τ1)
)
Q−1

(
Im ⊗ d− (τ1)

))
. (5.51)

When these values are substituted into (5.44), an asymptotic expression of the CRB is obtained.

The asymptotic CRB is usually preferred because it does not depend on the particular value of

the training sequence, and is the one plotted in the figures of the next section.
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5.6 Simulation Results

In this section we compare the performance of our estimator, referred to as “space-time diversity”

(STDiv) estimator, with two of the techniques proposed to date that in most cases give the best

results. Namely, we consider the methods presented in [Liu98a] and [Liu98b], which we will

denote as “space-diversity” (SDiv) and “time-diversity” (TDiv) estimators, respectively. In

these two papers and also in [Zhe97], the SDiv and TDiv methods are compared with a number

of different estimators proposed in the literature. Note that the comparison with these two

approaches is completely fair since they also use an antenna array in reception. We analyze

herein two performance measures:

• Probability of acquisition (Pac). We define a correct acquisition to have occurred when

the delay estimate is within a half-chip of the true value, i.e., |τ̂1,ML − τ̌1| < Tc/2.

• The root mean squared error (RMSE) given correct acquisition, i.e.,

RMSE (τ1) =

√
E

{
|τ̂1,ML − τ̌1|

2
∣∣∣ |τ̂1,ML − τ̌1| < Tc/2

}
(5.52)

This measure is relevant for the tracking operation of the estimators.

A method is considered to have failed due to the large number of outliers when Pac ≤ 0.5. The

RMSE is not plotted in this case. We have observed that the three estimators under consideration

are essentially unbiased (i.e., their biases are much smaller than their standard deviations).

Therefore, the RMSEs are for all practical purposes identical to the standard deviations. All

results are obtained from 1000 Monte Carlo realizations. The simulation conditions, except

when one of them is varied, are as follows:

• (pseudo)Gold codes with length P = 15 chips and BPSK modulation.

• Rectangular chip-shaping transmitted pulses and oversampling factor Q = 1.

• Energy per bit to white-noise spectral density ratio (EbNo) equal to 4dB per antenna for

the desired user.

• Uniform linear array with m = 4 antennas spaced 0.5 wavelengths apart.

• K = 10 users, M = 80 training bits.

• The power of the signal of each interfering user is distributed log-normally with mean 10dB

(with respect to the desired user) and standard deviation 10dB. This distribution models

the log-normal fading caused by large-distant reflectors. The near-far ratio (NFR), which

is defined as the ratio of the mean power of each interfering user to that of the desired

user, is therefore 10dB.
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• The carrier phases of the users are uniformly distributed in [0, 2π) and changed at each

Monte Carlo trial.

• The delays of the users are randomly chosen along all the range of possible values and

fixed throughout the simulations. Specifically, the time delays normalized with respect Tc

are picked in order from the set {5.50, 6.33, 2.88, 8.83, 13.65, 1.79, 9.89, 1.14, 13.16, 7.91,

0.45, 8.79, 3.69, 6.14, 9.44, 13.79, 8.25, 11.04, 14.84, 5.93, 6.41, 1.43, 8.19, 12.95, 1.19, 5.67,

2.83, 1.92, 13.93, 7.55, 0.59, 3.87, 4.17, 10.65, 0.01, 10.13, 9.29, 2.94, 3.80, 7.25}. Similarly,

the mean directions-of-arrival of the users are selected in order from the following values:

{0o, 10o, -20o, 30o, -40o, 50o, -60o, 70o, -80o, 85o, -40o, 50o, -60o, 70o, -80o, 85o, 40o, 45o,

65o, -55o, -75o, -15o, -25o, 60o, 20o, 75o, 25o, 60o, -45o, 80o, 15o, 5o, 42o, -57o, -78o, -56o,

-48o, 36o, 29o, -33o}. The mean direction of arrival of the external interference is 40o.

We have simulated two different channels. The first, named static channel for short, is a

channel that remains constant during the observation interval. This is the situation considered

for the signal model in Section 5.2. There is no angular spreading, so each user has a unique

spatial signature. Since the Doppler frequency fd is assumed to be 0, the signals do not suffer

from multiplicative distortion (or fast-fading), but only log-normal fading. The amplitude and

phase of each user’s signal are held fixed during the observation interval, but are varied at each

Monte Carlo run in order to model the log-normal fading.

The second channel is a realistic mobile channel for the uplink. It is generated according to

the spatio-temporal model described in [Ped00]. Each signal arrives at the array through several

rays, all of them with the same delay. The number of rays follows a truncated Poisson law with

mean and maximum values equal to 25 and 50. The directions-of-arrival of the rays are generated

according to a Gaussian distribution with a given mean and a standard deviation of 5 degrees.

This is the value that characterizes the angular spread of the signals. The total power of each

signal is divided among its propagation rays following a Laplacian function which depends on

the separation between the DOA of the each ray and the mean DOA of the source (see [Ped00]

for details). The Doppler spectrum has the classical Clarke’s bath-shape [Pro95], obtained by

assuming multiple and randomly located reflectors close around the mobile, with normalized

maximum Doppler frequency equal to fdT = 2 · 10−3. Therefore, the multiplicative distortion

introduced by the channel has approximately a correlation duration of 1/fdT = 500 symbols.

That value of the factor fdT may correspond to a system with a usual set of parameters, such as

900MHz carrier frequency, 50kb/s data rate and 120km/h speed, or 1800MHz carrier frequency,

100kb/s data rate and 120km/h speed. Note that for a pedestrian channel the speed is about

3km/h, and therefore the value of fdT is much smaller.

The structured estimate of the correlation matrix Ŵs is used in the implementation of the

STDiv estimator. In all cases, we have used a value L for the dimension of the interference
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subspace that is equal the exact value of this dimension in the static channel. Note that this

approach results in a slight under-estimation of the dimension of the interference subspace in

the mobile channel.

We first consider the effect of the length of the training sequence M . The results are shown

in Figure 5.1. The estimator proposed in this chapter is the only one that attains the CRB for

the static channel, even though the Gaussian assumption is only an approximate one. This fact

corroborates the explanation in Section 5.3 stating that the vectorial Gaussian assumption is

reasonable and models the most significant effects of the MAI. The CRB is achieved for lengths of

the training sequence larger than 250 bits. For smaller values, there is a very slight degradation

with respect to the CRB, which causes the difference between the RMSE and the CRB present

in all the next figures. The fact that the difference between the RMSE and the CRB is small

for modest sample sizes is also remarkable given that the proposed estimator is a large sample

approximation of the exact ML estimator. As expected, the performance of all the estimators

deteriorates in the mobile channel, where the RMSE cannot be further reduced by increasing M .

This impairment should not be interpreted as a failure of the estimators, but only as the effect of

working in a much more adverse scenario, and it will be visible in all the following results. As M

increases, the multiplicative distortion blurs the signal of the desired user. Then, the effective

length of the training sequence is no longer equal to M , but it is bounded by the temporal

correlation of the channel. Also in the mobile channel the STDiv estimator outperforms the

other two approaches. The SDiv method presents the largest RMSE and the lowest Pac. This

is logical since it is the approach with the smallest number of degrees of freedom. Figure 5.1(b)

demonstrates the ability of our algorithm to acquire the desired user’s delay. As shown in

Figure 5.1(a), RMS tracking errors between 0.1 and 0.01 chips can be achieved with windows of

less than 100 bits, indicating that the algorithm can be used for tracking of slowly time-varying

parameters in decision-directed mode.

In Figure 5.2, we investigate the effect of varying the number of users. This has special

interest for a base station that uses spatial-division multiple-access (SDMA), and therefore it may

have more users than the length of the codes. Again the STDiv estimator gives better results,

both in RMSE and Pac, than the other two methods. The SDiv and TDiv approaches experience

a serious deterioration, especially in their probabilities of acquisition, when the number of users

exceeds the length of the code (i.e., K > P ), and they completely fail when K > 2P in the

scenario under consideration. On the other hand, using the space-time diversity estimator the

number of users may be increased beyond twice the code length without an excessive degradation.

For instance, note that for K = 40 users and the static channel, the probability of acquisition

remains virtually equal to 1, and only goes down to 0.82 for the mobile channel.

Next, the effect of a wide-band external interference is analyzed in Figure 5.3. Because

of its large bandwidth, the interference does not show any temporal structure, so it can be
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mitigated exclusively in the spatial domain. Only the STDiv and SDiv estimators present an

adequate performance when the desired signal-to-interference ratio (SIR) is small (e.g., smaller

than < −15dB before despreading). Their performance is nearly insensitive to the SIR except

for extremely low SIR in the mobile channel. Despite everything, the former gives better results

than the latter in all the cases. Moreover, the SDiv estimator is not (for the system parameters

that we have considered) near-far resistant. In Figure 5.4, the near-far resistance of the different

estimators is compared. In the static channel, the RMSE and Pac of the estimator proposed

herein and the CRB are totally insensitive to the MAI level, whereas those of the TDiv and

SDiv schemes are not. In regard to the probability of acquisition, the STDiv estimator performs

satisfactorily in the mobile channel up to a NFR equal to 35dB, which is an improvement of about

8dB and 18dB over the TDiv and SDiv methods, respectively. Further insight into the near-far

performance is gained by observing Figure 5.5. A estimator can be considered to be near-far

resistant when the RMSE tends to zero and the Pac tends to one as the EbNo decreases, even in

the presence of arbitrarily strong MAI. This property is only satisfied by our STDiv estimator,

at least in the static channel. The RMSEs of the other two estimators (i.e., the SDiv and TDiv

methods) have floor levels due to the MAI that cannot be surpassed by reducing the power of

the background white noise.

In Figure 5.6, we examine the relationship between the normalized Doppler fdT and both

the probability of acquisition and the RMSE. These results are obtained for an angular spread

with standard deviation equal to 8 degrees. The STDiv estimator performs better than the

other two in all the range of values of fdT . The difference between the RMSEs of the different

methods is roughly constant as the Doppler is increased. On the other hand, the probability of

acquisition of the STDiv estimator is less sensitive to the Doppler than that of the SDiv and

TDiv approaches. This figure shows that the performance of the estimator proposed herein is

not critically affected by the Doppler spread of the channel. For instance, Pac for our method is

approximately 0.92 when fdT = 0.01. This is an excellent result, since the correlation length of

the channel is about 100 symbols, and hence on the order of the observation interval.

Our last set of results involves analyzing the performance achieved with different estimates

of the correlation matrix. In Figure 5.7, we compare the RMSEs obtained with the structured

estimate Ŵ−1
s (the one employed in all the simulations above), the pseudo-inverse matrix Ŵ†

and the diagonally loaded estimate Ŵ−1
d . The diagonal loading factor is taken equal to the

power of the white noise. As foreseen by the discussion in Section 5.4.2, the performance with

the pseudo-inverse matrix is always worse than with the other two estimates, and undergoes a

severe degradation for short lengths of the training sequence. The RMSEs obtained with the

diagonally loaded and the structured estimates are nearly coincident and are better discerned

in Figure 5.8. This figure shows that the RMSE of the former is noticeably greater than that

of the latter for small loading factors. When the loading factor is equal to or greater than the

white-noise power, they perform similarly, but there is always a certain advantage in favor of
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the structured estimate, being the advantage more important in the mobile channel.

5.7 Conclusions

A code-timing synchronization technique for DS-CDMA systems that operates in near-far,

frequency-nonselective, slowly fading channels and employs an arbitrary antenna array for recep-

tion has been derived by applying the ML principle. The technique is a large sample approxima-

tion of the exact ML estimator. We have taken into account the fact that the signals of the users

present definite space-time signatures, what happens because the observation interval is usually

much smaller than the correlation length of the channel. As such, the proposed technique is a

single-user, near-far resistant estimator and would be applicable in a system employing multiuser

detection without power control. For the derivation, it has been assumed that the desired user

transmits a known training sequence, and all other received components have been modeled as

a Gaussian term with unknown space-time correlation. This approach fully exploits the spatial

and temporal structure of the interfering signals in order to cancel them. The knowledge of the

spreading waveform (code) of only the desired user is needed, and as a by-product, an estimate

of the spatial signature of this user is obtained.

The estimator derived in this chapter contrasts with other methods put forward up to date

that also employ antenna arrays but only exploit the structure of the signals in one of the do-

mains. As a result, the proposed technique outperforms existing synchronization methods for

reasonable lengths of the training sequence and reasonable sizes of the array. This technique

allows to allocate more users than the value the spreading factor of the modulation, and makes

possible the coexistence of the DS-CDMA communications system with other wide-band (and

also narrow-band) interfering sources. The use of a structured estimate of the correlation matrix

or diagonal loading allows to reduce the required size of the observation interval, and provides

a better performance than the pseudo-inverse approach. The RMSE and the acquisition prob-

ability of the proposed algorithm have been evaluated numerically in two types of channels.

Although the estimator is applied in a multiple-access scenario, the RMSE attains in the static

channel the CRB derived under the Gaussian assumption, which confirms the validity of the

starting model. All the analyzed estimators are deteriorated when the channel presents Doppler

and angular spread, but also in this situation, the estimator proposed herein outdoes the other

ones. The results of this chapter conclude that the efficient use of the space-time diversity is in-

dispensable for the correct acquisition and tracking of the synchronization parameters in heavily

loaded systems and/or in the presence of external interference.
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Figure 5.1: Performance of the STDiv, TDiv and SDiv estimators as a function of the

length of the training sequence M in two different channels. K = 10 users, P = 15

chips/bit, m = 4 antennas, EbNo = 4dB per antenna, NFR = 10dB.
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Figure 5.2: Performance of the STDiv, TDiv and SDiv estimators as a function of the

number of users K in two different channels. M = 80 bits, P = 15 chips/bit, m = 4

antennas, EbNo = 4dB per antenna, NFR = 10dB.
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Figure 5.3: Performance of the STDiv, TDiv and SDiv estimators in the presence

of a wide-band external interference in two different channels. The SIR is computed

before despreading. M = 80 bits, K = 10 users, P = 15 chips/bit, m = 4 antennas,

EbNo = 4dB per antenna, NFR = 10dB.
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Figure 5.4: Performance of the STDiv, TDiv and SDiv estimators as a function of the

near-far ratio NFR in two different channels. M = 80 bits, K = 10 users, P = 15

chips/bit, m = 4 antennas, EbNo = 4dB per antenna.
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Figure 5.5: Performance of the STDiv, TDiv and SDiv estimators as a function of the

EbNo in two different channels. M = 80 bits, K = 10 users, P = 15 chips/bit, m = 4

antennas, NFR = 10dB.
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Figure 5.6: Performance of the STDiv, TDiv and SDiv estimators as a function of

Doppler spread. M = 80 bits, K = 10 users, P = 15 chips/bit, m = 4 antennas,

EbNo = 4dB per antenna, NFR = 10dB.
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Figure 5.7: Comparison of the performance for three different estimates of the corre-

lation matrix in two different channels. K = 10, P = 15, m = 4, EbNo = 4dB per

antenna, NFR = 10dB, λ = σ2
w.

0 5 10 15 20
0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

Diagonal load, λ

T
im

in
g

 R
M

S
E

 (
c
h

ip
s
)

Diagonal loading, f
d
T=0             

Diagonal loading, f
d
T=2e−3          

Structured estimate  W
s
, f

d
T=0

Structured estimate  W
s
, f

d
T=2e−3

Figure 5.8: Effect of varying the diagonal loading factor in two different channels. The
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w = 6. M = 80 bits, K = 10 users, P = 15 chips/bit,

m = 4 antennas, EbNo = 4dB per antenna, NFR = 10dB.



Chapter 6

Conclusions and Topics for Future

Research

This thesis has dealt with the synchronization (time delay or propagation delay estimation) of one

or several replicas of a known signal received by an arbitrary antenna array. A connecting thread

along this work is the systematic application of the maximum likelihood principle together with

models that include a noise term with an unknown correlation matrix and that use unstructured

spatial signatures. The contributions of this thesis have been divided into three parts. The first

addresses a general time delay estimation problem, whereas the other two consider signal models

that are tailored to a GNSS receiver and to a DS-CDMA multiuser communications receiver.

Below we summarize the contributions and the open research topics in each of these parts.

1. In the first part, we have focused on how multiple antennas can be efficiently used in

interference-limited scenarios in order to estimate the time delays of multiple replicas of

a known signal. A number of techniques have been proposed in the literature for the

estimation of the parameters of a multipath channel. In general, the existing techniques

present at least one of the following drawbacks: i) the resulting multidimensional criteria

require computationally demanding optimization procedures, ii) the techniques undergo a

severe degradation in the presence of directional interference in spite of using an antenna

array in the receiver. It was recently shown that the first of the drawbacks can be overcome

by assuming that the spatial signatures are deterministic unstructured vectors and that

the noise is Gaussian, and spatially and temporally white [Swi98a]. Thus, the time delay

estimation problem becomes analogous to the DOA estimation problem with uniform

linear arrays, and computationally efficient algorithms, such as IQML and ESPRIT, can be

applied. The goal pursued in this part of the thesis is to overcome also the second drawback.

To this end, the noise is assumed to have an arbitrary and unknown spatial correlation, in

such a way that the resulting estimators are robust against the co-channel interference. The
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ML estimator for this problem was derived and shown to be consistent and asymptotically

efficient. However, the resulting concentrated ML criterion for the delays is highly non-

linear due to the presence of a determinant operator. It is no longer possible to draw

parallels between this estimator and the conventional maximum likelihood DOA estimator,

and hence the ML time delay estimator does not lead to simple minimization procedures.

It was shown how the ML criterion could be approximated by a simpler, asymptotically

equivalent cost function. Systematic and heuristic ways of deriving this cost function

were presented. The form of the new cost function lends itself to minimization by the

IQML algorithm. The existence of simple yet accurate initialization schemes based on

ESPRIT and identity weightings makes the approach viable for practical implementation.

Note that the implementation with IQML and ESPRIT, despite being iterative, provides

closed-form estimates of all the time delays at each iteration, unlike searches based on the

expectation-maximization or the alternating-projection algorithms.

The new cost function was also applied to the estimation of the frame delay in a FIR

channel. We proposed for this case a formulation of the projector onto the orthogonal

complement to the signal subspace that reduced each iteration of the IQML algorithm to

the rooting of a polynomial, being its order equal to the length of the FIR channel. The

result is a iterative feedforward scheme for frame delay estimation.

Some topics related to this part of the thesis that may be the subject for further investi-

gation are outlined below.

– Study of the conditions for the problem to be identifiable. That is to say, it is

interesting to determine what is the maximum number of delays that can be estimated

as a function of the waveform of the desired signal, the spatial signatures, and the

number of samples and antennas.

– Estimation of the number of received replicas of the desired signal. This problem

is complicated by the unknown correlation of the noise. Also, the simulation of the

proposed estimator in multipath scenarios with diffuse reflections, and Doppler and

angular spread may be of interest.

– Performance comparison between methods resting on an unstructured model for the

spatial signatures and those using a structured model.

– Theoretical study of the consistency and efficiency of the IQML algorithm when the

data grows in the dimension in which the parameters are estimated. This study

is available in the literature for the opposite situation, e.g., when the number of

snapshots increases in a DOA estimation problem

– Use of MODE, WSF (weighted subspace fitting) or different variants of IQML that,

apart from providing a possible performance improvement, are non-iterative (i.e.,

asymptotically they only require two iterations). The application of these techniques
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is not clear when the dimension of the correlation matrices (not the sample size)

grows, and the optimal weighting matrices for the eigenvectors may not be the same

as those in the conventional DOA estimation problem.

– Study of the ML time delay estimation problem when a stochastic model is used

for the spatial signatures. This issue is closely connected with the problem arising

when the signal consists of multiple “incoherent bursts”. The performance achieved

when the number of bursts increases has to be analyzed both theoretically and via

simulations. Although the CRB will not be achieved with the deterministic model,

it should be investigated if it can be achieved with the stochastic model and if the

MODE or WSF algorithms can be used for this purpose. Also, it could be interesting

to investigate if the ML time delay estimator for multiple “incoherent bursts” can be

obtained without resorting to the simplifying assumption that the spatial signatures

are different at each burst.

The contributions of this part of thesis have been published as

• G. Seco, A.L. Swindlehurst, D. Astély, “Exploiting Antenna Arrays for Synchroniza-

tion”, G. B. Giannakis, P. Stoica, Y. Hua, L. Tong (eds.) Signal Processing Advances

in Communications, Volume II: Trends in Single- and Multi-User Systems, chap. 10,

35 pages, Prentice-Hall, 2000.

• G. Seco, A.L. Swindlehurst, J.A. Fernández-Rubio, “A Polynomial Rooting Approach

for Synchronization in Multipath Channels Using Antenna Array”. Proc. IEEE

Signal Processing Workshop on Statistical Signal and Array Processing, August 2000,

Pocono Manor, PA, USA.

• G. Seco, A.L. Swindlehurst, J.A. Fernández-Rubio, D. Astély, “A Reduced-

Complexity and Asymptotically Efficient Time-Delay Estimator”, Proc. ICASSP,

pages I:580-583, June 2000, Istambul (Turkey).

• G. Seco, J.A. Fernández-Rubio, A. Lee Swindlehurst, “Multipath Estimation and In-

terference Mitigation in GNSS Receivers using Antenna Arrays”, Proc. 3rd European

Symposium on Global Navigation Satellite Systems, GNSS, pages 684-689, October

1999, Genoa, Italy.

2. The objective of the estimators presented in the second part of this thesis was to take

advantage of one particularity of GNSS systems, which consists in that the DOA of the

line-of-sight signal may be known a priori. As long as the antenna array is calibrated, the

knowledge of this direction-of-arrival allows to compute beforehand the steering vector of

the direct signal, which acts as a spatial reference to this signal. The use of the steering

vector of the LOSS is not expected to provide a significant performance improvement of

the ML estimators derived using a detailed model of the multipath channel. And, what is
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worse, the resulting estimators cannot be approximated by computationally simpler ones.

Therefore, that additional information is employed to set up a simplified and approximate

model, in which all signals excepting the direct one are modeled as a Gaussian term with

unknown and arbitrary spatial correlation matrix. The ML estimators of the time delay

and carrier phase of the direct signal were derived using this simplified model. The ML

cost function for the estimation of the time delay is the quotient between the ML cost

function obtained at the output of the minimum variance beamformer and that obtained

without knowledge of the steering vector of the LOSS. The performance of the proposed

ML time delay estimator is better than that of its two constituting components. Actually,

the performance of the derived time delay and carrier phase estimators is very close in

many situations to the best possible performance attainable with detailed models of the

multipath channel and offers a very reasonable trade-off between bias and RMSE for highly

coherent reflections. This is a remarkable result taking into account that the proposed

technique has a low complexity because only the parameters of the LOSS are estimated,

which makes possible at the same time the use of this technique in any type (specular or

diffuse) of multipath scenario.

Two polynomial-rooting algorithms for computing the time delay estimate were presented.

The first exploits the linear-phase dependence on the delay of the frequency samples of the

signal and involves polynomials of relatively large order, while the second employs a simple

linear interpolation of the signal vector and the polynomial to be rooted is quadratic.

It was also shown that the ML estimates can be computed from the output signal of

a certain beamformer. This is a hybrid beamformer, which is computed iteratively as

a linear combination of the minimum variance beamformer and the temporal reference

beamformer. The resulting iterative algorithm provides a different interpretation of the

estimation problem and is appropriate for a practical implementation.

Moreover, we showed that the ML time delay estimator, unlike the estimator based on the

minimum variance beamformer, is inherently robust against errors in the nominal steering

vector of the direct signal. Finally, a modification of the ML estimator that further extends

the range of tolerable pointing errors was presented.

Some directions for further investigation are:

– Analysis of the sensitivity of the carrier phase estimates to errors in the nominal

vector of the direct signal.

– It was shown that the time delay estimates are robust against errors in the nominal

vector of the direct signal. However, the work in [Swi98b] showed that these errors

have a very deleterious effect when the DOA and the Doppler frequency of the direct

signal are estimated. There is no contradiction in these results because they refer to

different problems. In our case, only a 1-D search is performed for the estimation
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of the delay, whereas in the other case, a 2-D search is involved in the estimation of

the DOA and the Doppler frequency. However, it is also true that there are certain

connections between both problems, and the reasons for the different effects of the

calibration or pointing errors in each case could deserve further attention.

– Adaptive implementations of the hybrid beamformer. We believe that the solution

based on the hybrid beamformer is rather promising, and realizing a more exhaustive

set of simulations in order to evaluate its performance in a larger variety of coherent

scenarios may be of interest.

– Sound study of the trade-off between bias and variance in the light of [Her96].

The contributions of this second block of the thesis have been published in part as

• G. Seco, J.A. Fernández-Rubio, “Time-Delay Estimation of the Line-of-Sight Signal

in a Multipath Environment”, Proc. EUSIPCO, September 2000, Tampere, Finland.

• G. Seco, J.A. Fernández-Rubio, “Array Signal Processing Techniques for Pseudorange

and Carrier Phase Measurement”. Proc. 2nd European Symposium on Global Navi-

gation Satellite Systems, GNSS, pages IX.P.10:1-6, October 1998, Toulose, France.

• G. Seco, J.A. Fernández-Rubio, “Maximum Likelihood Time-of-Arrival Estimation

using Antenna Arrays: Application to Global Navigation Satellite Systems”. Proc.

EUSIPCO, pages 213-216, September 1998, Island of Rhodes, Greece.

• G. Seco, J.A. Fernández-Rubio, “Maximum Likelihood Propagation-Delay Estimation

in Unknown Correlated Noise using Antenna Arrays: Application to Global Naviga-

tion Satellite Systems”. Proc. ICASSP, pages IV:2065-2068, May 1998, Seattle, WA,

USA.

• G. Seco, J.A. Fernández-Rubio, “Reducción de los Errores Causados por la Propa-

gación Multicamino en los Sistemas GNSS con un Nuevo Criterio de Medida de las

Pseudodistancias”, Proc. XII Simposium Nacional de la Unión Cient́ıfica Interna-

cional de Radio, URSI, pages II.243-246, September, Bilbao, Spain.

• G. Seco, J.A. Fernández-Rubio, “Multipath and Interference Errors Reduction in

GNSS by Joint Pseudorange Measurement and Array beamforming”, Proc. First

European Symposium on Global Navigation Satellite Systems, GNSS, pages 605-614,

April 1997, Munich, Germany.

3. In the last part of the thesis, the synchronization of a desired user transmitting a known

training sequence in a DS-CDMA system was addressed. In CDMA communications sys-

tems, the signal of a desired user is interfered by the signals of a large number of users

along with possible external interferers. Since the number of disturbing signals usually

exceeds the number of spatial or temporal degrees of freedom separately, it is necessary in

general to employ jointly all these degrees to combat MAI and external interference.
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A large sample ML code-timing estimator that operates in frequency-nonselective, slowly

fading channels was derived. The proposed method is a single-user, near-far resistant

estimator. Unlike other approaches in the literature, the fact the signals of the users present

definite temporal and spatial signatures was taken into account. This occurs because the

observation interval is usually smaller than the correlation length of the channel. For the

derivation of the estimator, all the received signals (MAI, external interference and noise)

except for that of the desired user were modeled as a Gaussian term with unknown space-

time correlation. Thus, the whole space-time structure of the interferers is employed in

order to cancel them. As a result, our method outperforms many existing synchronization

techniques as regards both the estimation RMSE and the probability of acquisition. The

proposed estimator contrasts with other methods put forward up to date that also employ

antenna arrays but only exploit the structure of the signals in one of the domains. The

use of a structured estimate of the correlation matrix allows to reduce the required length

of the training sequence and improves the performance for all values of the length of this

sequence. Finally, the results of this part showed that the efficient use of the space-time

diversity is indispensable for the correct acquisition and tracking of the code-timing in

heavily loaded systems and/or in the presence of external interference.

Some research lines that remain open in this part of the thesis are:

– Extension/application of the estimator to frequency-selective channels.

– Estimation of the dimension of the interference subspace, which is needed for the

construction of the structured correlation matrix.

The publications related to this part of the thesis are

• G. Seco, J.A. Fernández-Rubio, A. Lee Swindlehurst, “Code-Timing Synchronization

in DS-CDMA Systems Using Space-Time Diversity”, Submitted to Signal Processing

(in review).

• G. Seco, J.A. Férnandez-Rubio, “Single-User Timing Estimation in DS-CDMA Mo-

bile Communication systems Using a Receiving Antenna Array”, Proc. Interna-

tional Symposium on Image/Video Communications over Fixed and Mobile Networks

(ISIVC), 8 pages, April 2000, Rabat (Morocco).

• G. Seco, J.A. Férnandez-Rubio, A. Lee Swindlehurst, “Code-Timing Synchronization

in DS-CDMA Systems using Space-Time Diversity”, Proc. Fifth Baiona Workshop on

Emerging Technologies in Telecomunications, pages 173-177, September 1999, Baiona,

Spain.

Besides the specific research topics that have already been outlined, other more general

research lines can be devised, and they listed below.
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– Application of the ML principle with singular correlation matrices and/or with a number

of collected samples smaller than the size of the correlation matrix. Our objective is to

introduce into the ML formulation the possibility that the correlation matrix be rank-

deficient, and we have already done some work in this direction. The approaches followed

in Chapter 5 (i.e., structured estimate of the correlation, diagonal loading) are ad hoc, and

make the subsequent estimators be no longer ML.

– Study of the computational complexity of the algorithms presented in the thesis.

– Extension, if it is possible, of the estimators presented in Chapters 3 and 4 to the case

of noise with unknown temporal correlation. Instead of assuming that the joint spatio-

temporal correlation is arbitrary, as in Chapter 5, it may be advantageous considering

that the spatial and temporal correlations can be decoupled (as pointed out by recent

studies), or that the temporal correlation obeys a certain parametric model, such as a

vector autoregressive model. This last approach is followed in [Ast99a], where the detection

problem is addressed.

– Use of the Bayesian estimation theory for the estimation of the multipath parameters.

– Synchronization in systems with transmit diversity.

– Estimation of the position of a GNSS receiver using the signals transmitted by a set of

satellites. This topic is somewhat related to the previous one.

– Use of the antenna array in a GNSS receiver not only to estimate accurately the carrier

phase of the direct signal, but also to facilitate the resolution of the “integer ambiguities”.





Appendix A

Notation

In general, uppercase boldface letters denote matrices, lowercase boldface letters denote

(column) vectors and italics denote scalars.

A∗, AT , Ac The conjugate transpose (Hermitian), transpose and conjugate of the matrix

A, respectively.

A† Moore-Penrose pseudoinverse of A.

A1/2 Hermitian square root of a Hermitian matrix A, i.e., A1/2 A1/2 = A.

|A|; |a| Determinant of the matrix A; absolute value (modulus) of the scalar a.

∠a Argument (phase) of a.

Tr {A} Trace of A.

x, x̂, x̌ Trial, estimated and true value, respectively, of the variable x.

⌊x⌋ Largest integer less than or equal to x.

o (fN) A sequence gN is gN = o (fN), for fN > 0 ∀N , when limN→∞ gN/fN = 0.

O (fN) A sequence gN is gN = O (fN), for fN > 0 ∀N , when there exists an integer

N0 such that gN/fN is bounded ∀N > N0.

op (fN) A sequence of random variables XN is XN = op (fN), for fN > 0 ∀N , when

XN/fN converges to zero in probability [Mar79, Bro91], i.e.,

lim
N→∞

Prob {|XN/fN | > δ} = 0 ∀ δ > 0 .

159



160 APPENDIX A. NOTATION

Op (fN) A sequence of random variables XN is XN = Op (fN), for fN > 0 ∀N , when

XN/fN is bounded in probability [Mar79, Bro91], i.e., there exists a certain N0

∀ ε > 0, ∃ δ (ε) < ∞ | Prob {|XN/fN | > δ (ε)} < ε ∀N > N0 .

CI m×N The m × N dimensional complex space.

E {·} Statistical expectation. A subscript can be used to indicate the random vari-

able considered for the expectation.

[A]r,s The r, sth element of matrix A.

[A]:,s The sth column of matrix A.

[A]s,: The sth row of matrix A.

1 Column vector of ones.

ei Column vector with all the elements being zero excepting the ith which is

equal to one.

‖·‖2 2-norm of a vector.

‖·‖
F

Frobenius-norm of a matrix.

A ≥ B A− B is positive semidefinite.

I Identity matrix. A subscript can be used to indicate the dimension.

vec (·) Vec-operator, i.e., if A = [a1 . . . ad], then vec (A) = [aT
1 · · · aT

d ]T .

matm×n (·) Inverse operator to vec (·). The result is a m×n matrix formed by rearranging

column-wise the elements of a mn × 1 vector.

diag (·) Diagonal matrix with the given elements along its diagonal.

" Defined as.

f (t) ∗ g (t) Convolution between f (t) and g (t).

δn,l Kronecker delta. δn,l =





1, n = l

0, n 5= l

δ (t) Dirac delta.

ln (·) Natural logarithm.
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⊗ Kronecker product of matrices. If A is n × l, then

A⊗ B =




[A]1,1 B . . . [A]1,l B
...

...

[A]n,1 B . . . [A]n,l B


 .

- Schur-Hadamard (elementwise) product of matrices.

Re {·}, Im {·} Real and imaginary parts.

arg minx f (x) Value of x that minimizes f (x).

PA Orthogonal projector onto the subspace spanned by the columns of A.

P⊥

A I−PA, orthogonal projector onto the orthogonal complement to the columns

of A.
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Acronyms

1-D, 2-D One-Dimensional, Two-Dimensional.

BPSK Binary Phase Shift Keying.

CCI Co-Channel Interference.

CDMA Code Division Multiple Access.

CNo Carrier to Noise spectral density ratio.

CRB Cramér-Rao Bound.

CRB-D Cramér-Rao Bound for a Detailed signal model.

CRB-S Cramér-Rao Bound for a Simplified signal model.

DFT Discrete Fourier Transform.

DLL Delay Lock Loop.

DOA Direction Of Arrival.

DS Direct Sequence.

EGNOS European Geostationary Navigation Overlay System.

EM Expectation-Maximization.

ESPRIT Estimation of Signal Parameters via Rotational Invariance Techniques.

FDMA Frequency Division Multiple Access.

FIM Fisher Information Matrix.

FIR Finite Impulse Response.

GLONASS GLObal’naya NAvigasionnay Sputnikovaya Sistema.

GNSS Global Navigation Satellite System.
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GPS Global Navigation System.

HB Hybrid Beamformer.

iid Independent and Identically Distributed.

IQML Iterative Quadratic Maximum Likelihood algorithm.

LAAS Local Area Augmentation System.

LMS Least Mean Squares.

LOSS Line Of Sight Signal.

LS Least Squares.

MAI Multiple Access Interference.

ML(E) Maximum Likelihood (Estimator).

ML-TEE Maximum Likelihood with only TEmporal reference Estimator.

ML-WHE Maximum Likelihood for White Noise Estimator.

MODE Method Of Direction Estimation.

MUSIC MUltiple SIgnal Classification algorithm.

MV(B) Minimum Variance (Beamformer).

MVBE Minimum-Variance-Beamformer based Estimator.

NFR Near-far ratio.

pdf Probability Density Function.

PLL Phase Lock Loop.

PN Pseudo-Noise.

RLS Recursive Least Squares.

(R)MSE (Root) Mean Squared Error.

RMSE(a) =

√
E

{
|a − ǎ|2

}
=

√
STD2 (a) + |E {a}− ǎ|2

SDiv Space Diversity.

SDMA Space Division Multiple Access.

SIMO Single Input Multiple Output.

SNIR Signal to Noise plus Interference Ratio.

SNR Signal to Noise Ratio.

SS Spread Spectrum.
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STD Standard Deviation.

STD (a) =

√
E

{
|a − E {a}|2

}

STDiv Space-Time Diversity.

TDiv Time Diversity.

TDMA Time Division Multiple Access.

TLS Total Least Squares.

TRB Temporal Reference Beamformer.

ULA Uniform Linear Array.

WAAS Wide Area Augmentation System.

WSF Weighted Subspace Fitting.
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[Öst99] T. Östman, S. Parkvall, B. Ottersten, “An Improved MUSIC Algorithm for Estima-
tion of Time Delays in Asynchronous DS-CDMA Systems”, IEEE Trans. on COM ,
Vol. 47, no 11, pags. 1628–1631, Nov. 1999.

[Ott93] B. Ottersten, M. Viberg, P. Stoica, A. Nehorai, “Exact and Large Sample ML Tech-
niques for Parameter Estimation and Detection in Array Processing”, Haykin, Litva,
Shepherd (eds.), Radar Array Processing , pags. 99–151, Springer-Verlag, Berlin, 1993.

[Par96a] B.W. Parkinson, J.J. Spilker (eds.), Global Positioning System: Theory and Applica-
tions, vol. I, II , Vol. 163-164 of Progress in Astronautics and Aeronautics, American
Institute of Aeronautics, Inc., Washington, DC, 1996.

[Par96b] S. Parkvall, Near-Far Resistant DS-CDMA Systems: Parameter Estimation and Data
Detection, PhD Thesis, Royal Institute of Technology, KTH, Stockholm, Sweden,
1996.

[Par96c] S. Parkvall, E. Ström, B. Ottersten, “The Impact of Timing Errors on the Perfor-
mance of Linear DS-CDMA Receivers”, IEEE Journal on Selected Areas on Commu-
nications, Vol. 14, no 8, pags. 1660–1668, Oct. 1996.

[Pau97] A. Paulraj, C. Papadias, “Space-Time Processing for Wireless Communications”,
IEEE Signal Processing Magazine, Vol. 14, no 6, pags. 49–83, Nov. 1997.

[Ped00] K.I. Pedersen, P.E. Mogensen, B.H. Fleury, “A Stochastic Model of the Temporal
and Azimuthal Dispersion Seen at the Base Station in Outdoor Propagation Envi-
ronments”, IEEE Trans. on Vehicular Technology , Vol. 49, no 2, pags. 437–447, May
2000.

[Pel98a] P. Pelin, “Decoupled Direction Finding: Detection”, Proc. ICASSP , Seattle, WA,
1998.

[Pel98b] P. Pelin, “Iterative Least Squares Techniques for Self-Synchronization and Equaliza-
tion in Adaptive Antenna Systems”, IEEE Trans. on Vehic. Tech., 1998, submitted.

[Pel99] P. Pelin, Space-Time Algorithms for Mobile Communications, PhD Thesis, Chalmers
University of Technology, 1999.

[Pil89] S. U. Pillai, Array Signal Processing , Springer Verlag, 1989.

[Poo97a] H.V. Poor, X. Wang, “Code-Aided Interference Supression for DS/CDMA
Communications-Part I: Interference Suppresion Capability”, IEEE Trans. COM ,
Vol. 45, no 9, pags. 1101–1111, Sep. 1997.

[Poo97b] H.V. Poor, X. Wang, “Code-Aided Interference Supression for DS/CDMA
Communications-Part II: Parallel Blind Adaptive Implementations”, IEEE Trans.
COM , Vol. 45, no 9, pags. 1112–1122, Sep. 1997.

[Pre95] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in C,
the Art of Scientific Computing , Cambridge University Press, 1995.

[Pro95] J.G. Proakis, Digital Communciations, McGraw-Hill, New York, 3rd ed., 1995.

[Ral98] G. Raleigh, T. Boros, “Joint Space-Time Parameter Estimation for Wireless Com-
munication Channels”, IEEE Trans. on SP , Vol. 46, no 5, pags. 1333–1343, May
1998.



BIBLIOGRAPHY ix

[Ram95] J.F. Ramos, Nuevas Técnicas de Procesado Digital en Array , PhD Thesis, Universi-
dad Politénica de Madrid, 1995.

[Ram96] J. Ramos, M. Zoltowski, M. Burgos, “Robust Blind Adaptive Array. A Prototype for
GPS”, Proc. IEEE International Symposium of Phased Arrays Systems and Technol-
ogy , pags. 406–410, Boston, MA, Oct. 1996.

[Ram00] J. Ramos, M. D. Zoltowski, H. Liu, “Low-Complexity Space-Time Processor for DS-
CDMA Communications”, IEEE Trans. on SP , Vol. 48, no 1, pags. 39–52, Jan. 2000.

[Ran99] A. Ranheim, Interference Rejection in Wireless Communication Systems, PhD Thesis,
Chalmers University of Technology, Göteborg, Sweden, 1999.
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[Sto97] P. Stoica, J. Li, T. Söderström, “On the Inconsistency of IQML”, Signal Processing ,
Vol. 56, pags. 185–190, Jan. 1997.

[Str96] E.G. Ström, S. Parkvall, S.L. Miller, B.E. Ottersten, “Propagation Delay Estima-
tion in Asynchronous Direct-Sequence Code-Division Multiple Access Systems”, IEEE
Trans. on COM , Vol. 44, no 1, pags. 84–93, Jan. 1996.

[Swi92] A.L. Swindlehurst, T. Kailath, “A Performance Analysis of Subspace-Based Methods
in the Presence of Model Errors, Part I: The MUSIC Algorithm”, IEEE Trans. SP ,
Vol. 40, no 7, pags. 1758–1774, July 1992.

[Swi98a] A.L. Swindlehurst, “Time Delay and Spatial Signature Estimation Using Known
Asynchronous Signals”, IEEE Trans. SP , Vol. 46, no 2, pags. 449–462, Feb. 1998.

[Swi98b] A.L. Swindlehurst, P. Stoica, “Maximum Likelihood Methods in Radar Array Signal
Processing”, Proceedings of the IEEE , Vol. 86, no 2, pags. 421–441, Feb. 1998.

[Swi99] A.L. Swindlehurst, J. Gunther, “Methods for Blind Equalization and Resolution of
Overlapping Echoes of Unknown Shape”, IEEE Trans. SP , Vol. 47, no 5, pags. 1245–
1254, May 1999.

[Teu97] P.J.G. Teunissen, P.J. Jonge, C.C.J.M Tiberius, “Performance of the LAMBDA
Method for Fast GPS Ambiguity Resolution”, Navigation: Journal of the Institute of
Navigation, Vol. 44, no 3, pags. 373–383, Fall 1997.

[Ton94] L. Tong, G. Xu, T. Kailath, “Blind Identification and Equalization Based on Second-
Order Statistics: A Time Domain Approach”, IEEE Trans. Info. Theory , Vol. 40,
no 2, pags. 340–349, March 1994.

[Tow94] B. Townsend, P. Fenton, “A Practical Approach to the Reduction of Pseudorange
Multipath Errors in a L1 GPS Receiver”, Proc. ION-GPS , Salt Lake City, UT, 1994.

[Tug95] J. K. Tugnait, “On Blind Equalization of Multipath Channels Using Fractional
Sampling and Second-Order Cyclostationary Statistics”, IEEE Trans. Info. Theory ,
Vol. 41, no 1, pags. 308–311, Jan. 1995.

[Van98] M.C. Vanderveen, A.-J. van der Veen, A. Paulraj, “Estimation of Multipath Parame-
ters in Wireless Communications”, IEEE Trans. on SP , Vol. 46, no 3, pags. 682–690,
March 1998.

[Vee98] A.-J. van der Veen, M. C. Vanderveen, A. Paulraj, “Joint Angle and Delay Estimation
Using Shift-Invariance Techniques”, IEEE Trans. SP , Vol. 46, no 2, pags. 405–418,
Feb. 1998.



BIBLIOGRAPHY xiii
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