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When using Gaussian process (GP) machine learning as a surrogate model combined with the global optimization method for
rapid optimization design of electromagnetic problems, a large number of covariance calculations are required, resulting in a
calculation volume which is cube of the number of samples and low efficiency. In order to solve this problem, this study constructs
a deep GP (DGP) model by using the structural form of convolutional neural network (CNN) and combining it with GP. In this
network, GP is used to replace the fully connected layer of the CNN, the convolutional layer and the pooling layer of the CNN are
used to reduce the dimension of the input parameters and GP is used to predict output, while particle swarm optimization (PSO) is
used algorithm to optimize network structure parameters. +e modeling method proposed in this paper can compress the
dimensions of the problem to reduce the demand of training samples and effectively improve the modeling efficiency while
ensuring the modeling accuracy. In our study, we used the proposed modeling method to optimize the design of a multiband
microstrip antenna (MSA) for mobile terminals and obtained good optimization results. +e optimized antenna can work in the
frequency range of 0.69–0.96GHz and 1.7–2.76GHz, covering the wireless LTE 700, GSM 850, GSM 900, DCS 1800, PCS1900,
UMTS 2100, LTE 2300, and LTE 2500 frequency bands. It is shown that the DGP network model proposed in this paper can
replace the electromagnetic simulation software in the optimization process, so as to reduce the time required for optimization
while ensuring the design accuracy.

1. Introduction

At present, solving most of the problems concerning an-
tennas relies on full-wave electromagnetic simulation
software. However, using electromagnetic simulation
software to analyze the antenna is not only complicated but
also computationally expensive [1]. +erefore, many lit-
eratures have proposed that artificial neural networks
(ANNs) [2], support vector machine (SVMs) [3], and
Gaussian process (GP) [4, 5] can be used to analyze antenna
problems. ANN can implement parallel processing, self-
learning, and nonlinear mapping, but its structure is rel-
atively complicated, which requires a large amount of
electromagnetic simulation data, and it is difficult to de-
termine with poor generalization ability [6]. SVM has many
unique advantages in solving small samples and nonlinear
problems [7] and also has many disadvantages such as
difficult selection of kernel parameters, easy overfitting, and

prediction output without probabilistic significance [8]. As
the machine learning (ML) method has developed rapidly
in recent decades, GP has a good adaptability to deal with
complex problems such as high dimensions, small samples,
and nonlinearities, which is also easier to implement than
SVM and ANN. Otherwise, its hyperparameters can be
obtained adaptively, and its predicted output value is also
of probability significance [9]. +erefore, the GP model can
be used as a fast surrogate to obtain accurate full-wave
analysis in antenna design, which can greatly reduce the
time required for accurate simulation in antenna design
while ensuring model accuracy [10]. However, for the GP
modeling method, the biggest limitation is that it has
relatively high requirements on training data. +erefore, it
often uses high-accuracy discrete data sets to ensure that
the model has sufficient prediction accuracy. Meanwhile,
for calculation with the same amount of training data, GP
requires more time [11].
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Convolutional neural network (CNN) is a type of
feedforward neural network (FNN) that includes convolu-
tion calculations and has a deep structure, and it is also one
of the representative algorithms of deep learning (DL). In
DL, CNN can be understood as a deep neural network
(DNN) that can reduce the dimension of data [12] while
retaining the value of data, which is widely used in computer
vision [13] and natural language processing [14], for its
convolutional layer can perform feature extraction on the
data and the data passed to the pooling layer can also be used
to perform feature selection and information filtering on the
data. In the entire CNN, fully connected layers can be
regarded as a “classifier.” If we say that the convolutional
layer, pooling layer, and activation function are used to map
the original data to the feature space of hidden layer, then the
fully connected layers can map the “distributed feature
representation” learned by the CNN network to the sample
label space, which is consistent with the ability of the GP to
map nonlinear complex problems to high-dimensional
space. However, since the traditional GP requires a large
number of covariance calculations, the training efficiency of
GP model will be very low once there is a large input data
dimension. However, the CNN’s convolutional layer and
pooling layer can reduce the dimensions of the data while
retaining the feature value of the data. Based on the above
situation, a deep GP (DGP) network modeling method
combining CNN and GP models is proposed. Simulta-
neously, particle swarm optimization (PSO) algorithm is
used to optimize the parameters of the DGP network model
when training the model. Considering the current research
situation, the application of PSO algorithm to optimize CNN
and GP has been very mature [15, 16]. Comparing with the
traditional error backpropagation (BP) optimization of
CNN, PSO is very flexible in optimizing model parameters
[17]. +erefore, PSO is selected to optimize the DGP model
in this study, while the mean-squared error of the difference
value between the prediction output of the model and the
training output is used as the fitness function of PSO. In this
paper, we applied the proposed DGPmodel to the design of a
multiband antenna [18] for the mobile terminal and ob-
tained good optimization results.

2. Deep Gaussian Process Network Model

2.1. Convolutional Neural Network. +e basic structure of
CNN consists of input layers, convolutional layers, pooling
layers, fully connected layers, and output layers, among
which the convolutional layers and the pooling layers usually
have multiple layers according to the actual problem. +e
traditional CNN is composed of forward pass and back
propagation, so BP is used to optimize the parameters of the
NN and train the NN. We use PSO to optimize the pa-
rameters. Figure 1 is a schematic diagram of the structure of
the convolutional layer and the pooling layer in the one-
dimensional CNN. In this figure, the top layer is the pooling
layer, the middle layer is the convolutional layer, and the
bottom layer is the input layer of the convolutional layer.+e
neurons in the convolutional layer constitute each feature

surface, and each neuron is connected to the local region of
the feature surface of the next layer through a set of con-
volution kernel. +en, the local weight value is calculated
and transferred to a nonlinear activation function. In ad-
dition, the weight values of the same feature surface are
shared. +e parameters and complexity of the model can be
reduced by weight value sharing and local connection,
making the network easier to train. In order to combine with
the GP, we use PSO to optimize the parameters. +erefore,
we need to find out the number of parameters that need to be
optimized and sort out their positions in the CNN.

Take Figure 1 as an example. +e feature surfaces are
connected by a 1× 3 convolution kernel. If we want to use an
equation to represent the connection weight value of the ith
neuron on the input feature surfacem and the jth neuron on
the output feature surface n, the following weight value
sharing equation can be obtained: ωm(i)n(j). An input feature
surface can be mapped to the corresponding output feature
surface through the translation of a convolution kernel of a
fixed size, the convolution operation is performed with all
neurons on the input feature surface, and then it can be
mapped after weighting and activation. Because of the
property of translation convolution kernel, the weight values
can be shared for adjacent neurons in the corresponding
position, which actually use the same weight value in the
convolution kernel. +rough the convolution operation, the
number of neurons in the feature surface of the convolu-
tional layer or the size of the feature surface satisfies the
following formula:

OutSize � InSize − CSize
CInterval

+ 1( ), (1)

where OutSize represents the number of neurons on output
feature surface, InSize represents the number of neurons on
input feature surface, CSize is the size of the convolution
kernel, and CInterval represents the sliding translation step
size of the convolution kernel. +e number of parameters
that can be trained by the convolutional layer is as follows
[19]:

CPN �(InSize × CSize + 1) ×OutSize, (2)

where CPN is the number of training parameters and 1 is the
number of thresholds, usually only one shared threshold is
set for each layer. +e activation function in CNN generally
uses sigmoid function, tanh function, etc.

+e pooling layer is generally constructed on the next
layer of the convolutional layer. It also consists of multiple
feature surfaces, each of which corresponds to the unique
feature surface of the previous layer. +e feature of the
pooling layer is that it does not change the number of feature
surfaces. +e number of neurons on the output feature
surface of the pooling layer is calculated as follows:

OutSize � InSize

DSize
( ), (3)

where DSize is the size of the pooling kernel. +e numerical
output formula of any neuron on the output feature surface
of the pooling layer is as follows:
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youtnk � f xinnp, x
in
n(p+1)( ), (4)

where youtnk is the kth neuron of the nth output surface of the
pooling layer, xinnp is the pth neuron of the nth input face, and
f(·) can be classified into average pooling and maximum
pooling according to the different pooling methods. +e
parameters that need to be optimized are usually in the
convolutional layer and the fully connected layer. In the
pooling layer, we choose the largest pooling or average
pooling, and there are no training parameters [20]. Finally,
we replaced the fully connected layer of the traditional CNN
with a GPmodel, so we will not discuss the parameters of the
fully connected layer here.

2.2. Gaussian Process. +e GP describes a functional dis-
tribution. It is a set of infinite random variables, and any
subset of these variables conforms to the Gaussian distri-
bution. Its properties can be determined by the average value
function u(x) � E[Y(x)] and the covariance function
C(x, x′) � E[(Y(x) − u(x) ))(Y(x′) − u(x′))]. So, the GP
can be defined as follows:

f(x) ∼ GP u(x), C x, x′( )( ), (5)

where x, x′ ∈ X refers to any d-dimensional vector.
Assume the finite data set D � (xi, ti), i � 1, . . . , n{ }

containing n observed values as the training sample of the
Gaussian model, and the observed target value t is polluted
by additive noise ε that follows the normal distribution.+en
the model can be expressed as follows:

ti � f x
i( ) + ε

i, i � 1, ..., n Rd⟶ R, (6)

where xi ∈ X represents the d × n dimensional training input
matrix composed of training input vectors; ti represents the
training output vector composed of the corresponding n
training output scalars; and ε refers to the random variable
that follows the normal distribution, that is,

ε ∼ N 0, σ2n( ). (7)

Joint Gaussian prior distribution composed of n training
outputs t and n∗ testing output t∗ is as follows:

t

t∗
[ ] ∼ N 0,

C(X,X) + σ2nI C X, x∗( )
C X, x∗( ) C x

∗, x∗( )  , (8)

where C(X, x∗) is the n × n∗ order covariance matrix be-
tween training input and testing input samples and
C(x∗, x∗) is the covariance matrix of the testing input
sample itself.

On the premise that the testing point x∗ and the training
set d is given, the purpose of Bayesian prediction probability
is to calculate the probability P(t∗|tDn, qx∗). Based on
Bayesian posterior probability formula, we can get

t∗|x∗,D ∼ N ut∗ , σ
2
t∗( ), (9)

where the expected value and variance of t∗ are as follows:

ut∗ � C x
∗,X( ) C(X,X) + σ2nI( )− 1t, (10)

σ2t∗ � C x
∗, x∗( ) − C

T
x
∗,X( ) C + σ2nI( )− 1C x

∗,X( ). (11)

+e covariance function of the GPmust meet the Mercer
condition, that is, for any point set, a non-negative positive
definite covariance matrix can be guaranteed. +is study
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Figure 1: Schematic diagram of convolutional layer and pooling layer.
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chooses the Ardmatern52 covariance function as the co-
variance function of the GP:

C xi, xj|tθ( ) � σ2f 1 +
�
5

√
r + 5

3
r
2( )exp(− �

5
√

r), (12)

where

r �

���
∑d
m�1

√√
xim − xjm( )2

σ2m
. (13)

where σ2f is the signal variance. +e properties of the average
function and covariance function of the GP are determined
by a set of hyperparameters, which is also the only parameter
that needs to be determined for the GP [21].

2.3. Particle Swarm Optimization. We adopted PSO algo-
rithm for optimization. PSO algorithm is easy to implement,
simple, with less parameters, and can effectively solve the
global optimization problems [22]. In the standard PSO
algorithm, the particle swarm consists of particles, and the
position of each particle is assumed to be a possible prepared
solution to the problem in the dimensional search space.+e
particle updates its flight track based on its inertia, optimal
position, and swarm optimal position.

+e basic idea of the PSO algorithm is to accelerate each
particle to approach the best position of itself and the swarm.
In the solution space, the starting position and speed of the
particles will be randomly set. During the iterative search
process, the algorithm will record the best positions expe-
rienced by individual particles and swarms and the corre-
sponding fitness function values. +e speed and position
update formula of the particle swarm algorithm is as follows:

vk+1i,d � vki,d + c1rand p
k
i,d − x

k
i,d( ) + c2rand pkg,d − xki,d( ),

(14)

xk+1i,d � xki,d + v
k+1
i,d , (15)

where c1 and c2 refer to the learning factor and the accel-
eration constant; rand () is a random number between (0, 1);
vki,d and x

k
i,d refer to the d-dimensional speed and position of

particle i in the kth iteration; pki,d refers to the position of the

individual extreme value of particle i in the dth dimension;
and pkg,d refers to the position of the global extreme value of
the swarm in the dth dimension. In this paper, we optimized
the parameters of the proposed DGP model globally using
the PSO algorithm in the training of the model, so that the
prediction accuracy of the model after the training is
completed can replace the traditional electromagnetic
simulation software. After that, the PSO algorithm is used
again to optimize the antenna based on the trained model.

2.4.1e ProposedDeep Gaussian Process. +e deep Gaussian
process (DGP) network model is the combination of the
CNN and the GP, which is shown in Figure 2. +e GP
replaces the fully connected layer of the CNN, while
retaining the input layer, output layer, convolutional layer,
and pooling layer of the CNN. +e convolutional layer is
used to retain the feature quantity of the input data, the
pooling layer is used to reduce the data dimension, and the
GP is used to predict the output of the object. +e overall
structure of the model is evolved from LeNet-5 [23] (a
common conventional structure of CNN). However, it is
more flexible than LeNet-5 because its overall structure has
been improved with two or more layers of convolutional
layers and pooling layers. Otherwise, the specific number of
layers can be set according to actual needs or multiple
convolutions can be carried out according to the size of the
data or the order of convolutions and pooling can be
changed.

In the DGP network modeling method, the samples
required for model training, that is, the training input and
training output, can be obtained by the electromagnetic
simulation software HFSS. In this paper, VBScript language
is used to realize the data exchange between MATLAB
software and HFSS software, which makes the acquisition of
training data more concise and automatic. After obtaining
the training data, it would be uniformly normalized. Assume
that each group of input data is x with the size of 1× n and
the size is 1× (n− 1) after passing the convolutional layer
with the convolution kernel of 1× 2.+e data are then passed
through the activation function before inputting the pooling
layer, which can turn the linear data into discrete data. After
adding nonlinear factors, the network model’s ability to
understand the problem can be improved [24]. +erefore, in
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Figure 2: Deep Gaussian process network structure.
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this paper, sigmoid is used as the activation function.
Otherwise, the input data completed by convolutions and
pooling are used as the input of the DGP, and the mean-
squared error of the output of the DGP and the training
output is used as the fitness function for PSO-based training.

Finally, the output of the model is reversely normalized to
get the real predicted output value given by the model.

+e trained DGP network can finally be used for antenna
optimization design. +e process of optimization design is
shown in Figure 3.

Table 1: Optimization parameters of the multiband microstrip antenna.

Variable name Variable range (unit: mm) Variable name Variable range (unit: mm)

L32 8.5∼10 PL4 3.5∼4.5
L33 15∼22 PL5 12∼18
L35 6∼12 PL6 5∼7
W1 1∼2 PL7 7∼12
W2 3∼4 PL8 5∼7
W3 1.5∼2.5 Plg1 3.5∼4.5
L1 27∼29 Lsg1 1∼3
L2 21∼24 Lsg2 1∼3
PL1 50∼54 Lsg3 40∼45
PL2 4.5∼5.5 Wsg 1∼2

Input layer
1 × 20

Convolutional layer 1
Size: 1 × 2

Number of channels: 3

Convolutional layer 2
Size: 1 × 2

Number of channels: 1

Convolutional layer 3
Size: 1 × 2

Number of channels: 3

...

...

...

...

...

...

---

---

GP ‐‐‐‐

Output layer
1 × 63

Pooling layer 1
Size: 1 × 2

Pooling layer 2
Size: 1 × 2

1 × 20 input
data

Figure 5: +e DGP network model structure.

Table 2: Optimized parameters of the multiband microstrip antenna.

Variable name Variable range (unit: mm) Variable name Variable range (unit: mm)

L32 9.66 PL4 4.02
L33 17.96 PL5 17.66
L35 10.05 PL6 6.27
W1 1.09 PL7 11.79
W2 3.26 PL8 6.75
W3 1.65 Plg1 3.74
L1 27.56 Lsg1 1.58
L2 22.32 Lsg2 2.34
PL1 52.11 Lsg3 43.47
PL2 4.95 Wsg 1.068
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3. Multiband Microstrip Antenna Application

3.1. Design of Multiband Antenna. In recent years, the 4G
system of LTE has matured and developed worldwide, and
the 5G communication technology has also been gradually
and widely used [25]. Under this background, the perfor-
mance requirements of antennas are increasing [26]. To
meet the requirements of many wireless communication
standards, the antennas of mobile terminal should cover
multiple frequency bands or broadband [27]. In addition,
with the popularity of ultrathin mobile phones, the space of
the antenna is limited, so it is of research value to design the
antenna in terms of small size and frequency band [28].

+e antenna in [18] is changed from a T-shaped
monopole antenna, and the size of the FR4 substrate is 75
(width) mm× 120 (length) mm× 0.8 (thickness) mm. +e
right side of the T-shaped antenna is a parasitic open strip,
and the left side is a slot etched on the ground. +e overall
structure is shown in Figure 4. +rough the simulation of
HFSS electromagnetic software, we know the antenna has 4
resonant frequency bands. In this paper, we use the DGP
network to perform optimization design of the microstrip
antenna (MSA) to make it in the S11 less than 6 dB to cover
the impedance bandwidth of 270MHz (0.69 to 0.96GHz)
and 1.06GHz (1.7 to 2.76GHz), so that we can cover the
wireless LTE 700, GSM 850, GSM 900, DCS 1800, PCS1900,
UMTS 2100, LTE 2300, and LTE 2500 frequency bands.

3.2. Model Training and Prediction. During the modeling
process, the 20 size parameters of the antenna (as shown in
Table 1) are used as variables and randomly combined into

200 groups of different antenna parameters as input data of
the DGP network. HFSS is transferred for simulation, and
the obtained simulation results are taken as the training
output to train the DGP network model. +e mean-squared
error is used as the fitness function of PSO during the
training process. If the model prediction accuracy does not
meet the requirements, then we would continue to train
iteratively by PSO until the model meets the accuracy
requirements.

+e proposed DGP network model used here has 3
convolutional layers and 2 pooling layers. +e size of the
convolution kernel of each convolutional layer is 1× 2, the
number of channels of convolutional layer 1 is 3, the number
of channels of convolutional layer 2 is 1, the number of
channels of convolutional layer 3 is 3, and the size of pooling
layer of each layer is 1× 2. Figure 5 shows the specific
structure of the DGP network model for multiband an-
tennas. After the input data of 1× 20 enter the model, the
dimension size after the pooling layer 2 is 1× 4 for every
channel, which can greatly reduce the training time of GP
and improve the training efficiency of GP. After a series of
convolutions and pooling processes, for the GP, at this point,
the input training data size is 1× 12, and the output data are
the S11 amplitude corresponding to the frequency points
sampled in the frequency band. +e specific frequency band
range is 0.5GHz–3GHz, and the sampling interval is
0.04GHz, with 63 frequency points in each group.

After training, we use PSO to optimize the design. +e
number of particles in the PSO algorithm is 20, the maxi-
mum number of iterations is 500, the acceleration constant
is c1 � c2 � 2, the inertia weight w is 1, and the fitness
function is less than−6 dB in the frequency range of
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International Journal of Antennas and Propagation 7



0.69–0.96GHz and 1.7–2.76GHz. +e optimized size pa-
rameters are shown in Table 2. In order to verify the validity
and accuracy of the model, Figure 6 shows the comparison

results between the S11 predicted by the proposed method
and the simulation results of the electromagnetic simulation
software HFSS, and Figure 7 is the field pattern of the

0.74GHz

1.82GHz

2.3GHz

2.62GHz

E-field H-field

dB (Gainphi)

dB (Gaintheta)

Figure 7: Field pattern of the antenna.
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antenna in its 4 frequency points. +e above results prove
that the optimized antenna can meet the optimization
objectives.

4. Conclusion

+is study proposes a modeling method based on deep
Gaussian process networks. In the framework of deep
learning, this paper first utilizes the advantages of con-
volutional neural network and Gaussian process and crea-
tively combines these advantages. +en, we take advantage
of the convolutional neural network to reduce the input data
dimension without losing data characteristics and finally use
the Gaussian process adaptability to the nonlinear problem
to predict antenna frequency, so as to guarantee the accuracy
and reduce the calculation time, thereby improving the
efficiency. Meanwhile, the proposed deep Gaussian process
networkmodel combined with the PSO algorithm is adopted
to conduct optimization design. +e optimized results are
very close to the results obtained by the HFSS high-fidelity
model simulation, indicating that the modeling method is
sufficiently reliable. +e optimized antenna size meets the
requirements of the index, showing that the method has
practical value in the antenna optimization design.
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