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ABSTRACT Utilization of fast surrogate models has become a viable alternative to direct handling

of full-wave electromagnetic (EM) simulations in EM-driven design. Their purpose is to alleviate the

difficulties related to high computational cost of multiple simulations required by the common numerical

procedures such as parametric optimization or uncertainty quantification. Yet, conventional data-driven

(or approximation) modeling techniques are severely affected by the curse of dimensionality. This is a

serious limitation when it comes to modeling of highly nonlinear antenna characteristics. In practice,

general-purpose surrogates can be rendered for the structures described by a few parameters within limited

ranges thereof, which is grossly insufficient from the utility point of view. This paper proposes a novel

modeling approach involving variable-fidelity EM simulations incorporated into the recently reported

nested kriging modeling framework. Combining the information contained in the densely sampled low-

and sparsely sampled high-fidelity models is realized using co-kriging. The resulting surrogate exhibits the

predictive power comparable to the model constructed using exclusively high-fidelity data while offering

significantly reduced setup cost. The advantages over conventional surrogates are pronounced even further.

The presented modeling procedure is demonstrated using two antenna examples and further validated

through the application case studies.

INDEX TERMS Antenna design, surrogate modeling, kriging interpolation, co-kriging, electromagnetic

(EM) simulation.

I. INTRODUCTION

Full-wave electromagnetic (EM) simulation has become the

single most important tool in a practical design of contem-

porary antenna structures. Apart from the rough conceptual

development, EM analysis is ubiquitous throughout all other

design stages, including parametric studies (conducted to ver-

ify the relevance of the introduced topological modifications

and to yield a reasonable initial design for further tuning) as

well as the final parameter adjustment [1], [2].

Depending on the size of the computational domain, topo-

logical complexity of the antenna (affecting, among others,

the mesh grading), or the necessity of including environ-

mental components into the analysis (connectors, housing,
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approving it for publication was Bilal Khawaja .

other radiators [3], [4]), the computational cost of EM

analysis can be high. In the context of simulation-based

design procedures, this may become a serious bottleneck,

especially if numerous analyzes are required. Examples of

the time consuming tasks include parametric optimization

(both local and global [5]–[8]) but also statistical analy-

sis [9], [10]. Expediting design procedures that require repet-

itive references to the EM model has been the subject of

extensive research over the recent years. Available solutions

include incorporation of adjoint sensitivities into gradient-

based routines [11], [12], algorithmic improvements of con-

ventional methods (e.g., suppression of finite-differentiation

sensitivity updates [13], [14]), exploring response features

(e.g., [15], [16]), or utilization of surrogate models, both

physics-based (space mapping [17], manifold mapping [18],

adaptive response scaling [19]) and data-driven (response
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surfaces [20], kriging [21], neural networks [22]), as well as

machine learning techniques [23], [24].

Surrogate-assisted optimization procedures normally con-

struct the models on the fly, e.g., along the optimization path,

through appropriately devised correction-prediction loops

[17]. In many cases, obtaining globally accurate models

is not of concern [25]. On the other hand, the idea of

replacing EM analysis by the surrogate in its entirety is

an appealing one because it opens the door to carry out

virtually any simulation-based design task without incurring

significant computational expenses. Approximation models

are especially attractive in this respect due to their versatil-

ity and a wide range of specific techniques available, e.g.,

radial basis functions (RBF) [26], kriging [21], neural net-

works [22], or polynomial chaos expansion [9]. Yet, the con-

struction of design-ready surrogates of antenna structures

is beyond the capacity of conventional methods because of

the dimensionality issues and a typically high-nonlinearity

of antenna characteristics. Some techniques developed to

alleviate these difficulties to a certain extent include high

dimensionalmodel representations (HDMR) [27], orthogonal

matching pursuit (OMP) [28] or variable-fidelity modeling,

e.g., co-kriging [29], two-stage Gaussian process regression

GPR [30]. As a matter of fact, utilization of variable-fidelity

methods has been growing, both in the context of generic

surrogate modeling (e.g., [31]–[36]) but also single- [37] and

multi-objective optimization [38]).

Recently, performance-drivenmodeling has been proposed

as a way of overcoming the deficiencies of the standard

techniques [39], [40]. The principal idea is to confine the

surrogate domain to a region containing high-quality designs

(w.r.t. the selected figures of interest), and only allocate the

training data and identify the surrogate therein. This paper

combines the latest of these developments, the performance-

driven modeling within a constrained domain with the use

of two-level kriging surrogates (i.e., the nested kriging tech-

nique of [41]), with variable-fidelity EM simulation mod-

els to further reduce the computational cost of surrogate

model construction. Blending of low- and high-fidelity data

is realized using co-kriging [29]. Demonstration examples

indicate superiority of the proposed method over both con-

ventional models and single-fidelity nested kriging as well as

a possibility of rendering design-ready surrogates at the cost

corresponding to less than two hundred high-fidelity antenna

simulations.

II. MODELING APPROACH

This section formulates the proposedmodeling approach. The

outline of its basic components (nested kriging [41] and co-

kriging [29]) is followed by the description of the overall

modeling flow.

A. NESTED KRIGING

The nested kriging framework constructs the first-level sur-

rogate to establish the domain for the second-level (final)

model [41]. The domain is allocated to only contain designs

FIGURE 1. Conceptual illustration of the nested kriging modeling
(here, shown for 2-dimensional objective space and 3-dimensional
parameter space) [41]: (a) reference designs and the objective
space F ; (b) the image sI (F ) of the first-level surrogate and the
normal vector v1(k) at f (k); the manifolds M− and M+ as well
as the surrogate model domain XS defined as the orthogonal
extension of sI (F ).

that are of high quality w.r.t. the relevant antenna performance

figures denoted as fk , k = 1, . . . , N . These may be related

to the electrical characteristics of the antenna (e.g., operating

frequency) but also material parameters (e.g., permittivity or

height of the substrate the antenna is realized on). The ranges

fk.min ≤ fk(j) ≤ fk.max, k = 1, . . . , N , to be covered by the

surrogate, determine the objective space F .

The first-level model sI (f) maps F into the design space

X = [l, u] (an interval delimited by the lower bounds l and

upper bounds u for the design variables). The training data

for sI {f
(j), x(j)}j=1,...,p , where x

(j) = [x
(j)
1 . . .x

(j)
n ]T , are the ref-

erence designs optimized for the performance vectors f(j) =

[f
(j)
1 . . . f

(j)
N ] (cf. Fig. 1), i.e., x(j) = argmin{x: U (x, f(j)}; here,

U is a scalar merit function quantifying the design utility. The

set sI (F) ⊂ X is an approximation of the region containing

the designs optimum w.r.t. f ∈ F . The domain is supposed to

contain all such designs, therefore, an enlargement of sI (F)

is necessary [41]. It is realized by an orthogonal extension

of sI (F) towards its normal vectors, denoted at f as {v
(k)
n (f)},

k = 1, . . . , n – N .

The fundamental component of the surrogate domain

are the manifolds M+ and M− (i.e., the shifted versions

of sI (F))

M± =

{

x ∈ X : x = sI (f )±
∑n−N

k=1
αk (f )v

(k)
n (f )

}

(1)

VOLUME 8, 2020 91049



A. Pietrenko-Dabrowska, S. Koziel: Antenna Modeling Using Variable-Fidelity EM Simulations and Constrained Co-Kriging

with the extension factors αk defined as

α(f ) = [α1(f ) . . . αn−N (f )]
T =

= 0.5T
[

|xdv
(1)
n (f )| . . . |xdv

(n−N )
n (f )|

]T
(2)

where xd = xmax – xmin (parameter variations within sI (F))

with xmax = max{x(k), k = 1, . . . , p} and xmin = min{x(k),

k = 1, . . . , p}, whereas T is a thickness parameter.

Using these, the domain XS is defined as

XS =

{

x = sI (f ) +
∑n−N

k=1 λkαk (f )v
(k)
n (f ) : f ∈ F,

−1 ≤ λk ≤ 1, k = 1, . . . , n− N

}

(3)

The final (second-level) kriging surrogate is rendered in

XS using {xB(k), R(xB(k))}k = 1, . . . ,NB, where R is

the EM antenna model, and xB(k) are the training sam-

ples. The sampling and model optimization procedures are

described in [41].

A remark should be made with regard to the computational

cost of the surrogate acquisition of the reference designs that

are required for a domain confinement through the nested

kriging. A designer has to decide whether this overhead is jus-

tified depending on a particular case and taking into account

the actual cost of acquiring these designs. In some cases,

the reference designs may be available beforehand from the

prior work on the same structure. As it is shown by the results

provided in Section III, building a reliable conventional sur-

rogate may proof impossible due to dimensionality issues or

wide intended parameter ranges surrogate is to be valid for.

Thus, the initial cost of finding the reference designs may be

unavoidable.

B. CO-KRIGING

Incorporation of variable-fidelity EM simulation data is real-

ized by co-kriging [29]. This section gives a brief exposition

of kriging and co-kriging surrogates. We denote by XB =

{x1, x2, . . . , xNB} the training sample set and by Rf (XB)

the corresponding high-fidelity model outputs. The kriging

surrogate sKR(x) is defined as

sKR(x) = Mγ + r(x) · 9
−1 · (f (XB) − Fγ ) (4)

whereM is a NB × t model matrix of the training set XB and

F is a 1 × t vector of the evaluation point x (t stands for the

number of terms used in the regression function [29]); γ are

the regression function coefficients

γ = (XTB 9
−1XB)

−1XB9
−1f (XB) (5)

whereas r(x) = (ψ(x, x1KR), . . . , ψ(x, x
NKR
KR )) is an 1 × NB

vector of correlations between x and XB, 9 = [9i,j] is a

correlation matrix with 9i,j = ψ(xiKR, x
j
KR). A popular class

of correlation functions is

ψ(x, x′) = exp
(

∑n

k=1
−θk |x

k − x ′k |P
)

(6)

Here, n is the parameter space dimensionality, whereas P

determines the prediction ‘smoothness’; θk , k = 1, . . . , n,

are hyperparameters. Typically, P is constant, whereas θk are

determined using Maximum Likelihood Estimation (MLE)

[29] as

(θ1, . . . , θn) = argmin−(NB/2) ln(σ̂
2) − 0.5 ln(|9|) (7)

where

σ̂ 2 = (Rf (XB) − Fα)T9
−1(Rf (XB) − Fα)/NB (8)

and | 9| stands for the determinant of 9. A Gaussian cor-

relation function (P = 2) is suitable for many practical prob-

lems. If no extrapolation is required, one sets F = [1 . . . 1]T

andM = 1.

Co-kriging requires rendering of the two models: sKRc
set up using the low-fidelity data (XBc, Rc(XBc)), and sKRf
generated on the residuals (XBf , r), where r = Rf (XBf ) –

ρ·Rc(XBf ), here, ρ is a part of the MLE of the second model.

Rc(XBf ) can also be approximated as Rc(XBf ) ≈ sKRc(XBf ).

The configuration of sKRc and sKRf can be adjusted inde-

pendently. Both models use (6) as a correlation function

as well as a constant regression function F = [1 1 . . . 1]T ,

M = 1.

The co-kriging surrogate sCO(x) is defined as

sCO(x) = Mγ + r(x) · 9
−1 · (r− Fγ ) (9)

where the matricesM, F, r(x) and 9 can be written as

r(x) = [ρ · σ 2
c · rc(x), ρ

2 · σ 2
c · rc(x,XBf ) + σ 2

d · rd (x)]

(10)

9 =

[

σ 2
c 9c ρ σ 2

c 9c(XBc,XBf )

ρ σ 2
c 9c(XBf ,XBc) ρ2σ 2

c 9c(XBf ,XBf ) + σ 2
d9d

]

(11)

and M = [ρMc Md ] where (Fc, σc, 9c, Mc) and (Fd ,

σd , 9d , Md ) are matrices obtained from sKRc and sKRf ,

respectively [29].

C. MODELING FRAMEWORK

The overall flow of the modeling process has been shown

in Fig. 2. As elaborated on before, the nested kriging

is primarily used to determine the surrogate domain XS
(cf.Section II.A). Subsequently, co-kriging allows for

combining information contained in sparsely sampled

high-fidelity and densely sampled low-fidelity data (cf.

Section II.B).

III. DEMONSTRATION EXAMPLES

This section provides numerical verification of the proposed

modeling approach, benchmarking against conventional sur-

rogates and the single-fidelity nested kriging, as well as appli-

cation examples (antenna optimization).

A. CASE I: WIDEBAND MONOPOLE ANTENNA

The first example is the monopole antenna of Fig. 3(a). The

structure employs a quasi-circular radiator and a modified

ground plane for bandwidth enhancement [42]. The vari-

ables are x = [L0 dR Rrrel dL dw LgL1 R1 dr crel]
T . The

EM models are implemented in CST: low-fidelity model Rc
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FIGURE 2. Variable-fidelity modeling by means of nested co-kriging: a
flowchart.

FIGURE 3. Wideband monopole antenna [42]: (a) geometry (ground plane
shown using light gray shade), (b) reflection responses at the selected
test designs: EM model (—), nested co-kriging surrogate with Nf = 50 and
Nc = 400 (o).

(∼380,000 mesh cells, simulation time 56 seconds), high-

fidelity model Rf (∼1,800,000 cells, 400 seconds). The

models incorporate the SMA connectors. The simulations

were performed on Intel Xeon 2.1 GHz dual-core CPU with

128 GB RAM.

The optimum design is the one that minimizes the reflec-

tion within the UWB frequency range from 3.1 GHz to

10.6 GHz.

The surrogate model is to be constructed within the objec-

tive space defined by the following ranges of the surrogate

parameters: permittivity 2.0 ≤ εr ≤ 5.0 and height 0.5 mm

≤ h ≤ 1.5 mm. The reference designs correspond to all

combinations of εr ∈ {2.0, 3.5, 5.0} and h ∈ {0.5, 1.0,

1.5} mm. The lower and upper bounds for design variables,

l = [11.0 0.0 5.0 0.10 3.0 5.5 11.0 0.6 2.0 0.2 0.2]T , and u =

[13.5 0.9 7. 0.25 5.0 7.5 12.7 3.6 4.0 0.55 0.9]T , are derived

from the reference points.

The nested co-kriging model has been constructed using

various numbers of high- and low-fidelity samples Nf and

Nc: Nf = 20 and Nc = 400, Nf = 50 and Nc = 400,

Nf = 100 and Nc = 400, as well as Nf = 50 and

Nc = 800. The predictive power of the proposed variable-

fidelitymodel is compared to that of the surrogates set upwith

the sole use of the high-fidelity data: conventional surrogates

(kriging and RBF), as well as the nested kriging model. The

kriging model has been constructed using the DACE toolbox

of [44], whereas the RBF model was based on the in-house

implementation (Gaussian basis functions with the scaling

parameter adjusted using cross-validation).

Table 1 gathers the numerical results. Note that the con-

strained models (nested kriging and co-kriging) exhibit sig-

nificantly better accuracy than the conventional surrogates.

Furthermore, the accuracy of the proposed nested co-kriging

is comparable to that of the high-fidelity nested kriging

obtained using 400 and 800 samples. At the same time,

the computational cost of training data acquisition is lower

than for the high-fidelity nested kriging model. It is expressed

in terms of the total equivalent number of Rf samples used

to set up the surrogate, which are calculated as Nf + Nc/m,

m being the ratio of the simulation time between the high-

fidelity model Rf and the low-fidelity model Rc. In the pro-

posed variable-fidelity framework, data acquisition cost is

only between 76 and 162 equivalent high-fidelity model eval-

uations, depending on the setup (i.e., Nf and Nc), see Table 1.

The antenna reflection responses at the selected test designs

are shown in Fig. 3(b) for the model set up using 50 high-

fidelity and 400 low-fidelity samples. The plots demonstrate

a very good visual agreement between the surrogate and the

EM-simulated characteristics.

TABLE 1. Modeling results for wideband antenna.
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TABLE 2. Wideband monopole: Optimization results.

FIGURE 4. Reflection responses of the antenna of Fig. 3 optimized using
the proposed surrogate set up with Nf = 100 and Nc = 400: initial design
(· · ··), surrogate response at the optimized design (o), EM simulated
response (—): (a) εr = 2.5, h = 1.5 mm, (b) εr = 4.4, h = 1.5 mm,
(c) εr = 3.38, h = 0.76 mm, (d) εr = 4.4, h = 1.0 mm. The red solid
horizontal line marks the design requirements, i.e., the maximum
allowed level of antenna reflection within its operating
frequency range.

For additional validation, the surrogate obtained for Nf =

100 and Nc = 400 has been optimized for various sub-

strate parameters. Table 2 provides the numerical results,

whereas Fig. 4 shows the initial and optimized antenna

characteristics.

FIGURE 5. Antenna of Fig. 3 optimized for εr = 4.4 and h = 1.5 mm,
implemented on FR4 substrate: (a) antenna prototype, (b) reflection
and realized gain, (c) H-plane patterns (4 GHz and 8 GHz), (d) E-plane
patterns (4 GHz and 8 GHz); simulations (gray) and measurements
(black).

It can be observed that the initial design obtained from

the first-level surrogate as sI (ft ) (ft being the target objective

vector) is already excellent, so that surrogate optimization

only brings relatively minor improvements. The design cor-

responding to εr = 4.4 and h = 1.5 mm (i.e., a popu-

lar FR4 substrate, widely used in antenna community) has

been fabricated and measured for supplementary validation.

Figure 5 shows the results with a good agreement between

simulations and measurements.
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FIGURE 6. Broadband patch antenna [43]: (a) geometry (ground plane
shown using light gray shade), (b) 3D views of the high-fidelity model
with the SMA connector.

TABLE 3. Modeling results for patch antenna.

FIGURE 7. Reflection responses of the broadband patch antenna at the
selected test designs: EM model (—), nested co-kriging surrogate with
Nf = 50 and Nc = 400 (o).

B. CASE II: BROADBAND PATCH ANTENNA

The second verification case is a broadband patch antenna

with a narrow ground plane shown in Fig. 6 [43]. The

design parameters are x = [WL dW Wghr ]
T . The EM

models are implemented in CST Microwave Studio and

evaluated using the transient solver: low-fidelity model Rc
(∼75,000 mesh cells, simulation time 12 seconds), high-

fidelity model Rf (∼400,000 cells, 94 seconds). The simula-

tions were performed on Intel Xeon 2.1 GHz dual-core CPU,

FIGURE 8. Reflection responses of the antenna of Fig. 6 optimized using
the nested co-kriging surrogate set up with Nf = 100 and Nc = 400:
initial design (· · ··), surrogate model response at the optimized design
(o), EM simulated response (—): (a) f0 = 4.8 GHz, εr = 3.38, h = 0.51 mm,
(b) f0 = 3.8 GHz, εr = 2.5, h = 0.76 mm, (c) f0 = 5.3 GHz, εr = 3.38, h =

0.81 mm, (d) f0 = 5.3 GHz, εr = 4.4, h = 1.0 mm. The red solid vertical line
marks target operating frequency of the antenna.

128 GB RAM. The high-fidelity model contains the SMA

connector, whereas the low-fidelity model is excited through

a discrete port, which considerably reduces its simula-

tion time while compromising the accuracy to a certain

extent. The design optimality is understood as minimiza-

tion of the antenna reflection within at least 10-percent

fractional bandwidth symmetric w.r.t. the target center

frequency f0.

The surrogate model is to be constructed valid for the

following ranges of the center frequency and substrate param-

eters: 3.0 GHz ≤ f0 ≤ 6.0 GHz, permittivity 2.0 ≤ εr ≤

5.0 and height 0.5 mm ≤ h ≤ 1.0 mm. The reference designs

correspond to the following combinations of {f0, εr , h} =

{3.0,2.0,0.5}, {3.0,2.0,1.0}, {3.0,5.0,0.5}, {3.0,5.0,1.0},

{4.5,3.5,0.75}, {4.5,3.5,0.5}, {4.5,3.5,1.0}, {4.5,2.0,0.75},

{4.5,5.0,0.75}, {6.0,2.0,0.5}, {6.0,2.0,1.0}, {6.0,5.0,0.5},

and {6.0,5.0,1.0}. The lower and upper bounds for design
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FIGURE 9. Antenna of Fig. 6 optimized for f0 = 5.3 GHz, εr = 3.38 and
h = 0.81 mm, implemented on RO4003 substrate: (a) antenna prototype,
(b) reflection, (c) realized gain, (d) H-plane pattern at 5.3 GHz, (e) E-plane
pattern at 5.3 GHz; simulations (gray) and measurements (black).

variables (i.e., the parameter space X ) are l = [12.5 10.0 4.0

8.0 0.02]T , and u = [40.0 34.0 17.0 10.0 0.2]T .

Table 3 shows the numerical results obtained for the nested

co-kriging surrogate as well as the benchmark methods (see

also Fig. 7). Similarly as for the first example, the proposed

model exhibits similar predictive power as the nested surro-

gate however, its setup cost is significantly lower. Table 4 and

Fig. 8 show the results of application case studies, demon-

strating suitability of the presented technique for design

purposes. The design corresponding to f0 = 5.3 GHz, εr =

3.38 and h = 0.81 mm has been fabricated on RO4003

laminate and measured for supplementary validation,

see Fig. 9.

It should be noted, that the single- and variable-fidelity

nested kriging surrogates are significantly better than the

conventional ones both in terms of themodel accuracy and the

cost of the training data acquisition. This is because the latter

are constructed within box-constrained domains defined by

TABLE 4. Broadband patch monopole: Optimization results.

the lower and upper bounds on the parameters. Whereas,

in most practical cases, the parameter sets corresponding to

the high-quality designs with respect to the assumed perfor-

mance specifications occupy a small subset of the original

design space. Consequently, uniformly allocated samples in

majority correspond to poor-quality designs. In the nested

kriging technique, the modeling process is focused on the

part of the design space containing useful designs. This dra-

matically limits the domain volume that needs to be sampled,

hence, the training data set size can be significantly reduced,

whereas the surrogate predictive power is high.

IV. CONCLUSION

In the paper, a novel procedure for reliable surrogate mod-

eling of antenna input characteristics has been proposed.

Our approach combines domain confinement realized by the

nested kriging method, and variable-fidelity EM simulations

blended into the surrogate using co-kriging. Comprehensive

benchmarking indicates superiority of the method over con-

ventional models but also single-fidelity nested kriging in

terms of the computational cost reduction while maintaining

similar model accuracy. The achieved predictive power, mak-

ing themodels demonstrably suitable for design purposes, has

been secured with the training data sets consisting of less than

two hundred samples. It should be noted that the nested krig-

ing approach requires certain initial effort related to acqui-

sition of the reference designs. However, these designs (at

least partly) may be available from the previous work with

the same structure. Most importantly, this sort of cost may be

unavoidable in the situations where conventional surrogates

are simply insufficient to ensure required predictive power as

this was actually the case for both verification cases consid-

ered in this work.
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