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Abstract 

In this paper, we investigate antenna selection strategies for MIMO-OFDM wireless systems from an 

energy efficiency perspective. We first derive closed-form expressions of the energy efficiency and the 

energy efficiency- spectral efficiency (EE-SE) trade-off in conventional antenna selection MIMO-OFDM 

systems. The obtained results show that these systems suffer from a significant loss in energy-efficiency. 

To achieve a better energy-efficiency performance, we propose an adaptive antenna selection method 

where both the number of active RF (radio frequency) chains and the antenna indices are selected 

depending on the channel condition. This selection scheme could be implemented by an exhaustive search 

technique for a small number of antennas. Moreover, we develop a greedy algorithm that achieves a near-

optimal performance with much lower complexity compared to the (optimal) exhaustive search method 

when the number of antennas is large. In addition, the efficacy of power loading across subcarriers for 

improved energy efficiency in the conventional and proposed antenna selection MIMO-OFDM systems is 

considered. Monte-Carlo simulation results are provided to validate our analyses. 

Index Terms 

Antenna selection, energy efficiency, MIMO,OFDM systems. 

 

I. INTRODUCTION  

Recent years have seen increasing demands for high speed wireless communications. Besides, 

reducing energy consumption in wireless networks is of significant interest among academic and 

industrial researchers. This is due the fact that there are rising energy costs and carbon footprint of 

operating wireless networks with an increasing number of customers [1]. Consequently, energy 

efficiency, which is conventionally defined as the number of transmitted information bits per unit 

energy (bits/Joule), needs to be considered as one of the key design metrics for future networks [2], 

[3]. The improvement of energy-efficiency in wireless systems could be tackled at the component 

level (e.g., improve power amplifier efficiency), link level (e.g., discontinuous transmission and 

The authors are with the School of Electrical, Computer and Telecommunications Engineering, University of 

Wollongong, Australia (e-mails:{pnl750, farzad, lctran}@uow.edu.au). 

This work was presented in part at the 17th International Symposium on Wireless Personal Multimedia 

Communications (WPMC), Sydney, Australia, Sept. 7-10, 2014. 
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sleep modes), or network level (e.g., the layout of networks and their management) [3], [4].  

A combination of MIMO (multi-input multi-output) techniques and OFDM (orthogonal 

frequency division multiplexing) has been considered as a key technique for high-speed wireless 

communications [5], [6]. This is due to the fact that OFDM transmission offers high spectral 

efficiency and robustness against intersymbol interference (ISI) in multipath fading channels. 

Meanwhile, MIMO techniques significantly increase data rate and/or link reliability. Specifically, 

the ergodic capacity of MIMO systems over fading channels is shown to increase linearly with the 

minimum of the number of transmit and receive antennas [7]. In fact, MIMO-OFDM has been 

adopted in current and future standards, such as WiMAX (Worldwide Interoperability for 

Microwave Access) IEEE 802.16m, WLAN (Wireless Local Area Network) IEEE 802.11n, and 

3GPP LTE (Long Term Evolution)/LTE-Advanced [6]. Among various MIMO schemes, antenna 

selection appears to be a promising approach for OFDM systems. In antenna selection, only a 

subset of antennas is selected (subject to a given selection criterion) for transmissions. Therefore, 

this technique requires a low implementation cost and small amount of feedback information, 

compared to other beamforming or precoding techniques [8], [9]. Owing to these advantageous 

properties, antenna selection has been considered for the uplink of 4G LTE-Advanced [10].  

In general, there are two fundamental approaches for the deployment of antenna selection in 

OFDM systems, namely, bulk selection (i.e., choosing the same antennas for all subcarriers) [11]-

[13] and per-subcarrier selection (i.e., selecting antennas independently for each subcarrier) [11], 

[14]. The main benefit of the latter over the former is that a larger capacity and/or better error 

performance can be achieved by exploiting the frequency-selective nature of the fading channels 

[11]. However, the per-subcarrier selection scheme needs a larger number of radio frequency (RF) 

chains than bulk selection. Beside these two selection methods, a combined selection scheme has 

been considered recently in [15]-[17]. This selection scheme combines the bulk selection and per-

subcarrier approaches. However, to the best of our knowledge, all these works only investigated 

antenna selection OFDM systems from either capacity or error-performance perspective, for 

example, analysing diversity gain and coding gain [11], [15]-[17], measuring capacity [13], or 

evaluating error performance [12], [14]. 

Antenna selection is traditionally considered for improved capacity and/or error-performance. 

Recently, some research works have investigated energy efficiency in antenna selection single-

carrier systems [18]-[20]. In [18], the authors jointly optimized the transmit power and the number 

of active antennas to maximize energy efficiency. This work examined single data stream MIMO 

systems, while energy-efficiency in multi-stream antenna selection MIMO single-carrier systems 

was studied in [19]. Transmit antenna selection with a large number of equipped antennas at the 
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transmitter was considered in [20]. In this study, the authors analysed the energy efficiency in a 

large-scale array regime and proposed antenna selection algorithms to improve energy efficiency. A 

large-scale distributed antenna system (L-DAS) that considered antenna selection for improved 

energy-efficiency was also proposed in [21]. However, we note that these works only consider 

single-carrier systems, and an extension to antenna selection OFDM systems is not straightforward. 

The main reason is that there are several approaches for OFDM systems as mentioned before. From 

an energy-efficiency perspective, it can be seen that each antenna selection approach possesses both 

advantages and disadvantages. Specifically, per-subcarrier selection achieves better capacity than 

bulk selection and combined selection at a cost of higher power consumption due to the requirement 

of multiple active RF chains. These critical issues, which are pertinent in the setting of OFDM 

systems, do not arise in single-carrier antenna selection systems. Hence, they have not been 

considered so far. In addition, some recent works on energy-efficient MIMO-OFDM systems, e.g., 

[22], [23], focused only on spatial multiplexing MIMO schemes, which did not address the above 

concerns. Therefore, a study is required to evaluate energy efficiency of antenna selection MIMO-

OFDM systems. Note that in [24], we investigated energy-efficiency in per-subcarrier antenna 

subset selection OFDM systems with the objective of peak-power reduction. However, [24] only 

examined the per-subcarrier selection system from a viewpoint of power-amplifier efficiency, 

which is not the focus of the present work. 

To the best of our knowledge, there is no comprehensive study about the efficacy of antenna 

selection schemes in the context of OFDM systems from an energy-efficiency viewpoint in the 

literature. Consequently, it is not clear if the existing antenna selection approaches (e.g., bulk 

selection, per-subcarrier selection, and combined selection schemes) are optimal in terms of energy-

efficiency. Motivated by this, in this paper, we investigate energy-efficiency in MIMO-OFDM 

systems with several antenna selection schemes. The main contributions of this work are 

summarized as follows. 

i) Energy efficiency in conventional antenna selection MIMO-OFDM systems is analysed for 

the first time. In particular, we derive closed-form expressions of the energy efficiency and 

the EE-SE trade-off in these systems. Our results show that the conventional antenna selection 

systems are not effective with respect to energy efficiency. 

ii) An adaptive antenna selection approach is proposed to improve energy efficiency in MIMO-

OFDM systems. In this method, both the number of active RF chains and the antenna indices 

are selected to maximize energy efficiency. We also show that the proposed adaptive 

selection scheme achieves better EE-SE trade-off compared to the existing selection schemes. 

iii) A greedy algorithm to implement the proposed adaptive selection method is developed. This 

algorithm can attain near-optimal energy-efficiency while requiring much lower complexity 
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compared to that with the optimal exhaustive search method, which is important when a 

number of antennas is large. 

iv) Efficacy of power loading across subcarriers in several antenna selection MIMO-OFDM 

systems is evaluated from an energy-efficiency perspective. Our results reveal that power 

loading can improve energy efficiency in the low signal-to-noise ratio (SNR) region. Also, its 

effectiveness depends on particular antenna selection schemes. 

v) Impacts of a comparison between the transmit power and the circuit power consumption, 

types of antenna selection criteria, the number of equipped antennas, and spatial correlation, 

on the energy efficiency in the conventional and proposed systems are numerically evaluated.  

The remainder of the paper is organized as follows. In Section II, an antenna selection MIMO-

OFDM system model and an energy-efficiency metric are described. In Section III, we analyse 

energy-efficiency in the MIMO-OFDM systems deploying conventional antenna selection 

approaches. In Section IV, we propose an adaptive antenna selection method to improve energy-

efficiency. In Section V, power loading across subcarriers in antenna selection MIMO-OFDM 

systems is considered. In Section VI, we provide some simulation results and perform in-depth 

analyses of energy-efficiency achieved in the considered systems. Finally, Section VII concludes 

the paper. 

Notation: Throughout this paper, a bold letter denotes a vector or matrix, whereas an italic letter 

denotes a variable. (.)T, (.)H, {.}, and ||.||2 indicate transpose, Hermitian transpose, expectation, and 

a squared norm, respectively. Also, )!(!!C ababb
a 

 
denotes the binomial coefficient. 

II. ANTENNA SELECTION MIMO-OFDM WIRELESS SYSTEMS 

A. System Model 

We consider a point-to-point MIMO-OFDM system with K subcarriers, Tn  transmit antennas, 

and Rn  receive antennas. The number of equipped transmit RF chains is TRFRF nnn , . A simplified 

block diagram of the system is shown in Fig. 11. At the transmitter, the input data stream is mapped 

onto a unit-energy M-QAM (M-ary quadrature amplitude modulation) or M-PSK (M-ary phase shift 

keying) constellation. The subcarrier allocation block takes in a data frame of 

)],1(),...,1(),0([  Kuuuu  and then allocates the data symbol ,10),(  Kkku to the selected 

antenna, denoted as ki


, associated with the kth subcarrier. Thus, only one element in a transmit 

1 This system model is used for all the considered antenna selection methods in this paper. The association 

between RF chains and transmit antennas in each selection method is mentioned in Section III.A and Section IV. 



5 

  

 Tx nT 

 Tx 2 

 Tx 1 

PSW 

Input 

Data 

Pbbtx 

Rx nR Receive branch nRth, Pcrx 

Receive 

Data 

Pbbrx Rx  1 Receive branch 1st , Pcrx 

Antenna selection 

information 

R
ec

ei
v

e 
p

ro
ce

ss
in

g 

(A
n

te
nn

a 
se

le
ct

io
n,

 

M
R

C
 &

 D
et

ec
ti

o
n

) 

Fig. 1. A simplified block diagram of an antenna selection MIMO-OFDM wireless system.         
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is assigned the data symbol, whereas the others are zero2. The 

output sequences from the subcarrier allocation block are then fed into K-point IFFT (inverse fast 

Fourier transform) blocks. Each time-domain OFDM signal is then added with a guard interval (GI) 

before being transmitted via its corresponding transmit antenna. Note that the transmit branch 

corresponding to the output of the subcarrier allocation block that is not allocated any data symbol 

is turned off to save energy. 

At the receiver, the received signal at each antenna is fed into the FFT block after the GI is 

removed. The received signal in the frequency domain corresponding to the kth subcarrier can be 

expressed as [5] 

)1(),()()()()()()( kkukPkkkPk
kitt nhnxHy    

where H(k) denotes the subchannel matrix associated with the kth subcarrier where its entries are 

denoted as ,,..,2,1,,..,2,1,, RTij njnih   )(k
ki
h  indicates the effective channel vector obtained by 

selecting the column of H(k) that is corresponding to the selected transmit antenna ki


 
on the kth 

subcarrier, and tP
 
is an equal transmit power allocated to each data subcarrier. Note that the total 

transmit power in one OFDM symbol is tT KPP  . Also, vectors T
n kykykyk

R
)](),...,(),([)( 21y  

and ,)](),...,(),([)( 21
T

n knknknk
R

n
 
where )(ky j  and )(kn j  denote the received signal and the 

noise at the jth receive antenna, respectively. Here, the noise is modeled as a Gaussian random 

variable with zero-mean and variance .2
n  

Assume that the receiver uses an MRC (maximum ratio 

combining) method for signal detection, the detected signal at the kth subcarrier is given as [26] 

2 In this work, we are interested in one-to-one mapping between data symbol and transmit antenna as in this 

approach the post-processing SNR is maximized [25]. 
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)2(),(~)()(

)()()(||)(||)( 2

knkukgP

kkkukPkz

k

kk

it

H

iit







 nhh
 

where ,||)(||:)( 2kkg
kk ii
 h  and )(~ kn

 
is the effective noise (after MRC) with variance 2)( ni

kg
k

 . In 

this system, the instantaneous post-processing SNR (signal-to-noise ratio) associated with the ith 

transmit antenna and the kth subcarrier can be calculated as3 [7]  

 
)3(),(:)(

)(

)(
)(

22

2

kgkg
P

kg

kgP
k ii

n

t

ni

it
i 


   

where 2
ntP   . 

With respect to an antenna selection operation, many selection criteria can be used in this 

system, such as maximizing SNR, maximizing capacity, or minimizing bit-error rate [8]. Details 

about these criteria associated with different antenna selection approaches are presented in Section 

III.A. In addition, given that this work focuses on analyzing energy efficiency achieved in antenna 

selection MIMO-OFDM systems, the following assumptions are adopted for simplicity. 

A1. Channel state information (CSI) is available at both transmitter and receiver in TDD (time-

duplex division) mode. Thus, the transmitter and receiver can determine the selected antenna 

indices by themselves. Note that channel estimation methods for antenna selection OFDM 

system were well investigated in the literature, e.g., [27] and [28]. In addition, several 

techniques to obtain CSI of all equipped antennas when only a few antennas are active were 

also considered in [29]. 

A2. Effects of power unbalance across transmit antennas is not considered. The issue of power 

unbalance arises when a large number of subcarriers are allocated to some particular antennas, 

which may cause problems with power amplifiers (i.e., affects system performance). One 

approach to deal with this issue is allocating the same number of data symbols to each 

transmit antenna. This can be accomplished by formulating a linear optimization for 

subcarrier allocation [14]. The readers are referred to [14] for further details.  

B. Energy-Efficiency Metric in Antenna Selection OFDM Systems 

To quantify the fundamental limits of the system, we consider an energy-efficiency (bits/Joule) 

3 In this paper, denotes the transmit antenna index. Meanwhile,  denotes the selected antenna 

corresponding to the kth subcarrier, i.e., , where ci(k) is the associated cost metric. Thus, for the 

expressions, e.g., (3) or (5), the index i is used as these expressions are evaluated for all transmit antennas before a 

selection decision is made. 



7 

  

defined as a ratio between the achievable rate and the total power consumption [18]-[24], i.e.,  

)4(,totalPCEE   

where C denotes the achievable rate per OFDM symbol (bits/s) and Ptotal is the required total power 

consumption (watts). Let us denote Ii(k) to be the instantaneous capacity (bits/s/Hz) associated with 

the ith transmit antenna and the kth subcarrier [7], [30], i.e., 

   5.1,...,1,0;,...,2,1,)(1log)( 2  KknikgkI Tii   

The achievable rate per OFDM symbol in this system is evaluated by [30] 

 )6(,)(
1 1

0 





 





K

k
i

kI
K

WC
k


H  

 

where {.}H  denotes an expectation operation over the fading channel distribution, W (Hz) is the 

system bandwidth.  

The total power consumption corresponding to one OFDM symbol is given as [31] 

,)( bbcrxRctxPAontotal PPnPPnP                                                                       (7) 

where non is the number of active RF chains4 ( i.e., the number of active transmit branches) at the 

transmitter, PPA is the power consumption by one power amplifier (PA), Pctx is the power 

consumption per transmit branch (excluding the associated PA), Pcrx is the power consumption per 

receive branch, and Pbb = Pbbtx + Pbbrx where Pbbtx and Pbbrx are the power consumption of several 

baseband processing units at the transmitter and receiver, respectively. These values are shown 

clearly in Fig.1. Note that as power and insertion losses caused by RF switch are negligible [10], we 

do not include it in (7) for simplicity. When there are non active transmit branches, the number of 

data symbols allocated per transmit antenna is onnK . Thus, the total transmit power per antenna is 

)( ont nKP . Assume that the efficiency  of a power amplifier is invariant to the power output level, 

we can express the power drawn from a DC source PPA as [32]  

)8(,
)(


onTont

PA

nPnKP
P   

where PT = KPt is the actual total transmit power per OFDM symbol. Note that the above 

assumption of constant efficiency can be realized by using PA with dynamic power supply [33]. 

Therefore, (7) can be rewritten as 

.bbcrxRctxonTtotal PPnPnPP                                                                  (9) 
 

4 A transmit RF chain consists of digital-to-analog (DAC), mixer, filters, and power amplifier. A receive RF chain 

consists of low-noise amplifier (LNA), filters, mixer, intermediate frequency amplifier, and analog-to-digital (ADC). 

In addition, a transmit (receive) local oscillator is assumed to be shared among transmit (receive) RF chains. 
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From (4), (6), and (9), we can rewrite the (average) energy efficiency metric as 
 

.

)(
1 1

0

bbcrxRctxonT

K

k
i

PPnPnP

kI
K

W

EE
k


















 
H

                                                              (10) 

This metric will be used to evaluate energy efficiency in different antenna selection OFDM systems 

in the next sections. 

III. ENERGY-EFFICIENCY ANALYSIS OF CONVENTIONAL ANTENNA SELECTIONS SCHEMES 

A. Conventional Antenna Selection Schemes 

As mentioned in Section II.A, several selection criteria can be used for antenna selection 

schemes. For notational convenience, let ci(k) denote the cost associated with the selection of the ith 

antenna on the kth subcarrier. Then, we can express 

 )11(

                                            criterion, rate-error miminum afor)(

                                             criterion capacity maximum afor)(

SNR)maximum(i.e.,criterion gain powerchannelmaximumfor)(

)(











kBER

kI

kg

kc

i

i

i

i  

where BERi(k) is a bit-error rate, e.g., for a M-QAM modulation with Gray mapping [34] 

)12(,
)1(2

)(3

log

1
)(

2













M

kg
erfc

MM

M
kBER i

i


 

where erfc(.) denotes a complementary error function. Note that a negative sign is added to BERi(k) 

in (11), as we aim to maximize the cost ci(k) for all cases. 

As mentioned in the introduction, antenna selection for OFDM systems can be implemented on a 

per-subcarrier basis or for a whole OFDM symbol. In per-subcarrier selection, antennas are selected 

independently for each subcarrier (see Fig. 2b for illustration). Assuming that TRF nn  , the selected 

antenna associated with the kth subcarrier is determined by [11],[14] 

)13().(maxarg
,...,1

kci i
ni

k
T




 

Note that in this scheme, RF chains are connected directly to transmit antennas. As all nT RF chains 

are active, the total power consumption is .bbcrxRctxTT
per

total PPnPnPP    

Unlike per-subcarrier selection, in a bulk selection approach, only one among nT available 

antennas is used to transmit data (see Fig.2a). The antenna that can attain the largest accumulated 

SNR  (i.e., the  largest  accumulated  channel  power gain) across  subcarriers  is  selected  for  all 



9 

  

   Idle antenna 

A
n

te
n

n
a

A
n

te
n

n
a

A
n

te
n

n
a

Subcarriers Subcarriers 

A
n

te
n

n
a

Fig. 2. Illustrations of antenna selection methods: (a) Bulk selection, (b) Per-subcarrier 
selection, (c) Combined selection, and (d) Proposed adaptive selection. (nT  = 4 and K = 6). 
 

Current channel state Next channel state 

Subcarriers Subcarriers 

A
n

te
n

n
a

Subcarriers Subcarriers 

A
n

te
n

n
a

(a) 

(b) 

(c) 

   Active antenna Data 

Not used 

A
n

te
n

n
a

Subcarriers Subcarriers 

A
n

te
n

n
a

(d) 

 

 subcarriers within one OFDM symbol, i.e., [11]-[13] 

  )14(.)(maxarg
1

0,...,1






K

k
i

ni
kci

T


 

In this scheme, a transmit RF chain is connected to the selected antenna by means of a RF switch. 

As only one transmit RF chain is required, the total power consumption in this case is 

bbcrxRctxT
bulk

total PPnPPP   . 

Besides the two above fundamental approaches, a combined bulk selection and per-subcarrier 

selection scheme was considered in [15]-[17] for MIMO-OFDM systems where only nRF < nT RF 

chains are equipped (see Fig.2c). Accordingly, the system first selects a subset of nRF antennas and 

then performs per-subcarrier selection on this subset. A RF switch is required to connect nRF RF 

chains to the subset of nRF selected antennas. Note that in this scheme, the number of active RF 

chains is RFon nn  . As an exact analysis for this scheme is difficult due to the dependence between 

subsets of antennas, we will numerically evaluate this approach in Section VI. 

B. Analyses of Energy Efficiency in Conventional Antenna Selection MIMO-OFDM Systems 

In this subsection, we derive closed-form expressions of the energy efficiency and EE-SE trade-

off in antenna selection OFDM systems deploying per-subcarrier and bulk selection approaches. To 

the best of  our  knowledge, such  results  have  not been  available  in  the  literature. For  analytical  
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simplicity, we assume that the fading coefficients )(, kh ij  are i.i.d. (independent and identically 

distributed) Rayleigh random variables. This assumption is often adopted to analyze OFDM 

systems, see e.g., [11], [15]-[17]. 

1. Per-Subcarrier Selection Scheme 

In an antenna selection OFDM system using a maximum SNR criterion (i.e., maximum channel 

power gain), assuming that subcarriers are independent, the capacity can be expressed as (cf. (6)) 
 

))},(1({log)(
1

2

1

0

kgWkI
K

WC
kk i

K

k
iper

  






 




HH

                                  (15) 

which can be evaluated at any subcarrier k. Therefore, the energy efficiency in this system is 

obtained as (cf. (10)) 

.
))}(1({log2

bbcrxRctxTT

i

per
total

per

per
PPnPnP

kgW

P

C
EE k








 
H

                                                   (16) 

To obtain a closed-form expression of (16), we need to derive an explicit expression for 

))}(1({log2 kg
ki
 H . The final result is stated in the following theorem. 

Theorem 1. A closed-form expression of the energy efficiency in per-subcarrier antenna selection 

MIMO-OFDM systems is given by 
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where qu,  denotes the multinomial coefficient, and   
x

at dttexa 1),(  is the incomplete gamma 

function. 

Proof: The proof is given in Appendix A. 

2. Bulk Selection Scheme 

For a bulk antenna selection OFDM system, the capacity can be expressed as (cf. (6)) 
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By using an approximation of ,log)1(log 22 exx   when x is small, we can express the capacity at 

the low SNR region as 
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Consequently, the energy efficiency now becomes (cf. (10)) 

.
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)log(
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                                          (20) 

By calculating the expected value in the numerator of (20), we arrive at the following result. 

Theorem 2. The energy efficiency in bulk antenna selection MIMO-OFDM systems in the low SNR 

regime is approximated as 
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where tu ,  denotes the multinomial coefficient. 

Proof: The proof is given in Appendix B. 

3. Energy Efficiency-Spectral Efficiency Trade-off 

In this subsection, we derive closed-from expressions for the energy efficiency- spectral 

efficiency (EE-SE) trade-off. Recall that EE (bits/Joule) is defined in (4) as EE = C/Ptotal. Also, the 

spectral efficiency SE (bits/s/Hz) is calculated as SE = C/W, where C (bits/s) is the capacity and W 

(Hz) is the system bandwidth. Thus, the relation between EE and SE can be expressed as [35] 

,
)()( 1

bbcrxRctxonbbcrxRctxonttotal PPnPnSEfK

SEW
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where ),0[),0[:1 
tPSEf   is the inverse function of SE. In what follows, we consider 

per-subcarrier and bulk selection schemes at the low SNR region for analytical simplicity. 

In per-subcarrier selection, by using an approximation of log2(1+x)  xlog2e, when x is small, we 

can express the capacity at the low SNR region as (cf. (15)) 
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H                                                            (23) 

By performing similar calculations as in Appendix A, we have 
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Thus, (23) can be rewritten as 
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For notational convenience, let us denote 
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Also, recall that 2
ntP   .Then, we can express the capacity Cper and spectral efficiency SEper, 

respectively, as 

, tper PWC                                                                              (27) 

and 

. tper PSE                                                                                     (28) 

From (22), (27), (28), and noting that PT = KPt, we arrive at the following result. 

Proposition 1. The closed-form expression for the EE-SE trade-off in per-subcarrier antenna 

selection systems in the low SNR regime is approximated as 

.
)( bbcrxRctxTper
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PPnPnSEK

SEW
EE
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



                                                 (29) 

For the bulk selection scheme, an expression for the EE-SE trade-off is given below. 

Proposition 2. The closed-form expression for the EE-SE trade-off in bulk antenna selection 

systems in the low SNR regime can be approximated by 

,
)( bbcrxRctxbulk

bulk
bulk

PPnPSEK

SEW
EE







                                                 (30) 
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Proof: The result is obtained based on (21) and (22). 

4. Numerical and Simulation Example 

To validate the analysis above, we run a simulation for the system with nT = 4, nR = 1, K = 16,   

W = 1 MHz,  = 0.35, and Pctx = Pcrx = Pbb = 50 mW. Note that although the number of subcarriers 

K is small, they are assumed independent. Moreover, simulation results under more realistic 

parameters will be provided in Section VI. Figure 3 plots the energy efficiency versus the total 

transmit power PT at the low SNR regime. It can be seen that the analytical curves based on the 

analysis in the previous sections match the simulation curves. 
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Fig. 3. Energy-efficiency in bulk selection and per-subcarrier selection: analysis vs. simulation. 

 

IV. ADAPTIVE ANTENNA SELECTION FOR IMPROVED ENERGY-EFFICIENCY 

The average energy efficiency in a generic antenna selection MIMO-OFDM system is given in 

(10). It can be seen that the EE value depends on many factors, including the actual transmit power, 

the power consumed by the electronics circuits (mainly RF chains), as well as the channel 

condition. When one antenna (i.e., one RF chain) is activated/deactivated, the system will achieve a 

higher/lower capacity. Meanwhile, the power consumption due to RF chains is increased/decreased. 

Consequently, whether the EE value is increased or not depends on the changes of the capacity and 

consumed power. Given fixed power values of PT, Pctx, Pcrx, and Pbb, whether an antenna should be 

activated or deactivated for improved energy-efficiency depends on the channel condition. Based on 

these observations, we propose to improve the energy efficiency by adaptively selecting both the 

number of active RF chains )1( RFonon nnn   and the transmit antenna indices (see Fig. 2d for 

illustration). In this adaptive scheme, non active RF chains are connected to the subset of non selected 

antennas via a RF switch. The adaptive selection can be implemented by either an exhaustive search 

or a low-complexity algorithm, which are described in detail below. 

A. Exhaustive Search Method 

When the number of transmit antennas nT is small, an exhaustive search method can be used to 

achieve an optimal antenna allocation. In particular, this method checks all possible subsets of 

antennas, and  selects  the subset  that  attains  the  highest  energy  efficiency  value. Note that the  
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TABLE I. A PROPOSED LOW-COMPLEXITY ANTENNA SELECTION ALGORITHM. 

1:  Initial setting:  A subset of unallocated subcarriers },,...,2,1{0 K  

                              A subset of available transmit antennas },,...,2,1{0 TnS                                 

                              A subset of selected antennas P0={}, and an energy-efficiency value .00 EE       

2:  Calculate the cost ,,),( 00  kSikci using Eq. (11). 

3:  for RFnm :1  do 

4:     Calculate the accumulated cost across unallocated subcarriers (used to select antenna) 

                      .,)( 1
)(

1   
 mk i

m
i Sikc

m
   

         
 

5:      Select the antenna )(mi


 that satisfies .maxarg)( )(

1

m
i

Si m

mi 



 

6:      Add )(mi


 to the subset of selected antennas, i.e., )}.(,{ 1 miPP mm


  

7:      Assign the selected antenna )(mi


 to the subcarriers l that satisfy 

                       ),(maxarg)(
1

)(
lclc i

Simi
m

    

         i.e., ,),()()( mm lmili 


 where m  is the subset of the allocated subcarriers l in the mth   

         loop, and )()( li m



 

is the selected antenna at the subcarrier l in the mth loop. 

8:      Update the subset of unallocated subcarriers as .1 mmm    

9:      Select antennas in Pm for the remain unallocated subcarriers via 

                       .),(maxarg)()( mi
Pi

m ci
m







 

10:     Calculate the accumulated instantaneous capacity (bits/s/Hz) corresponding to the subset Pm  
          (used to calculate the EE value) (cf. (5)) 

                   
         

 1

0 )(
).(

)(

K

k kim kII
m
     

11:     Calculate the EE value (cf. (10)): 

                  .)()( bbcrxRctxTmm PPnmPPIKWEE                                                     

12:     if 0EEEEm   do 

13:                     ,0 mEEEE   

14:                  ,mselect PP   

15:                  .,...,2,1),()( )( Kkkiki mselect 


 

16:     end if 

17:     Update the subset of available antennas as .0 mm PSS   

18:  end for     
19:  The subset of selected antennas and the allocation pattern for the maximal EE value are Pselect     

        and ,,...,2,1),( Kkkiselect 


 respectively. 

 

number of possible subsets is  
RF Tn

m

n
mC

1
, which incurs very high complexity if nT and/or nRF are 

large. Thus, a lower complexity method is preferred in this scenario. 

B. Low-Complexity Algorithm 

To realize the proposed adaptive selection method with low complexity, we develop a greedy 

selection algorithm described in Table I. This algorithm selects antennas in an incremental fashion 

and is based on the following principles: 

P1. Given a subset 1mP  consisting of (m-1) selected antennas, the best antenna )(mi


 that is 

added to create the subset mP  is the antenna that makes mP  achieve the largest accumulated cost. 
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TABLE II. COMPLEXITY COMPARISON (K = 64). 

Number of transmit antennas nT 2 3 4 5 6 7 8 

opt  (exhaustive search) 3K 7K 15K 31K 63K 127K 255K 

sub = KnT (nT +1)/2 (worst-case) 3K 6K 10K 15K 21K 28K 36K 

sub (average) 2.3K 4.1K 6.1K 8.4K 10.9K 13.6K 16.5K 

opt /sub (average) 1.3 1.7 2.5 3.7 5.8 9.3 15.5 

 

P2. If the cost )(
)(

lc
mi


 
is the largest among the available antennas at the lth subcarrier, then the 

antenna )(mi


 is immediately selected for the lth subcarrier when this antenna is added to the 

subset 1mP . Note that the value )(
)(

lc
mi
   will be always taken as the cost on the lth subcarrier 

when measuring the accumulated cost for all nRF subsets .,...,2,1, RFm nmP   Therefore, the cost 

corresponding  to the lth subcarrier on the remaining  available antennas will not be  taken  into 

account when evaluating the accumulated cost of these antennas. Consequently, the optimal 

antenna mi


 mentioned in P1 is the one that has the largest accumulated cost calculated only over 

a subset of unallocated subcarriers. 

C. Complexity Evaluation 

With respect to a complexity comparison between the algorithm in Table I and the exhaustive 

search, we consider the number of allocation operations as a measure of complexity. In the 

exhaustive search, there are  
RF Tn

m

n
mC

1  
possible subsets, and each subset needs K allocations for K 

subcarriers.  Thus,  the number  of  allocations is .
1  RF T

n

m

n
mopt CK  When TRF nn  , the  value opt  is 

given to )12(
1

  
TT T nn

m

n
mopt KCK . Meanwhile,  in  the proposed algorithm, the mth (m = 1, 2,..., 

nRF) loop searches for )1(  mnT  subsets and performs || 1m  
allocations for each subset. Here, 

|| 1m  denotes the cardinality of the subset 1m , i.e., Km   || 1 . Therefore, the proposed 

algorithm requires only ||)1( 11   m

n

m Tsub
RF mn  

allocations. A complexity comparison 

between the exhaustive search and algorithm methods based on numerical values is shown in Table 

II. In this table, the results are averaged over 105 channel realizations. Details about other 

simulation parameters are provided in Section VI. The obtained results show that the algorithm 

attains very low complexity compared to the exhaustive search method. 

Let us further consider the complexity of the proposed algorithm in the worst case, i.e., 

.,...,2,1,|| 1 RFm nmK    In this scenario, the number of allocations is    RFn

m Tsub mnK
1

)1( .
 

When TRF nn  , we have 2)1()1(
1

   TT

n

m Tsub nKnmnK T  (i.e., increase polynomially with  
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TABLE III. NUMBER OF UNALLOCATED SUBCARRIERS (K = 64). 

nT |0|  |1| |2| |3| |4| 

2 K 0.34K    

3 K 0.46K 0.14K   

4 K 0.52K 0.23K 0.07K  

5 K 0.56K 0.29K 0.12K 0.03K 

 

respect to nT) compared to )12(  Tn
opt K  (i.e., increase exponentially). Consequently, the 

proposed algorithm in Table I still incurs lower complexity, especially when nT is large. It is also 

worth mentioning that the value sub (average) is smaller than sub (worst-case) as the number of 

unallocated subcarriers |m-1| becomes much smaller after each loop as shown in Table III. 

V. POWER LOADING FOR ANTENNA SELECTION MIMO-OFDM SYSTEMS  

In the previous sections, we have considered the systems with equal power allocation across 

selected subcarriers, i.e., .,:, kPKPP tTkt   This equal power allocation may be required in 

systems where a very strict spectral mask applied on each subcarrier, e.g., multiband-OFDM ultra-

wideband (MB-OFDM UWB) [36]. However, if a spectral mask constraint on the kth subcarrier is 

mask
kP , power loading across selected subcarriers, which means dynamic distribution of the available 

power among subcarriers, can be employed to further improve energy efficiency. This is because 

power loading can increase capacity in OFDM systems [37], which in turn improves energy 

efficiency (cf. (10)). Our formulation problem in this section is stated as follows: Suppose that the 

total transmit power is TP , find the optimal allocated powers }1,...,1,0,{ *
,  KkP kt  that satisfy a 

spectral mask constraint so that the energy-efficiency in antenna selection MIMO-OFDM systems is 

maximized. 

We assume that antennas are selected for all subcarriers based on a given selection scheme (e.g., 

bulk selection, per-subcarrier selection, combined selection, or adaptive selection scheme) that has 

been described in the previous sections. In what follows, we will derive the optimal allocation of 

powers }1,...,1,0,{ *
,  KkP kt . Recall that the channel power gain (after MRC) and the allocated 

power associated with the kth subcarrier are )(kg
ki
  and ktP, , respectively. Hence, the instantaneous 

energy efficiency can be expressed as (cf. (3), (5), (10)) 

.
)/)(1(log)(
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                                                       (32) 
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We aim to allocate powers }{ ,ktP  such that the EE value in (32) is maximized subject to the 

following constraints. The first constraint is that the power allocated on the kth subcarrier ktP,  is not 

larger than the corresponding spectral mask mask
kP , i.e.,    

  .1,...,1,0,0 ,  KkPP mask
kkt                                                                        (33) 

The second constraint requires the total power allocated all over the subcarriers to be equal to TP , 

i.e.,  

  .
1

0
, T

K

k
kt PP 




                                                                                            (34) 

Note that this constraint guarantees a fair comparison among antenna selection schemes as our 

focus in this work is to determine which scheme can attain the highest EE value given the same 

actual transmit power PT. Due to the second constraint (34), the denominator of (32) is a constant 

with respect to }.{ ,ktP  Therefore, the power loading problem to maximize energy-efficiency can 

now be expressed as 







1

0

2
,2

}{
)/)(1(logmax

,

K

k
nikt

P
kgP

k
kt

                                                                   (35) 

    s.t.  ,1,...,1,0,0 ,  KkPP mask
kkt  

          .
1

0 , T

K

k kt PP  
  

It is obvious that (35) is a convex problem. Thus, its solution can be obtained as [38]  

,1,...,1,0,
)(

0

2
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
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P

i

n
kt



                                                    (36) 

where 0  is the water-level that is chosen to satisfy the total power constraint of ,
1

0

*
, T

K

k kt PP  
  

and  bax  denotes the Euclidean projection of x on [a,b], i.e., )).,max(,min(][ axbx b
a   Efficacy of 

power loading in associated with several antenna selection schemes that is evaluated numerically 

based on (26) will be discussed in Section VI.D5. 

Remark 1: Although power loading has been well studied for single-antenna OFDM systems, an 

investigation  of  power  loading for antenna  selection  MIMO-OFDM systems  is  necessary. The  

5 We use the optimal water-filling (WF) solution of (36) in this work as our main purpose is to evaluate the efficacy of 

power loading in associated with several antenna selection schemes. However, it is worth noting that one can consider 

some approaches, e.g., cross-zero adjustment WF [39], that converge to the solution in (36) with a lower complexity.  
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TABLE IV.  SIMULATION PARAMETERS. 

Parameter Value 

Carrier frequency 
Bandwidth 
Modulation 
Number of subcarriers 
Circuit powers 
 
Power amplifier efficiency 
PSD of noise 
Path-loss exponent 
Frequency-selective fading channel 

fc = 2.4 GHz 
W = 25 MHz 
4-QAM 
K = 64 
Pctx = 150 mW, Pcrx = 120 mW, 
Pbb = 100 mW 
35% 
-174 dBm/Hz 
  = 4  
IEEE 802.11n channel models 

 

reason is that the effectiveness of power loading over equal allocation depends on a variation of 

channel power gains. Meanwhile, in antenna selection, statistical distribution properties of channel 

power gains corresponding to the selected subcarriers are altered due to a selection operation. Note 

that this characteristic does not occur in single-antenna OFDM systems. Therefore, it is interesting 

to know, from an energy-efficiency perspective, how effective power allocation is in the context of 

antenna selection in OFDM systems. 

Remark 2: In this work, we perform power loading after antenna selection. The advantage of this 

approach is that it requires very low additional complexity. In fact, in this approach, the power 

loading operation (26) is performed only once at the transmitter only. Note that one can perform 

joint power loading and antenna selection. However, for a joint approach, as the allocated powers 

on subcarriers are involved in the calculation of antenna selection metrics, we need to perform 

power  loading  operation  several times during an antenna  selection process. Moreover, in a TDD 

mode, this joint method needs to be performed at both transmitter and receiver. This clearly 

introduces high complexity. An analysis of the joint approach as well as its performance-complexity 

trade-off is beyond the scope of this paper. 

VI. SIMULATION RESULTS AND DISCUSSIONS 

In this section, we evaluate the energy-efficiency in several antenna selection OFDM systems via 

simulation results. The simulation parameters are listed in Table IV. The IEEE 802.11n channel 

model (channel model B) [40] is adopted in our simulations. This channel model has 9 Rayleigh 

fading paths and is based on measurements of non-line-of-sight (NLOS) environments.  

A. Energy Efficiency versus Transmit Power   

We first consider antenna selection MIMO-OFDM systems with nT = 4, nR = 1, and the 

maximum SNR criterion. The number of equipped RF chains in both combined selection and 

adaptive selection is nRF = 3. Fig. 4 shows the energy-efficiency versus the total transmit power PT.  
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Fig. 4. Energy-efficiency of different antenna selection schemes (nT = 4, nR = 1). 

 

The obtained results demonstrate the following. First, the proposed adaptive antenna selection 

method achieves a better energy-efficiency performance than its counterparts. This comes from the 

fact that the proposed method can adapt the number of active RF chains non according to the 

channel condition to achieve the maximal EE value. Recall that the numbers of active RF chains in 

the conventional schemes are fixed. Second, the EE value attained based on the proposed low-

complexity algorithm is close to that with the exhaustive search method, which demonstrates the 

effectiveness of this algorithm from a practical viewpoint. Similar observations can be made in the 

systems with nR = 2 receive antennas, as shown in Fig. 5. It is also worth noting that there exists the 

total transmit power PT such that EE is maximized. In Appendix C, we provide an extended 

discussion regarding this issue. 

To have an insight into the adaptive mechanism of the proposed selection approach, we plot in 

Fig. 6 the numbers of channel realizations that the numbers of active RF chains equal to one, two, 

and three, when running a simulation with a total of 105 channel realizations. It can be seen that 

when the transmit power PT increases, a larger number of active antennas (i.e., number of active RF 

chains) is likely selected to attain the maximal EE value. For example, when PT = 0.577 W, the 

percentage of selection of non = 1, non = 2, and non = 3, are about 10%, 66%, and 24%, respectively. 

Meanwhile, the corresponding numbers at PT = 2.497 W are about  1% (non = 1), 34% (non = 2), and 

65% (non = 3). 
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Fig. 5. Energy-efficiency of different antenna selection schemes with two receive antennas (nT = 4, nR = 2). 

Fig. 6. Number of active RF chains non in the adaptive selection scheme (nT = 4, nRF = 3, nR = 1). 
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Fig. 7. Energy efficiency under different antenna selection criteria: (a): Per-subcarrier selection;  

            (b): Bulk selection; (c): Combined selection; (d): Adaptive selection. 

 

B. Energy Efficiency under Different Antenna Selection Criteria  

Fig. 7 shows the energy efficiency in the conventional and proposed selection systems under 

different antenna selection criteria. Three criteria, namely maximum SNR, maximum capacity, and 

minimum error-rate, introduced in (11) are considered. The results show that in the per-subcarrier 

selection scheme, all the selection criteria achieve the same energy efficiency. This is due to the fact 

that antennas are selected independent for each subcarrier in this case. Moreover, at any subcarrier, 

the selected antenna for the maximum SNR is the one that attains the maximum capacity and 

minimum error-rate (cf. (5), (11), (12)). For the bulk selection scheme, the maximum capacity 

criterion achieves the largest energy efficiency. This is because this selection criterion directly 

maximizes the accumulated capacity across subcarriers, which in turn maximizes energy efficiency 

(cf. (10)). In the combined and adaptive selection schemes, the maximum SNR criterion can attain 

higher energy efficiency compared to its counterparts. However, it can be seen that the difference in 

energy efficiency between the selection criteria is quite small. 

C. Energy Efficiency versus the Number of Transmit Antennas  

Fig. 8 shows the energy efficiency versus the number of equipped transmit antennas in the 

conventional and proposed systems. It can be seen that, in the bulk selection, combined selection 

and proposed adaptive selection systems, the EE values increase when the number of antennas nT  
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Fig. 8. Energy-efficiency versus the number of transmit antennas (nR = 1, nRF = 1 in bulk selection,  

          nRF = nT in per-subcarrier selection, and nRF = 3 in both combined and adaptive selection schemes). 

 

increases. However, these EE values become saturated when nT becomes very large. This is because 

the ergodic capacity in antenna selection systems is a logarithmically increasing function w.r.t. nT 

[41]. Meanwhile, in the per-subcarrier selection system, the EE value first increases and then 

decreases. This behavior can be explained by the fact that, when nT becomes large, the increased 

power consumption due to the RF chains has more impact on the energy efficiency than the 

capacity improvement does, which reduces the EE value (cf.(10)). In addition, we note that an EE 

comparison among the selection schemes w.r.t. nT depends on particular values of the transmit 

power and power consumed by hardware. For example, bulk selection is better than per-subcarrier 

selection when nT > 3 at PT = 0.4 W, and when nT > 5 at PT = 0.7 W. It is also important to note that 

the proposed adaptive selection system outperforms its counterparts for all values of nT. 
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nR = 2 are shown in Fig. 9 and Fig. 10, respectively. From an energy-efficiency perspective, it can 

be seen that bulk selection is effective in the low-SE regime. Meanwhile, per-subcarrier selection 

and combined selection are suitable in the high-SE and medium-to-high-SE regimes, respectively. 
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Fig. 9. Energy-efficiency versus spectral-efficiency in different antenna selection schemes (nT = 4, nR = 1). 

Fig. 10. Energy-efficiency versus spectral-efficiency with two receive antennas (nT = 4, nR = 2). 
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Fig. 11. Energy-efficiency under spatially correlated channels (correlation coefficient of 0.7). 

selection schemes. Note that the behavior of these EE-SE curves can be explained from the case of 

EE-PT curves (e.g., in Fig. 4) given that increasing the spectral efficiency is typically associated 

with the increasing of the transmit power. 

E. Impact of Spatial Correlation on Energy Efficiency  

We next consider the impact of spatial correlation at the transmitter on energy-efficiency in the 

conventional and proposed systems. The spatially correlated channel is modeled using the 

Kronecker model [42], i.e., 2/12/1
TiidR RR HH  , where RT and RR are the TT nn   transmit and the 

RR nn   receive correlation matrices, respectively, and iidH  denotes the TR nn   channel matrix 

consisting of independent channel realizations. The achieved energy efficiency is shown in Fig. 11. 

It can be seen from Fig. 4, Fig. 5, and Fig. 11 that the presence of spatial correlation reduces the 

energy-efficiency. This makes sense as, given a fixed number of antennas, the correlation between 

transmit antennas reduces the system capacity, which in turn lowers the energy-efficiency (cf. (10)). 

However, it is important to note that the proposed system remains superior with respect to energy-

efficiency compared to the conventional counterparts. 

F. Efficacy of Power Loading on Energy Efficiency 

We finally examine the effectiveness of power loading across subcarriers on the energy 
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Fig. 12. Energy-efficiency of different antenna selection schemes with power loading (nT = 4, nR = 1).     

   Notes: 'delta = 1': equal allocation; 'delta = 64': no spectral mask constraint.  

 

constraint, i.e., kPP maskmask
k  , , for simplicity. Fig. 12 shows the EE values with different levels 

of spectral mask   that is related to Pmask via  KPP T
mask   . First, it can be seen that power 

loading offers a better energy-efficiency performance than equal power allocation in all the systems. 

However, the EE improvement at the high SNR region is marginal. This can be explained by the 

fact that EE improvement comes from an increase of capacity. Meanwhile, it was shown in [43] that 

the capacity improvement based on water-filling power allocation (i.e., (36)) is reduced when SNR 

increases. Therefore, the EE improvement diminishes with an increasing SNR value. The second 

observation can be made from Fig. 12 is that the EE improvement becomes larger when   is larger 

(i.e., maskP  is higher). However, these EE improvements depend on particular antenna selection 

schemes. In particular, the EE value is improved quite significantly in bulk-selection and adaptive 

antenna selection schemes. Meanwhile, in per-subcarrier antenna selection, the EE improvement is 

marginal. To explain these behaviors, we note that the efficacy of power allocation across 

subcarriers over equal power allocation comes from a variation of the channel power gains )(kg
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  

across subcarriers. In per-subcarrier antenna selection, antennas are selected independently for each 

subcarrier. Thus, it is likely that the difference in the value )(kc
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  among the selected subcarriers is 

insignificant in per-subcarrier selection, compared to bulk selection. As a result, power loading is 
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not effective in terms of energy-efficiency in the per-subcarrier antenna selection in comparison to 

the bulk selection and adaptive antenna selection schemes.  

VII. CONCLUSIONS 

This paper has investigated the energy-efficiency in MIMO-OFDM systems with different 

antenna selection approaches. Several important factors that affect the energy-efficiency, including 

the comparison between the actual transmitted power and the power consumed by the transceiver 

circuits, types of selection criteria, the number of antennas, and the spatial correlation among 

antennas, have been examined. The closed-form expressions of the energy efficiency and the EE-SE 

trade-off in the conventional antenna selection systems have been derived. It is shown that the 

conventional antenna selection methods exhibit a loss of energy-efficiency. Thus, an adaptive 

antenna selection method has been proposed to deal with this issue. A greedy algorithm has also 

been developed to realize a low-complexity adaptive selection scheme. This algorithm can achieve 

near-optimal performance, which is important when the number of antennas is large. In addition, 

the energy-efficiency improvement when performing power loading in antenna selection MIMO-

OFDM systems has been evaluated. Our results show that the proposed adaptive selection scheme 

outperforms (in terms of the energy-efficiency and the EE-SE trade-off) its counterparts. This work 

can be extended to multiuser MIMO-OFDMA systems, and we left this for future investigations.  

APPENDIX A 

 PROOF OF THEOREM 1 

We assume that |hj,i| follows a Rayleigh distribution with H{|hj,i|
2}=1. It is clear that 2|||| iig h  

is a chi-square distribution with 2nR degrees of freedom. Here, the subcarrier index k is dropped for 

simplicity as subcarriers are assumed independent. The pdf (probability distribution function) and 

cdf (cumulative distribution function) of ig  are given as ,0,!)1()( 1   xnxexf R
nx R  and 

0,!1)( 1
0  


 xvxexF Rn

v
vx , respectively [7]. By using order statistics [44], we can express the 

pdf of 2||)(||)( kkg
kk ii
 h  that associated with the selected antennas ki


 at the kth subcarrier as 
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is the binomial coefficient. By performing a multinomial expansion as 
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expansion corresponding to xq (i.e., qu,  is the qth element of a vector uα  that is defined as 10 α , 

])!1(1...!21!11!01[1  Rnα , and 11 ααα  uu , where  denotes a discrete convolution 

[45]), we have   
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The expected value of ))}(1({log2 kg
ki
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By using the integral result in [46, Eq. (32) & Eq. (78)], we can express the integral in (39) as 
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 
x

at dttexa 1),(  is the incomplete gamma function [47, Eq. (8.350.2)]. From (16), (39), 

and (40), we finally arrive at (17). 

APPENDIX B 

 PROOF OF THEOREM 2 
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As the channel coefficients |hj,i(k)| are i.i.d. Rayleigh random variables, it follows that iw  in (41) is 

a chi-square distribution with 2nRK degrees of freedom. Therefore, we can express the pdf and cdf 
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where, in the last equality, we  have used the integral of 1

0
!    nxn ndxex   [47, Eq. (3.351.3)]. By 

substituting (43) into (20), we obtain (21). This completes the proof. 

APPENDIX C 

 JOINT TRANSMIT POWER ALLOCATION AND ADAPTIVE ANTENNA SELECTION  

It is shown in Fig. 4 and Fig. 5 that it is possible to allocate the total transmit power PT to 

maximize EE. Motivated by this, in this appendix, we further consider a joint power allocation and 

adaptive antenna selection for the maximum EE under a quality-of-service (QoS) constraint. For 

simplicity, we restrict ourselves to the system with equal power allocation across subcarriers. The 

formulated problem is jointly select the number of active RF chains, transmit antenna indices, and 

the optimal power per subcarrier opt
tP  to maximize EE subject to a QoS constraint. Note that the 

optimal total power per OFDM symbol opt
TP  is then obtained as .opt

t
opt

T KPP   

Let us first consider the optimal transmit power without a QoS constraint. As the instantaneous 

energy-efficiency )( tPEE  is a pseudo-concave function with respect to Pt [18]. The unique 

maximum value occurs when .0)(  tt PPEE  Specifically, the instantaneous EE can be expressed 

as (cf. (3), (5), (10)) 
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Thus, an equation of 0)(  tt PPEE  is equivalent to 
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It is hard to obtain a closed-form solution for (45). However, numerical methods can be used to 

obtain the optimal power value *
tP . 

In systems with SNR constraint, it is required that   th, where  is the received SNR and th is 

the required SNR threshold. In multicarrier transmissions, each subcarrier has a different channel 

gain in general. To facilitate a power allocation problem, the average channel power gain (or 

average SNR) over frequency domain is often used in the literature [48]. The average SNR over all 

the subcarriers in antenna selection MIMO-OFDM systems can be expressed as (cf. (3)) 
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where a parameter   is defined as 
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As the SNR constraint requires that thtP   , the optimal transmit power can be determined as [18] 
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Thus, a joint power allocation and adaptive antenna selection subject to SNR constraint can be 

realized by inserting the following steps between Step (9) and Step (10) in the algorithm in Table I. 

Step a)  Calculate the power *
tP  by solving (45). 

Step b)  Calculate the parameter   based on (47). 

Step c)  Determine the optimal transmit power opt
tP via (48). 
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