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ABSTRACT

We have developed antenna-coupled transition-edge sensor bolometers for a wide range of cosmic microwave
background (CMB) polarimetry experiments, including BICEP2, Keck Array, and the balloon borne SPIDER. These
detectors have reached maturity and this paper reports on their design principles, overall performance, and key
challenges associated with design and production. Our detector arrays repeatedly produce spectral bands with
20%–30% bandwidth at 95, 150, or 230 GHz. The integrated antenna arrays synthesize symmetric co-aligned
beams with controlled side-lobe levels. Cross-polarized response on boresight is typically 0.5%~ , consistent with
cross-talk in our multiplexed readout system. End-to-end optical efficiencies in our cameras are routinely 35% or
higher, with per detector sensitivities of NET ∼ 300 K sCMBm . Thanks to the scalability of this design, we have
deployed 2560 detectors as 1280 matched pairs in Keck Arraywith a combined instantaneous sensitivity of
9 K sCMBm~ , as measured directly from CMB maps in the 2013 season. Similar arrays have recently flown in the

SPIDER instrument, and development of this technology is ongoing.

Key words: cosmic background radiation – instrumentation: detectors – instrumentation: polarimeters –
methods: laboratory: solid state – techniques: polarimetric

1. INTRODUCTION

Cosmic microwave background (CMB) polarimetry is a key
observable to further our understanding of cosmology in both
the later and early universe. Degree-scale B-mode polarization
can be used to constrain the tensor–scalar ratio r and place
limits on the energy scale and potential form of inflation
(Kamionkowski et al. 1997; Zaldarriaga & Seljak 1997).
Arcminute B-mode measurements allow precise reconstruction
of the gravitational lensing potential at later times, which in
turn can constrain the neutrino masses and the dark energy
equation of state (Kaplinghat et al. 2003). Precise measure-
ments of E-mode polarization provide further cosmological
information on the plasma physics at recombination. Very
precise future lensing polarization maps could ultimately be

used for deeper searches of inflationary polarization. Finally a

future space mission has the potential to measure large-scale

polarization to astrophysical limits, for precise tests of inflation.

However, these ambitious scientific goals require high

sensitivity cameras with exquisite control of systematic errors.
To meet this need, we have developed large arrays of dual-

polarized antenna-coupled transition edge sensor (TES)

bolometers. The key feature in our design is optical coupling

through a planar antenna, allowing the entire design to be

fabricated with scalable photolithographic techniques. This has

allowed us to rapidly deploy arrays for BICEP2, Keck Array,

and the balloon borne SPIDER, amounting to over 6000

detectors fielded as of this writing. We deployed BICEP2 for

observing in 2010 (Bicep2 Collaboration II 2014), three Keck
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Array 150 GHz cameras for observing in 2011, and five
150 GHz cameras for Keck Array in 2012 (Kernasovskiy
et al. 2012). In 2014, we replaced two Keck Array 150 GHz
cameras with 95 GHz cameras, and in 2015 we replaced two
more with 230 GHz cameras (fielding an additional 1000
detectors). SPIDER recently conducted a long-duration flight
from McMurdo Station in January, deploying an additional
2400 detectors (Fraisse et al. 2013).

This paper describes the design principles of these detectors,
as well as their on-sky performance and some challenges
associated with their production. We draw from our extensive
experience with the aforementioned experiments, and describe
the as-deployed performance of our devices.

The format of this paper is as follows. In Sections 2 and 3 we
describe the cameras and detector element designs, elaborating
beyond the material in the BICEP2 Instrument Paper (Bicep2
Collaboration II 2014). Section 4 describes the fabrication
techniques used. To optimize our designs and recipes, we had
to characterize the optical properties of our thin films for
millimeter waves, which we describe in Section 5. Section 6
describes the antenna array beam synthesis as well as related
processing and design challenges. Our high on-sky detector
yield is only possible through control of detector properties
across each tile, which we discuss in Section 7. Section 8
describes the attained camera sensitivity and we show rough
agreement between those measurements and a noise model.
Finally, Section 9 offers some concluding remarks and
describes future endeavors.

2. OVERVIEW

Cameras. Because the detector arrays are coupled to
experiments with refracting optics, we briefly summarize their
architecture. The BICEP2, Keck Array, and SPIDER cameras are
similar f/2.2 26 cm aperture telecentric refracting telescopes,
which re-image the sky onto the focal plane with pairs of high-
density polyethylene lenses. BICEP2 and Keck Array contain
teflon, nylon, and reflective metal-mesh edge-filters that filter
incident radiation to maintain low thermal loading on the focal
plane such that internal closed-cycle 3He/3He/4He sorption
fridges can cool the focal plane to 280 mK (Duband &
Collaudin 1999). In principle, lower base temperatures
(achieved, for example, by a dilution fridge) can allow lower
detector noise levels. However, BICEP2 achieved photon-noise
limited sensitivities at these temperatures, and in the interest of
scaling up to the larger multi-camera Keck Array and
SPIDER systems, we were not motivated to further cool our
detectors. Due to loading constraints at float, the SPIDER
cameras cannot employ lossy teflon filters and instead utilize
metal-mesh filters. They still use a nylon filter on the cold side
of 4 K. SPIDER uses a ∼2 K pumped helium bath and single
stage closed cycle 3He fridges to chill its focal planes to
∼300 mK. SPIDER uses ultra-high-molecular-weight polyethy-
lene windows in its low pressure flight environment, whereas
BICEP2 and Keck Array use closed cell nitrogen filled Zotefoam
(respectively Propozote PPA30 and Plastazote HD30). We
refer the reader to the Instrument Paper for more BICEP2-
specific details (Bicep2 Collaboration II 2014).

Focal plane. Each focal plane (Figure 1) contains four
detector tiles mounted to a common copper frame. Each tile is a
square of silicon cut from a standard 100 mm wafer, typically
550 μm thick. The 150 GHz BICEP2, SPIDER, and Keck
Array focal planes contain four tiles, each consisting of 64

dual orthogonally polarized detector pairs, providing 512
detectors per camera. The detectors’ beams terminate on their
camera’s cold stop at −15 dB of the main lobe with f1.8 l
spacing. The 95 GHz Keck Array cameras have tiles containing
36 orthogonally polarized detector pairs, and thus 288 detectors
per camera. These detectors’ beams terminate on their camera’s
stop at −12 dB of the main lobe with f1.5 l spacing. Current
230 GHz focal planes contain four tiles of 64 detector-pairs
each in order to match a readout system designed for the
150 GHz cameras; this samples the focal plane less efficiently
(with f2.6 l spacing), which will be addressed with a future
higher density focal plane design. The 230 GHz detectors’
beams are similar in size to the 150 GHz beams, terminating on
the stop at −15 dB.
We mount the tiles to the aforementioned gold-plated copper

frame and thermally sink each with a few hundred gold wire
bonds linking the frame to gold bond-pads that directly contact
the silicon substrate of the tile. The antennas are patterned on
the non-illuminated side of the wafer, so that light arrives at the
antenna through its silicon substrate (see Section 3.1 for
elaboration). A quartz anti-reflection tile is mounted on the
illuminated side of the wafer, while the antenna side faces a
superconducting niobium reflective back-short placed 4l
away. Testing of early BICEP2 prototype focal planes suggested
that near the tile edge, antennas for one of the two polarizations
may couple to the frame, yielding elliptical beams in the far
field. We have mitigated this coupling in all deployed focal
planes by keeping the edge detector pairs a few wavelengths
away from the frame and by corrugating the frames with
specifically chosen depth and impedance grooves, optimized
with simulations performed in the CST Microwave Suite (Corp
2009a).
Polarized Detector Elements. Our detector design is entirely

planar and does not require horns or other contacting optics. In
each detector element, optical power couples to two co-located,
orthogonally polarized planar antenna arrays, each composed
of slot sub-radiators patterned in a superconducting niobium
(Nb) ground plane. All slots of a given orientation are
coherently combined through a microstrip summing tree to
synthesize a single equivalent antenna for that polarization
orientation. Power from each antenna is passed through an on-
chip band-defining filter before being dissipated on a
suspended bolometer island. A TES voltage biased into its
superconducting-normal transition on that island detects
variations in the power received by the antennas.

3. DETECTOR DESIGN

3.1. Antenna Design

The antenna slots in each detector must be spaced to Nyquist
sample the focal plane surface to avoid grating lobes that would
rapidly change the impedance with frequency (Kuo et al.
2008). The antenna pattern of each axis of an array is calculated
from the N elements per linear dimension spaced at distance s
as follows:
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where ol is the free-space wavelength, r the relative

permittivity of the surrounding medium, and the sum is across

sub-antennas indexed by m . In addition to the strong peak in

the normal direction ( 0q = ), there are grating lobe peaks when

s sinr o( ) q l is a positive integer. To avoid these lobes, the

slot spacing must be

s
N

1
1

, 2
o

r

,min
( )


 l -⎜ ⎟

⎛

⎝

⎞

⎠

where o,minl is the minimum wavelength of operation and

the term in parentheses accounts for the finite width of the

grating-lobe peaks. For the 150 GHz detectors fabricated on

silicon ( 11.8r = ) with an upper band edge of 180 GHz

( 1.7 mmo,minl = ), the spacing must satisfy s 460 m m . To

achieve this high density of radiators without intersection, we

couple power to offset (echelon) pairs of radiators with a Bravais

lattice defined in Figure 2. These dual-slot sub-arrays tile the

detector elements in 8 × 8, 10 × 10, or 12 × 12 versions, where

the overall detector size is chosen to match the f/2.2 camera

optics. By using such a large number of sub-antennas, we avoid

excessive excitation of substrate modes that might degrade the

detector’s efficiency. The offset slot-pair geometry allows the

two orthogonally polarized antenna arrays within each detector

pair to be co-located (visible in upper two panels of Figure 2).
It is energetically favorable for the antennas to receive power

through the silicon substrate to the vacuum side at a ratio of

Z377 : Si
in∣ ∣W , where ZSi

in (in Equation (4)) differs from silicon’s
TEM impedance of 110 W in phase because standing waves in
the substrate modify the effective impedance seen by the slots.
We exploit this power difference by orienting the tiles with the
silicon substrate side toward the sky and then terminating the
back response on the vacuum side with a λ/4 back-short. We
mount λ/4 quartz anti-reflection (AR) tiles to minimize
reflection at the air-substrate interface.

3.2. Antenna Impedance

Optical power couples from the slots to a microstrip feed
network. To minimize return loss at this interface, we need to
accurately compute the input impedance of that feed network.
We have written custom software that provides increased speed
and versatility for this task over commercial options.
We compute the input impedance of our antenna from the

required jump-discontinuity in magnetic fields across the slot at
the microstrip feed-points (J Hxfeed = D ) where we impose a
driving current Jy. Modeling the currents in the ground plane with
fictitious magnetic currents M En̂= ´ running longitudinally
down the slot, the field jump-discontinuity requires:

MJ dx dy x y

G x x y y G x x y y

,

, , .

3

y

H M H M, ,x x x x1 2[ ]

( )

( ) ( )

( )

ò= ¢ ¢ ¢ ¢

- ¢ - ¢ - - ¢ - ¢

Figure 1. Focal Plane pictures and cross-section. Upper: top (left) of the BICEP2 focal plane and bottom with backshort removed (right). The arrays of 64 detector pairs
per tile are visible at top right. Lower: major component layers of the focal plane design, with an expanded view of the tile layers at right. Gold wire-bonds thermally
sink the tiles to the frame and the frame bears corrugations to suppress coupling to the detectors. Only the detectors at the tile perimeter are at risk of frame coupling.
Corrugations are visible in the inset photo in the upper left panel.
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The antenna impedance can be inferred once these currents M

are solved for. The Green functions GH M,nx x
describe the fields

on either side of the slot (n 1, 2[ ]]= ) resulting from an

infinitesimal magnetic current in the x direction (parallel to the

slot). In the spectral domain, these have the form

G k k z
Z k Z k

, , 0
cos sin

4H M x y
k k

TM
in

TE
inx x ( )

( ) ( )
( ) ( )˜ ( )
f f

= = +
r r

where k karctank y x( )f = and k k kx y
2 2= +r (Das & Pozar

1987). The dielectric films support transverse electric (TE) and

transverse magnetic (TM) modes with different impedances.

The impedance ZTE,TM
in of each mode “seen” by the slots can be

computed by solving for the standing waves of electric and

magnetic fields in a manner analogous to treating the silicon

substrate and quartz AR coating as transmission lines and then

transforming the impedance of free space (377 W) through them

(Das & Pozar 1987). The backshort (ground) transforms

through a quarter-wave space, presenting a parallel impedance

that is open at the band center. The silicon substrates are a

standard 100 mm diameter 550 mm thick wafer, and we

optimized the 95 and 150 GHz impedance matching with this

thickness in mind. The 230 GHz versions are fabricated on

thinner 370 mm thick silicon substrates to scale this design.
We expand the unknown fictitious currents M x y,( ) =
V F x y,
i i i ( )å in a one-dimensional piecewise sinusoidal basis

(Kominami et al. 1985):
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localized in physical space at position xi over the slot, with

sections of length xD and width w corresponding to the slot

width. This basis models the expected current distribution on

the shorter slot dimensions, leaving the unknown distribution

only on the longer dimension. Moreover the Fourier transform

of the basis function has a compact analytic form. These

features greatly simplify the computations. Solving Equation (3)

with a Galerkin moment method reduces it to a matrix equation

Y V Iij i j[ ][ ] [ ]= (Kominami et al. 1985), where

Y dk dk F k k G k k z F k k, , , 0 , . 6ij x y i x y x y j x y( ) ( ) ( )˜ ˜ ˜ ( )*ò= =

The inverse of the admittance matrix in Equation (6) is an

impedance between basis functions. The self and mutual

impedance between basis functions located at feed-points is the

input impedance that our feed-lines must match.
We avoid complicated numerical integration and further

reduce the number of unknown Vis by assuming the arrays are
infinite in extent and applying periodic boundary conditions
where the antenna properties repeat for spectral translations
along the lattice vectors:

k
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where a and b are the distances between the slots in the

horizontal and vertical axes (see Figure 2). This approximation

Figure 2. Optical and SEM photographs of major features of the antenna array.
Upper: one quarter of a detector element. The antenna array, one filter, and one
TES bolometer are visible, as well as DC readout lines for the detector. Middle:
SEM micrograph of the slot array (dark rectangles) and oblique Bravais lattice
(arrows). The thin white lines comprise the microstrip feed. For 150 GHz
detectors, a 600 mm~ and b a 2 300 mm= ~ ; the slot dimensions and
spacing in the 95 GHz are 63% larger and those in the 230 GHz detector
elements are 47% smaller. Lower: SEM micrograph of microstrip crossover
and shunt capacitor at a sub-antenna slot.
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is valid for slots in the interior of the array and reduces the

integrals to a discrete sum that we terminate at a wavevector

high enough to allow convergence. Figure 3 shows the

computed input impedance against frequency for the

150 GHz antennas. The oscillatory behavior at 200 GHz is

expected and real (i.e., not a numerical artifact) and coincides

with the onset of grating lobes. We note that we have

performed more numerically intensive simulations of finite slot

arrays where continuous integration retains edge effects to

some degree and these agree well with the infinite array

approximation.
We couple power to microstrip lines at the points near the

slot ends where the lines cross and shunt to the ground-plane
on the opposite side (see lower panel of Figure 2). This
coupling effectively transmutes the electric fields across the slot
into fields between the microstrip conductor and ground plane,
provided that impedances are well matched. To avoid grating
lobes, we keep the slots as short as possible and excite the slots
at their first resonance. However, the radiation resistance of
center-fed slots at this resonance is nearly 300 Ω, caused by a
current node at the slot center. By symmetrically feeding the
slots with a pair of off-center microstrip lines close to the
current anti-nodes, we greatly reduce the radiation resistance to
40~ W. The microstrip feed lines must match this real antenna

resistance, which, for our dielectric and metal film thicknesses,
corresponds to the thinnest lines that we can reproducibly
fabricate. The feed points also have a 5 W inductive reactance,
which is relatively stable over the band. We tune this away with
series capacitors that shunt current to ground (also visible in
Figure 2). Future designs may use more complicated termina-
tions (e.g., open stubs) in lieu of capacitors to expand the
bandwidth, allowing for co-located dual-color detectors.

3.3. Microstrip Feed

The waves from the slots coherently sum in the microstrip
feed-network, which accomplishes beam synthesis in lieu of a
horn. Figure 4 summarizes this topology. This network
combines waves across rows, and then sums the waves from
each row in a column tree at the side of the detector element,
presenting a single microstrip line in each polarization. The two

orientations of slots couple power to two independent feeds
that tightly interlock across the detector pair. The feeds are
meant to be corporate, combining all waves with uniform
phase, but the trees are not necessarily binary. In fact, the 230
and 150 GHz detectors have a 12 × 12 array format while the
95 GHz ones are 10 × 10, neither of which is a power of 2.
Waves sum in microstrip tee-junctions, with impedances

chosen to match across each junction when looking from the
port closest to the bolometer. We pick the ratio of impedances
on the ports closest to the slots to determine the illumination
pattern. To accomplish this synthesis with low return loss, we
must construct microstrips with correct impedances, which
requires accurate knowledge of dielectric constants and the
penetration depth into our superconducting niobium films. (See
Section 5.) Thus far, all detectors deployed for BICEP2, Keck

Array, and SPIDER produce a uniform top-hat illumination
where the power splits are in proportion to the number of slots
on each side of the junctions. The microstrip impedances can
be chosen to synthesize an arbitrary pattern, however, and
Gaussian tapered feeds have recently been deployed in the
BICEP3 camera.
Coupling between microstrip lines can generate phase errors

across the antennas, which we elaborate on in Section 6. The
present designs have judiciously spaced the adjacent lines to
minimize this coupling. To negate any residual phase errors,
the feed-networks also contain sections of transmission line
before each slot whose length we can vary during fabrication.

3.4. Band-defining Filters

Each microstrip feed contains an integrated band-defining
filter between the antenna feed and bolometer. We use a three-
pole design as a compromise between bandwidth and loss:
additional poles would let us increase the bandwidth and still
avoid atmospheric features, but the additional passes of the
waves through each resonator increase filter loss. Figure 5
shows a micrograph of the filter and a schematic of its
equivalent circuit. We realize the resonators with lumped
components, which do not suffer from the high frequency

Figure 3. Simulated feed-point antenna impedance vs. frequency. The dashed
vertical line is the band center.

Figure 4. Abbreviated feed-network schematic for one detector pair, showing
the branch structure for the two polarization summing trees.

5

The Astrophysical Journal, 812:176 (17pp), 2015 October 20 Ade et al.



resonant leaks present in 2l and 4l transmission line
resonators.

Each pole is a series LC resonator, in which the inductors are
short stretches of high-impedance coplanar waveguide (CPW).

The CPW impedance Z L C= of roughly 50 W exceeds the
surrounding lines and acts as a series inductor by allowing
strong magnetic fields in the CPW ground-plane gaps. This
inductance is almost entirely magnetic; kinetic inductance from
the niobium superconducting microstrip and ground layers only
makes a minor correction. The series capacitors are parallel-
plate metal–insulator–metal between upper and lower niobium
films using the microstrip SiO2 as the dielectric. In an ideal
design the central resonator would be a parallel LC resonator
shunting to ground. For ease of fabrication we instead build a
series resonator and invert its impedance on resonance using
shunt capacitors to ground and reduced series capacitors
(Galbraith & Rebeiz 2008).

We numerically optimize the filter in simulations with the
commercially available Sonnet software (Corp 2009b). The
optimizations are constrained to maintain an entrance impe-
dance of 10 W which results in fabricable capacitors and
inductors. Our design results in inductors longer than 8l that
have some slight parasitic shunt capacitance, but this does not
degrade the performance appreciably. The filter in Figure 5 is
tuned for a 150 GHz band-center. Filters for 95 and 230 GHz
versions have components with the same reactance at the
resonant frequencies. We show spectra and summarize spectral
response features in Section 7.

3.5. Bolometer Design

We terminate and thermalize millimeter-wave power on a
released bolometer island in a meandered lossy gold microstrip.
150 GHz waves are constrained to propagate through a skin
depth of 180 nm, and over a length of several wavelengths the
line absorbs 99% of the power between two passes. We scale
the 230 and 95 GHz designs appropriately to maintain −20 dB
return loss.

This termination is in close thermal contact with two TESs:
an aluminum TES with a transition temperature T 1.2 Kc ~ for
lab tests and a 60 m~ W titanium TES with a T 0.5 Kc ~ for on-
sky observations. The saturation power (optical plus electrical
power) needed to bring the TES temperature to Tc is

P G T 8c c
T T

sat
1

1

o c
1

( )
( )=
b

-

+

b+

where the conductance Gc is evaluated at the transition

temperature Tc and the surrounding heat bath is T 280 mKo ~ .

The exponent b reflects the thermal carriers in the legs, where

1b = would correspond to electrons and 3b = would

correspond to phonons in 3D materials. As discussed in

Section 7.1, our typical devices are described by 2.1b = . The

aluminum Tc affords the bolometer a high saturation power for

use under a 300 K background, but has higher noise that would

be unacceptable for astrophysical observations.
Each bolometer island is suspended from the tile by six

isolation legs: one carrying the microstrip from the antenna,
one carrying the TES DC lines, and four thinner legs for
mechanical stability. Some newer devices use four legs, while
SPIDER employs long meandered legs as described below. We
tune the bolometer legs to achieve the design thermal
conductance. We aim to keep the phonon noise subdominant
to the photon noise, but also to keep theG high enough that the
detectors do not saturate under typical on-sky loading
conditions, which for BICEP2 is 4–6 pW. We typically build in
a safety factor of 2 beyond the expected maximum loading; for
BICEP2 this resulted in G 80 150 pW Kc

1–= - , as described in
Section 7. Two detector pairs in the corners have the microstrip
opened between the antenna and bolometers such that the TESs
do not receive optical stimulation through the microstrip feed.
As described in Section 6.3, we use these four bolometers for
diagnostic measurements and to monitor direct stimulation of
our detectors by optical power that bypasses the microstrip
circuitry and may thus not have the required spectral and
polarization properties.
Thick evaporated gold (visible in Figure 6) is added to the

bolometer islands to boost the heat-capacity by
C 0.5 0.3 pJ KAu

1– - , bringing the time constant C Gt = to
around a millisecond. We infer this from responses to a 1 Hz
square-wave modulated broad-spectrum noise signal. The
additional gold is important because of the strong electro-
thermal feedback of these devices; without it, our detectors
would enter electrothermal oscillations throughout much of the
TES transition.
We voltage bias the TESs into the transitions typically at half

the normal resistance Rn (i.e., R R 2nbias  ), using 3 mW
parallel shunt resistors. We detect changes in the TES current
using a SQUID-based time-domain multiplexing architecture,
where all detectors in a set of 32 are sequentially read through a
common set of lines (de Korte et al. 2003 and Stiehl et al.
2011). For BICEP2, our revisit rate of a given detector is

Figure 5. Microscope photograph of filter and equivalent circuit for 150 GHz.

Figure 6. Electron micrograph of a released TES bolometer, illustrating its
major components. The gold-meandered microstrip termination is at the right
of the photograph and the TESs at left. The thicker gold film in the center of the
island ensures thermal stability.
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25 kHz~ , ensuring that we Nyquist sample the time-stream up
to the 6 kHz roll-off imposed by a 1.35 μH series inductor.

Adapting this technology to the low photon loadings of
SPIDER’s long-duration balloon payload poses challenges in
detector and instrument design. In order to take full advantage
of the low photon noise levels available at 36 km altitudes, care
must be taken to ensure that the bolometers achieve low noise
levels and the surrounding instrument contributes minimal
additional photon loading.

SPIDER employs several modifications to the BICEP2 detector
design to reduce detector noise. A meandered leg design
reduces conductance to G 15~ pWK−1, reducing phonon
noise while remaining within a similar footprint. This chosenG
is not limited by the anticipated loading of 4.5 KCMB~ but
rather to have margin on the 300 K background in the
laboratory while biased on the Al TES. Lower G leads to
naturally slower detectors, reducing the need to add heat
capacity to the island with thick gold (Au) to maintain stability.
The long cabling in SPIDER prevents us from multiplexing faster
than 20~ kHz, so we control aliasing with larger inductors.

4. FABRICATION

We fabricate detectors in monolithic batches of 64 matched
pairs at the Microdevices Laboratory at the Jet Propulsion
Laboratory (JPL). We fabricate arrays on 350–800 mm thick
silicon substrates chosen for optimal optical coupling. We
deposit 0.7–1.2 mm low-stress silicon nitride films (LSN) and
tune the internal stress to be as low as 150 MPa to ensure
mechanical integrity.

The TES normal state resistance Rn and transition tempera-
ture Tc are sensitive to thickness variability and chemical
contamination, so we deposit and pattern our TESs before the
millimeter wave circuitry on a flat and chemically clean
surface. We first e-beam evaporate aluminum (Al) and pattern
the T 1.2 Kc = TES. We DC-sputter titanium (Ti) and use
inductively coupled plasma (ICP) etching to etch the
T 0.5 Kc = TES for on-sky observing. Both films are
immediately chemically passivated with RF-sputtered silicon
dioxide (SiO2) with ICP etched via holes to allow DC electrical
contacts with subsequent layers. The RF bias ensures that the
passivation patches have rounded edge walls so that subsequent
films can make contact over steps. The top panel of Figure 7
illustrates these first steps. The Al and Ti films make a series
DC connection and are later connected to Nb bias lines.

The millimeter wave circuits are fabricated from four films: a
niobium ground plane, a SiO2 interlayer dielectric (ILD), an
upper microstrip Nb conductor, and thin Au resistive termina-
tion. We DC-sputter the Nb films and pattern the ground plane
with lift-off, a technique where we first deposit photoresist and
then dissolve it from under the metal film to be removed. In
principle, this film could be etched, but we suspect that the Ti
Tc can be altered by this step despite the intervening protect
layer. The Nb ground film defines the antenna slots, bandpass
filter inductors, holes for bolometer release, and safety holes
under the bond-pads. This film also fills the bias vias down to
the TESs. Lift-off provides rounded side-walls and thus ensures
step-coverage of subsequent films. The Nb ground-plane
covers more than 90% of the 100 mm wafer, serving as both
the DC and RF ground for the detector array.

We have explored several ILD materials, although all
currently deployed devices use RF-sputtered silicon dioxide.
Thickness uniformity of this film is crucial for detector

uniformity across the array. A 6 inch SiO2 RF sputtering
target and substrate rotation help achieve thickness uniformity

to better than 7% across the array. We use an ICP reactive
ion etch system to etch release holes around the bolometers

and vias that allow for a DC connection to the buried
TES structures in the subsequent Nb metallization fabrica-
tion step.

Figure 7. Cross-section of films in order of fabrication The aspect ratio
between radial and normal dimensions are distorted for clarity. We include
photos of how the device looks face-on for reference. Upper: deposition and
etching of films for the TESs and their protect layers. Middle: deposition and
etching of antenna and microstrip features. Lower: release of TES bolometer.
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We form the resistive terminations on the bolometer islands
with e-beam deposition and lift-off patterning. Finally, we DC-
sputter the upper Nb microstrip conductor and etch from that
film the microstrip feed network, band-defining filter capaci-
tors, and DC bolometer bias lines and bond-pads using a freon
etch. We have found that lift-off techniques (used for BICEP2)
and chlorine-based (BCl3) etches can contaminate the Nb films
at this step, resulting in unacceptable millimeter wave losses in
our circuitry as discussed in Sections 5 and 6.2. The middle
panel of Figure 7 illustrates these intermediate microwave steps
that define ground plane, ILD, and microstrip traces.

The final fabrication steps release the bolometer islands,
illustrated in The bottom panel of Figure 7. We etch through
the LSN with CHF3 in an inductively coupled plasma reactive
ion etch ICP-RIE system, exposing bare silicon under the
release holes. We e-beam evaporate and lift-off thick gold onto
the islands to add heat capacity and control the required readout
bandwidth. We use an STS deep reactive ion system to etch
from the front side and remove silicon from the release holes.
This Bosch etching process uses a combination of etching and
passivation steps to cut vertically through the silicon wafer,
after which we undercut the bolometers with a XeF2 release
(Turner et al. 2001). XeF2 attacks the remaining exposed
silicon isotropically, so the small hole pattern in the photoresist
is pre-determined to release only the islands and legs and to not
undercut the remaining antenna structures. Finally, we use the
STS etcher to cut out the square tile with holes for alignment
pins. Table 1 summarizes these fabrication steps.

5. MATERIAL PROPERTIES FOR THE MILLIMETER
WAVE CIRCUITS

We separately characterize the material properties used in the
design of the antenna feed and filter, in particular the Nb
penetration depth and the ILD dielectric constants. These
material parameters are poorly characterized in the literature for
millimeter waves, and they can depend on details of the
processing. We also need to characterize loss properties and
monitor stability over time. To address these concerns, we have
fabricated companion tiles of test devices where each detector
pair receives power through a single polarization broadband
integrated antenna. The microstrip feed evenly divides power in
a microstrip tee-junction between a device under test (DUT)

and a reference bolometer to divide away optical effects from
the antenna and fore optics. We measure the spectral response

of the bolometers through Fourier transform spectroscopy
(FTS) with a Martin–Puplett interferometer (Martin & Puplett
1970), combining the detector time-streams and encoder
readings from the moveable mirror’s translation stage to form
interferograms. We low-pass filter, zero-path difference, and
Hanning apodize the interferogram before Fourier transforming
the interferogram into the frequency response S ( )n .
We use one device for microstrip wave speed measurements.

The DUT is a microstrip Fabry–Pérot cavity with an impedance
intentionally mismatched from the surrounding lines. The
standing wave pattern in the spectrum of the bolometer behind
the cavity can be used to determine wave speed. (See Figure 8
for a schematic and data sample.) The wave speed is a function
of both the ILD dielectric constant r and the Nb penetration
depth L. Alternatively, the band-defining filter resonance is
determined by series inductance dominated by the CPW
magnetic inductance. Data from the band locations and test
devices allow us to solve for both r and L and we summarize
these numbers is Table 2 for different materials.
Another test device measures loss per length in our

transmission lines, where the DUT is a stretch of line that is
several wavelengths long. We determine loss as a function of
frequency by forming the ratio of FTS spectra seen through the
long line and the reference bolometer. While the loss tangent
has been shown to be dominated by loss in dielectrics, and can
be quite low in some dielectric systems, our measurements
determine loss in the microstrip as fabricated. Thus far we have
tested PECVD SiO2, PECVD NSix y, and evaporated SiO2 in
this manner.
This loss test capability became particularly important during

a period of time when the optical efficiencies of our fabricated
devices were unusually poor. This test program allowed us to
show that the effective loss tangent of our microstrip had a 2n
frequency dependence (see Figure 9) when using all three of
the dielectrics above. This common problem present with three

Table 1

Summary of Processing Steps

Material/Function Deposition Etchant

1. Low-stress nitride High temp LPCVD CHF3 ICP-RIE

2. Aluminum TES e-beam evaporation Liftoff

3. SiO2 Pro-1 RF sputtered ICP, CHF3/O2 etch

4. Titanium TES sputtered ICP, Freon-1202

5. SiO2 Pro-2 RF sputtered ICP, CHF3/O2 etch

6. Niobium Ground Plane Magnetron sputtered Liftoff

7. SiO2 ILD RF sputtered ICP CHF3/O2 etch

8. Gold resistor e-beam evaporated Liftoff

9. Niobium Microstrip sputtered ICP, Freon-1202

10. Gold heat capacity e-beam evaporated Liftoff

11. Silicon release substrate STS DRIE/XeF2

Note. Acronyms defined in text.

Figure 8. Upper: schematic of a test device for microstrip wave speed, where
the mismatched microstrip segment at right forms a Fabry–Perot cavity. Lower:
standing wave pattern in a device’s FTS spectrum. The period is proportional to
the transmission line wavespeed.
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ILDs from different deposition systems suggested that the loss

was generated in the Nb films. Ultimately, these measurements

helped us to identify and correct a modest tensile stress in the

Nb as deposited by sputtering. Further, the loss appears to be

sensitive to the reactive ion etch chemistry used in the Nb

process. Controlling the film stress at a nominal compressive

−100 to −300MPa and changing the Nb etchant from

BCl O3 2+ to Fl O2 2+ resulted in lower loss tangent with a
1n dependence (see Figure 9).

6. BEAM SYNTHESIS

The antenna array combines waves from the sub-antennas

with equal amplitude and phase to synthesize a uniform

illumination, which generates a sinc pattern in the antenna far

field. Using a test cryostat, we characterized the antenna far

field pattern and confirmed that the antenna has a e1 beam

waist of 4 °. 1 (FWHM∼ 14°) and side-lobe level of −12 dB

relative to peak response, as expected from the design. A

sample far-field pattern is shown in Figure 10, taken in a

cryostat without lenses or a stop. For a detailed beams

characterization in the complete BICEP2 and Keck

Array cameras, we refer the reader to the BICEP2 and Keck

Array Beams Paper (Bicep2 and Keck Array Collaborations

IV 2015).
Our ground-based experiments difference detector pairs at

the time stream level to suppress unpolarized common-mode

noise from the atmosphere. However, differencing at this early

point in the analysis pipeline can allow temperature aniso-

tropies to leak into polarization if the detector beam patterns are

mismatched. This is an especially acute challenge to small

aperture experiments because the beam size couples to large

temperature gradients at degree scales.
Our team has developed an analysis technique, called

deprojection, that discards contaminated modes. As described

in the BICEP2 Systematics Paper (Bicep2 Collaboration III

2015), the pipeline can remove temperature leakage through

relative-gain mismatch (monopole moment of beams), first

derivatives of temperature through displaced centroids (dipole

moment of beams), and second derivatives of temperature

through differential beam widths and ellipticities (quadrupolar

moments of beams).
The detector design is most prone to centroid displacement,

as characterized in the Beams Paper (Bicep2 and Keck Array

Collaborations IV 2015). We have identified two mechanisms

responsible for beam displacement and implemented design

and fabrication fixes to suppress their contamination below the

r 0.1= level (O’Brient et al. 2012). These fixed detectors are

deployed in Keck Array and SPIDER and Figure 12 shows the

centroid steer before and after these corrective measures.

6.1. Parasitic Microstrip Cross-talk

The microstrip lines in the feed networks’ horizontal arms

must fit between the slot sub-radiators, crossing them only at

the intended feed points. To achieve this, the lines must be in

close proximity, and for the 150 GHz BICEP2 devices, many

lines are separated by only ∼10 dielectric thicknesses. This

separation would be adequate to avoid cross-talk for short

stretches of lines, but some of the line pairs run parallel for over

four wavelengths. The longest of these pairs are those running

from the sides to the center to begin the horizontal tree arms,

coupling power to one of the two lines they intentionally split

Table 2

Material Properties at Millimeter Waves

Parameter Value

SiO r2 3.9

NSix y r 7.0

Nb L 0.1 mm

Figure 9. Upper: schematic of a test device for microstrip loss rates, where the
DUT is a stretch of transmission line several wavelengths long. Lower: sample
spectra showing power loss per unit length ( d P dxlog( )a = - ) in films
exhibiting low and high loss. Nonlinear increase in loss with frequency has
been an indicator of bad process parameters in need of adjustment.

Figure 10. Sample far-field detector pattern measured in a test cryostat without
an optical stop. Power is normalized to peak on boresight and the dashed line
indicates where the f/2.2 camera stop would lie.
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power between, as seen in Figure 4 and summarized in the

bottom of the left panel of Figure 11.
In a reverse-time picture, power from port 1 (defined in

Figure 11) should be evenly divided between ports 2 and 3.

The currents in a pair of parallel lines can be expressed as a

superposition of even and odd modes, where the even mode has

the same current magnitude and directions in each line and the

odd mode has the same magnitude but opposite directions.

Coupling between the two parallel lines, however, results in the
two modes having different field concentrations in the air and

dielectric volumes, and so induces a difference in wave speeds

between the modes. Waves passing from port 1 to internal port

(4) thus also couple waves into internal port (3) that lag by 90°

in phase:
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where ke and ko are the even and odd mode wavenumbers and ℓ

is the parallel coupling length. This circuit acts as an

unintentional reverse-wave coupler, where impedance mis-

matches between even and odd modes are small, but

Figure 11. Details of microstrip layout in the center of the antenna feed. Left: center of the BICEP2-era design. The Cartoon under the picture shows the effective
coupler circuit and the ports corresponding to the scattering parameters in Equation (9). The arrows are phasors that illustrate how the intended waves (horizontal)
combine with the parasitic coupled waves (vertical). Right: modern design with reduced coupling due to greater spaced lines. The extra lengths of line that form
compensating phase lags are visible (e.g., bottom of picture), although these are not necessary with the suppressed microstrip coupling.

Figure 12. Left: beam centroid displacements in the near field before and after fixes were made to the etch recipe. The performance shown in left panel would allow a
BICEP1-style pipeline without deprojection to constrain r to 0.1 (Takahashi et al. 2010). The deprojection pipeline described in (Bicep2 and Keck Array Collaborations
III 2015) allows r to be constrained to yet lower levels. Right: beam centroid displacements in the far field for two different colors after the recipe was fixed.
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wavespeeds are not (Hammerstad & Jensen 1980). The waves

entering the microstrip tee-junction from internal port (4) add in

quadrature to the intended waves from internal port (3),

advancing the total phase on the side opposite the vertical tree

and retarding it on the other. This phase-step steers the beams

off boresight away from the vertical summing trees and is

where the left–right symmetry splitting occurs in the feed. This

effect produces the repeatable horizontal centroid steer seen in

the cameras’ near field. We have reproduced this in simulations

using HFSS that account for the upper conductor finite

thickness.
As seen in the right panel of Figure 11, we have re-designed

the antenna feeds for the Keck Array and SPIDER detectors to
greatly increase spacing between the lines and therefore reduce
the parasitic coupling effect. We also include adjustable phase-
lag lines before each slot to remove residual phase-error and to
synthesize matched beams, although the current antenna-feeds’
increased spacing renders the corrective phases unnecessary.
These phase-lags are visible in the bottom of the right picture in
Figure 11.

6.2. Niobium Contamination

Magnetic fields can penetrate into a superconductor by a
characteristic depth effl . Impurities in niobium films scatter
Cooper pairs with a mean free path ℓ , increasing the penetration
depth beyond the London depth 50 nmLl ~ of pure niobium

to ℓL oeffl l x= , where 40 nmox ~ is the Cooper pairs
coherence length (Tinkham 1996). As displayed in Table 2, our
films are typically measured to have 100 nmeffl ~ , suggesting
mean-free path of ℓ 10 nm= , well within the “dirty” limit
where film cleanliness can impact circuit performance.

Nonuniform contamination can produce nonuniform kinetic
inductance, which can spatially perturb the wavespeeds in the
microstrip summing tree. Variations in wavespeed can steer
beams off boresight. Additionally, the summing tree does not
treat the two polarizations identically, and as a result, they can
be steered differentially. We have observed that the tiles with
the largest scatter in beam centroid position correspond to those
with the largest vertical dipole components. We also expect the
tree to induce larger steering in the vertical than horizontal
because slots along rows combine immediately in the
horizontal tree, resulting in less integrated phase error than
those along columns that combine in the vertical tree after
horizontal summing.

We have built models for how our antenna-feeds perform
with film gradients. We subdivide the circuit into short sections
of transmission lines and tee-junctions and use each section’s
location in the detector to assign unique film properties. We
construct simple scattering matrices for each section and
cascade them into one large 289 289´ matrix per polarization
(Bodharamik et al. 1971). From this we can compute slot
illumination patterns and thus far-field patterns. We find that
20% variations in eftl across the array can produce differential
pointing that is 10% of the beam FWHM in the vertical
directions, and half that on the horizontal, similarly matching
our observed scattering in pointing.

We defined our microstrip lines in early tiles with the lift-off
technique that we use for the Nb ground plane, as described in
Section 4. Several devices have shown discoloration in this
step, leading us to speculate that the Nb leaches organic
materials from the resist during lift-off. These observations and

modeling inspired a switch to an etch-based means of defining

the Nb microstrip lines (described in Section 4). This simple fix

reduced the scatter in centroid location to 1~ % of Gaussian

width s, and the right panel of Figure 12 shows the centroid

alignment between polarization pairs for both colors of

deployed focal planes.

6.3. Direct Stimulation of Bolometers

Optical power is meant to reach the bolometers only through

the antenna and microstrip feed network. However, photons

can directly excite responses in the detectors which is of

particular concern in a design where there are no horn blocks to

shield the sensors themselves. In BICEP2 pre-deployment testing

of early generations of detectors, response to out-of-band

power was detected at levels 3%–4% of the total response, with

near field and far field angular response patterns consistent with

direct stimulation of the bolometer islands. Simulations in

HFSS and CST suggest that the ground plane on the bolometer

islands can be inductively held at a different voltage than the

surrounding ground plane through the microstrip ground that

we deposited only on one leg in early generation prototypes.

This voltage can drive millimeter-wave currents through the

gold-termination, resulting in a direct stimulation of the

detectors not through intended antenna and microstrip feed.

Steps taken prior to BICEP2 deployment to minimize this

coupling included the addition of metal mesh low-pass edge

filter above the focal plane and several design changes to the

bolometer islands themselves. The island leg design was

modified to narrow the width of the opening in the ground

plane surrounding the island, and ground plane continuity was

extended onto the island by metalization of the four outer

support legs.
With these modifications in place, we have taken BICEP2 and

Keck Array 150 GHz camera optical efficiency measurements

with and without high-pass “thick-grill” filters that obstruct

power below 200 GHz; after accounting for the filter’s filling

factor, we found that the optical response through the filter was

0.5~ % of that without filtering. This small leakage suggests

limited “blue-leaking” that would allow above-band power to

excite response in the bolometer. We have also measured the

response of our detectors to a chopped thermal source on

boresight through a polarizing grid at different angles; we

have found that the crossed response is similarly 0.5~ % of

the co-polarized response, consistent with known multiplexer

cross-talk levels. If the detectors are acting as a direct

absorber, then their small area compared to the antenna’s

should provide a broad angular response. As a result, we

expect that the f 2.2 stop in the cameras for these

experiments helps limit the direct stimulation and we have

found that tests of devices in cameras with faster optics can

have higher direct stimulation levels.

7. ARRAY PROPERTIES AND UNIFORMITY

Our high attained sensitivities are a result of our high

detector yield, a figure that depends on attaining uniform

detector properties across the array. This uniformity also helps

to mitigate some potential sources of systematic error. This

section describes array uniformity of a variety of properties.
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7.1. Bolometer Thermal Conductance G T( )

Thermal fluctuation noise across the bolometer legs is the
largest internal source of noise in BICEP2, and is given by

kT G F T TNEP 4 , 10G c c c o
2 2 ( ) ( )=

where the “Mather factor” F T T,c o( ) (Mather 1982) accounts

for thermal gradients across the bolometer legs and is roughly

0.5 for our detectors. The saturation power of the detector is

given in Equation (8). Note that the leg thermal conductance G

is a function of temperature.
The legs’ total parallel thermal conductance G needs to be

chosen to keep thermal carrier noise subdominant to photon
shot and Bose noise, but avoid saturation under on-sky loading.
We try to have the total saturation power (Joule heating from
the bias circuit plus optical loading on the detectors) exceed the
optical loading ( 4 6 pW–~ at 150 GHz in BICEP2) by a factor of
two. This aggressive safety factor is only possible if we have
tight control of our processing parameters that determineG and
Tc (discussed in the next subsection). Our achieved repeatability
between detectors in a tile and from tile-to-tile are shown in
Figure 13. Our greatest variations in this parameter happen
between fabrication runs, and the histograms are grouped by
pairs of tiles fabricated at common times to illustrate how this
parameter varies between those runs. The histograms’ widths
indicates the variability within a fabrication run. Our time-
division multiplexing readout requires that detectors in a
common readout column be commonly voltage biased
(Battistelli et al. 2008 and Stiehl et al. 2011), and our control of
G within a tile allows this.

The XeF2 release only has a 10:1 selection ratio between
silicon nitride and silicon, and variation in bolometer leg
thicknesses from nitride etching would seriously compromise
these numbers. For this reason, we oxidize the wafers prior to
nitride deposition. The thin ∼10 nm SiO2 film has a much
higher 100:1 selection ratio between oxide and silicon and thus
protects the legs from XeF2 attack (Williams et al. 2003). This
oxide film ensures more uniform leg cross-sections across the
detector arrays, and thus more uniform bolometer Gs.

The thermal conductance of the bolometer legs varies with
temperature as G T~ b. Figure 14 shows best fit exponents for
a typical tile, extracted from IV curves at several bath
temperatures between 0.28 and 0.8 K in a test cryostat where
the sensors are only exposed to internal 4 K thermal radiation.
These particular detectors are well described by 2.1b = , and
all tiles have measured b between 1.9 and 2.3.

In the absence of scattering, both heat capacity and thermal
conductance scale as T d, where d is the number of dimensions
greater than the dominant thermal phonon wavelength

T . 11
hc

kT
phonon

s( ) ( )l =

Given a sound speed of c 6500 m ss
1~ - (Holmes et al. 1998) in

bulk silicon nitride, we expect the thermal phonon wavelength in

the legs to vary from 0.6 mm at the hot ends to 1.1 mm at the

cold ends. With legs that are 4–10 mm wide and 600–1000 mm
long, but only 1.5 mm~ thick, we expect to see thermal behavior

similar to a two-dimensional phonon gas with b ~ 2. If the

lateral dimensions were both smaller than phononl and all were

smaller than the mean free path under scattering mfpl , then the

“one-dimensional” conduction through N legs will conduct with

G Ng T4 Q= , where four “massless” modes without a low-

frequency cut-off participate at low temperatures and where

g k h3 0.95 pW KQ b
2 2 2p= = - is the quantum conduction

of each mode (Rego & Kirczenow 1998; Schwab et al. 2000).

This predicts a maximum conduction of 12 pWK−1 at 0.52 K

for BICEP2, clearly disfavored by the data in Figure 13. Two-

dimensional conduction through N legs of width w phononl>
only has three massless modes, so G N wT3 2D

2s= , where

7.2 pW m K2D
3s m= (Holmes 1998). The maximum possible

G 230 pW Kc
1~ - for BICEP2 can accommodate the measuredG

values.
Phonon scattering can decrease conductivity by Lmfpl ,

where L is the leg length. In the case of scattering from surface
imperfections with an rms h, this mean free path is

f T f T1 1( ( )) ( ( ))+ - D (Ziman 1963), where D is the leg’s
shortest thermally active dimension and the specularity f T( ) is

f T
T

exp 16 . 122

phonon

2

( )
( )

( )p
h

l
= -

⎡

⎣

⎢
⎢

⎛

⎝
⎜

⎞

⎠
⎟

⎤

⎦

⎥
⎥

SEM images of our bolometers (such as Figure 6) suggest a
top surface smooth to 10h < nm. We see little optical
evidence of the XeF2 attacking the silicon nitride, which
suggests that the back sides of the legs are also smoother than
the thickness of the 10 nm oxide layer. These variations suggest
a mean-free path 200 mmfp l m , which provides the expected
inverse dependence of G on L and predicts a reduction of G of
order unity from maximum 2D conduction, as seen in our
measurements (as seen in Figure 13).

Figure 13. Thermal conductance of BICEP2 prototype tiles at Tc. This figure
demonstrates repeatability within and between tiles.

Figure 14. Thermal conductance exponent b for a single SPIDER tile.
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The specularity depends on temperature T through the

phonon wavelength Tphonon ( )l , which means that this effi-

ciency factor can alter the thermal conduction exponent. The

variations h are small compared to the thermal phonon

wavelength but still modifies the expected conductivity to an

effective power law of 2.5b = . The rms variations are likely

smaller than this bound, so we can only say that we expect b to

be between 2.0 and 2.5, consistent with our measurements.

More importantly, the repeatable and uniform b and G, both

within and between tiles, achieved through the oxidation of the

silicon substrate to control surface smoothness and leg

thickness, allows for repeatable saturation powers of our

detectors.

7.2. Transition Temperature Tc

The balance between the between the internal He3 / He3 / He4

fridge cooling power and thermal loading lets the focal plane

cool to 250 mK~ . For BICEP2 and Keck Array, we use heaters

to operate the focal plane (bolometer thermal bath temperature)

at an elevated 280 mK so we have margin to control this

temperature through active feedback loops while still main-

taining photon-noise-limited sensitivity. These temperature

controllers provided a safeguard against focal-plane drifts and

our systematics paper demonstrates that with these controllers,

such drifts added negligibly to the B-mode power spectrum

(Bicep2 Collaboration III 2015). SPIDER eschewed tempera-

ture control and achieved ∼10 mHz stability from their

sorption fridges alone (Gudmundsson et al. 2015). With this

cryogenic system and bolometer legs with 2.1, NEPGb = is

minimized at an island temperature of 515 mK, although this is

a broad minimum with a gentle slope at higher temperatures.

For on-sky operation, electrothermal feedback locks the

bolometer to the titanium TES’s T 520 mKc ~ . By selecting

a pure superconductor for this TES instead of a bilayer

(Gildemeister et al. 1999; Myers et al. 2005 and Fabrega et al.

2009), we obtain repeatable transitions devoid of the multiple

transitions that can result from a bilayer’s complicated

chemistry. Deposition on bare wafers and passivation of oxide

protection layers also help maintain uniform values between

and within tiles. As seen in Figure 15, our titanium Tc is

uniform across tiles and even between tiles, maintaining

uniform saturation powers (Equation (8)) within a multiplexer

column, necessary to find a common bias point.

7.3. Normal Resistance Rn

TES bolometers will only experience electrothermal feed-

back if voltage biased, and we bias our nominally 60 m~ W Ti

TESs with a 3mW shunt resistor. The Al TES is even higher in

resistance, so both are far larger than the shunt. However, this

condition is only met if the Ti TES resistance is repeatably this

large. We also need them repeatable in value so the detectors

will have a common latch resistance and thus a common bias

point where they will experience strong feedback. Figure 16

shows that these values are indeed uniform between and within

tiles. Just as was true for Tc uniformity, our recipe of a pure

TES deposited as first layers on the tile, protected with an oxide

film, helps maintain repeatable performance.

7.4. Time Constant t and Loop Gain L

The effective thermal time constant of an ideal voltage-
biased TES bolometer is given by

, 13
G C

V1
( )

( )L
t =

+

where the intrinsic bolometer time-constant C G is decreased

by the effective loop gain of electrothermal feedback, L. The

responsivity of our detectors is the change in measured current

for a change in incident optical power, given by

s
V i

1

1

1

1
. 14

b ( ) ( )
( )

L

L wt
=
-

+ +

Both of these expressions experience corrections for non-

idealities such as finite shunt resistance. Equations (13) and

(14) indicate that a high loop gain L will increase the speed of

the sensor and simplify its responsivity (s V1 b» - ). Operat-

ing the bolometers in this limit also maintains a fast detector

response (low t), giving rise to an approximately flat detector

transfer function for the frequencies of interest, which for our

ground-based experiments are f 2 Hz (Irwin & Hilton 2005).
In order to maintain stability against electrothermal oscilla-

tions, the detectors’ thermal bandwidth must not exceed that of
the electrical bias circuit. The BICEP2 bias circuit includes a
1.35 Hm inductor in series with the 3 m~ W bias resistor to
avoid aliasing above a roll-off of R L 5 6 kHz–~ . To limit the
TES bandwidth, we deposit thick 2 mm~ gold onto the

BICEP2 detectors that adds an additional C 0.5 pJ K 1~ - heat
capacity to the bolometer island. The resulting time constants at
typical science biases are shown in Figure 17.

Figure 15. Titanium TES transition temperature for four tiles in BICEP2.

Figure 16. Titanium Normal Resistance for four BICEP2 tiles.
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SPIDER detectors are intrinsically slower due to their lower leg

conductance. It is thus not necessary to add as much gold to the

island to ensure stability; typically only ∼0.5 μm is deposited.

Time constants on transition are found to be similar to BICEP2’s.

For SPIDER detectors we have measured time constants in

response to optical square-wave excitations at a range of

bias voltages (and thus TES resistances), allowing us to

infer that the normal time constants (without loop gain) are

G C 30 ms~ and that loop gains are 20 30–L ~ at

R R0.6 n= (Figure 17). BICEP2 TESs should have similar

loop gains. We note in passing that fast bolometer time

constants are useful for limiting the effect of particle radiation

(e.g., cosmic rays) on detector time streams in balloon- and

space-borne instruments.

7.5. Spectral Response

Our cameras use a series of low-pass filters, both absorptive

plastic and reflective metal-mesh, to limit thermal loading on

the focal plane and above-band response of our detectors.

However, we rely upon the integrated microstrip filters

described in Section 3.4 to avoid the atmospheric lines

immediately adjacent to our observing bands. Figure 18 shows

measured response S ( )n averaged across a focal plane for three

different spectral channels (in three different focal planes),

demonstrating that this technology does indeed avoid atmo-

spheric features.
We can summarize the spectral response S ( )n by comparing

it to a top-hat response with the same area and then defining the

band center as

15
I S d

I S d
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( ) ( )

( ) ( )
ná ñ = ò

ò
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and the bandwidth as

. 16
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where I ( )n is the source spectrum relative to a Rayleigh–Jeans

spectrum. The spectral responses of the detectors within a

polarization pair must be closely matched to avoid systematic

contamination through spectral gain mismatch. In principle,

using separate filters for each polarization might induce a

mismatch through gradients in material properties. Our design

resists this by placing the filter pairs in close physical

proximity; in the 150 GHz detectors, the filters are ∼5 mm

apart. Furthermore, the filters’ magnetic inductance dominates

the kinetic inductance; this renders our filters’ features

particularly robust against variation in Nb contamination that

might adversely impact electrically long resonators (Myers

et al. 2005). As shown in Figure 19, our band centers and

widths are found to be highly repeatable. We calibrate our

responsivity through correlation against the Planck 143 GHz

maps. Spectral mismatches between filter pairs would manifest

themselves as differences in each detector’s absolute calibra-

tion (abscal), but the bottom panel of Figure 19 shows that

these are less than 3% of the average responsivity, with a

median of 0.5%.

7.6. Optical Efficiency

We characterize our end-to-end optical efficiency by biasing
onto the aluminum TES, which has a higher Tc than Ti, and thus
higher saturation power. By comparing the measured response
to aperture-filling 77K and 300 K sources to the expected

incident power P k T f dinc ( )ò n n= D , we can use the measured
spectra to infer efficiency. We routinely obtain total camera
optical efficiencies in excess of 30%. For example, the
BICEP2 efficiencies are shown in Figure 20. These figures are
for the total camera efficiency, which includes losses other than
the detectors. Measurements of response of early engineering-
grade detectors to an internal cold load, which exclude
spillover loss and loss in our filter stack, suggest that the raw
detector efficiency should be nearly 70% (Orlando et al. 2009).

Figure 17. Upper: time constants of BICEP2. These were only carefully
measured in transition. Lower: loop gain of SPIDER. We measured time constant
at a variety of biases for SPIDER characterization, allowing a proper
measurement of loop gain. Both sets of detectors had similar 0.9 mst ~
biased time-constants.

Figure 18. Measured detector spectra for devices designed for 95 GHz (red),
150 GHz (green) and 230 GHz (blue). The data for the 150 GHz are from
BICEP2, while the others are from a test cryostat. Winter atmospheric
transmission at the South Pole is overlaid in black.
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8. SENSITIVITY

The array design described above was first deployed for
astronomical measurements in 2009 as part of BICEP2, a ground-
based CMB polarimeter. We have since fabricated dozens of
deployment-grade arrays at 95 and 150 GHz for use in the
terrestrial Keck Array and balloon-borne SPIDER instruments.
These programs have yielded extensive data on the real-world
performance of this technology, as well as demonstrating its
adaptability to different optical loads.

8.1. Noise

The theory of noise in TES bolometers is by now well
developed (Irwin & Hilton 2005). Major contributions typically
include photon noise, phonon noise (thermal fluctuation noise),
Johnson noise from the TES and shunt resistances, and

amplifier noise. In many cases TESs also exhibit varying
degrees of “excess” noise beyond that predicted by simplified
models. In multiplexed systems, noise performance also
depends upon the relationship between the noise levels and
detector and readout bandwidths, since poor choices can lead to
substantial noise aliasing (Battistelli et al. 2008, and Stiehl et al.
2011). We find that the detectors” measured noise is well
reproduced by a simple model incorporating modest excess
TES noise, and we have successfully operated the bolometers
in configurations with little aliasing penalty.
In order to characterize the noise performance, we have

measured noise spectra for the BICEP2 and Keck Array detectors
using un-multiplexed data digitized at 400 kHz. Although the
frequencies corresponding to degree-scale anisotropies is less
than 2.6 Hz (where ℓ ~ 500) for the BICEP2 and Keck
Array scan strategy, these measurements allow us to observe
device performance near the typical multiplexing frequency of
25 kHz and thus model noise aliasing due to the readout. These
measurements, adjusted for expected aliasing, are in good
agreement with noise measured in the science-mode multi-
plexer configuration.
The right panel of Figure 21 compares the measured noise

for a representative optically active “light” detector from the
Keck Array to its various modeled components. Photon noise
dominates at the low frequencies of interest in the light pixels
for sky observations. The photon noise equivalent power (NEP)

can be expressed as a sum of Bose and shot noise
contributions:

h QNEP 2 , 17
Q

photon
2

load
2 load

2

( )n= +
nD

where n is the band center, nD is the bandwidth, and Qload is

the optical loading. The next-largest contribution to the noise at

low frequencies is the thermal fluctuation (phonon) noise

across the SiN isolation legs, given by Equation (10). For the

optically inactive “dark pixels,” such as that in the left panel of

Figure 21, photon noise is present through 0.05 pW of direct

loading (not through the antenna), but is subdominant to

phonon noise. All other modeled contributions, including the

TES Johnson and excess noise, the shunt resistor noise, and the

cold and warm amplifiers, are negligible at low frequencies.
Below 7 Hz, atmospheric fluctuations begin to dominate the

light pixels, an effect which is absent in the dark spectra. We
find that this common mode unpolarized signal subtracts well

Figure 19. Spectral response of detectors in the BICEP2 camera. Upper:
histogram of the band centers. Middle: histogram of band widths. Lower:
histogram of absolute calibration (abscal) mismatch, where difference and
mean are computed between polarization pairs. Calibration is through cross-
correlation against Plank 143 GHz.

Figure 20. Optical Efficiencies of BICEP2 detectors. Blue curves (left-axis) are
end-to-end receiver efficiency through all optics; green curves (right-axis) are
raw detector efficiencies for a single test-tile from an engineering-grad test
focal plane, in response to an internal cold-load.
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down to below 0.1 Hz when we polarization-pair difference, as
shown the Figure 22 of the BICEP2 instrument paper (Bicep2
Collaboration II 2014).

At frequencies of 1 kHz» the TES excess noise starts to
contribute significantly. The TES excess noise, as described in
Gildemeister et al. (2001) tends to be proportional to the TES
transition steepness R I I R T( )( )∣b = ¶ ¶ , which for these
detectors is higher at lower resistances. The excess noise varies
between fabrication batches, although the detector in Figure 21
has a relatively low amount. The excess noise should have little
contribution to an experiment’s overall noise level as long as it
is not aliased. BICEP2 and the Keck Array avoid such aliasing by
multiplexing at 25 kHz and biasing at relatively high
resistances on detectors that have large excess noise compo-
nents. SPIDER cannot multiplex as quickly due to long cable
lengths, so we use a lower TES resistance (R 30n ~ mW) and
higher Nyquist inductance (2.0 μH) to limit aliasing of excess
noise.

The noise contributions for BICEP2 and the Keck Array at
low frequencies and under winter atmospheric loading
conditions are broken down in Table 3 for the observing
year 2012. The photon noise is of absorbed power only to aid
the comparison between models and measurements without
adding an extra factor of optical efficiency. The last line of the
table shows total noise equivalent temperature (NET)

computed from jackknife maps, which necessarily references
noise of the incident photons and accounts for the optical
efficiency of the cameras.

8.2. Performance of Ground-based Designs

We have measured the devices’ performance on the sky
during lengthy BICEP2 and Keck Array observation campaigns.
The sensitivity of the experiment can be measured using the
timestream noise between 0.1 and 1 Hz, after calibrating to the
CMB. BICEP2 had a NET of 16 K sCMBm . The larger detector

complement of the Keck Array achieved 11.5 and 9 K sCMBm
in 2012 and 2013, respectively, also at 150 GHz. Figure 22

shows the distribution of per-detector sensitivity for the Keck

Array in 2013.
Another measure of instrument performance is the total map

depth achieved, defined as the noise within a map pixel of a

specific size. This is a function of instrumental sensitivity, scan

strategy, and observing time. Over three seasons of observing,

BICEP2 achieved an rms noise of NEQ 87 nK deg= (5.2

K arcminm ; Bicep2 Collaboration I 2014, Bicep2 Collaboration

II 2014). Over two years, the five Keck Array 150 GHz cameras

achieved NEQ 74 nK deg= (4.4 K arcminm ). Combining

BICEP2 and Keck Array and averaging across the entire effective

area 400 square degree field results in rms noise of 2 nK.

Figure 21. Measured and modeled noise for a individual detectors in the Keck Array. The red line indicates the Nyquist frequency for the multiplexing rate. Left is a
“dark” pixel, with antenna disconnected showing noise stability down into our science band of a few Hz. There is still 0.05 pW photon loading on these dark detectors.
Right is an optically active “light” detector. The 1/f knee at 7 Hz in the measured spectra is from atmospheric fluctuations, absent in the dark detector traces. In
practice, we pair difference polarization pairs to suppress atmospheric noise by an order of magnitude down to 0.1 Hz, as shown in Figure 22 of the BICEP2 instrument
paper (Bicep2 Collaboration II 2014). However, the data rate required for these high frequency spectra only allows one detector to be scanned at a time. Note that the
dark spectrum was measured under a voltage bias 1.7 times higher than applied to the light one, so the absolute magnitude of the two sets of curves differ and we have
adjusted the vertical relative vertical scales to account for this difference. There is significant “excess noise” above 100 Hz, the levels of this noise vary between
detectors. The difference in this excess noise between the light and dark pixels is consistent with this variance.

Figure 22. NET per detector histogram for the Keck Array in 2013.
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9. CONCLUSIONS AND FUTURE WORK

We have demonstrated our novel detectors’ performance
through 18 camera-years of observations in the BICEP2/Keck
Array program, including a detection reported in 2014 of
degree-scale B-mode anisotropy (Bicep2 Collaboration I 2014).
This paper has described the design principles, challenges,
fabrication techniques and our characterization/screening
program that made these deployments possible. This program
has continued through the recent, successful 2015 SPIDER flight
and higher frequency upgrades to Keck Array.

We have also deployed BICEP3 in the current (2014–2015)
Antarctic summer season, which has 1152 95 GHz detectors in
a single camera. Once all the detectors are installed in the
2015–2016 season, this instrument will support 2560 95 GHz
detectors. We package these detectors in individual modules
that efficiently fill the focal plane and we illuminate the
detectors’ antennas with non-uniform Gaussian tapered slot
illuminations to reduce spillover onto the camera’s stop. These
recent modifications will be the subject of a future paper.

Lastly, our detector technology allows for multi-color focal
planes where different color channels are co-located on the
focal plane. Most competing dual-band detector technologies
use a single common aperture for all color channels and thus
there is a reduction in per-detector efficiency due to aperture
spillover (O’Brient et al. 2013). Planar antenna arrays allow
each color to have a custom aperture, thus more efficiently
using of both focal plane real estate and limited readout
capacity. These are under active development for BICEP3
further upgrades to the BICEP/Keck Array program, and for
future SPIDER flights.
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