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Abstract

A hybrid numerical technique is developed for electrically large pyramidal horn anten-
nas radiating in free space. A stepped-waveguide method is used to analyze the interior
surfaces of the horn transition. The Electric Field Integral Equation (EFIE) is employed
on the outer surfaces of the pyramidal horn including the radiating aperture. Meanwhile,
the Magnetic Field Integral Equation (MFIE) is used on the aperture to relate the aper-
ture fields and those in the horn transition. The resultant hybrid field integral equation
(HFIE) is solved numerically by the method of moments. This formulation is both accurate
and numerically stable so that high-gain microwave pyramidal horns can be analyzed rig-
orously. Far-field radiation patterns, both computed and measured, are presented for three
electrically-large X-band horn antennas. The comparisons demonstrate that this method is
accurate enough to predict the fine pattern structure at wide angles and in the back region.
Computed far-field patterns and aperture field distributions of two smaller X-band horns
are also presented along with a discussion on the validity of the approximate aperture field

distributions routinely used in the analysis and design of pyramidal horns.



I. Introduction

The horn antenna is the simplest and probably the most widely used microwave radia-
tor. It is used as the feed for large reflector and lens antennas in communication systems
throughout the world. It is also a high gain element in phased arrays. Since horn antennas
are highly accurate radiating devices, they are often used as standard-gain devices for the
calibration of other antennas. The application of electromagnetic horns has been explored
for nearly a century. Extensive investigations of horn antennas have been of increasing
interest during the past three decades. Some of the early research papers on horn antennas
are well documented in Love’s collection[l]. In applications, the pyramidal geometry has
been a preferred configuration. Besides being a high-gain and high-efficiency microwave an-
tenna, the pyramidal horn exhibits some additional advantages. Its rectangular geometry
leads to ease of construction and to a low-cost device. The aperture size of the horn can
be adjusted to achieve specific beam characteristics with negligible changes in others. It is
also easy to excite the pyramidal horn with conventional microwave circuit devices. These
advantages distinguish the pyramidal horn as a preferred microwave radiator.

The analysis and design of the pyramidal horns are traditionally carried out by using
approximate aperture field distributions, and assuming that contributions from induced
currents on other parts of the horn surface are negligible. A quadratic phase term is usually
assumed to account for the flaring of the horn transition [2, 3, 4]. This approximate method
predicts fairly well the main-beam of the far-field radiation pattern and the gain of the
antenna. Since reflections, mode couplings, and diffracted fields from the exterior surfaces
are not included, it does not predict very well sidelobes and the pattern structure in the
back region.

In the 1960’s, the Geometric Theory of Diffraction (GTD), a high- frequency method,
was introduced to include edge diffracted fields. The two-dimensional GTD model presented
in [5, 6] yielded an improvement in the far-field E-plane pattern over the approximate aper-
ture field method. A two-dimensional model for the E-plane pattern based on an integral
equation and the Moment Method was examined by Botha et al. in [7]. Although, the two-

dimensional models are in better agreement with measured far- field E-plane patterns, they



cannot duplicate the H-plane pattern in the back regions since couplings of the diffracted
fields from both the E- and H-plane edges are not included in the two-dimensional models.
Finally, neither the approximate aperture field method nor the GTD are well suited for
calculating the aperture field distribution, VSWR, and cross-polarized patterns.

A rigorous analysis of pyramidal horn antennas was deemed a formidable task in the
early development of horn antennas. Recent advances of the computational capabilities and
the popularity of the pyramidal horn antennas have encouraged the development of more
accurate models with improved numerical efficiencies. The integral equation formulation
with a Moment Method (MM)[8] solution has become a powerful tool in modeling complex
electromagnetic field problems. MM has been used to analyze an aperture in a ground
plane[9, 10] and a grounded aperture in the presence of a thin conducting plate[11]. It has
been applied to pyramidal horn antennas, both with and without corrugations, mounted in
a ground plane[12, 13]. The presence of a ground plane simplifies the analysis; however for
most applications, the horn antenna is a stand-alone radiating elefnent. Without the ground
plane, electric current is induced on the outer surfaces which has a significant impact on
the pattern at wide angles and in the rear hemisphere.

Complete three-dimensional models have been developed for electrically small pyrami-
dal horn antennas has been analyzed using MM[14], and small H-plane sectoral horns and
X-band standard-gain horns by the finite-difference time- domain method (FDTD)[15, 16].
For high gain pyramidal horn antennas, it is a difficult task to model antennas very accu-
rately with a simple extension of existing numerical electromagnetic methods, such as those
described in [14, 15, 17, 16]. The main problem in modeling the transition from a relatively
small feeding aperture to a much larger radiating aperture is the use of an efficient number
of elements. The electric current densities on the interior surfaces of the horn transition
becomes too complex to be modeled effectively using these methods.

A full-wave stepped-waveguide model and HFIE method to analyze both the interior
flaring and the exterior current contributions was previously developed by Kiihn et al [18]
for conical horns, whose formulation is simplified due to their axial symmetry. This paper

follows a similar procedure as [18] to solve horns with square and rectangular geometries.



This full-wave formulation provides flexibility and includes all of the important details of
a practical pyramidal horn antenna. It represents the first full-wave method to include
the current densities on all conducting surfaces of a pyramidal horn which are necessary
to predict the fine pattern structure in regions of low-level radiation, such as those in the

outermost minor lobes.

II. Theory

Figure 1 illustrates the geometry of a typical pyramidal horn antenna. The field problem
can be separated into two parts. The first is the transition from the feeding waveguide to
the radiating aperture. A complete full-wave approach to this part of the problem is to
represent the transition as a series of stepped-waveguide sections as shown in Figure 2. '
Mode matching is performed by rigorously enforcing the boundary conditions at each step.
The result is a scattering matrix for each step which can be combined to obtain a scattering
matrix for the entire transition region.

The second part of the problem is an aperture radiating in the presence of the exterior
conducting surfaces, as shown in Figure 3. Interactions between the aperture fields and the
exterior surfaces of the horn will impact the radiation pattern as well as the field in the
transition region. The interaction is accurately analyzed by using the EFIE on the exterior
surfaces of the horn. The equivalence principle is introduced to formulate the magnetic
field integral equation on the radiating aperture which combines the interior field transition
problem with the exterior radiation.

Because of the decomposition of the problem into interior and exterior part, there is
sufficient flexibility in choosing the methods and numerical models for the solution of each
parts. Therefore, an accurate analysis of the transition and the exterior surfaces can be

implemented robustly and efficiently.

A. Interior Horn Transitions

An accurate analysis of waveguide transitions has been an interesting research topic in

the microwave circuit design [19, 20, 21, 22]. The available numerical approaches can be



divided into two classes: a numerical solution of the system of ordinary differential equations
[20, 23], and the stepped waveguide model with a full-wave mode-matching technique on
stepped junctions [19, 13, 23, 18]. The numerical solution of the differential equations
must be performed with a finite advancing step size, and due to the numerical problem
caused by evanescent modes, the taper has to be divided into several sections. The hybrid
matrix of each section needs to be computed separately, then translated and combined into
a scattering matrix. On the other hand, the stepped-waveguide technique uses a finite
number of subdivisions of waveguide steps to approach the continuous horn taper. Within
each waveguide step, the waveguide section is uniform. The scattering matrices of each
waveguide step are related to each other by the electromagnetic boundary conditions on
the discontinuous junctions connecting them. The combination of the scattering matrices -
of all the steps gives the total scattering matrix of the horn transition. As examined by
[21] and [23], the numerical technique that solves the first-order differential equation yields
results with the same accuracy as given by the stepped-waveguide technique, when the
size of the steps is sufficiently small. The validity of the stepped-waveguide approximation
to simulate the continuous horn transition has been justified in [12, 13, 23, 18, 19]. The
computational effort for the two approaches is about the same.

In this paper, the stepped waveguide technique is employed for its advantage in the
numerical stability. Figure 2 represents a typical stepped waveguide model of the horn
transition. The continuous transition is approximated by a number of cascaded stepped-
waveguides, and for a pyramidal horn transition, each step is a section of rectangular waveg-
uide. Electromagnetic field distributions in each of the rectangular sections can be expressed
as the superposition of all possible TM, and TE, modes. Moreover, the TM, and TE,

modes in each region can be generated by the z components of two vector potentials[24]
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The electric and magnetic fields are obtained from the vector potentials as described in
[24]. At the stepped waveguide junction, the boundary conditions relating the two slightly

differently sized waveguides are

Eg{:}(zvy)lonS = En(r?g(z’?l)lonS (3)
H S

EQ(z,Y)lonas = 0 A8/ (4)

H:(:?)(z’y)lons = H:&?g(xay)'ons (5)

where S is the area of the smaller waveguide section, and AS the “ring” area of the larger
waveguide section extracting S as illustrated in Figure 4. Testing the boundary conditions in
(3) -(5) by the corresponding expansion functions (this process is equivalent to a full-domain
Galerkin's Method), the boundary conditions uniquely define the relation between the full-
wave expansion coefficients on both sides of the junction. The details of the matching at the
discontinuities and the combination of the scattering matrices are available in[21, 19, 18,
12, 23, 13]. If all incident full-wave modes are represented by a vector a and the reflected
full- wave modes by a vector b, the two are related by the total scattering matrix for the

horn transition as

b(F) s sip a(F)
() o (%) N
where superscripts ‘(F)’ and ‘(A)’ denote, respectively, the full- wave coefficients at the feed
junction and radiating aperture, and the superscript ‘(T')’ denotes the total contribution of
the horn transition. Although pyramidal horns are generally excited by the dominant T Eyo
mode from the feeding waveguide, higher order TE,,, and TMpn modes are generated in

the transition. For horn geometries with symmetrical flarings in both dimensions, only

those modes which have m = 1,3,5,7,...,M and n = 0,2,4,6,...,N (n = 0 for TE modes
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only) are generated in the transition. The coupling between TE,,, and T M, modes is
automatically included in the full-wave analysis of the stepped junctions.

There are two factors which affect the accuracy of the stepped- waveguide approxima-
tion: the size of the steps and the number of terms in the series (M and N in (1)-(2)). Past
experience demonstrates that a convergence is achieved by limiting the maximum size of
the steps to A/32. The choice of M and N should be based on the flare angle and length of
the steps. It is important to keep a sufficient number of terms in the series because higher
order modes at the aperture contribute significantly to the radiation pattern in the back
regions. Therefore, significant more terms are needed for this analysis than that performed
in [12, 13]. An empirically derived formula for determining M and N is the nearest higher

integer of

(M,N)= @ +15 (7)

where A and B are the dimensions of the horn aperture. When analyzing a high-gain horn
antenna, the required number of modes determined by (7) is large, and if used through-
out the matching process, the computation could become very inefficient. To reduce the
computation time, a variable number of modes can be used along the transition. At each
step, the number of modes are determined using the same criterion given for the aperture
in (7) except A and B are replaced by the step dimensions. Therefore, only a few modes
are required near the feed and approach (7) as the computation proceeds toward the horn
aperture. This process preserves accuracy, and for the geometries considered here, reduces

the computation time to about one eighth that of a constant number of modes.

B. Integral Equations and Moment Method

The radiation from the aperture and the outer surface of the pyramidal horn are ana-
lyzed using a Moment Method solution to integral equations [8, 24]. Since the outer surfaces
of a high-gain pyramidal horn antenna are usually 120A? to 200A?, a straight-forward Mo-
ment Method solution is a very computationally involved process. Therefore, a variety of

theoretical and numerical techniques are introduced to enhance the efficiency and accuracy



of the solution.

1. The Hybrid Field Integral Equation

Figure 3 presents the general problem of a radiating aperture in a conducting body. In
Figure 3, the fields internal to the aperture are represented by the full-wave vectors a (the
incident mode) and b (the reflected modes). To relate the internal and external fields on
the aperture, Love’s field equivalence principle [24] is introduced. The radiating aperture is

replaced by a sheet of perfect electric conductor with a magnetic current density

M(a®) + b4y = —n x E™(al4), bl4)) (8)

where n is the unit vector normal to the aperture, and E"(al4) b(4)) is the electric field
internal to the aperture. Equation (8) insures the continuity of tangential electric fields
across the aperture. The magnetic current density M is radiating in the presence of the
closed conducting surfaces of the horn. An electric surface current is then induced to
maintain zero tangential electric field on the external surfaces of the horn. Therefore, the
continuity of the tangential magnetic field across the aperture and the boundary conditions

on the external surfaces require that

HeZE(M) + HeZHT) = Hi (a4, b))  on the aperture (9)
EZL(J)+ ESEI(M) = 0 on the external surfaces and the aperture (10)

where field components with ‘ext’ denote the fields on the free space side of the aperture.
The boundary conditions of (8)-(10) derived from Love’s field equivalence principle satisfy

the uniqueness theorem and define an equivalent to the actual electromagnetic problem.

2. Moment Method Solutions

In the Moment Method solution of the hybrid field integral equations of (8) and (10), sub-
sectional quadrilateral roof-top patch modes are chosen as both the expansion and testing

functions for the electric current density distribution on the exterior surfaces of the horn.



To exploit the Toeplitz property of the impedance matrix elements, magnetic current den-
sity on the aperture is also expanded and tested with the same roof-top patch modes as
those of electric current modes on the aperture. Thus, impedance and admittance matrix
elements for the integral equation solution on the aperture are related and do not have to
be computed twice. A more detailed explanation of such a process can be found in [17].
Since the aperture magnetic current density is related to the full-wave modes a{4) and b(4),
a conversion matrix is introduced to transform the roof-top patch modes into eigen modes

of the aperture field in (8)

_ 8% ps o = S M52y pM
J =) JP; M= Mm;=) M) V;P] (11)
1 7=1

i=1 =1

where PiJ and P;” are the subsectional roof- top patch modes for the i-th electric and j-th
magnetic current density modes, respectively. Nps represents the total number of full- wave
expansion modes of both TE and T M in the aperture, N represents the number of roof-top
patch modes for the aperture magnetic current density and N; represents the total number
of roof-top patch modes for the electric current density on the entire outer surface of the
horn including the aperture. [V;] is the conversion matrix from the distribution functions of
the aperture modes m; expressed by en,(z,y) and hp,(z,y) in (1) and (2) to the roof-top
patch modes. Testing (10) with P leads to

- < P]LEZ () >=< P/ EZL (M) > (12)

tan

Substituting the expansion representation of J and M into (12), yields a matrix with

elements given by

Z,-jz_%dﬂ EC(PY) > = __/ / P! . B2t (PY)dsids; (13)
Qu=<PLEZPM) > = [ [ P EZUPMdsds (14)
k 1

A normalization factor of 1/7 is introduced in computing the matrix elements of Z;; in (13)
to reduce rounding errors in combining big matrices, which is very helpful in maintaining the

numerical stability of the MFIE in (9). Efficient and accurate algorithms for evaluating the
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four-fold integral of (13) and (14) are briefly described in Appendix A. Since the expansion
and the testing modes are the same, the impedance matrix Z is a complex symmetric matrix.
It can be filled and decomposed with only half of the CPU time needed for the full-matrix
system([25, 26]. The solution of (12) leads to

J= %Z‘IUM (15)

where

U=QV! (16)
and the superscript ‘t’ signifies transpose. J is the vector representation of the subsectional
roof-top patch modes and M the aperture field modes. The transformation from Q to U
in (16) reduces the number of right-hand side solution from N4 to Nas (N is generally a
small fraction of N). Again, testing (9) with m;, the MFIE can be expressed as

< m, HE(M) > + < m;, HZ(J) >=< my, Hitt (a@) b(A) > (17)

tan tan

Using duality for the reaction of the aperture magnetic current density modes[17], reci-
procity for the reactions between the aperture magnetic modes and the outer surface electric

modes, and the relation of (13), equation (17) can be written as

b4 = sWugld) = [y 4 yin-1y™ Y #)]al4) (18)

where I is the identity matrix, Y(4), and Y™ the aperture admittance matrices defined
by
Y@@ + b4y = [VZAV! 4 U'Z71U][< m;, M(a® + b4)) 5] (19)
Y@t - b)) = [< mynHi (W - bY) >] (20)
Z(4) is a subset of Z for electric current density modes on the aperture. Using (18) and

(6), the incident aperture field distribution coefficients (denoted by a vector a(4)) and the

reflected wave at the feed (denoted by a scalar coefficient bgg')) are given by
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T - Ty (F
alt = (1-8{s4)'salp) (21)

F T T T - T F
bgo) = [Sgl) + S£2)S(A)(I - ng)S(A)) lsgl)]ago) (22)

where aﬁﬁ) is the magnitude of the incident T E1g mode in the feeding waveguide. Equations

(22), (21), (18), and (15) specify the antenna reflection coefficient (or return loss), the aper-
ture magnetic current density distributions, and the electric current density distributions
on the exterior surfaces. The radiated electric field can be determined from the current

density expansions and the gain computed from

|E(J,8,4) + E(M, 8,8

srla L= (B

where f. is the cut-off frequency of the feeding waveguide, and f the operating frequency.

G(6,¢) = 10logyo (23)

ITII. Results and Discussions

Five X-band high-gain pyramidal horns were chosen to be analyzed. For the quadrilat-
eral roof-top expansion of the exterior surfaces of the horn at 10 GHz, Table 1 gives the
dimensions and typical computed data for a maximum segment length of 0.15A for the 10-
and 15-dB standard gain horn, and 0.2 for tlie other three horns. The CPU times are
typical for an IBM R6000-350 workstation. Table 2 lists gains and VSWR’s obtained by
the approximate aperture method and the Moment Method (MM). As expected, differences
are more obvious for the 10-dB gain horn since the approximate method in [4] does not
work very well for such a small horn. Table 3 lists comparison of approximate, measured,
and predicted gains and VSWR’s for the 20-dB X-band standard gain horn antennas at
three different frequencies. Note that the gains listed in the tables have almost a constant
0.2 dB differences between the moment method solution and the measured data. Nearly
the same amount of difference is observed between computed and measured gains for the
other two large X-band square aperture horns. It should be mentioned that the same 20-dB
standard-gain horn is used as the calibration antenna. Therefore, if there is any inaccuracy

in the calibration data, all measured data sets are affected. The agreement between the
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Table 1: Typical data of pyramidal horn antennas analyzed

Pyramidal horn dimensions | EFIE Matrix CPU
A B L size(# of rows) (in hrs)
10-dB Standard-gain horn 1.58" 1.15” 2.01” 820 0.38
15-dB Standard-gain horn 2.66” 1.95" 5.46" 1600 0.61
20-dB Standard-gain horn 4.87" 3.62"” 10.06” 4300 1.8
5-inch square horn 5.04” 5.06” 10.5" 5700 2.6
7-inch square horn 7.0 7.0 121" 9600 11.3

Table 2: Comparison of VSWR'’s and gains of 10- and 15-dB standard gain horns

8.2 GHz 10.3 GHz 124 GHz
VSWR  Gain VSWR Gain VSWR  Gain
10-dB  Approximate N/A 898dB N/A 11.13dB N/A 1281dB

Horn MM | 1.18 9.75dB 1.17 11.63dB| 1.20 13.48dB
15-dB_ Approximate | N/A 13.83dB | N/A 1583dB| N/A 17.42dB
Horn MM | 111 14.23dB 1.14 1594dB| 1.10 17.58dB

Table 3: Comparison of VSWR’s and gains of the 20-dB standard gain horn

9 GHz 10 GHz 11 GHz
VSWR Gain VSWR Gain VSWR Gain
Approximate N/A 19.77dB N/A 20.59dB N/A 21.31dB

MM 1.082 19.98dB 1.057 20.63dB 1.031 21.46dB
Measured 1.10 19.72dB 1.06 20.46dB 1.04 21.24dB

computed and measured VSWR'’s is excellent. Figures 5 to 6 present comparisons of E- and
H-plane patterns obtained from the moment method and the approximate method for the
two smaller X-band horns. The approximate patterns are computed using the method out-
lined in Chapter 12 in [4], except that the free-space wave impedance in (12.1d) is replaced
by the guide wave impedance at the aperture. As expected, the agreement of the patterns
in Figure 5 is not as good as in Figure 6. Figure 7 shows the comparison of the moment
method, approximate, and measured E- and H-plane patterns for the 20-dB standard gain
horn. Since the horn is much larger than the previous two horns, the approximate method
compares well with measurements in the first few lobes of the patterns. However, patterns

predicted using the moment method compare much better with the measured patterns. The
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improvement over the approximate method is more evident in the back regions.

In 1965, Russo et. al. [5] presented investigations into the effect of different wall thick-
nesses on E-plane patterns of pyramidal horn using GTD. Figure 8 presents our comparisons
of the E- and H-plane patterns of the 5-inch square X-band horn at 10.0 GHz with and
without modeling the aperture wall thickness. Results in the figures agree with Russo’s con-
clusion for the E-plane radiation patterns. However, for the H-plane patterns, the predicted
patterns of the thin wall model do not agree in the back region with the measured patterns
as well as those of the thick wall model. The thick wall model accurately predicts the fine
ripple structure in the back region while the thin wall model does not. It is our observation
that the aperture wall thickness plays a significant role in affecting the fine ripple structures
of the H-plane patterns. The addition of the outer surface of the feeding structure in the
EFIE has only a negligible effect on the patterns of the horn antennas and does not change
any ripple structure in the backlobes.

Another advantage of the moment method solution is the ability to examine the aper-
ture field distribution. Figures 9 to 11 represent computed aperture field (£, and H,
components) distributions of the three X-band pyramidal horns at 10 GHz. Contrary to
the approximation that the aperture fields are basically T E;q with parabolic phase fronts,
the distributions computed by the moment method demonstrate a much more complicated
shape. The deviations from the approximate aperture distributions are more evident for
H,. Figures 9 to 11 also illustrate that as the electrical size of the aperture become larger,
the amplitude distributions become more complicated, but the phase distributions approach
a parabolic phase front as assumed by the approximate method.

As presented in the comparisons between computed and measured results, the full-
wave and HFIE method has demonstrated an excellent accuracy in simulating both small
and large pyramidal horn antennas. One of the requirements for this method in solving
large pyramidal horns is the computer memory. In some workstations such as the IBM
RS6000/350, the fast data transferring capability between the memory and the hard-disk
enables the out-of-core memory matrix solver for a symmetric complex system to run nearly

as fast as the in-core solver. If the symmetric property of the electric current distribution
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on the exterior surfaces is utilized, the memory can be reduced to 1/8 while the CPU time

can be decreased to about 1/4 of the values listed in Table 1.

IV. Conclusions

A full-wave hybrid field integral equation method has been developed to analyze
pyramidal horns. The model includes the current induced on the exterior surfaces and has
been verified by a comparison of computed and measured data. For accurate results, the
following guidelines are suggested:

e include a sufficient number of higher order modes in the full- wave analysis. The

required number of modes can be determined using the empirical formula of (7).

o limit the size of the stepped discontinuity to less than A/32 when approximating the

continuous horn transition.

e limit the largest segment size of the roof-top patch to less than 0.2\ to ensure an
effective and accurate solution of the electric field integral equation on the outer

surfaces of the pyramidal horn.
e include the wall thickness in the segmentation of the outer surface.

This study shows that the approximate method found in most antenna books is not
very accurate in predicting gains and patterns of the pyramidal horns of small electrical
size. However, as the electrical size gets larger, the approximate method becomes more
accurate in predicting the gains and the first few minor lobes of the far-field radiation
patterns of a pyramidal horn. The aperture field distributions of pyramidal horns are much
more complicated than those assumed in the approximate formula. However, the phase
distribution approaches a parabolic distribution for apertures of large electrical sizes.

Although the moment method solution is somewhat computationally intensive, a widespread
application of high power workstations, such as the IBM RISC6000 platforms, is making it
more effective to serve as a computer-aided analysis and design tool. Although the present
development has concentrated on pyramidal horn antennas, the model can be extended to

analyze wide-band dual-ridged, and quadruple-ridged horns.
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V. Appendices

A. Evaluation of the Impedance Matrix Elements in Moment Method

The electric fields due to surface electric and magnetic current distribution needed in (13)

and (14) can be written as

EQJ) = —jfn / () + 53 LYV I(s))@ds (A.1)

EM) = - /S M(s') x Vods' (A.2)

where primed coordinate represents the source coordinate and & = e~7#R/4x R is the free-
space Green’s function; J(s') and M(s’) are surface electric and magnetic current density .
on §’, respectively. Substituting (A.1) and (A.2) into (13) and (14), respectively, using the
current continuity condition, the impedance matrix elements can be expressed in the form

of

Z;;

38 [, J, BT B~ 7 PO B jedsas  (A9)
Qu = 8 /S / , 2R P (sx) PM(s))(1 + jBR)®dsids (A4)

where n is the unit directional vector of (P} x PM). Evaluations of (A.3) and (A.4) can
be efficiently carried out by using Taylor’s expansions of the kernel functions ® and e~/##
at the center of the two patches and analytical integrations can be found for individual
terms of the Taylor’s expansions. Therefore, only one of the surface integrzﬂs needs to be

evaluated numerically.
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