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Abstract

This thesis studies several topics within the area of antennas and propa-
gation from a signal processing perspective. However, theory and methods
from electromagnetics and communications have also been used, contribut-
ing to an interdisciplinary character of the thesis. Several physical models
are derived in the thesis that describes the wireless communications channel
and several novel antennas. On the basis of these models, it is investigated
how multiple antennas may be employed to increasing the capacity of future
wireless communication systems. Furthermore, several aspects of using an-
tenna arrays for finding the directions of arrival of electromagnetic waves,
with applications in radar and acoustic sonar, are studied.

An often neglected issue when employing several antennas is that the el-
ements affect each other through mutual coupling. By deriving expressions
for the mutual coupling, the achievable direction finding performance is an-
alyzed for this case. It is found that if the coupling is known, the effects
on direction finding are small and can even increase performance in some
cases. Similar results are also obtained when examining the capacity of com-
munication systems employing multiple closely spaced antennas at both the
transmitter and receiver.

To evaluate the performance of communication systems, a spatio-temporal
channel model is proposed that is based on electromagnetic scattering and
fundamental physics. By using a dyad notation and concepts from rough
surface scattering, a compact formulation of the channel model is obtained.
System models are then derived that employs multiple antennas at both
the transmitter and receiver, so called Multi-Input Multi-Output (MIMO)
systems. The polarization properties of the channel as well as those of the
antennas are also included in the model, allowing for studies of different
antenna arrangements.

Two novel antenna solutions are proposed that can be used as diversity
receivers in MIMO systems or when performing high-resolution direction
finding. By exciting higher order modes of biconical or microstrip antennas,
several directionally dependent radiation patterns are obtained. Different
patterns can also be obtained by employing parasitic elements. It is found
that these antennas, the multimode and switched parasitic antenna, offer
performance comparable to that of an antenna array.

Keywords: physical modeling, sensor array processing, mutual coupling,
channel modeling, MIMO channels, diversity reception, channel capacity,
higher order modes, switched parasitic antennas, parameter estimation.
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Notation

In this thesis the following conventions are used. Vectors are written as bold-
face lower-case letters. Matrices are written as boldface upper-case letters.
The meaning of the following symbols are, if nothing else is explicitly stated:

R
m , C m The set of real and complex-valued m-vectors, respectively.

R(A) The column space of the matrix A.

rk (A) The rank of the matrix A.

A† The Moore-Penrose pseudo-inverse of a m × n matrix A. If

m ≥ n andA is of full rank it is defined asA† =
(
AHA

)−1
AH .

AH , A∗, AT Complex conjugate transpose, Complex conjugate and
Transpose operator, respectively.

Ai,j The (i, j)th element of A.

Aj,: The jth row of A. Other submatrices of A are denoted with
a similar MATLAB-like notation.

Tr(A) The trace operator.

‖A‖F The Frobenius matrix norm ‖A‖F =
√
Tr(AAH).

Im The m×m identity matrix. Subscript m is often omitted.
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Ĩ The reverse permutation operator defined as

Ĩ =




0 1

. .
.

1

. .
.

1 0



.

0m An m×m matrix with zeros. Subscript m is often omitted.

1k A vector of zeros except for a one in the kth position. The
total length of the vector is given by the context.

Υk A banded symmetric Toeplitz matrix with zeros everywhere
except on the kth and the −kth subdiagonal which consists of
ones

Υk =




0k 1 0n−k−1

1
. . .

. . .
. . .

. . . 1
0n−k−1 1 0k


 .

vec(A) The vectorization operator. Stacks the columns of A into a
vector, i.e. when A has n columns:

vec(A) =




A:,1
...

A:,n


 .

A > 0 The matrix A is positive definite. Furthermore, A ≥ 0 means
that A is positive semidefinite, and A − B > 0 means that
the matrix difference A−B is positive definite.

A⊙B The Hadamard (or Schur) product, i.e. element-by-element
multiplication.

A⊗B The Kronecker product. When A is m × n and B is r × s,
then

A⊗B =




A1,1B A1,2B · · · A1,nB

A2,1B A2,2B · · · A2,nB
...

...
...

Am,1B Am,2B · · · Am,nB




is of dimension mr × ns.
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A−T ,A−H (A−1)T and (A−1)H .

δij The Kronecker delta function.

(̂·) An estimated quantity.

�(·) Geometrical vector, i.e. a vector of length 3. Typically, the

spherical basis vectors are written as �r, �φ, and �θ.

⌈x⌉ Rounding off x to the nearest integer towards infinity.

argmin
x
f(x) The minimizing argument of the function f(x).

E{x} Statistical expectation of a random vector x.

ǫ The permittivity.

µ The permeability.

η The intrinsic impedance is defined as η =
√
µ/ǫ. For free

space the intrinsic impedance becomes 120π Ω ≈ 377 Ω.

k The wave number k = 2π
λ
= ω

√
µǫ, where λ is the wavelength.

�k The wave vector, i.e. the direction which the wave travels.
Note that |�k| = k.

�ρ The polarization vector.

�E , �H The instantaneous values of the electric and magnetic field.

�E, �H The complex form of the electric and magnetic field with the
time harmonic variation suppressed.

�S The scattering dyad that is defined as the juxtaposition �ab
of the vectors �a and �b, with no dot product or cross product
between them. In matrix form this corresponds to the outer
product of two vectors a and b, i.e. abT (assuming column
vectors).
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Chapter 1
Introduction

T
his thesis deals with signal processing topics in the area of antennas
and propagation. A number of problems within this diverse area are
analyzed using theory and methods from signal processing but also

concepts from antennas and propagation, communications and information
theory. In fact, this interdisciplinary character is a major theme and con-
tribution of the thesis, since most of the literature on the analyzed topics
do not make this connection. Most of the chapters in this thesis are rather
self-contained in order for the chapters to be read with some appreciation
by readers with knowledge from different research fields. This introductory
chapter will briefly introduce the different areas, that will be analyzed. Fur-
thermore, a few guidelines in reading this thesis will be given together with an
outline and a list of the publications by the author. A reader already familiar
with the topics may skip this introductory chapter and proceed directly to
the following chapters.

1.1 Background

Studying signal processing often means that a sensor of some kind is em-
ployed. For instance, in a bicycle computer, a magnetic sensor is employed
to get a signal that is used to calculate the instantaneous speed, average
speed, etc. In this calculation, a simple physical model, that describes how
the received signal depends on the speed of the wheel, is needed. The algo-
rithm that calculates the speed from the measured signal is then based upon
this model. In this simple example, it is relatively easy to obtain a model of
the measured signal

When devising signal processing schemes for signals that are transmitted

1



CHAPTER 1. INTRODUCTION

and received via radio, the situation is considerably more complex. The sig-
nal that is transmitted will interact with the surroundings of the transmitter
and receiver, i.e. the channel, and the signal that finally reaches the receiver
will typically be severely distorted. Often, the signal is reflected by tall build-
ings, lamp posts, and other objects. The received signal will consist of many
contributions from different propagation paths, i.e. multipaths. The type
of antenna will greatly affect this interaction with the surroundings. Hence,
when devising signal processing schemes for radio, the properties of the an-
tenna need to be considered. Furthermore, if the transmitted signal bears
some special properties, as it does in wireless communications, this should
to be accounted for by the signal processing schemes. However, also signals
transmitted in radar and underwater acoustics are designed to exhibit special
properties that are exploited in the receiver. Therefore, wireless communi-
cations as well as radar applications are of necessity interdisciplinary, since
it involves signal processing, antenna and propagation, communications and
information theory.

Unfortunately, much of the research in wireless communications and radar
is performed within the respective research field. By combing the knowledge
of the different fields, there is a large potential of devising systems with better
overall performance. For instance, most signal processing algorithms for
estimating the direction to aircrafts, do not explicitly take antenna issues into
account. In a sense, this thesis attempts to bridge this gap by including ideas
and concepts from electromagnetics, physics, communications, and signal
processing.

Several different topics are studied in this thesis. First, the impact of
mutual coupling between different antennas in direction finding applications,
such as radar, is studied in several chapters. Therefore, the fundamental
principles of array antennas and direction finding will be introduced in this
chapter. Furthermore, two novel methods for direction finding employing
higher order modes of microstrip and biconical antennas will be studied. The
direction finding part of the thesis ends with an interesting antenna solution
for high-resolution direction finding, a switched parasitic antenna, that offers
several interesting advantages compared to traditional array antennas.

The remaining part of the thesis deals with wireless communications, and
in particular modeling of the wireless channel. A spatio-temporal channel
model is derived based on fundamental physics and several channel proper-
ties are highlighted. A very brief background on channel modeling and wire-
less communications is therefore also provided in this introductory chapter.
Some focus is put on the recently introduced concept of employing multiple
antennas at both the transmitter and the receiver to substantially increase
the data rate. Thus, some introductory material on this subject will also be

2



1.2. PERSONAL COMPUTING AND COMMUNICATION

given.

Some guidelines in reading the thesis and the organization of it are also
provided. Finally, a list of the publications by the author is given.

1.2 Personal Computing and Communication

The Personal Computing and Communication (PCC) program was started
in 1997, within the Swedish Foundation for Strategic Research (SSF). When
forming the PCC, the aim was to perform research in areas of strategic
importance for Swedish industry, while encouraging co-operation between
different research disciplines. The activities of the PCC may be summa-
rized in the PCC vision Personal multimedia communication to all at the
same cost as fixed telephony today [Mol98a, Mol98b]. PCC is a cooperation
between Chalmers University of Technology (CTH), Royal Institute of Tech-
nology (KTH) and Lund Institute of Technology (LTH). Other universities
participating in the program are Uppsala University, and Lule̊a University
of Technology.

The focus of bringing together researchers from different fields, has in-
creased the awareness for the research problems in neighboring research ar-
eas. In particular, this thesis work has benefitted from this interdisciplinary
nature of PCC with interaction of researchers from electromagnetics, com-
munications, and signal processing. The PCC program consists of several
research projects, of which this thesis is part of the project Adaptive Anten-
nas in Wideband Radio Access Networks. The scope of the project includes
several topics in the fields of wave propagation and channel modeling, analog
and digital electronics, signal processing, communication theory, and system
analysis. In fact, these topics relatively well summarize the thesis which deals
with many of these subjects.

1.3 Physical Modeling of Array Antennas

The use of array antennas is an important theme of this thesis. Therefore,
some background material on physical modeling of antennas and array an-
tennas in particular, will be provided in this section. These models will be
used throughout the thesis, although most frequently in the direction find-
ing applications. Hence, the presentation of this material is made with this
application in mind.

Direction finding using an array of sensors is of great importance in a
variety of applications, such as radar, sonar, communications, and recently

3



CHAPTER 1. INTRODUCTION
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Figure 1.1: The geometry of the array and the relation to the coordinates.

also personal locating services. In these applications, the Direction Of Arrival
(DOA) of a wave that is incident upon the array is calculated using a model
for the measured voltages. Hence, obtaining an accurate model in these
applications is critical. However, also when modeling the radio channel, the
properties of the antenna are important. For instance, interaction of the
different antenna elements and their radiation patterns greatly impacts the
performance of most communication systems. Therefore, the fundamental
properties of antennas are briefly reviewed in this section and a simple model
based on fundamental electromagnetics is derived.

The principal function of an antenna is to convert an electromagnetic
wave into an induced voltage or current that can be measured. If the antenna
consists of several elements, a number of voltages or currents are measured.
The physical principle that governs DOA estimation is that an incident wave
will reach each antenna element at different time instants. A typical scenario
is shown in Figure 1.1, where a wave is incident from the (θ, φ) direction
upon an array of two elements. Here, the wave reaches antenna A1 some
time before antenna A2. By exploiting a model for the measured signals at
each antenna element it is possible to calculate the DOA from those signals.

Consider first a special case where the wave consist of a single sinusoidal,
i.e., a time-harmonic field [Bal89]. For this case, Maxwell’s equations can be
written in a much simpler form, and therefore most of the antenna literature
uses time-harmonic fields. Of course, any signal can be written as a sum
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1.3. PHYSICAL MODELING OF ARRAY ANTENNAS

of sinusoidal signals, and thus any signal can be represented using time-
harmonic fields. The time harmonic variation of the form ejωt is suppressed
by using complex quantities and the instantaneous values can be found by
taking the real part of the product of the quantity and ejωt. For example,
the instantaneous value of a field at point rp becomes

�E(rp) = Re[ �E(rp)ejωt]. (1.1)

If the source of the incident wave is located sufficiently far away from the
array, the wave front can be considered plane. This is referred to as the far-
field case. The field at a point rp of a plane electromagnetic wave propagating

along the �k direction1 can then be written as

�Ewave(rp) = �ρse
−j�k·�rp, (1.2)

where �ρ denotes the polarization of the incident field and s the strength of the
field. Note that �rp denotes the vector from the origin to the point rp and thus
the phase reference point is located at the center of the coordinate system.
This type of wave is usually called a uniform plane wave, i.e. the amplitude,
phase, and direction of the field is the same over a plane orthogonal to the
propagation direction. For more details regarding wave propagation, see
[Sau99] that treats propagation mechanisms and antenna fundamentals from
a wireless communications perspective.

The action of the antenna is to convert the field into a voltage or current
that can be measured. How different types of antennas does this conversion is
one of the fundamental topics of antenna theory. For an in-depth discussion
about the properties of different antenna types, see the following classical an-
tenna textbooks [Bal82, Col85, Ell81, Kra88, ST98]. However, most antenna
textbooks focus on transmitting properties and not on receiving modes. A
recent compact summary that includes receiving properties can be found in
[Mey00], and in [Kil99] equivalent circuits for antennas in receive mode are
presented. In the communication literature, the impact of the antenna is usu-
ally neglected, however in [Jak74] there is a brief introduction to antennas
and propagation that can be useful.

An expression for the induced voltage can easily be derived using the
concept of reciprocity and knowledge of the far-field radiation function of
the receiving antenna �G(�r), where �r is the direction of radiation. Using the

1The direction of the wave vector �k is the direction in which the wave travels and the
magnitude k = |�k| corresponds to the wave number k = 2π

λ
= ω

√
µǫ, where λ is the

wavelength. The symbols ǫ and µ denote the dielectric constant and the permeability of
the medium respectively.
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results from [Mey00, Kil99], the induced voltage becomes

V = c �G(−�k) · �Einc, (1.3)

where c is a scalar defined as

c = −j 4π

kηIin
. (1.4)

Here, k is the wave number, η the intrinsic impedance2 of the propagation
medium, Iin the input current used when calculating �G, and �Einc the inci-
dent field. Note that here −�k denotes the direction from which the wave is
incident. The expression for the induced voltage is, thus, obtained once the
radiation function of the antenna is obtained. For most common antenna
types, the radiation function �G (or approximations of it) can be found in
antenna textbooks [Bal82, Col85, Ell81, Kra88, ST98].

By combining (1.2) and (1.3), the voltage can be written as

V = c �G(−�k) · �ρ e−j�k·�rps = H(θ, φ) e−j�k·�rps, (1.5)

where the directional properties of the antenna and the polarization of the
incident wave are combined into the scalar H(θ, φ). Note that H(θ, φ) cor-
responds to the response of the antenna to a sinusoidal signal at the carrier
frequency, i.e. the frequency domain version of the antenna impulse response
at the carrier frequency. Remember that the above voltage is written using
the complex signal representation. The instantaneous value of the induced
voltage is obtained in a manner similar to (1.1) as

V(t) = Re
[
sH(θ, φ) e−j

�k·�rpejωt
]
= |sH(θ, φ)| cos (ωt− ωτ + \sH(θ, φ)) ,

(1.6)

where τ = �k · �rp/ω is a time delay that corresponds to the time it takes
for the wave to travel from the phase reference center, i.e. the origin, to
the point rp. Typically, the phase reference point is located at one antenna
element and thus the time delay τ corresponds to the time needed by the wave
to propagate over the array between the current element and the reference
element.

It is important to remember here that the preceding analysis was based
on a single harmonic, i.e. a single frequency. In a practical application, the
signal will span a band of frequencies and the field strength will be time-
varying. However, if the time delays τ are small compared to the reciprocal

2The intrinsic impedance is defined as η =
√

µ/ǫ. For free space the intrinsic impedance
becomes 120π Ω ≈ 377 Ω.
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1.3. PHYSICAL MODELING OF ARRAY ANTENNAS

of the bandwidth of the signal, the instantaneous value of the induced voltage
can be written as

V(t) ≈ |s(t)H(θ, φ)| cos (ωt− ωτ + \s(t)H(θ, φ)) . (1.7)

This approximation is usually called the narrowband assumption in array
signal processing [KV96], and essentially means that the signal s(t) does not
vary over the array, i.e. s(t) ≈ s(t + τ). In order to arrive at (1.7) it was
also assumed that the response of the antenna element, H(θ, φ), does not
change significantly over the frequency band of interest. This is a reasonable
assumption in almost all modern communication systems where the relative
bandwidth usually is a fraction of a percent. Therefore, in the light of (1.7)
and the narrowband assumption, it is possible to use the complex signal
representation of the voltage also for the time-varying case

V (t) = H(θ, φ) e−j
�k·�rps(t). (1.8)

This complex representation greatly simplifies the analysis, and will be used
throughout the thesis. A more detailed discussion on the above approxima-
tions may be found in [SM97].

When estimating the DOA using an array of n antenna elements, n dif-
ferent voltages will be measured. If these voltages are collected in a vector
x(t), the resulting model becomes

x(t) =




x1(t)
x2(t)
...

xn(t)


 =




H1(θ, φ) e
−j�k·�r1

H2(θ, φ) e
−j�k·�r2

...

Hn(θ, φ) e
−j�k·�rn


 s(t) = a(θ, φ)s(t), (1.9)

where Hi(θ, φ) denotes the response of antenna element i and �ri the location
vector from the phase reference center to antenna element i. The n×1 vector
a(θ, φ) models the spatial response of the array due to an incident plane
wave from the (θ, φ) direction. Therefore, the vector a(θ, φ) is usually called
steering vector or array response vector in the array processing literature.

Example Uniform Linear Array of Dipoles

Consider a plane wave incident upon an array of 3 thin dipoles of length
l as illustrated in Figure 1.2. The dipoles are oriented along the z axis
and spaced equidistantly along the x axis with a separation distance
of d. Such an arrangement is referred to as a Uniform Linear Array
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x
y

z

�k

�ρ

Figure 1.2: The geometry of the dipole array and a plane wave incident along
�k from the (θ, φ) direction.

(ULA). In this case, the wave will reach the element at the origin first
and after some time the other elements. The time delay for antenna
element i, where i = 0, 1, 2 and 0 corresponds to the origin, is easily
calculated as

τi =
�k · �ri
ω

=
k

ω
(sin θ (�x cosφ+ �y sinφ) + �z cos θ) ·�xdi = kdi

ω
sin θ cosφ.

(1.10)
Before the full expression for the induced voltages over the array can
be obtained, the directional properties of the dipole element must be
found. The far-field radiation function �G of the dipole element is in-
cluded in almost any antenna handbook [Bal82, Col85, Ell81, Kra88,
ST98] as

�G = �θ
jηIin

2π sin
(
kl
2

)
[
cos

(
kl
2
cos θ

)
− cos kl

2

sin θ

]
(1.11)

Now, the antenna response H(θ, φ) can be found using (1.4) and (1.5)
as

H(θ, φ) = c �G(−�k) · �ρ = λ

π sin kl
2

[
cos

(
kl
2
cos θ

)
− cos kl

2

sin θ

]
, (1.12)
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where �ρ = −�θ as indicated in Figure 1.2. The final array model is then
obtained by using (1.5) and (1.12) as

x(t) =
λ

π sin kl
2

[
cos

(
kl
2
cos θ

)
− cos kl

2

sin θ

]


1
e−jψ

e−j2ψ


 s(t) = a(θ, φ)s(t).

(1.13)
Note that the phase shifts ψ = kd sin θ cosφ (often called electrical
angle) only depend on the element positions and not on the type of
antenna element. The impact of the antenna element is included in the
antenna response H(θ, φ). In this example, the elements are identical
and the antenna response is simply a scalar that could be absorbed into
the signal s(t). If the antenna response of each element is different, it
should be incorporated into the steering vector a(θ, φ), as implied by
(1.9). The steering vector for a dipole array was calculated in this ex-
ample, but the steering vector for most antenna elements can be found
in a similar manner by using formulas of the radiation function �G from
antenna textbooks. A more detailed derivation of the array response
of a dipole array, that also includes the effects of mutual coupling, may
be found in [Sva99b] and in Chapter 2.

2

The derivation of the measured voltages considered only one incident
wave. When several waves are incident upon the array, the superposition
principle can be applied if the antenna elements and the receiver are linear.
To simplify the notation in the following analysis, the waves are assumed to
arrive in the x-y plane (θ = 90◦), see Figure 2.1. The model when p uniform
plane waves are incident upon an array of n elements can thus be written as

x(t) =

p∑

l=1

a(φl)sl(t) = A(φ)s(t), (1.14)

where

A(φ) =
[
a(φ1) a(φ2) · · · a(φp)

]
(1.15)

s(t) =
[
s1(t) s2(t) · · · sp(t)

]T
. (1.16)

Note that the vector of measured voltages, at time t, x(t) is n×1, the steering
matrix A(φ) is n × p, and the signal vector s(t) is p × 1. The DOAs are
contained in the p× 1 parameter vector φ.

9



CHAPTER 1. INTRODUCTION

In all measurement situations, noise will inevitably appear and it is typ-
ically difficult to model. Essentially, noise represents everything that do not
obey the assumed model and here it is included as an additive term as

x(t) = A(φ)s(t) + n(t). (1.17)

There are many sources of noise [Sko62], for example environmental noise
such as cosmic noise, atmospheric absorption noise, solar noise etc. It can
further be man-made noise, such as jammers and power tools etc. The re-
ceiver will also generate some noise such as thermal noise, shot noise and
flicker noise. Often, receiver noise is the dominating noise source; and then
additive white Gaussian noise is a good model. In this thesis, the noise is,
if not stated otherwise, assumed to be both spatially and temporally white
and Gaussian distributed,

E{n(t)} = 0 E{n(t)nH(s)} = σ2I δts E{n(t)nT (s)} = 0 ∀ t, s.(1.18)
The motivation for this assumption is that if there are many sources of noise,
the sum will be Gaussian distributed according to the central limit theorem
[Pap91]. Also, the further analysis of direction finding performance is greatly
simplified by assuming white Gaussian noise. Therefore, an overwhelming
part of the literature of array signal processing assumes white Gaussian noise.
For other noise models, such as colored noise or noise of other distributions,
see [Hay95b].

The transmitted signal is in a similar manner often assumed to be Gaus-
sian distributed with

E{s(t)} = 0 E{s(t)sH(s)} = P δts E{s(t)sT (s)} = 0 ∀ t, s. (1.19)
Note that different source signals may be correlated, leading to a non-diagonal
source covariance matrix P. The assumption of temporally white and Gaus-
sian signals is not critical. It is only used when deriving the maximum like-
lihood estimator and the Cramér-Rao lower bound. The actual performance
of the methods under study is typically independent on the source distribu-
tion, but depends only on P [OVSN93], unless the distribution or the signal
itself is known. For other choices of signal statistics, see [Hay95b]. A crucial
assumption is, however, that the signal is uncorrelated with the noise.

Most DOA estimation schemes rely on the properties of the second order
moment of the measured voltages x(t), i.e. the spatial covariance matrix.
Therefore, some characteristics of the spatial covariance matrix of the mea-
sured voltages, x(t), are presented next. The latter is obtained as

R = E{x(t)x(t)H} = AE{s(t)sH(t)}AH + E{n(t)nH(t)} = APAH + σ2I.
(1.20)
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1.3. PHYSICAL MODELING OF ARRAY ANTENNAS

Note that the cross-terms vanish since the signal and the noise are assumed
to be uncorrelated and the noise is zero-mean.

Many of the DOA estimation schemes presented in the literature rely
on the fact that the eigendecomposition of the covariance matrix R can be
written as a sum of two parts [KV96]. One part consisting of eigenvectors
corresponding to eigenvalues equal to the noise variance, and a second part
that is related to the signal

R =

n∑

k=1

λkeke
H
k = EsΛsE

H
s + σ

2EnE
H
n , (1.21)

where Es = [e1, . . . , ep] denotes the signal eigenvectors, En = [ep+1, . . . , en]
denotes the noise eigenvectors, and Λs = diag[λ1, . . . , λp] denotes the signal
eigenvalues. This decomposition, which some times is referred to as spectral
factorization, and is used extensively in subspace based DOA estimation
[KV96, VS01].

Remarks

1. The model derived here for the case of an electromagnetic wave incident
upon an antenna array is closely connected to the sonar problem where
an acoustic wave is incident upon an hydrophone array [Lig73, Ows85].
Applications of similar models for medical imaging can be found in
[FK92] and also for chemical sensor arrays in [NPP95].

2. If the antenna is located close to the source of radiation, the wave
front is spherical and the plane wave assumptions is no longer valid.
However, if the spherical nature of the wave is correctly modeled, the
range as well as the DOA can be estimated [SN94].

3. Only direction finding using an antenna array is considered in this intro-
duction, but other antenna arrangements are also used. For instance, a
mechanically steered antenna [Sko62] has been used in radar for a long
time. Other possibilities are to employ electromagnetic vector-sensors
[NP97], switched parasitic elements [SW01], or higher order electro-
magnetic modes [Sva00e]. Higher order modes and switched parasitic
antennas are analyzed in Chapter 7 and 8 of this thesis.

4. The linear array, that only can be used to estimate either azimuth or
elevation, is by far the most analyzed type of array. However, two di-
mensional arrays have also been analyzed. See [Hay95b, He93] and the
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references therein for results on two dimensional arrays, and in partic-
ular for circular arrays that are used to estimate both the elevation and
the azimuth angles.

5. The expression for the steering vector was calculated analytically in this
section. In general, these expressions will not correspond to a measured
response of an antenna array. Typically, differences in temperature,
aging of components, changes in the electromagnetic environment of
the array will change the array response. Some type of calibration, of
both the antenna system as well as the receiver, is therefore usually
needed. Often the response of the array is measured and stored in a
lookup table. For an example of the calibration procedures of a high
performance digital beamforming antenna, see [PDS97]. An important
topic here is mutual coupling that will affect the performance. This is
discussed in detail in Chapters 2-6.

2

1.4 Direction Finding

The problem of estimating the Direction Of Arrival (DOA) of multiple sig-
nals arriving at an array of sensors has received considerable attention for
several decades [KV96, VS01, VB88]. The underlying physical principle of
all antenna array DOA algorithms is the fact that a transmitted signal will
arrive at the different elements at different time instants. By exploiting the
data model derived in previous section, the directions from which the signals
arrive can be obtained. Traditionally, the most notable application has been
source localization in radar and sonar. These applications have essentially
driven the development of DOA algorithms since the first approaches of spa-
tial filtering or beamforming. The conventional beamformer dates back to
the second world-war, and is a mere application of Fourier-based spectral
analysis to spatio-temporally sampled data. Later, adaptive beamformers
and classical time-delay estimation techniques were applied to enhance one’s
ability to resolve closely spaced signal sources [App76, Cap69, Gab80]. How-
ever, these approaches suffer from the fact that the performance directly
depends upon the physical size of the array (aperture). The limitations of
the beamformer started a development of other algorithms that alleviated
some of these drawbacks. Inspired by the maximum likelihood principles
[Kay93, MS69, Sch68], a wealth of DOA estimation schemes based on para-
metric modeling have appeared during the last two decades. By more fully
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exploiting the underlying physical principles (model), a much higher perfor-
mance than that of the beamformer was now possible.

Estimating the DOA is also of interest in wireless communications. The
angular properties of the mobile communications channel impacts many parts
of the system design. For instance, the angular spread of the channel essen-
tially determines the necessary antenna spacing in diversity applications. It
has further been proposed to employ antenna arrays to reduce the co-channel
interference by transmitting energy only in the direction to a specific user
and essentially no energy in the directions of other users. In these types of
systems, estimating the DOA forms an integral part of the system. The DOA
parameters may also offer a more stable characterization of the channel than
a direct filter description. Furthermore, as the mobile phone becomes more
ubiquitous, the interest of employing the phone for personal locating services
increases. Here, the DOA can be used for obtaining the location of the mo-
bile phone. Thus, there are many reasons for employing DOA estimation
also in wireless communications.

Most of these algorithms make the assumption that the signal essentially
emanates from a single point. This point source assumption significantly sim-
plifies the estimation problem, and the data model derived in the previous
section is applicable. This is a reasonable assumption in radar and macro-
cellular communications, where the receiver antenna is located relatively far
from the source. However, for some applications, such as micro- and pico-cell
applications, the received energy can not be considered to emanate from a
single direction [KRB00]. In these applications, the source is better modeled
as a spread source [VS01]. Here, only the simpler case of point sources will be
briefly reviewed. For more material, see [God97, He93, Hay95a, KV96, VS01]
and further references therein.

1.4.1 Spectral-Based Techniques

As the name suggest, spectral based methods rely on calculating a spatial
spectrum and finding the DOAs as the location of peaks in the spectrum.
These methods were the first that were developed and are easy to apply.
Probably the most widely used method of obtaining estimates of the DOAs
is the beamforming method. As the name beamforming suggests, the received
energy is focused to one direction (or beam) at a time. This can be expressed
as

y(t) = wHx(t), (1.22)

where the weighting vector w can be seen as a spatial filter that empha-
sizes one particular direction. Given samples y(1), y(2), . . . , y(N), the output
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power is measured by

P (w) =
1

N

N∑

t=1

|y(t)|2 = 1

N

N∑

t=1

wHx(t)xH(t)w = wHR̂w, (1.23)

where R̂ is obtained as

R̂ =
1

N

N∑

t=1

x(t)xH(t) (1.24)

which is an unstructured maximum likelihood estimate of the covariance
matrix in (1.20). Many different choices of the weighting vector w can be
made leading to different properties of the beamforming schemes [Sko62,
VB88].

Conventional Beamforming If the weighting vector is chosen in order
to maximize the received power in a certain direction φ [VB88], as

wBF =
a(φ)√

aH(φ)a(φ)
, (1.25)

the classical spatial spectrum is obtained

PBF (φ) =
aH(φ)R̂a(φ)

aH(φ)a(φ)
. (1.26)

This spectrum is in array processing literature referred to as conventional (or
Bartlett) beamformer, since this actually is a natural extension of the clas-
sical Fourier based spectral analysis with different window functions [Bar48,
SM97]. In fact, if a Uniform Linear Array (ULA) of isotropic elements is
used, the spatial spectrum in (1.26) is a spatial analog of the classical peri-
odogram in time series analysis. Note that other types of arrays correspond
to non-uniform sampling schemes in time-series analysis. As with the peri-
odogram, the spatial spectrum has a resolution threshold. Waves arriving
with electrical angle separation3 less than 2π/n can not be resolved with
this method. For example, using a five element ULA with an element sepa-
ration of d = λ/2 results in a resolution threshold of 23◦. Other choices of
weighting vectors w, that result in lower resolution thresholds, were therefore
investigated.

3The electrical angle is defined as kd cosφ.
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Capon’s Beamformer One of the most popular beamforming methods
that to some extent alleviates the limitations of the conventional beamformer
is the Capon’s beamformer [Cap69, Lac71]. This beamformer attempts to
minimize the power contributed by noise and any signals coming from other
directions than the looking direction, while maintaining a fixed gain in the
look direction. This type of beamformer is sometimes also referred to as
Minimum Variance Distorsionless Response (MVDR) filter in acoustics lit-
erature. The Capon weighting vector is

wCAP =
R̂

−1
a(φ)

aH(φ)R̂
−1

a(φ)
(1.27)

and if inserted into (1.23), the MVDR spatial spectrum becomes

PCAP (φ) =
1

aH(φ)R̂
−1

a(φ)
. (1.28)

Although more complex than the conventional beamformer, Capon’s method
offers significantly reduced resolution threshold. The lower resolution thresh-
old (reduced spectral leakage) is achieved at the cost of reduced noise suppres-
sion capability [Cap69]. A formula for calculating the resolution threshold
for the Capon’s method assuming a perfect estimate of R̂ is given in [Ser95],
see Table 1.1 on page 17.

A large number of alternative methods for beamforming have been pre-
sented in the literature, see [VB88] for an overview. An example of an ap-
plication of conventional beamforming in a mobile communication scenario
can be found in [MLEP+00] where the performance gain by exploiting con-
ventional beamforming in a GSM network is investigated.

Still the resolution threshold for beamforming methods is quite high and
that was one of the motivations for the interest in the so-called subspace
methods that will be described next.

MUSIC Subspace based methods rely on observations regarding the eigen-
decomposition of the covariance matrix into a signal subspace and a noise
subspace, as discussed in previous subsection. One of the most popular sub-
space methods, MUltiple SIgnal Classification (MUSIC), was introduced in
[Sch79]. The method is based on the observation in (1.21), that the noise
eigenvectors are perpendicular to the steering matrix or the signal subspace.
The algorithm calculates the noise subspace using an eigendecomposition of
the estimated covariance matrix in (1.24). Then, the estimates of the DOAs
are taken as those φ that gives in the smallest value of aH(φ)Ên, i.e. the
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values that result in a steering vector furthest away from the noise subspace.
Usually this is formulated as finding the p largest peaks in the ”MUSIC
spectrum”

PMU(φ) =
1

aH(φ)ÊnÊ
H

n a(φ)
. (1.29)

Note that the eigenvectors Ên are easily obtained by either an eigendecom-
position of the sample covariance matrix, or a Singular Value Decompo-
sition (SVD) of the data matrix, and that numerical reliable routines for
eigendecomposition and SVD are included in most software packages.

The main motivation for introducing the subspace methods was to re-
duce the resolution threshold of the beamforming methods. The resolution
threshold of MUSIC depends in a complicated manner on several parameters
such as number of samples, number of elements, and the SNR. Therefore, the
formula for the resolution threshold becomes more complicated than for the
beamforming methods, see Table 1.1. First, the different resolution thresh-
olds of conventional beamforming, Capon, and MUSIC will be examined in
a simulation example.

Example Beamforming, Capon, and MUSIC

The beamforming (BF), Capon, and MUSIC spectra are shown in Fig-
ure 1.3 for the case when two waves are incident upon an ULA of 5
elements with half-wavelength spacing. The true directions are 85◦ and
95◦ and 100 samples of the induced voltages are taken, i.e. N = 100
in (1.24). Furthermore, the sources are assumed to be uncorrelated
and of equal strength, i.e. P = 10(15/10)I with a noise power σ2 = 1,
resulting in an SNR of 15 dB. It is clear that the conventional beam-
forming method (1.26) fails to resolve the sources, since the angular
separation in this example (10◦) is less then the resolution threshold of
conventional beamforming (23◦). Capon’s method just barely resolves
the sources while the MUSIC method results in two well defined peaks
at the true DOAs.

2

Resolution Threshold A critical property of the spectral-based methods
is the ability to resolve closely spaced sources. For the conventional beam-
forming method a relatively simple expression for the minimum separation
in electrical angle can easily be obtained as ∆ = 2π

n
. A slightly more com-

plicated expression for the Capon’s beamformer can be obtained for the lim-
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Figure 1.3: Normalized spectra of MUSIC (solid), Capon (dashed), and
beamforming (dash-dotted) methods versus DOA. The true DOAs are in-
dicated by dotted vertical lines. An ULA of 5 elements with half-wavelength
spacing is used when N = 100 samples of the induced voltages are taken at
an SNR of 15 dB.

iting case of a perfect covariance estimate and uncorrelated sources [Ser95],
see Table 1.1. For correlated sources, see [Ser95]. Note that the resolution
threshold of Capon’s beamformer decreases with increased SNR (ξ), while
the conventional beamformer is independent of the power. The resolution
limit for the MUSIC method is more complex [KB86], and depends on the
number of samples as well as SNR ξ and number of elements n. For more
detailed descriptions on the assumptions on the resolution limits of Capon
and MUSIC, see [KB86, Ser95].

BF Capon MUSIC

∆ = 2π
n

∆ = 8.71
[

1
n5ξ

] 1
4

∆ =
{
∆ : 2880(n−2)

Nn4∆4

[
1 +

√
1 + Nn2∆2

60(n−1)

]
= ξ

}

Table 1.1: Resolution thresholds for beamforming (BF), Capon, and MUSIC
methods. Here, n denotes the number of antennas, ξ the SNR, and N the
number of snapshots.

Example Resolution Thresholds of BF, Capon, and MUSIC

The resolution threshold of the beamforming (BF), the Capon, and
the MUSIC methods are shown in Figure 1.4 for the case when two
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Figure 1.4: The resolution thresholds of MUSIC (solid), Capon (dashed), and
beamforming (dash-dotted) methods versus the number of half-wavelength
spaced antenna elements when 100 samples are taken at a SNR of 15 dB.

waves are incident upon an ULA with 3 to 12 elements with half-
wavelength spacing. The waves are assumed to arrive symmetrically
about the array normal and 100 samples of the induced voltages are
taken, i.e. N = 100 in (1.24). Furthermore, the sources are assumed
to be uncorrelated and of equal strength, i.e. P = 10(15/10)I with a
noise power σ2 = 1 resulting in a SNR=15 dB. It is clear that the con-
ventional beamforming experiences the highest resolution threshold.
The Capon’s method has a lower resolution threshold and the MUSIC
method a much lower threshold. Note that if the SNR is increased, the
threshold of MUSIC and Capon will drop further while the beamform-
ing method will not be affected. In the case of MUSIC, the threshold
will also drop if more samples are taken.

2

The high resolution of MUSIC appears to make it the preferred method
over beamforming and Capon at all times. Unfortunately, also the MUSIC
method suffers from a few drawbacks that prevents it’s application to cer-
tain problems. A problem in practical applications is that it is assumed that
the number of sources is known in order to separate the eigenvectors into
noise eigenvectors and signal eigenvectors. Furthermore, if the signals are
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correlated the covariance matrix will not be full rank and the separation into
signal and noise subspace becomes difficult. One typical example of corre-
lated signals is in a multipath scenario, where several replicas of the signal
arrive through different paths. These drawbacks were the prime motivation
of introducing the parametric approaches that will be examined in the next
section.

1.4.2 Parametric Methods

While the spectral-based methods presented in the previous section are com-
putationally attractive and simple to apply, they do not always yield a suf-
ficient accuracy. This is in particular the case for scenarios with highly
correlated signals. An alternative is to employ so-called parametric array
processing methods, that directly estimate the DOAs without first calculat-
ing a spectrum. These algorithms yield a higher performance in terms of
accuracy and resolution by exploiting the underlying data model to a larger
extent. The cost for this performance increase is a higher complexity and
more computations, since typically a multi-dimensional search for the pa-
rameters are needed.

A new performance measure is now required since the DOA estimates
are obtained without computing a spectrum, thus making beamwidth and
resolution threshold less important. Instead two statistical properties of the
DOA estimates are usually employed as performance measure.

• Consistency: An estimate is consistent if it converges to the true value
when the number of data (or SNR) tends to infinity.

• Statistical Efficiency: An estimator is statistically efficient if it asymp-
totically attains the Cramér-Rao Bound (CRB), which is a lower bound
on the covariance matrix of any unbiased estimator (see [Kay93]).

Of these, the statistical efficiency is the most important since almost all
of the methods presented here are consistent. Formulae for calculating the
lower bound (CRB) may be found in many textbooks on statistical signal
processing.

Essentially all parametric DOA estimation methods may be formulated
as

φ̂ = argmin
φ
V (φ,X), (1.30)

where X = [x(t1),x(t2), . . . ,x(tN )], N denotes the number of samples, and
the DOA estimates are taken as the minimizing arguments of the criterion
function V . Many different functions have been proposed in the literature
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with different properties. The perhaps most well known and frequently used
method is the Maximum Likelihood (ML) method. That method fits the
above description and will be discussed in Chapter 3 in the context of mutual
coupling. Several other parametric DOA estimation methods are discussed
in Chapters 3-6 in the context of both known and unknown mutual coupling.
A version of the ML method for an antenna employing higher order modes is
also outlined in Chapter 7. For more material on parametric DOA estimation,
see [God97, He93, Hay95a, KV96, VS01, VB88].

1.5 Modeling of the Wireless Communication

Channel

An accurate knowledge of the mobile communications channel is of greatest
importance when designing radio systems. The performance of a detector or
receiver is highly dependent on the characteristics of the radio channel. If
an accurate model of the channel is available, it is possible to design receiver
algorithms that achieve a high performance by exploiting the properties of
the channel. Thus, to accurately model the radio channel is an important
problem that affects the performance of wireless communication systems.
This thesis mainly deals with cellular mobile communication systems for
which the term wireless communication systems also will be used.

Unfortunately, the propagation situation in a practical wireless commu-
nication channel is very complex. The signal that is transmitted from the
mobile phone will reach the base station antenna through many different
paths. At the base station antenna it will appear as if energy is arriving
over an angular sector rather than from a distinct direction. Therefore, the
model in the previous section that assumed a plane wave incident from a
distinct direction needs to be modified. Numerous textbooks on radio chan-
nel characteristics have been written with applications in cellular networks
[Ber00, Bla00, Par92].

Consider the propagation scenario in Figure 1.5, that contains a mobile
antenna and a base station antenna as well as numerous scattering objects.
Several local scattering objects (houses) are located in the vicinity of the
mobile, and a large scattering object (large building) is located further away.
The transmitted field from the mobile will experience electromagnetic scat-
tering, reflection, refraction, and diffraction before it reaches the base station
antenna where a voltage finally is induced. For an introduction to scattering
and wave propagation, see [Bal89, Sau99] and the references therein.

By exploiting fundamental physical principles, it is possible to arrive at
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Y

Y

Figure 1.5: Typical suburban scatter environment with local scattering and
a dominant scatterer.

a detailed channel model that includes most of the propagation phenomena
encountered in practice. In fact, due to the recent developments in compu-
tational power, it is possible to approximately solve Maxwell’s equations for
the propagation scenario at hand. Through massive calculations, the channel
impulse response of a practical scenario can be found if the geometry and
electrical properties of the scenario are specified. Probably the most popular
solution is based on a concept called ray-tracing, where the propagating field
is viewed as a ray. Although computationally intensive, accurate results can
be obtained [CPdAG98, DKW97, SI94]. These ray-tracing schemes can in
some cases replace measurement campaigns by using them to simulate data
if an accurate database of the scenario is available. However, for the purpose
of evaluating different receiver designs, these models are way too complex to
be useful. Instead, the primary use of ray-tracing schemes may be found in
cell-planning tools.

Ray-tracing models have mainly been designed and used within the area of
electromagnetics. In the signal processing and communications areas, much
simpler models have been used. These models typically make an assumption
regarding the statistical distribution of some properties of the channel. Often,
very little physical knowledge is incorporated into these models. However,
with the advent of antenna array techniques, a need for modeling the spatial
dimension arose.

At the time antenna arrays were introduced, the base station was typically
serving a large area (macrocellular application). Hence, the base station was
placed rather high (elevated base station) on a mast, with negligible influence
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Figure 1.6: Local scattering model.

of local scatterers. The mobile, which often was located relatively far from
the base, was on the other hand surrounded by local scatterers. For these
types of scenarios, a common model, is the so-called local scattering model
[Ast99, Zet97]. It is assumed that the transmitted signal is reflected by many
scattering elements in the close vicinity of the mobile, see Figure 1.6. The
direction to the center of the local cluster of scatterers around the mobile
is typically referred to as the nominal DOA φ0. At the mobile, however,
the received signal appear as if coming from all directions. Typically, it is
assumed that the time-delays of the different paths within the cluster can
be modeled as a phase-shifts, i.e., a narrowband assumption is made. If, in
each path, this phase-shift is incorporated into the complex amplitude ρ, the
channel model can be written as

x(t) = vs(t) + n(t) , t = 1, . . . , N. (1.31)

As before, s(t) is the signal waveform and n(t) is the noise vector. The vector
v is termed the spatial signature, and using the above assumptions it can be
written as

v =

p∑

l=1

ρla(φl) , (1.32)

where ρl is a complex amplitude and φl is the DOA of the lth signal path
from the cluster. The number of paths in the cluster is denoted p. In case
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of no multipath or negligible DOA spread, the model applies with p = 1 and
essentially reduces to the expressions in Section 1.3.

With the above framework, the spatial dimension is included in the model.
Hence, a number of different systems can be studied. For instance, studies of
systems employing interference suppression via beamforming and other tech-
niques have been performed [Lin00, Pel99, Ran99]. The impact of different
receiver designs that employ array antennas has been studied in numerous
publications during the last decade. Also, the success of cellular commu-
nication systems has resulted in a vast literature on radio channel model-
ing. Most of the literature on spatial signal processing employs the model
of (1.31) or similar models. See [Ert98] for an excellent overview of spatial
models in signal processing. The interested reader is referred to the following
textbooks [Jak74, Lee89, Par92, Pro95, Sau99, Ste92] and further references
therein. See also the following tutorials and overviews [ARY95, FL96, Has93]
for further information.

The above model was essentially developed for a narrowband, single-
polarized, macrocellular mobile communications scenarios. However, due to
the enormous success of mobile communications, the focus has shifted from
narrowband to broadband, single-polarization to multiple-polarization, and
from large cells to pico-cells and indoor networks. Hence, a number of con-
ditions have changed, and new properties and parameters of the channel
need to be modeled. In particular, the recent proposal of using multiple
antennas, i.e., arrays at both the transmitter and receiver, requires another
type of channel model. Impressive data rates have been demonstrated using
these Multi-Input Multi-Output (MIMO) systems [FG98, LP00, WFGV98].
Furthermore, it was recently found that exploiting all six possible Electro-
Magnetic (EM) polarizations, i.e. the three components of the electric field
and the magnetic field respectively [AMd01], might provide six uncorrelated
transmission paths. Consequently, modeling the EM polarization properties
of the MIMO channel is an important topic.

An interesting way of accurately modeling all these different properties
is to base a channel model on fundamental physics, thereby including most
of these properties. A general model that accounts for many of the physical
properties encountered in practice, will be derived in this thesis (Chapter
9), by exploiting EM theory. The aim is to bridge the gap between the
complicated wave propagation environment of radio signals and the idealized
models previously used. This type of model is straightforwardly extended to
modeling MIMO systems, which is the topic of Chapters 9-12.

The channel model is derived using fundamental results from EM scat-
tering. A channel scenario is defined by a number of scattering objects po-
sitioned to resemble different channel environments, such as micro-cells or
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Figure 1.7: Scattering from a dielectric plate with oblique incidence.

indoor scenarios. The positions and properties of these scatterers can be of
stochastic, deterministic, or semi-deterministic nature. Once the character-
istics of all objects are determined, the field at the receiving antenna can be
obtained using wave propagation results. The field incident upon each scat-
terer is calculated from the radiation pattern of the transmitting antenna,
and then the field incident upon the receiving antenna, due to the scattering,
is calculated.

The scattering process that includes both magnitude and polarization
properties is accounted for using a scattering matrix �S that relates the scat-
tered field to the incident field as

�Es = �S · �Ei. (1.33)

By using a scattering matrix formulation, a compact description of the chan-
nel is obtained. Scattering matrices are often used in electromagnetics, but
seldom applied in signal processing models. A relatively simple expression
of �S can be obtained by utilizing the theory of rough surface scattering and
oblique scattering by dielectric plates. Here, properties such as width of
scattering lobe, polarization, and size of the scatterer are included using rel-
atively few parameters. An illustration of a scattering situation that can be
described by using the scattering matrix is shown in Figure 1.7. In this case,
a plane wave is scattered by a dielectric plate under oblique incidence. Here,
�ki and �ks denote the normalized incidence and scatter wave vectors, and �x, �y
and �z denote the axis in the rectangular system of coordinates. In this fig-
ure, the width of the scattering lobe is clearly visible. By combining this
scattering matrix formulation with the channel scenario described above, a
channel model that incorporates many of the physical mechanisms encoun-
tered in radio channel propagation is obtained. A detailed derivation and
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discussion on physical channel modeling is given in Chapter 9. The channel
model derived therein, is used in various forms in the following chapters to
study different aspects of communication systems. In particular, the focus of
these comparisons is on the border between antennas and signal processing.

The fundamental function of a channel model in signal processing and
communications is to relate the transmitted signal to the received version of
it. If a baseband signal s(t) is transmitted, the received signal x(t) can be
expressed as the convolution of the channel impulse response h(τ, t) and s(t)
as

x(t) =

∫ ∞

−∞
h(τ, t)s(t− τ)dτ + n(t). (1.34)

Here, the impulse response h(τ, t) is a function of both the delay τ , but is
also a function of the time t that accounts for the time evolution of the
impulse response. One example of time evolution effects is the Doppler shift
that occurs due to movement of either the mobile, the base station, or the
scatterer. Furthermore, an additive noise n(t) is incorporated in (1.34). This
is the by far most common assumption regarding noise. However, many other
assumptions can of course be made, see [Jak74, Pro95, Sau99].

The above expression for a single transmit and receive antenna is straight-
forwardly extended to the case of multiple antennas. For a communication
link with nr receive antennas and nt transmit antennas, the channel can be
described by a nr×nt matrixH(τ, t) of complex baseband impulse responses.
Here, the element Hij(τ, t) denotes the impulse response from transmit an-
tenna j to receive element i. Hence, nrnt impulse responses are needed
to characterize this type of MultiElement Antenna (MEA) or Multi-Input
Multi-Output (MIMO) channel. In this case, the nr × 1 vector of received
signals x(t) becomes

x(t) =

∫ ∞

−∞
H(τ, t)s(t− τ)dτ + n(t), (1.35)

where s(t) denotes the nt × 1 vector of transmitted signals and n(t) is the
noise vector of the same length. Here, it should be stressed that a continu-
ous representation of the signals and impulse responses have been used. This
appears natural when deriving the channel model from physics and electro-
magnetics. However, most of present and most likely also future wireless
communication systems employ digital signal processing to a large extent.
When devising receiver structures and detector algorithms for these systems,
a discrete time representation is needed. If the received signal is sampled as
x(n) = x(nT ), where T denotes the sampling period, the following relation
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can be used

x(n) =
∞∑

k=−∞
H(k, n)s(n− k) + n(n). (1.36)

Note that the channel H in (1.36) differs from the H in (1.35) and that the
sampled versions of the transmitted signal and the noise are denoted s(n)
and n(n). Although this formulation results in some abuse of notation, it
is the normal notation used in most textbooks. For narrowband systems,
where the main part of the received energy arrives at essentially the same
time, the model may be further simplified to

x(n) = H(n)s(n) + n(n). (1.37)

Here, the channel model reduces to complex matrices comprising complex
scalars, that relate the received signals of each element to the corresponding
transmitted signal from each antenna. Note that these narrowband channels
are often called frequency-flat channels, since the frequency response of a
channel, where the main part of the energy is received at one time instant, is
approximately constant. Correspondingly, channels where the energy arrives
at different time instants (as in (1.36)) are often referred to as frequency-
selective channels. Both types of channels will be modeled and studied in
this thesis. If the channel further is assumed to be time-invariant, the time
dependency of the channel may be dropped, i.e. H. Thus, leaving only a
single matrix to characterize the channel. This representation is often used
in Space Time Coding applications [NSC00].

It is important to stress that the explicit meaning of impulse response
and the transmit and receive signals critically depend on the system that is
modeled. In many systems, matched filtering is employed. In that case, the
received signal x(n) is sampled after being filtered with a filter matched to
the transmitted signal waveform. When modeling these systems, the pulse
shaping filters of the communication system are often incorporated into the
channel via a convolution of the “true physical” channel with the pulse shape
of the system. Here, the filters of the transmitting and receiving equipment
should also be accounted for. Hence, the signals x(n) and s(n) then de-
note the received and transmitted “symbols”. However, the specific meaning
needs to be determined for each system. For example, in many systems over-
sampling is used. Also, many present and future systems, such as WCDMA
and CDMA2000, employ spectrum spreading. The sequence of information
symbols are multiplied by a spreading sequence that changes values many
times over the symbol interval. The elements of this spreading sequence
are often called chips. The resulting signal has a wider bandwidth, hence
the term spreading. By exploiting the properties of the spreading sequence,
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different users can be separated while occupying the same frequency at the
same time. For these systems, the signals are sampled at this higher rate
(chip-rate), or even higher if oversampling is employed. Hence, the actual
meaning of transmitted and received signal will depend on the system that is
analyzed. In this thesis, the underlying physical modeling is the main objec-
tive. Therefore, the models derived herein need to be extended to incorporate
properties specific to individual systems such as pulse-shaping function and
oversampling.

1.6 Diversity and Channel Capacity

In order to assess the validity of a channel model, it is necessary to compute
some properties of the obtained channel that can be compared to measure-
ments or other models. Obviously, the preferred way is to perform extensive
measurement campaigns in environments that resemble the model scenarios
in order to address the quality of the model. Unfortunately, when writing
this thesis, no extensive measurement data was available. However, some
measurements were performed shortly before writing this thesis, and some
preliminary ideas of how these may be used to improve the models are given
in Chapter 13 as suggestions of future work. Instead of measurements, a
number of overall performance measures were used to relate the output of
the models to results obtained when employing real systems. Two different
types of performance measures have been studied; diversity gain in different
scenarios and calculation of the channel capacity under different conditions.
These performance measures have also been used when evaluating two novel
antenna solutions, namely multimode and parasitic antennas, in Chapters 10
and 11. The main ideas of diversity and capacity will therefore, be briefly
reviewed in this section.

There are a number of characteristics of the wireless channel that makes
it much more difficult to communicate over, compared to wired communica-
tion systems. Perhaps the most important difficulty, at least from a radio
interface perspective, is the fading of the signal strength. The signal that
is received will typically be the superposition of many propagation paths.
These signals will sometimes add constructively and sometime destructively,
hence creating a rapid fluctuation of the signal strength. An example of a
fading signal is shown in Figure 1.8, where a y oriented dipole is used and the
signal is normalized such that its maximum is of unit magnitude. Here, the
rapid changes are clearly visible and that the signal power may drop 20dB in
some fades. This envelope was calculated using the channel model derived
in Chapter 9, where also other effects such as shadowing and other channel
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Figure 1.8: A fading signal.

characteristics are included. The rate of change depends on the speed of the
mobile or other objects in the surroundings. This type of effects are often
called Doppler effects and will be described in more detail in Chapter 9. An
example of an everyday situation that illustrates the Doppler effect is the
siren mounted on emergency vehicles and police cars. As the angle towards
the siren changes, so does the appeared frequency. In wireless communi-
cations, there are many objects (or sirens) that contribute to the received
signal. Hence, a very complex situation arises as seen in Figure 1.8.

Many different schemes of mitigating these severe drops of signal power
have been designed throughout the history of wireless transmission and com-
munications. One of the most important techniques for mitigating the fading
of the channel is diversity combining. The main idea is to obtain several inde-
pendent copies of the received signal, for example by using multiple antennas,
that are combined in order to increase the received average power. An im-
portant property for the combining to be successful is that while one of the
signals are exhibiting a deep fade, the others should not. Hence, the differ-
ent branches should experience low mutual correlation in order for successful
mitigating of deep fading dips. However, the received signals should also
be of comparable average strengths for the combining to be effective. An
example of diversity combining is shown in Figure 1.9, where a combination
technique called Maximum Ratio Combining (MRC) [Jak74, Pro95, Ste92]
is used. That technique is optimum in the sense that the received Signal to
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Figure 1.9: Diversity combining.

Noise Ratio (SNR) is maximized. Two dipoles are used, one z oriented and
one y oriented, and the scenario is the same as in Figure 1.8. By employing
diversity combining, many of the deep fades may be avoided. Hence, the per-
formance of a communication system may be significantly improved. This
is particularly important when a high performance is required, since then
almost all the transmission errors will occur in the fades.

Many different ways of obtaining different branches or copies of the signal
of interest have been proposed.

• Space diversity: Two or more antennas, that are separated in space,
are used to yield uncorrelated versions of the received signal.

• Time diversity: By transmitting the same signal multiple times, sev-
eral different versions of the channel are encountered.

• Frequency diversity: Transmitting the signal over different frequen-
cies that fade independently also provides diversity.

• Pattern diversity: Receiving the signal with different radiation pat-
terns is also a mean of obtaining different diversity branches.

• Polarization diversity: Several versions of the signal may also be
obtained by employing antennas of different polarization.

29



CHAPTER 1. INTRODUCTION

Often, polarization and pattern diversity are considered to be a kind of space
diversity, since all three depend on the spatial characteristics of the channel.
Space diversity as well as polarization and pattern diversity will be exam-
ined in some detail in this thesis. In particular, the correlation between the
different branches are studied since this will essentially (together with the
magnitude of the branches) determine the potential gain in using diversity
combining. The correlation between the received signal levels of spatially
separated antennas will be studied in Chapter 9, as a mean of evaluating the
properties of the channel model derived therein. Two novel diversity anten-
nas are studied in Chapter 10 and 11, where the correlation properties are
investigated.

Traditionally, only receive diversity has been implemented in mobile com-
munications. Mostly, space diversity in the form of spatially separated an-
tenna elements at the base station has been employed. Recently, the in-
creased demand of high data rates and spectrum efficient communications,
has raised an interest in employing also transmit diversity. Significant per-
formance gains are possible by employing space diversity also in the transmit
mode. By combining antenna signal processing with coding concepts from
communication theory, i.e. Space Time Coding (STC), excellent performance
may be obtained [NSC00]. During the last decade, an intense activity in the
area of STC has lead to numerous publications. In fact, some of the STC
ideas have already found their way to some of the current third-generation
wireless system standards.

In this thesis, the performance improvements of using multiple antennas
at both the transmitter and receiver, will be examined. Recently, it has been
pointed out by a number of researchers that high data rates may be possible
by employing these MIMO systems. For example, in [SOK00] data rates
at 300Mbits/s, for a HiperLAN/2 type of systems, were discussed when em-
ploying three transmit and receive elements. Those discussions were based on
measurements. However, most of the analysis of MIMO systems have been
performed using rather idealistic channel models and conditions. In this the-
sis, the performance of these systems will be examined using a physically
based channel model. However, instead of examining the performance of a
specific STC scheme, an upper bound on the achievable data rate, i.e. the
channel capacity C, is considered. The Shannon channel capacity is a mea-
sure of the maximum possible rate, that can be transported over a channel,
with arbitrarily low Bit Error Rate (BER) probability. It can be achieved
by coding of infinite delay. The seminal capacity formula due to Shannon
[Sha48] has been extended to the case of multiple transmit and receive an-
tennas by several researchers. In [FG98], a measure of the capacity for a
quasi-static random channel has been derived. A more general framework
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on capacity is presented in [Tel95], where capacity measures are derived for
channels with and without fading. Here, the formulation for a quasi-static
MIMO channel H [FG98] will be used

C = log2 det

[
I+

ξ

N
HHH

]
bits/s/Hz, (1.38)

where ξ/N denotes the SNR at each receive antenna. Note that the channel
matrix H is M × N , where M,N denotes the number of antenna elements
at the receiver and transmitter, respectively. Furthermore, the element Hij
represents the complex path gain from transmitter j to receiver i. It should
be stressed that the above capacity formulation differs from the definition
of Shannon. Here, the capacity is a random value that can be seen as an
“instantaneous capacity”. No matter what small desired rate, there is a non-
zero probability that the channel realization is incapable of supporting it, no
matter the code length. On the other hand, one can talk about a tradeoff
between the outage probability, namely the probability of not receiving a
desired rate. Hence, the capacity results are often presented in the form
of a Complementary Cumulative Distribution Function (CCDF), or as the
capacity for an certain probability of outage.

The channel capacity will be used to illustrate the properties of the chan-
nel model that is derived in Chapter 9. Furthermore, the capacity of two
novel antenna solutions, the multimode and parasitic antennas, are exam-
ined in Chapter 10 and 11. The performance of a relatively simple STC
scheme employing block-codes in the context of parasitic antennas is also
examined in Chapter 11. Finally, the subject of mutual coupling is revisited
in Chapter 12, where the impact of coupling upon the channel capacity is
investigated. This ends the introductory material on antennas and propaga-
tion in radar and mobile communication applications. Next, the content of
the different chapters will be briefly outlined.

1.7 Outline

The purpose of this section is to provide a chapter-wise description of the
thesis, as well as providing an overview of the main contributions. It should
also be mentioned that most parts of the thesis are modified versions of
submitted journal manuscripts, a book chapter, technical reports, and con-
ference papers. Often, only minor editing has been done. Therefore, with
the exception of Chapters 2-6, the chapters are self-contained and can be
read in any order.
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Chapter 2

Estimating the DOA of a wave incident upon an array in the presence of a
known coupling is considered. By using basic electromagnetic concepts, the
mutual coupling in an array of dipoles is calculated. The direction finding
accuracy in the presence of a known coupling is then investigated by calculat-
ing a lower bound on the variance of the estimated angles, the Cramér-Rao
lower Bound. It is found that a known coupling does not significantly affect
the performance. Parts of this chapter have appeared in [SV97, Sva98b].

Chapter 3

Methods for estimating the DOAs in the presence of a known coupling are
discussed in this chapter. Many DOA algorithms, derived for the hypotheti-
cal coupling free case, can be extended to include a known mutual coupling.
By first reviewing the published methods that do include a known coupling
and then introducing several extensions of other DOA algorithms, the field of
sensor array processing is introduced. The problem of detecting the number
of incident waves is also briefly discussed. Modified versions of this chapter
have been published in [Sva98a, SV98]

Chapter 4

Usually the mutual coupling can be obtained using calibration measurements,
but in some cases, obtaining the coupling might not be possible. For instance,
the environment might be changing too quickly to allow for calibration mea-
surements. If the coupling is left uncompensated, it will drastically reduce
the possibilities of performing direction finding. One way of mitigating these
effects is to estimate the coupling along with the DOAs using signal pro-
cessing methods. However, the electromagnetical coupling model derived in
Chapter 2 generally contains too many parameters to be estimated.

In Chapter 4, a parameterization of the coupling with a feasible number
of parameters, unlike a direct parameterization of the coupling matrix, is
derived. Furthermore, the question of uniqueness of the parameter estimates
is discussed. Also, a necessary condition for uniqueness is derived, that gives
a limit on the number of coupling parameters that can be uniquely estimated.
The main ideas of this chapter have also appeared in [Sva99d, Sva99e].
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Chapter 5

The parameterization of the coupling is in this chapter used to estimate both
an unknown coupling and DOAs. A ML method is derived. Based on the
ML expressions, the Cramér-Rao lower Bound (CRB), for this model, is also
derived. Then, several estimation methods are proposed along with a review
of a previously published method. The properties of the different estima-
tion methods are examined in a few computer experiments. The estimation
methods derived in this section, have been published in [Sva99c, Sva00f].

Chapter 6

The impact of the model errors, introduced by using the reduced model to
estimate the coupling, is examined in this chapter. The effects are studied
using data generated using the full electromagnetic model and estimated
with the reduced model derived in Chapter 4, using the estimation methods
derived in Chapter 5. The effects of an unknown coupling on the estimation
of the signal in the presence of a jammer is also examined. The results of
this chapter have appeared in [Sva99a, SV99]. This chapter ends the study of
mutual coupling effects on direction finding. With only minor changes, the
Chapters 2-6 have previously been included in the author’s Licentiate Thesis
[Sva99b]. A heavily edited version of this material has also been submitted
to IEEE Trans. on Antennas and Propagation [Sva00g].

Chapter 7

Direction finding by exploiting higher order modes of a modified biconical
antenna is the topic of this chapter. The DOA of an incident wave is esti-
mated by using the fact that the different modes have different directional
properties. Since only one antenna element is used, the spatial requirements
of an array of elements is avoided as well as the issue of mutual coupling
between antenna elements. The direction finding performance is examined
by calculating the CRB and the ML estimator for several different cases.
It is found that the multimode antenna offers direction finding performance
comparable to the traditional antenna array using only a single antenna ele-
ment. This chapter is essentially based upon material previously published in
[Sva00e]. An edited shorter version has also been submitted to IEEE Signal
Processing Letters [Sva01d].
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Chapter 8

In this chapter, the idea of exploiting the directional radiation patterns of
an Switched Parasitic Antenna (SPA) for direction finding, is studied. By
employing passive elements (parasites), which can be shorted to ground using
pin diodes, directional radiation patterns can be obtained. The direction
finding performance of the SPA is examined by calculating a lower bound on
the direction finding accuracy, the CRB. It is found that the SPA offers a
compact implementation with high-resolution direction finding performance
using only a single radio receiver. Thus, exploiting SPAs for direction finding
is an interesting alternative to traditional antenna arrays, offering compact
and low-cost antenna implementations. This chapter will appear with minor
changes in [SW01].

Chapter 9

A general framework for physical spatio-temporal channel modeling is derived
in this chapter. Based on this framework, models for single antenna systems
as well as Multi-Input Multi-Output (MIMO) models for multi-element an-
tenna systems, are derived. The model is based on results from ElectroMag-
netic (EM) scattering and wave propagation, thereby including many of the
channel characteristics encountered in practice. A general description that
captures the most important scattering properties of arbitrary objects is de-
rived in a compact dyad formulation, by using results from rough surface
scattering. The polarization properties of the channel and the antennas are
thus included in the model, which allows for studies of the impact of differ-
ent antenna arrangements and polarizations. Several channel environments
are simulated, and properties such as spatial correlation, channel capacity,
and time evolution of the channel are calculated. The proposed physical
channel model is also suitable for other interesting application areas, such
as long-range prediction of fading signals, feedback based transmit diversity
schemes, and wideband MIMO systems where the temporal properties are
important. This chapter represents only minor changes of [Sva01e]. A much
shorter version comprising the main ideas of the chapter has been submitted
to IEEE Journal on Selected Areas in Communications [Sva01b]. Parts of
the results have also been published in the following conference proceedings
[Sva00a, Sva00b, SV01]. A paper regarding multi-polarized MIMO systems
that to some extent rely on results presented in this chapter has also been
submitted to IEEE Vehicular Technology Conference Fall 2001 [Sva01a].
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Chapter 10

Here, a novel way of exploiting higher modes of antennas as diversity branches
in MIMO systems, is examined. Essentially, antennas employing multiple
modes offer characteristics similar to an antenna array, through multiple
modes and using only a single element. Analytical expressions for the corre-
lation between different modes in a realistic environment is presented for a
biconical and a circular microstrip antenna that employs higher order modes.
It is found that the correlation is low enough to yield a diversity gain. Fur-
thermore, the channel capacity of a MIMO system using a multimode an-
tenna, i.e. an antenna employing multiple modes, is found to be comparable
to the capacity of an array. This chapter has, with minor changes, been sub-
mitted to IEEE Trans. on Vehicular Technology [Sva01c]. The chapter has
also resulted in the following conference papers [Sva00d, Sva00h, Sva00c].

Chapter 11

The potential of using the switched parasitic antenna (SPA) as a novel di-
versity technique in a MIMO systems, is investigated in this chapter. It is
shown that the correlation between the received signal modes is sufficiently
low to yield a diversity gain. The capacity limit using the SPA is investigated
for different SPA configurations and it is found that the capacity is compa-
rable with an array antenna configuration in certain situations. Finally, a
space time block coding scheme is used to evaluate the bit error rate of a
MIMO-SPA system. It is found that the SPA requires a slightly higher SNR
than an antenna array solution to yield the same performance. However, the
array antenna requires a radio transceiver for each antenna, as opposed to
the SPA which uses only one transceiver. An slightly modified version of the
chapter has been submitted to The 12th IEEE International Symposium on
Personal, Indoor and Mobile Radio Communication (PIMRC) [WS01].

Chapter 12

This chapter studies the capacity of multiple element antenna systems, with
an emphasis on the effect that mutual coupling between the antenna elements
has on the capacity. The results presented shows, contrary to some earlier
claims, that correlation between different channel coefficients as a function
of antenna spacing, can in fact decrease when the mutual coupling effect is
accounted for. As a consequence, capacity also improves. An edited version
of this chapter will be appear in [SR01].
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Chapter 13

Finally, the thesis is concluded in Chapter 13 by commenting on the results
derived and some proposals for future work are presented.
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Chapter 2
Coupling Effects on Direction Finding

Accuracy

E
stimating the DOA of a wave incident upon an array in the presence
of a known coupling is considered. By using basic electromagnetic
concepts, the mutual coupling in an array of dipoles is calculated.

The direction finding accuracy in the presence of a known coupling is then
investigated by calculating a lower bound on the variance of the estimated
angles, the Cramér-Rao lower Bound. It is found that a known coupling does
not significantly affect the performance.

2.1 Introduction

In the last decades, the area of sensor array processing has attracted con-
siderable interest in the signal processing community [Hay95a, KV96]. The
focus of this work has been on high resolution DOA estimation algorithms
for detection and identification of aircrafts using radar systems. These al-
gorithms can also be used in sonar applications where underwater arrays of
acoustical sensors are used to locate and identify other vessels. However, in
recent years the rapid development in the communication field has inspired
some work on DOA estimation when using antenna arrays at base stations.

The key to obtaining high resolution in the DOA estimates is to use a
parameterized model of the array measurements. The quality of the esti-
mates then depends heavily on how well the model describes the data. In
the array case this implies that the response of the array needs to be known.
Also, the statistical assumptions regarding the signals and the noise must be
correct for the quality of the estimates to obey the theoretical predictions
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derived using the assumed model. However, in practice, the array response is
never known exactly, and the statistical assumptions are only approximately
correct even for large data sets. Temperature, pressure, humidity and me-
chanical vibrations are only some factors which affect the properties of the
array resulting in a time-varying array response.

Much work has been made on different calibration schemes that try to
overcome uncertainties in the array response. Those efforts have mainly been
focused on obtaining estimation algorithms that are robust to modeling errors
[Hay95a]. Essentially, two different approaches of minimizing the errors have
been studied. Firstly, the model errors are treated as random perturbations
from some nominal model, and robust estimation methods are derived based
on the statistical assumptions regarding the perturbations. Those analyses
typically lead to weighted estimation algorithms that minimize the variance
of the estimates [SK92, SK93, VS94]. Secondly, some part of the array re-
sponse is assumed unknown, but not random, and estimated together with
the DOAs. Typically, the locations of the sensors are assumed unknown but
close to some nominal array and estimated [FB00, LM87, RS87, WF89].

Independently of the approach used, one modeling error that frequently is
considered in the literature is unknown gain and phase of the sensors used in
the array. Many different algorithms that estimate the gain and phase, either
together with the DOAs or using known calibration sources, have appeared
in the literature [FW88, Hay95a, NS96a, PK85, SK92, WF97].

Most of these methods do not use any detailed physical reasoning or
measurements. An important source of modeling error in practical anten-
nas is that the different elements of the antenna affect each other through
mutual coupling, and this effect can drastically reduce the performance of
the direction finding algorithms. The subject of mutual coupling has not
attracted much interest, as compared to the case of independent sensors, in
the signal processing literature. Mutual coupling is on the other hand a well
known problem for antenna designers, and in the electromagnetical literature
mutual coupling is a well covered subject [Bal82, Ell81, Kil98].

Although very little work on mutual coupling has been published in the
signal processing literature, some studies have been made. In [PK91] and
[LDvdV99], the effects of an uncompensated mutual coupling on the estima-
tion performance is studied using measurements. Another study of coupling
effects on direction finding performance may be found in [DLX00], where the
coupling is obtained using a computational electromagnetics solver. When
using antenna arrays in digital communication applications it might be ar-
gued that the information retrieval is the main concern and not DOA estima-
tion. But if the DOA estimation is severely affected due to mutual coupling, it
is reasonable to believe that mutual coupling also affects the signal detection
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problem when array antennas are used [BE96, LLSB98]. Since many commu-
nication systems now proposed include antennas arrays, the mutual coupling
effects is an important problem that needs to be studied. Some initial exper-
iments in [LSM00] indicate that in some cases, mutual coupling can in fact
decrease the Bit-Error-Rate performance on a Nakagami fading channel. A
similar result is presented in Chapter 12, where it is found that coupling can
decrease the correlation between signals received by closely spaced antenna
elements. Recently the effects of mutual coupling on the Constant Modulus
Algorithm (CMA) was investigated in [YHZ98], and in [WKS+98] the effects
on an aircraft navigation aid radio beacon facility (VOR) was studied.

If mutual coupling can pose a problem when estimating DOAs or signals,
it is then of interest to reduce or otherwise mitigate the effects of mutual cou-
pling. The most natural way of doing this is to design the antenna from the
start in order to avoid high levels of mutual coupling and that is usually done.
Reducing the mutual coupling is in fact one of the most important design
problems in antenna design, and much work has been published. The effects
of coupling on the radiation pattern for wire antennas has been thoroughly
studied, see for instance [IN71, KP85, SH69]. Another way of reducing the
effects of mutual coupling is to introduce extra antenna elements that are
not used, i.e. dummy elements. The mutual coupling effects on DOA esti-
mation by using dummy elements are investigated in [Lun96]. Furthermore,
the coupling can also be compensated for by using analog low-loss networks
[AR76, Spe96].

But it is not always best to design the antenna with the lowest possible
mutual coupling. Instead, it is important to account for the coupling cor-
rectly. Actually, a known coupling can sometimes increase the estimation
performance if compensated for correctly.

Adding additional hardware to combat mutual coupling is expensive and
power consuming. An appealing alternative is to use signal processing meth-
ods instead, since the available processing power grows larger for every year
due to the rapid development of the silicon industry. Therefore, this and the
following chapters will focus on the effects of mutual coupling and methods
of compensating for it using signal processing methods.

If the coupling is known, it is relatively straightforward to compensate
for the mutual coupling. One natural idea is to multiply the data with a
correction matrix and then apply a coupling free estimation method [Jos94,
SH90]. Note that this method can be implemented either in hardware or
using signal processing. However, the multiplication affects not only the
signal part, but also the noise which changes color. Therefore, methods that
rely on a white noise covariance are not, at least not directly, applicable
using this method. Most DOA estimation schemes are possible to extend
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to include a known mutual coupling by using an effective steering matrix.
However, in the literature, few methods has been analyzed in the presence of
a known coupling. The popular MUSIC method [Sch79] has been extended
to the coupling case in [PF94, RW92, YLU89]. Furthermore, in [Sva99d],
the Root-Music [Bar83] and the ESPRIT [Roy87] algorithms are modified
to include a known coupling. The ESPRIT method has also been studied
in the presence of coupling in [HW90]. In Chapter 3, these methods will be
briefly discussed and several other existing coupling free estimation methods
will also be extended to include a known coupling.

The coupling might not be known in all scenarios, and if left uncompen-
sated it will reduce the possibilities of direction finding. Different compen-
sation algorithms or calibration methods can now be applied. For instance,
it can be assumed that the DOAs are known and only the coupling and per-
haps additional calibration parameters are estimated [NS96a, PDS97, PK91,
SAGA98, SDL00, SL01]. On the other hand, if the DOAs are also assumed to
be unknown and estimated along with the coupling, so-called auto-calibration
methods result. An iterative version of the MUSIC method, that estimates
both coupling and DOAs, was developed in [FW91]. However, it was found
in [PK91] to give nonunique estimates and in [PF94] to experience slow con-
vergence. In Chapter 5, the method of [FW91] will be reviewed and several
other methods of estimating unknown DOAs and coupling will be introduced.

Note that in the following, the coupling is assumed to be non-random
and is actually calculated using basic electromagnetics. No knowledge about
the coupling is assumed when the coupling is estimated. Of course, in a re-
alistic scenario some knowledge about the coupling usually exists and should
be exploited. For instance, methods that use calibration data together with
some random perturbation, as well as unknown gain and phase of the sen-
sor responses, should of course be considered. However, in order to get a
tractable analysis, only the simplified case of a completely known coupling
will be considered in this chapter. Extensions to an unknown coupling will
be made in the following chapters.

2.2 Array Model and Coupling

An expression for the received voltage at each antenna element is necessary
when analyzing the performance of the different direction finding schemes in
the presence of mutual coupling. However, antennas are usually analyzed in
transmit mode since the radiating properties are the same when transmit-
ting and receiving (reciprocity). A recent compact summary that includes
receiving properties can be found in [Mey00] and in [Kil99] equivalent cir-
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Figure 2.1: The geometry of the array of dipoles and the relation to the
coordinates.

cuits for antennas in receive mode are presented. Therefore, expressions of
the induced voltages will be derived for a linear array of n thin dipoles of
finite length l, see Figure 2.1. The spacing between the dipoles is d and
in Figure 2.1, the spherical basis vectors are introduced. The steps in the
derivation are general and valid for any type of antenna, but the dipole array
was chosen since the dipole is a widely used element and the expressions for
the voltages simplifies considerably.

If a uniform plane wave impinges upon the array from the (θ,φ) direction,
the wave will reach each element at different time instants. By measuring
the induced voltages on the elements of the array, the DOA can be estimated
using these time instants assuming a narrowband signal of known frequency.
However, the received voltage on each element will induce a current on the el-
ement, which in turn radiates a field which affects the surrounding elements,
i.e. mutual coupling. The induced voltage at element i, Vindi

, consists of a di-
rect voltage from the wave Vwavei

and a voltage induced from the neighboring
elements

Vindi
= Vwavei

−
∑

j �=i
IjZij. (2.1)

Here, Zij is the mutual impedance between elements i and j, and Ij is the
current at element j. The mutual impedance can be calculated using the
method of induced electro-motive-force [Bal82]. Usually, these calculations
are intractable, but for the case of thin dipoles of finite length the expres-
sions can be found in most antenna handbooks [Bal82, Ell81]. For two iden-
tical finite length dipoles placed side-by-side, the expressions for the mutual
impedance are simplified if the length l is a multiple of half a wavelength.
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Figure 2.2: Mutual impedance of thin half-wavelength dipole oriented side-
by-side (R solid, X dotted).

The mutual impedance between element m and n in the array then become

Zmn = R + jX (2.2a)

R =
η

4π sin2(kl/2)
[2Ci(u0)− Ci(u1)− Ci(u2)] (2.2b)

X = − η

4π sin2(kl/2)
[2Si(u0)− Si(u1)− Si(u2)] (2.2c)

u0 = kd|m− n| (2.2d)

u1 = k
(√

d2|m− n|2 + l2 + l
)

(2.2e)

u2 = k
(√

d2|m− n|2 + l2 − l
)
, (2.2f)

where Ci and Si are the cosine and sine integrals

Ci(x) =−
∫ ∞

x

cos y

y
dy (2.3a)

Si(x) =

∫ x

0

sin y

y
dy. (2.3b)

In Figure 2.2 the mutual impedance of two thin half-wavelength dipoles ori-
ented side-by-side is shown as a function of the element separation d. The
mutual impedance approaches the self-impedance when the element sepa-
ration diminishes. For larger element separations the mutual impedance
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quickly vanishes. Hence, only elements that are close affect each other. More
detailed calculations of the mutual impedance that takes the presence of
open-circuited elements into account is possible by employing a Method Of
Moments (MOM) approach [AS00].

The voltage induced directly from the wave Vwavei
can be calculated in a

manner similar to when calculating the mutual impedance [Bal82] but using
the incident field instead. The field at the antenna from the uniform plane
wave can be written as

�Ewave(z
′) = �ρEoe

−j�k·�z =



ρθ
�θ + ρφ�φ√
ρ2θ + ρ

2
φ



Eoe−jkz
′ cos θ, (2.4)

where the strength of the field at the surface is denoted E0, the polarization
of the field is included in the parameters ρθ and ρφ, and �k is the wave vector.
The induced voltage is then obtained as

Vwave = −
1

Iin

∫ l/2

−l/2
�Ewave · �I dz′, (2.5)

where Iin is the current at the input terminals. For a very thin dipole, the
current distribution at z = z′ can be approximated by [Bal82, Ell81]

�I(z′) = �z I0 sin

[
k(
l

2
− |z′|)

]
−l/2 ≤ z′ ≤ l/2 . (2.6)

Note that this current distribution corresponds to a MOM approach employ-
ing a single basis function. Performing the integration in (2.5), the induced
voltage becomes

Vwavei
=

ρEoi
sin

(
kl
2

) λ
π

[
cos

(
kl
2
cos θ

)
− cos kl

2

sin θ

]
. (2.7)

The field strength at dipole i is denoted Eoi, λ is the wavelength, and k =

2π/λ is the wave number. The parameter ρ = ρθ/
√
ρ2θ + ρ

2
φ is a polarization

mismatch factor. In the following analysis, the polarization mismatch will
be neglected. Thus, ρ will be equal to unity.

Since the induced voltage at each element depends on the currents on the
other elements, a circuit model is needed in order to solve for the received
voltages. A simple circuit model of element i is shown in Figure 2.3. Here,
ZA is the antenna impedance that is calculated in the same manner as the
mutual impedance, and ZT is the terminating impedance that represents the
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ZA

ZT

Vindi

Figure 2.3: Circuit model of the i:th antenna element.

measurement equipment. Equations (2.1) and (2.7) along with the circuit
model form a system of equations, from which the received or measured
voltage over ZT can be obtained as

VT = CH(θ)




1
e−jkd sin θ cosφ

...
e−jkd(n−1) sin θ cosφ




︸ ︷︷ ︸
geometrical arrayfactor

E0︸︷︷︸
s

, (2.8)

where H(θ) is the normalized response of an individual element to the plane
wave

H(θ) =
ZT

ZT + ZA

λ

π sin kl
2

[
cos

(
kl
2
cos θ

)
− cos kl

2

sin θ

]
, (2.9)

s is the strength of the source (the wave), and C is the coupling matrix

C = (ZT + ZA)(Z+ ZT I)
−1. (2.10)

Note that I denotes the identity matrix and Z the mutual impedance ma-
trix. The expression for the coupling is valid for any antenna if the corre-
sponding impedances are used. However, for center-fed slots the expressions
derived here can be used directly by exploiting Booker’s relation [Ell81].
The terminating impedance is chosen as the complex conjugate of the an-
tenna impedance in order to reduce the power loss. If a large terminating
impedance is chosen, the matrix C will be more diagonal dominant. As a
result, the effects of coupling are reduced at the cost of increased mismatch
and loss of power [RW92].

The time-delay between each element becomes, due to the narrowband
assumption, a simple phase shift and in (2.8) this corresponds to the geo-
metrical array factor. Often the geometrical array factor and the response
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are combined into a steering vector a(θ, φ), and the model for the mutual
coupling in an array of finite length thin dipoles becomes

VT = C a(θ, φ) s. (2.11)

This model differs from the one normally used in sensor array processing only
in the introduction of a coupling matrix C that acts on the steering vector.
Therefore, the effects of mutual coupling can be included by changing the
steering vector into an effective steering vector ae(θ, φ) = C a(θ, φ).

Expressions for the coupling matrix have been presented by several au-
thors [GK83, LC95], however without including the expressions for the volt-
ages which are essential for the direction finding. An interesting interpreta-
tion of the coupling is given in [LC95], where C is rewritten as

ZT + ZA
ZT

(
Z

ZT
+ I

)−1

=
ZT + ZA
ZT

∞∑

m=0

(
− Z

ZT

)m
. (2.12)

The zeroth order contribution is the direct excitation from the wave and the
first order term corresponds to the direct coupling between two dipoles. The
second order term corresponds to the ”two-trip” coupling and the higher
order terms can be interpreted in a similar manner.

The derivation of the measured voltages considered only one incident wave
and no noise. In all measurement situations, noise will inevitably appear and
it is difficult to model. Often, receiver noise is the dominating noise source;
and then additive white Gaussian noise is a good model. Furthermore, to
simplify the notation in the following analysis, the waves are assumed to
arrive in the x-y plane (θ = 90◦), see Figure 2.1. The model when p uniform
plane waves or sources are incident then becomes

x(t) = CA(φ)s(t) + n(t), (2.13)

where the vector of measured voltages, at time t, x(t) is n× 1, the coupling
matrix C is n× n, the steering matrix A(φ) is n× p, the signal vector s(t)
is p × 1 and the noise vector n(t) is n × 1. The DOAs are contained in the
parameter vector φ. In order for the analysis in the following sections to be
valid, some additional assumptions are needed:

• the coupling matrix has full rank, i.e., rk(C) = n

• n(t) is temporally white and circularly Gaussian distributed: n(t) ∈
N (0, σ2I)

• s(t) is also temporally white and circularly Gaussian distributed: s(t) ∈
N (0,P)
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The noise is both spatially and temporally white, while the signal is only
temporally white. Furthermore, the signal is assumed to be uncorrelated
with the noise. The covariance matrix of the measured voltages x(t) becomes
[KV96]

R = E{x(t)x(t)H} = CAPAHCH + σ2I. (2.14)

Note that the eigendecomposition of the covariance matrix R can be written
as a sum of two parts [KV96]. One part consisting of eigenvectors corre-
sponding to eigenvalues equal to the noise variance, and a second part that
is related to the signal

R =

n∑

k=1

λkeke
H
k = EsΛsE

H
s + σ

2EnE
H
n , (2.15)

where Es = [e1, . . . , ep] denotes the signal eigenvectors, En = [ep+1, . . . , en]
denotes the noise eigenvectors, and Λs = diag[λ1, . . . , λp] denotes the signal
eigenvalues. This decomposition will be used extensively when dealing with
subspace based estimation in later sections.

2.3 Direction Finding Accuracy

The model in the previous section will now be used to examine how mutual
coupling between the elements of the array affects the DOA estimation ac-
curacy. Since it is the effect of the coupling in the DOA estimation that is
interesting and not a particular estimator, at least not in the first case, a mea-
sure of how good DOA estimates the model can deliver is needed. Here, the
Cramér-Rao lower Bound is used which gives a lower bound on the variance
of the estimated angles for an unbiased estimator.

Now, it is interesting to examine what happens to this bound when cou-
pling is included. It is important to note that the coupling is assumed to
be known and the signals are assumed to be non-random in the following
calculation of the CRB for the DOA:s.

For sufficiently large number of samples N, the (asymptotic) Cramér-Rao
lower Bound can be derived using direct differentiation [CTO89, Hay95b,
SN89]. The introduction of a known coupling is accounted for by changing
the steering vector in the derivation to an effective steering vector CA(φ).
This does not affect the derivation much, and the asymptotic CRB inequality
becomes

E{(φ̂− φ0)(φ̂− φ0)
T} ≥ B (2.16)

B =
σ2

2N

[
Re{(DHCHP⊥

CACD)⊙ ST}
]−1

, (2.17)
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where

D =

[
∂a(φ)

∂φ


φ=φ1

, · · · , ∂a(φ)
∂φ


φ=φp

]
(2.18)

P⊥
CA = I−CA(AHCHCA)−1AHCH (2.19)

S = lim
N→∞

1

N

tN∑

t=t1

s(t)sH(t) . (2.20)

Here, ⊙ denotes the Hadamard (or Schur) product, i.e., element-wise multi-
plication and P⊥

CA is the orthogonal projector on the null space of (CA)H .
The matrix S is the limiting signal sample covariance matrix.

The bound in (2.17) represents the lowest possible variance when using an
unbiased estimator φ̂. It applies to a thought situation where the experiment
of obtaining N samples and estimating the angles is performed many times
with the same signal vector s(t), but different noise realizations n(t).

Next, this bound is calculated for a few different scenarios and examined
when coupling is included and not.

2.4 Computer Experiments

To examine the effect of mutual coupling, the CRB from the previous sec-
tion is calculated for a few different scenarios. The CRB when coupling is
included is compared with the CRB when coupling is excluded. This calcu-
lation is carried out for different locations of the source signals, correlated
signals, and for different element spacings. In all of these examples the ter-
minating impedance is chosen as the complex conjugate of the single antenna
impedance.

2.4.1 Angular Dependence

Consider a five element half-wavelength dipole array with element separation
of λ/2. Two plane waves are incident upon the array and the DOA:s (φ1, φ2)
of these are to be estimated. The signal waveforms are uncorrelated and
the signal power is equal to the noise power (SNR= 0 dB) and N = 200
snapshots are collected.

The logarithm of the CRB for φ2 with coupling is shown in Figure 2.4.
The fact that it is harder to estimate angles close together is obvious from
the figure. Note that there is a corresponding figure for the other angle φ1.
For angles close to end-fire (φ = 0◦) the CRB is quite large, and this is due
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Figure 2.4: The logarithm of CRBcoupling for φ2 versus the angles for an array
of 5 λ/2 dipoles spaced λ/2 apart.

to the fact that the CRB is inversely proportional to the derivative of the
steering vector, and for φ2 = 0◦ the derivative is zero.

Now it is interesting to compare the CRB with and without coupling. In
Figure 2.5, the ratio of the standard deviation with and without coupling is
shown. Here, it is found that the coupling does not significantly change the
CRB bound if the coupling is known. This result depends on the geomet-
rical configuration of the array and the array elements, but also on several
parameters such as number of elements, correlation of the signals and ele-
ment spacing. These dependencies are studied next and the influence of the
number of elements is studied first.

In Figure 2.6, the CRB ratio for an array of 25 elements (otherwise the
same as previous array) is shown. A larger difference is found here. The CRB
with coupling gets lower as φ2 gets larger. This can partly be explained by
considering the received power which is maximum for φ2 = 90◦, see [Sva99b].
This effect gets larger for a larger array, and that is why it did not show
in the first figure for the array with few elements. If the change in received
power is compensated for, the ratio will mostly reside at unity except for
angles near end-fire (φ2 = 0◦), where it is hard to estimate the DOA. This is
shown in Figure 2.7.
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Figure 2.5: The ratio of the standard deviation for φ2 with and without
coupling versus the angles for an array of 5 λ/2 dipoles spaced λ/2 apart.
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Figure 2.6: The ratio of the standard deviation for φ2 with and without
coupling versus the angles for an array of 25 λ/2 dipoles spaced λ/2 apart.
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Figure 2.7: The power corrected ratio of the standard deviation for φ2 with
and without coupling versus the angles for an array of 25 λ/2 dipoles spaced
λ/2 apart.

2.4.2 Correlated Signals

Consider a 25 element half-wavelength dipole array with element separation
of λ/2. Two plane waves are incident upon the array and the DOA:s (84◦, 85◦)
are to be estimated. The signal to noise ratio (SNR) is -10dB and N = 1000
snapshots are collected. In this simulation, the correlation dependence of the
CRB is examined. The signal covariance matrix is

S = 10(SNR/10) ×
[
1 ρ
ρ 1

]
. (2.21)

The CRB is now calculated for different values of ρ. In Figure 2.8, the
standard deviation for the wave incident from 84◦ is calculated for different
correlations. First of all it is noted that it becomes harder to estimate the
DOA when the signal correlation increases. But the effects of coupling do not
depend on the correlation. The ratio of the standard deviation with coupling
(solid) and without (dashed) is essentially unchanged by the change in cor-
relation. Here, coupling actually improved the estimation performance but
that depends on the incidence angles as discussed previously, see Figure 2.6.
The conclusion that the effects of coupling are almost independent of the
correlation remains.
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Figure 2.8: The standard deviation with coupling (solid) and without
(dashed) for the wave incident from 84◦ upon an array of 25 λ/2 dipoles
spaced λ/2 apart for different correlations.

2.4.3 Element Spacing

Consider a 25 element half-wavelength dipole array with element separation
of λ/2. Two plane waves are incident upon the array and the DOA:s (84◦, 85◦)
are to be estimated. The signals are uncorrelated and the SNR is -10dB and
N = 1000 snapshots are assumed.

In this scenario, the influence of the element spacing of the CRB is ex-
amined. The electrical size has a large effect on the prospect of estimating
the DOA:s as well as the radiation pattern. With larger element spacing the
electrical size of the antenna increases and the estimation performance is in-
creased. The effects of element spacing on the ratio of the standard deviation
with and without coupling is shown in Figure 2.9. Here it is found that the
ratio approaches unity as the spacing gets larger. Another perhaps obvious
result is that this ratio plot is similar to the corresponding plot of the mutual
impedance, see Figure 2.2.

When the coupling is known, the impact on the CRB is not so large and
for the DOA:s (84◦, 85◦), and a moderate element spacing, the coupling only
changes the CRB about 10-20%. But as discussed earlier, for some DOA:s
close to end-fire the changes are larger.
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Figure 2.9: The ratio of the standard deviation with and without coupling
for the wave incident from 84◦ upon an array of 25 λ/2 dipoles for different
element spacings.

2.5 Conclusions

The problem of how a known coupling affects the prospects of estimating the
directions of arrival using an array of elements was addressed. The direction
finding accuracy, i.e. the Cramér-Rao lower Bound on the estimated DOA:s,
was used as a measure of these effects. The induced voltages in a linear array
of dipole elements, including mutual coupling, was derived. Hence, a model
for the mutual coupling was obtained. Some stochastical assumptions were
also introduced that were needed when calculating the lower bound on the
variance of the DOA estimates.

The CRB with a known mutual coupling was presented and analyzed for
a few different estimation scenarios. It was found that the coupling effects on
the CRB were dependent on the DOA:s but the effects was relatively small.
Furthermore, the correlations of the signals did not change the coupling
effects, considering the CRB, appreciably. The element separation did affect
the CRB. But for moderate element spacings, the effects were not large.

To sum up the chapter, the effects of a known mutual coupling in the
scenarios studied here are not large (of course depending on the application).
Depending on the geometrical configuration, the array elements, number of
elements, and element spacing, the coupling increases or decreases the CRB.
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In the analysis of the CRB, the coupling was introduced through the
coupling matrix C. Other effects than coupling can also be included in the
C matrix. For example, effects such as the gain and phase of the individual
sensors could be included. In that case, the analysis of the CRB in this
chapter is still valid by simply changing the C matrix to include those effects.
In the next chapter, some methods of estimating the DOAs in the presence
of a known coupling will be introduced.
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Chapter 3
Estimation With a Known Coupling

T
he problem of estimating the DOA, when a known coupling is present,
will be considered in this chapter. The mutual coupling is calculated
using the model that was derived in Section 2.2 for the induced volt-

ages on a Uniform Linear Array (ULA) of thin and finite length dipoles.
First, the model will be reviewed and some statistical assumptions regarding
the signals and the noise will be introduced. In Chapter 2, the CRB was used
to examine the estimation performance. Here, the corresponding bound is
derived, using the statistical assumptions made in this chapter.

Several methods for estimating the DOA are then reviewed and thus also
a small part of the area of sensor array processing. However, the methods
are discussed in the context of mutual coupling and the algorithms that
have appeared in the literature that include a known coupling are reviewed
first. After that, some straightforward extensions of existing methods for
the coupling free case are introduced. Finally, the problem of estimating the
number of signals is briefly discussed.

3.1 Data Model

The direction of an incident wave can be estimated by measuring the received
voltages at the different elements of the array and by assuming the wave
to be plane, simple geometry then gives the direction. However, due to
mutual coupling, the measured voltage at each element will depend not only
on the incident field but also on the voltages on the other elements. The
received voltage on each element will induce a current on the element which
in turn radiates a field which affects the surrounding elements, i.e. mutual
coupling. Here, mutual coupling in an array of n dipoles of finite length,
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l, is considered. To simplify the analysis the dipoles are considered thin,
i.e. the radius a ≪ l. The dipoles are placed linearly side-by-side with the
same element separation, d, resulting in a ULA. The received voltages from
this array, when p far-field narrow-band sources are used, are derived using
basic electromagnetic concepts in Section 2.2. The resulting model for the
measured voltages at time t is

x(t) = CA(φ)s(t) + n(t), (3.1)

where the vector of measured voltages x(t) is n×1, the coupling matrix C is
n×n, the steering matrix A(φ) is n×p, the signal vector s(t) is p×1 and the
noise vector n(t) is n× 1. The DOAs are contained in the parameter vector
φ. The steering matrix of a ULA has a Vandermonde structure [Lüt96] with
elements [A(φ)]vw = e

−jkd(v−1) cosφw , where k is the wavenumber. The data
model in (3.1) is identical to the usual data model used in array processing
except for the coupling matrix

C = (ZA + ZT )(Z+ ZT I)
−1, (3.2)

where ZA is the antenna impedance, ZT is the impedance of the measure-
ment equipment at each element, and Z is the mutual impedance matrix.
The impedance of the measurement equipment, ZT , is often chosen as the
complex conjugate of the dipole impedance in order to reduce the power loss.
However, other choices of ZT are possible. If ZT is chosen to be large, the
coupling matrix in (3.2) approaches the unity matrix [RW92]. In that case
the effects of mutual coupling are mitigated at the cost of a large impedance
mismatch and consequently a large power loss. For a further discussion about
impedance matching, see [AR76, Spe96], where the impedance matching is
addressed in a beamforming network context that includes mutual coupling.
Here, the terminating impedance is chosen as the complex conjugate of the
dipole impedance.

The model in (3.1) needs to be complemented with some additional as-
sumptions that are used in the following sections.

• the coupling matrix has full rank, i.e. rk(C) = n, which implies that
rk(CA(φ)) = rk (A(φ)) = p for distinct DOAs

• n(t) is circularly Gaussian distributed E{n(t)} = 0, E{n(t)nH(s)} =
σ2I δts and E{n(t)nT (s)} = 0 ∀ t, s

• s(t) is also circularly Gaussian distributed E{s(t)} = 0, E{s(t)sH(s)} =
P δts where P is full rank and E{s(t)sT (s)} = 0 ∀ t, s
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• n > p, i.e. the number of dipoles are larger than the number of incident
signals

Note that δts denotes the Kronecker delta and that both the signal and the
noise are random. Specifically, they are both assumed to be Gaussian dis-
tributed and this model is sometimes called the stochastic or unconditional
signal model. In Chapter 2, the signal was assumed to be non-random and
that model is therefore sometimes called the deterministic or the conditional
signal model. However, since the signal in that case is considered unknown
and hence also estimated along with the DOAs, the number of unknowns
increases as the number of samples N increases. Actually, it is shown in
[OVK90, SN90a] that the asymptotic (large N) covariance of the DOAs es-
timates using the deterministic signal model is larger than the asymptotic
covariance for a stochastic signal model when n < ∞. Furthermore, and
most importantly, the Cramér-Rao lower Bound derived using the deter-
ministic signal model cannot be reached and therefore is not asymptotically
tight, in contrast to the bound based on the stochastic signal model that is
asymptotically tight.

Since both the signal and the noise are assumed to be Gaussian, all infor-
mation about the DOAs and the signals are contained in the first and second
order moments. Many estimation schemes have appeared in the literature
that exploit the properties of the second moment to estimate the DOAs.
Some of these schemes will be discussed in the following sections. But first,
in order to assess the quality of the different estimation methods, a lower
bound for the variance of the DOA estimates will be derived.

3.2 Direction Finding Accuracy

Most proposed estimators are asymptotically unbiased and the variance of
the estimates is therefore a good figure of merit for these estimators. A
lower bound on the variance of DOA estimates is therefore very useful when
addressing the quality of a estimation schemes. Probably the most widely
used bound is the Cramér-Rao lower Bound, which is a lower bound on the
variance of DOA estimates, assuming that the estimator is unbiased. There
are unbiased estimators that, at least asymptotically, attains the bound and
hence the bound is called asymptotically tight and the estimators are called
efficient. The CRB therefore serves as a benchmark when evaluating different
estimation methods. In Chapter 2, the effects of mutual coupling on the DOA
estimation was examined by calculating the CRB using the model in (3.1) and
the deterministic signal model. Here, the CRB will be derived for a stochastic
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signal model, since the bound in this case becomes asymptotically tight and
thus more appropriate when considering different estimation schemes.

Compact forms for the CRB for the stochastic signal model were derived
for the coupling free case in [OWVK89, SN90b]. Coupling can be included
in those derivations by simply changing the steering matrix A to CA. Note
that each column of CA now contains contributions from several different
elements. The Cramér-Rao lower Bound when coupling is included can be
written as

E{(φ̂− φ0)(φ̂− φ0)
T} ≥ BSTO (3.3)

BSTO =
σ2

2N

[
Re{(DHCHP⊥

CACD)⊙ (PAHCHR−1CAP)T}
]−1

, (3.4)

where

D =

[
∂a(φ)

∂φ


φ=φ1

, · · · , ∂a(φ)
∂φ


φ=φp

]
(3.5)

P⊥
CA = I−PCA = I−CA(CA)† (3.6)

Here, ⊙ denotes the Hadamard (or Schur) product, i.e., element-wise mul-
tiplication, P⊥

CA is the orthogonal projector on the null space of (CA)H .
The orthogonal projector on the column space of (CA)H is denoted PCA
and M† is the Moore-Penrose pseudo inverse of M, which here can be writ-
ten as M† = (MHM)−1MH . The matrix R is the covariance matrix of the
measured voltages x(t).

R = CAPAHCH + σ2I. (3.7)

Next, it is examined how the mutual coupling affects the estimation per-
formance. The CRB is calculated both with a known mutual coupling and
without. In Figure 3.1, the ratio of the standard deviation with and with-
out coupling for φ2, when two waves from (φ1, φ2) impinge on an array of
5 λ/2 dipoles spaced λ/2 apart, is shown. The ratio mostly resides close to
unity and thus in this respect does mutual coupling not affect the estimation
accuracy much.

This is in agreement with the results in Chapter 2, where the CRB was
calculated using the deterministic signal model in a few different scenarios.
Comparing with Figure 2.5 further supports this conclusion and no funda-
mental differences between the stochastic and deterministic CRB concerning
mutual coupling is found in this case.

However, in the previous section it was mentioned that the CRB is larger
for the stochastic than for the deterministic signal model. In Figure 3.2,
the logarithm of the ratio of the standard deviation for stochastic and de-
terministic signal model for φ2 versus the angles for the same array as in
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Figure 3.1: The ratio of the standard deviation with and without coupling
for φ2 versus the angles for an array of 5 λ/2 dipoles spaced λ/2 apart.

Figure 3.1 is shown. The logarithm is positive for all angles, i.e. the CRB
for the stochastic signal model is larger than for the deterministic model as
stated previously. The difference is not very large for angles with sufficient
angular separation. Also, the large ridge through the plot corresponds to es-
timating DOAs for two signals arriving from the same direction. In this case,
the estimation procedure breaks down and it is hard to draw any conclusions
regarding these angles.

The effects of mutual coupling on the CRB using the stochastic signal
model are thus more or less the same as on the CRB calculated for the
deterministic signal model. Now, a measure for the quality of the proposed
DOA estimation schemes is derived. In the next section, several methods for
estimating the DOAs in the presence of a known coupling will be studied
and compared to the CRB.

3.3 Estimation Methods

The problem of estimating the DOA in the presence of a known coupling is
not very different from the usual DOA estimation problem. Most algorithms
which have appeared in the last decades can be modified to include a known
mutual coupling. Essentially, it is just to change the steering matrix A to an
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Figure 3.2: The logarithm of the ratio of the standard deviation for stochastic
and deterministic signal model for φ2 versus the angles for an array of 5 λ/2
dipoles spaced λ/2 apart.

effective steering matrix CA. However, if the algorithm uses some special
structure of the steering matrix, it can not, at least not directly, be used
when mutual coupling is present. Many algorithms exploit the second order
properties of the covariance matrix of the measured voltages. Therefore, the
properties of the covariance matrix will be examined first. Then, algorithms
that have appeared in the literature, that include a known coupling, are
reviewed and this part also serves as an introduction to the area of sensor
array processing. Also, some straightforward extensions of other coupling
free algorithms are presented.

3.3.1 The Structure of the Covariance Matrix

Using the model for the measured voltages in (3.1), (3.2), and the statistical
assumptions, the covariance matrix of the measured voltages becomes

R = E{x(t)x(t)H} = AeE{s(t)s(t)H}AHe + E{nnH}
= AePAHe + σ

2I,
(3.8)

where Ae = CA(φ). Note that the cross-terms vanish since the signal and
the noise are assumed to be uncorrelated. Assume that there is one vector y
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that is perpendicular to the steering matrix Ae, or

AHe y = 0. (3.9)

Then Ry = σ2y, i.e. y is an eigenvector of R with corresponding eigenvalue
σ2. Since the steering matrix Ae is full rank with dimensions n × p and P

also is full rank, there are n − p independent vectors y that are perpendic-
ular to Ae. Actually, it is possible to write the eigendecomposition of the
covariance matrix as a sum of two parts. One part consisting of eigenvectors
corresponding to eigenvalues equal to the noise variance, and a second part
that is related to the signal

R = EΛEH = EsΛsE
H
s + σ

2EnE
H
n . (3.10)

Furthermore, by exploiting the orthonormality of the eigenvectors

EsE
H
s + EnE

H
n = I, (3.11)

the covariance matrix can be written as

R = Es(Λs − σ2I)EHs + σ2I = EsΛ̃EHs + σ
2I. (3.12)

Comparing (3.12) with (3.8) reveals that the subspace spanned by the columns
of Es must be equal to the subspace spanned by the columns of AeP or

R{Es} = R{AeP} ⊆ R{Ae} (3.13)

with equality if the signal covariance matrix P is of full rank. The subspace
spanned by Ae (or Es) is usually called the signal subspace and the corre-
sponding space spanned by En is therefore called the noise subspace. Note
that due to the orthogonality of the eigenvectors, these spaces are orthogonal.

A related entity is the array manifold A, that is defined as the collection
of all steering vectors within the DOA range, or

A = {a(φi) | φi ∈ Φ}. (3.14)

The array manifold is a p-dimensional subset of the n-dimensional space and
this observation is important in the derivation of the subspace based methods
presented later.

Almost all methods discussed in the following sections will exploit the
properties of the covariance matrix of the measured voltages R. However, it
is the induced voltages x(t) that are measured and not the covariance matrix.
Usually, R is estimated as

R̂ =
1

N

N∑

t=1

x(t)xH(t) (3.15)
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which is an unstructured maximum likelihood estimate of the covariance
matrix in (3.8).

The structure in (3.8) and (3.12) has been exploited in numerous DOA
estimation schemes, presented during the latest decades. For a review of some
of these methods, see [Hay95a, KV96, VS01]. Many of those methods are
possible to use also in the presence of mutual coupling with slight changes,
but in the signal processing literature only a few methods, that include a
known coupling, have been presented. Those methods will be reviewed in
the next subsection, and then some additional methods that include a known
coupling are proposed.

3.3.2 Estimation Methods: Beamforming and MUSIC

Probably, the most used method of obtaining estimates of the DOAs is beam-
forming [Sko62, VB88]. As the name beamforming suggests, the received en-
ergy is focused to one direction (or beam) at a time. This can be expressed
as

y(φ) = aH(φ)x. (3.16)

A spatial spectrum is obtained by calculating |y(φ)|2 for φ ∈ Φ. The presence
of mutual coupling can be taken care of by changing the multiplication in
(3.16) from aH(φ) to a(φ)HC−1, i.e. premultiply the measured voltages x(t)
with C−1 as suggested in [Jos94, SH90]. The noise covariance matrix then
changes from σ2I to σ2C−1C−H . If the method relies on that the noise
covariance is white (σ2I), the premultiplication method does not work. Note
that the beamforming method ignores the noise and premultiplication can
thus be applied. Similar methods, but more oriented towards pattern design,
can be found in [IN71, KP85, SH69].

The spatial spectrum in (3.16) is a spatial analogue of the classical pe-
riodogram in time series analysis. As with the periodogram, the spatial
spectrum has a resolution threshold. Waves arriving with electrical angle
separation1 less than 2π/n can not be resolved with this method. That was
one of the motivations for the interest in the so-called subspace methods that
will be described next.

Subspace based methods rely on observations regarding the eigendecom-
position of the covariance matrix into a signal subspace and a noise subspace,
as discussed in previous subsection. One of the most popular subspace meth-
ods, MUSIC, was introduced in [Sch79]. The method is based on the obser-
vation in (3.9), that the noise eigenvectors are perpendicular to the steering
matrix or the signal subspace. The algorithm calculates the noise subspace

1The electrical angle is defined as kd cosφ.
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Figure 3.3: The spatial and MUSIC spectrum when coupling is compensated
for (solid) and not (dotted). An array of 10 λ/2 dipoles spaced λ/2 apart
is used and two waves are incident from (60◦, 63◦), and 1000 snapshots with
SNR = 20dB.

using an eigendecomposition of the estimated covariance matrix in (3.15).
Then, the estimates of the DOAs are taken as those φ that gives in the
smallest value of aH(φ)Ên. Usually this is formulated as finding the p largest
peaks in the ”MUSIC spectrum”

PMU(φ) =
1

aH(φ)ÊnÊ
H

n a(φ)
. (3.17)

This algorithm is straightforwardly adopted to the case of a mutual cou-
pling by simply exchanging the steering vector a(φ) to Ca(φ). Another way
of handling the coupling is to employ the method of premultiplication as
described above. But as mentioned previously, that changes the noise covari-
ance matrix and a generalized eigendecomposition has to be used in order to
obtain the correct noise eigenvectors. These two methods have been inves-
tigated in [LZ90, PF94, YLU89]. Here, the steering vector is changed and
in Figure 3.3, the MUSIC spectrum of (3.17) is shown when two sources are
present at (60◦, 63◦), using an array with 10 λ/2 elements spaced λ/2 apart.
The solid line is when the coupling is compensated for, i.e. using the correct
coupling matrix, and the dotted line is when the coupling matrix is unknown
and replaced by the unity matrix. With a known coupling, the method works
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well and two peaks at the correct angles appear. However, if the coupling is
unknown the method does not work well. Also included in Figure 3.3 is the
corresponding spatial spectra for the beamforming method in (3.16). The
beamforming method fails to resolve the sources, since in this case the res-
olution limit is more than 10◦. The resolution threshold of MUSIC is much
lower, and therefore does that method succeed in resolving the DOAs. This,
of course, is the main reason for using subspace based methods like MUSIC
instead of beamforming. However, the difference between when the coupling
is known or not is small for the beamforming method, i.e. the beamforming
method is robust. The MUSIC method, as all subspace based methods, is
more sensitive to errors in the steering vector as seen in the figure.

An interesting application of the MUSIC method for Over The Horizon
(OTH) radar arrays is found in [SAGA98], where ionized meteor trails are
used to estimate the sensor positions and mutual coupling in a calibration
scheme.

As mentioned above, several other algorithms are easily extended to in-
clude a known coupling. In the next section some straightforward extensions
will be proposed.

3.3.3 Other Methods

Most DOA estimation algorithms can be extended to include a known cou-
pling. In this subsection, some straightforward extensions of other DOA
algorithms will be proposed. Some of these algorithms will be used later
when the DOAs are estimated along with an unknown coupling. First two
computationally simple algorithms, that exploit a special structure of the
antenna array, will be considered.

The popular MUSIC method discussed in the previous subsection can be
applied to any type of antenna array. However, if the antenna is a ULA, the
estimation procedure can be simplified. In this case, the steering vector has
elements [a(φ)]v = e

−jkd(v−1) cosφ and the expression in (3.17) can be viewed
as a polynomial in z = e−jkd cos φ. Therefore, the search for the DOAs in the
MUSIC method described above can be avoided. Instead, find the roots of
the polynomial

f(z) = aT (z−1)CHÊnÊ
H

nCa(z). (3.18)

Pick the p roots closest to the unit circle, ẑi and calculate the angle and
solve for φi in \ẑi = \e

−jkd cos φi. This method is known in the literature as
the Root-MUSIC method and was presented in [Bar83]. Not only does this
method avoid the numerical search, but also improves the resolution thresh-
old of the spectral MUSIC discussed in previous subsection. A performance
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analysis in [RH89] shows that the improvement in resolution threshold is
due to the fact that a small error in the radius of the root does not effect
the estimation performance. Thus, only errors in the angle of the root ef-
fect the estimation performance and this decreases the resolution threshold.
The presence of mutual coupling is taken care of by simply introducing the
coupling matrix, C, as in (3.18).

Another subspace-based method that also relies on a special structure
of the array is Estimation of Signal Parameters via Rotational Invariance
Techniques (ESPRIT) [Roy87]. ESPRIT exploits a shift structure of a special
steering matrix constructed as

As =

[
A1

A1Φ

]
, (3.19)

where A1 is a l × p steering matrix and Φ is p × p diagonal matrix with
elements Φii = e

−jk∆cosφi . Of course, not all arrays have this shift structure,
but for example a ULA can be divided into two parts which have this struc-
ture. Several different strategies for forming these two parts are discussed
in the literature [OVK91], but here maximum overlapping structures will be
used, i.e. the first part consists of the first n−1 elements and the second part
of the last n−1 elements, that is, l = n−1 and ∆ = d. ESPRIT exploits this
shift structure and the fact that for the coupling free caseR{Es} = R{A(φ)}
(assuming P full rank). When coupling is present R{Es} = R{CA(φ)} and
the shift structure has vanished. However, R{C−1Es} = R{A(φ)} and the
shift structure is obtained. Another way of obtaining this result is to pre-
multiply the data with C−1 and the same result is obtained by calculating
the generalized eigenvalue factorization. Thus, there exists a nonsingular T

such that
JC−1Es = As(φ)T, (3.20)

where J is a 2(n−1)×n selection matrix. The basic idea is to find those φ:s
that best fit this relation. This fit can be made in a least squares sense or
in a total least square sense [OVK91, Roy87]. Here, the total least squares
method is used. In Figure 3.4, the Root Mean Square Error (RMSE) of
the modified MUSIC and ESPRIT methods are shown. The Cramér-Rao
lower Bound is also shown for the case with coupling and without. The
MUSIC method is close to the CRB, but ESPRIT performs worse, since it
only exploits the invariance structure and not the full steering matrix. The
same relation is is found also in the coupling free case [OVK91]. However, it
is interesting to observe that the CRB when a known coupling is present is
slightly lower than the coupling free case. This is not generally true, but the
difference is usually small, see Figure 3.1. A slightly different study of the
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Figure 3.4: CRB and RMSE of Root-Music and ESPRIT for φ1 using an
array of 10 λ/2 dipoles spaced λ/2 apart when two waves are incident from
(80◦, 85◦) and 1000 snapshots with SNR = 20dB.

ESPRIT algorithm in the presence of mutual coupling has been presented in
[HW90].

Perhaps the most well known and frequently used model-based estimation
technique in signal processing is the ML method. The ML method assumes
a model for the signals and also a statistical framework for the data gen-
eration. Two different assumptions regarding the signals have appeared in
the signal processing literature and here the stochastic signal model is used,
as discussed in Section 3.1. The method is therefore called the Stochastic
Maximum Likelihood (SML) method. Using the model in (3.1) and the sta-
tistical assumptions in Section 3.1, the negative log likelihood function to be
minimized becomes (with the parameter independent terms ignored)

lSML(φ,P, σ
2) = log |R|+ Tr{R−1R̂}, (3.21)

where R and R̂ are defined in (3.8) and (3.15). This expression can be put
in a concentrated form [Böh86, Jaf88, SN95]. For fixed φ, the minimizing
value of P and σ2 becomes

σ̂2(φ) =
1

n− pTr{P
⊥
AR̂} (3.22)

P̂(φ) = A†
(
R̂− σ̂2(φ)I

)
A†H , (3.23)
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where A† denotes the Moore-Penrose pseudo inverse of A. Inserting these
expressions in (3.21), the concentrated negative log likelihood function is
obtained

φ̂ = argmin
φ

{
log |AP̂(φ)AH + σ̂2(φ)I|

}
(3.24)

and the DOA estimates are taken as the minimizing arguments of it. A
known coupling is easily taken care of by simply exchanging the steering
matrix A to the effective steering matrix Ae = CA. The SML method is
efficient since the variance of the DOA estimates attains the Cramér-Rao
lower Bound. The ESPRIT method discussed previously does not attain
the CRB, and the MUSIC method only attains the bound if the signals are
uncorrelated and both the number of snapshots and the source signal power
are large. The function in (3.22) is unfortunately a non-linear function of
the DOAs, and therefore a numerical search is necessary. This search can be
computationally heavy and that is why subspace-based methods like MUSIC
and ESPRIT, that are less computationally intensive but not efficient, are
attractive. The advantage of a lower computational load is thus traded for a
higher variance of the estimates.

Another type of methods that have attracted considerable attention are
the ”Subspace Fitting” methods [SS90b, VO91, VOK91]. With a specific
weighting of the criterion, those methods are efficient and thus have proper-
ties similar to the SML method. Also, connections to spectral-based methods
such as MUSIC and beamforming as well as connections to ESPRIT, can be
established. The Subspace Fitting methods are, as all subspace methods,
based on the properties of the covariance matrix in (3.10). Two versions
of Subspace Fitting have appeared; one based on the signal subspace (SSF)
and one based on noise signal subspace (NSF). The Signal Subspace Fit-
ting (SSF) version is based on the observation that the signal eigenvectors
are equal to a linear combination of steering vectors. This is essentially the
same observation that is made in the ESPRIT method, see (3.20). Here, the
criterion is formulated as

{φ̂, T̂} = arg min
φ,T

‖Ês −AT‖2W , (3.25)

where ‖A‖2W denotes Tr{AWAH} and W is a positive definite weighting
matrix. This function can be concentrated in the same manner as the SML
method and the concentrated criterion function becomes

φ̂SSF = argmin
φ

Tr
{
P⊥
AÊsWÊ

H

s

}
. (3.26)

The Noise Subspace Fitting (NSF) formulation of the Subspace Fitting crite-
rion is based on the same observation as in MUSIC, namely that the columns
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of A are orthogonal to the noise subspace or EHnA = 0. In this case, an es-
timate of the DOA is obtained by minimizing the following criterion

φ̂NSF = argmin
φ
‖ÊHnA‖2U , (3.27)

where U is a p× p positive definite weighting matrix. Note that the steering
matrix enters the criterion function quadratically and thus estimates of pa-
rameters that enter linearly in the steering matrix can be found analytically.
Different weightings give different asymptotic properties, and by choosing a
specific weighting it can be shown that the estimates calculated using (3.26)
and (3.27) are asymptotically equivalent to the SML method that is efficient
[OVSN93]. Furthermore, if the weighting matrix U = I, the NSF method
reduces to MUSIC. Both of the subspace fitting methods are readily adapted
to the presence of a known coupling by exchanging the steering matrix into
an effective steering matrix as before.

The weighted subspace methods in (3.26) and (3.27) require a numerical
search, and thus the computational load is higher than methods like MUSIC
and ESPRIT. One optimization method suitable for these problems is the
damped Newton method [DS83]. This method can also be used to compute
the estimate when the SML method is used.

If the array is a ULA, the numerical search can be avoided by exploiting
the additional structure provided by the ULA. The basic idea is to parame-
terize the nullspace of AH directly instead of parameterizing A, and then use
P⊥
A. Several different papers using this parameterization in different contexts

have appeared. In [BM86a], the parameterization is applied in combination
with the Deterministic Maximum Likelihood (DML) method and in [SS90b]
the parameterization is used in the Method Of Direction Estimation (MODE)
context (similar to a Root-SSF formulation). The computations involved are
then only eigendecompositions and polynomial rootings, in the same man-
ner as in Root-Music, instead of the search otherwise performed. How to
include the presence of a known mutual coupling in these methods is not
straightforward and is still an open question.

Now, several methods for estimating the DOAs when a known mutual
coupling is present have been presented. Most of these represent straight-
forward extensions of existing algorithms for the coupling free case, but few
have been proposed in the literature. The exposition of algorithms also in-
troduced the field of sensor array processing as well as the effects of mutual
coupling. However, the survey was of course far from complete and for further
algorithms and methods see [Hay95a, He93, KV96].

All of the methods discussed in this chapter rely on a parameteriza-
tion (parametric methods) except for beamforming, that is a spectral based
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method. All of the parametric methods discussed herein assume that the
number of sources or signals is known. If the number of sources is not known,
it must be estimated along with the DOAs. This will be briefly touched upon
in the next section.

3.4 Signal Detection

The parametric methods presented in the previous sections all require the
knowledge of the number of sources or number of incident waves. Estimating
the number of signals is usually called detection, and here that subject will
be briefly discussed. The division into a signal subspace and a noise sub-
space in Section 3.3.1 requires the knowledge of the dimension of the signal
subspace p′. When the signal covariance P is of full rank, the dimension of
the signal subspace is equal to the number of signals, p′ = p. In that case the
problem reduces to testing the multiplicity of the smallest eigenvalue (σ2).
Two methods based on information theory have been proposed in [WK85].
The first method is Akaike’s An Information theoretic Criterion (AIC), which
essentially is the log-likelihood adjusted with a penalty term for choosing too
many signals or too large model order. The second method is Rissanen’s and
Schwartz’s Minimum Description Length (MDL) method, which basically is
the same as AIC but using a slightly different penalty term.

However, if the signal covariance P is not of full rank, i.e. there are co-
herent signals, the dimension of the signal subspace p′ will differ from the
number of signals p and the methods in [WK85] will not work. Methods
that simultaneously estimate both the number of signals and the DOAs have
been proposed instead. The MDL method was extended to simultaneously
estimate the number of signals and the DOAs in [WZ89a]. The estimation
technique used for the DOA estimation was the DML method and a suit-
able method of initialization is the Alternating Projection (AP) method in
[ZW88]. That method (MDLC) estimates the number of signals even when
the signal covariance is rank deficient.

Another way of handling rank deficient signal covariances is the method of
Generalized Likelihood Ratio Test (GLRT) [OVSN93, Poo94, Sil70], where
the hypothesis that the data are described by the model in (3.8) with p
signals is tested against the hypothesis that the covariance matrix of the
measurements has an arbitrary structure

H0 : R = APAH + σ2I

H1 : R is arbitrary.
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Figure 3.5: The probability of correct detection as a function of the angular
separation for the methods GLRT (95%), AIC, and MDL when the signals
are non-coherent and the first signal is incident from φ1 = 90◦.

The estimated number of signals is the smallest value, p, of which the hy-
pothesis H0 not is rejected.

A method that also simultaneously estimates the DOAs and the num-
ber of signals is described in [VOK91], where the Weighted Subspace Fit-
ting (WSF) method is used for estimating the DOAs. The detection scheme
is based on the observation that a large distance between the signal subspace
and the array manifold indicates that there might be coherent sources. This
observation is formalized and results in a chi-square test. Furthermore, that
method needs knowledge of the dimension of the signal subspace, and the
methods described above could be used to estimate this. As in the case of
the GLRT, a multi-dimensional search results, and a good method of obtain-
ing initialization values is the method of Alternating Projections [ZW88].
Here, the methods AIC, MDL, MDLC and GLRT are investigated in a few
simulations.

In Figure 3.5, the probability of correct detection, when an array of 6 λ/2
dipoles spaced λ/2 apart is used and two signals are incident upon the array,
is shown. The first signal is incident from φ1 = 90◦ and the other incidence
angle is varied from 90◦ to 80◦, forming an angular separation in the interval
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Figure 3.6: The probability of correct detection as a function of the angular
separation for the methods GLRT (99%) and MDLC for coherent signals
calculated with and without coupling. The first signal is incident from φ1 =
90◦.

(0◦, 10◦). The signal covariance matrix is

P =

[
4 0
0 2

]
(3.28)

and the number of samples is N = 100. The GLRT method, using 95%
confidence level as threshold, works reasonably good already at an angular
separation of 3◦. Since the signals are non-coherent, the simpler methods
AIC and MDL also work. The AIC method has better performance than the
MDL method for small angular separations. For larger angular separations
the MDLmethod works much better with almost 100% detection. In [WK85],
it was shown that the MDL method is consistent whereas the AIC is not, and
the results in this simulation example are in agreement with those results.
In the simulations above, the mutual coupling was assumed known and the
methods above were extended to include the coupling by simply changing the
steering matrix to the effective one as before. However, it is interesting to
examine the effects of coupling on the detection performance. In Figure 3.6,
the GLRT and the MDLC methods are used for both the case with mutual
coupling present and the coupling free case (C = I). Now, the signals are
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correlated and the signal covariance is

P =

[
4 2.8
2.8 2

]
(3.29)

and the threshold for the GLRT method is calculated based on a confidence
level of 99% The GLRT method works better than the Extended version of
MDL that uses DML and AP (MDLC) method that was based on the MDL
method and the deterministic signal model. Also, it is interesting that both
methods work better with mutual coupling present than in the coupling free
case. This is in agreement with the observations made when estimating only
the directions. However, as in the estimation case these effects are angle
dependent and not generally true. In Figure 3.7, the same simulations are
performed using φ1 = 50◦ instead of φ1 = 90◦. Here, the effects of coupling
are negligible if the coupling is compensated for.

If the coupling is left uncompensated, the GLRT method collapse and
detection fails. The MDLC methods appears to be more robust, but that
method requires, as found in the examples, a larger angular separation of
the sources to work than the GLRT method. This is one important effect
of mutual coupling. Since in the case of DOA estimation, uncompensated
coupling only introduces some errors and reduces the resolution, but the
effects on the detection are more severe since signals are lost and false signals
appear. Of course, the simulations presented here are by no means exhaustive
and no general conclusions can be drawn. But, as in the case of estimation
of the DOAs alone, it has been demonstrated that a compensated known
coupling actually can increase the performance in some cases.

3.5 Conclusions

The effects of a known coupling was examined. First, by studying the esti-
mation performance by calculating the CRB for the stochastic signal model.
Then, the area of sensor array processing was presented by reviewing the
most popular methods of DOA estimation. In most cases, the methods were
extended to include the presence of a known coupling. Particularly, the MU-
SIC, Root-Music, SML, and the Subspace fitting methods were extended
to include a known coupling. These methods will be further extended in
Chapter 5 to estimate an unknown coupling along with the DOAs.

Furthermore, the problem of signal detection was discussed. If the covari-
ance matrix of the signals is nonsingular, the methods AIC and MDL can be
used. Those methods were found to work even in the presence of coupling,
known or unknown, without any modifications. However, if the covariance
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Figure 3.7: The probability of correct detection as a function of the angular
separation for the methods GLRT (99%) and MDLC for coherent signals
calculated with and without coupling. The first signal is incident from φ1 =
50◦.

matrix was singular, the MDLC and GLRTmethods were extended to include
the presence of a known coupling. The coupling was found to sometimes in-
crease the detection performance and sometimes decrease. Thus, the effects
of mutual coupling on the detection performance was essentially the same as
the effects on the estimation performance.

The DOA estimation methods considered in this chapter compensated
for a known coupling by introducing the coupling matrix C. However, other
effects such as the gain and phase of the individual elements could also be
included in the C matrix. These effects can then also be compensated for
by using the algorithms derived in this chapter. In the same manner can
the detection schemes, discussed in this chapter, also compensate for other
effects by modifying the C matrix.
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Chapter 4
Modeling of an Unknown Coupling

T
he methods discussed in the previous chapter compensate for the cou-
pling by adjusting the signal processing methods to account for the
coupling. However, to do that the coupling has to be known. In some

rare occasions the coupling might be analytically obtained, as in the case of
a ULA of dipoles in free space. But in most cases, calibration measurements
are necessary. In some cases, obtaining the coupling might not be possible
due to time aspects, the environment is changing to quickly, or that calibra-
tion measurements with known sources is simply not possible in the actual
environment. If the coupling is left uncompensated, it will drastically reduce
the possibilities of performing direction finding.

One way of mitigating these effects is to estimate the coupling along with
the DOAs using signal processing methods. Since this is an introductory
study on the effects of mutual coupling and the improvements by estimat-
ing the coupling, a simple coupling scenario is considered. The coupling is
considered to be unknown and deterministic, and no assumptions regarding
the coupling are made. If some knowledge of the coupling exists, it should
of course be included in a more realistic scenario, as well as gain and phase
uncertainties in the array response. Furthermore, the nominal array response
could be known and some random deviation from this response considered.
But, as a first study, a simple case is considered in order to get some first
results regarding the possible improvements by estimating the coupling as
well as the DOAs.

Directly estimating the coupling using the full electromagnetic coupling
matrix, derived in Section 2.2, usually requires too many parameters, and
therefore a reduced model will be derived in this section. That model will
be used in the following sections to compensate for the coupling by estimat-
ing it along with the DOAs. Furthermore, the uniqueness of the estimates
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obtained using that model is discussed. The section is concluded by deriving
a necessary condition for uniqueness, that gives a limit on the number of
coupling parameters that are possible to estimate.

4.1 Reduced Coupling Model

The model for the coupling derived in Section 2.2 needs to be simplified in
order to be used to estimate the mutual coupling. A direct estimation of the
full coupling matrix is usually not feasible, since it involves the estimation
of a relatively large number of parameters. The coupling matrix contains n2

complex entries, and if no constraints on the matrix are imposed, n2 complex
parameters need to be estimated. However, by examining the structure of
the coupling matrix C, it is found that the number of parameters can be
significantly reduced and a model with few parameters can be found.

First, it is illuminating to study the magnitude of the coupling matrix
elements. In Figure 4.1, the logarithm of the magnitude of the elements of
the coupling matrix are shown for the case of an array of 10 λ/2 dipoles
spaced λ/2 apart. From this figure it is clear that the magnitude of the
coupling decreases quite rapidly with the distance. Thus, only the coupling
with the closest elements need to be considered. This corresponds to only
parameterizing the elements on the first subdiagonals1 of the coupling matrix,
since the elements far from the main diagonal are relatively small.

Furthermore, the matrix entries along each subdiagonal are almost the
same. To see this, the normalized magnitude of the elements on a few sub-
diagonals are shown in Figure 4.2 for the same array as in Figure 4.1. The
magnitude of the coupling is approximately the same along the subdiagonals,
and thus it can be modeled by using only one parameter for each subdiagonal
resulting in a coupling matrix of Toeplitz structure. A more complex model
that better approximates the coupling could be formed by adding additional
parameters that model the shape of the magnitude change along the subdi-
agonals. Here, the objective is to derive a simple model and thus only one
parameter for each subdiagonal is used, which also gives a linear model in
the coupling parameters.

Also, noting that the coupling from element i to k is the same as the
coupling from k to i results in a symmetric (not Hermitian!) Toeplitz matrix.

1The ith subdiagonal of a n×n matrix C is the n− i length vector with the kth element
Ck,k+i.
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Figure 4.1: The magnitude of the elements of the coupling matrix of an array
of 10 λ/2 dipoles spaced λ/2 apart.
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Figure 4.2: The normalized magnitude of the elements on the main diagonal,
the first, and 4th subdiagonals of the coupling matrix of an array of 10 λ/2
dipoles spaced λ/2 apart.
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Based on these observations, a reduced coupling model can be formulated as

C =




1 c1 · · · cq 0 · · · 0

c1 1
. . .

...
...

. . .
. . . 0

cq
. . . cq

0
. . .

. . .
...

...
. . .

. . . c1
0 · · · 0 cq · · · c1 1




, (4.1)

where ci ∈ C and 0 < |ci+1| < |ci| < 1. The coupling parameters that are
estimated are then

cT =
[
c1 c2 · · · cq

]
. (4.2)

Note that the number of parameters to be estimated has decreased from n2,
when estimating all the elements in the C matrix, to q < n. The reduced
model of the coupling matrix then becomes a banded symmetric Toeplitz
matrix. How many coupling parameters to be include depends on the element
separation distance since the coupling is reduced with increased separation
distance, see Section 2.4.3. It also depends on how many elements there are
and the length of the dipole. Also, note that the dipole experiences a strong
mutual coupling and other types of antenna elements often experiences less
coupling and thus also less parameters are needed. The coupling model in
(4.1) was also suggested in [FW91], however, without any detailed physical
motivation. Here, the mutual coupling for a dipole array was derived and it
was found that the above model relatively well describes the effects of mutual
coupling. Thus, a detailed physical motivation for using the above coupling
model has been presented.

This reduced model is used to estimate the coupling in the following chap-
ters. Before estimation based on the reduced coupling model is considered,
some conditions for obtaining unique estimates of the mutual coupling and
the DOAs will be discussed.

4.2 Uniqueness

A good model should of course give unique estimates of directions and cou-
pling parameters. This problem is decoupled from the estimation problem,
and thus the noise can be ignored in the following analysis. The prob-
lem of uniqueness has been analyzed for the coupling free case in [WZ89b],
where two sufficient conditions for uniqueness are derived. One condition
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for uniqueness for every batch of signals is derived using subspace concepts,
and another condition for almost every batch of signals is derived based on
results from topology. The uniqueness problem has also been analyzed in
[BM86b, NSS91, Swi92, Wax92]. These results seem difficult to extend to
the case when an unknown coupling is present, since in that case the effec-
tive steering matrix is C(c)A(φ), and thus the unknowns are multiplied with
each other.

The problem of uniqueness is the question of under which conditions the
unknown parameters of the model can be determined uniquely. The obtained
data are the measured voltages, and the following model is used

x(t) = C(c)A(λ)s(t) + n(t), (4.3)

where λ = ejkd cosφ. Now, the received vector x(t) is sampled at N time
instants and stacked in a matrix X and the following model results

X = C(c)A(λ)S+N, (4.4)

where X and N are n×N matrices and S is a p× N matrix. The problem
of uniqueness is based on the following noiseless relation

X = C(c)A(λ)S = C(c′)A(λ′)S′ ⇒ {c,λ,S} = {c′,λ′,S′}. (4.5)

If equation (4.5) holds for every set of measured voltages X, only one set of
parameters gives X, thus the solution (c, λ, S) is unique. This is a rather
difficult problem already without coupling, and with an unknown coupling
it seems difficult to obtain a general result. One step towards the general
result is to consider the parameterization of the array. If

C(c)A(λ) = C(c′)A(λ′) ⇒ {c,λ} = {c′,λ′} (4.6)

holds, the array is said to be unambiguously parameterized. However, if
the signal is known and of full row rank, it can be removed from (4.5) by
multiplying with the pseudo-inverse of S. Therefore, an unambiguously pa-
rameterized array implies uniqueness if the signal is known and of full row
rank. A known signal could correspond to a training sequence in communi-
cation applications, and in that case the solution is unique if (4.6) holds. To
examine the uniqueness and ambiguity problem for the parameterization of
the reduced coupling model, the condition in (4.6) is rewritten as

f(ψ,y) = C(c)A(λ)−C(c′)A(λ′) = C(c)A(λ)−Y = 0, (4.7)

where ψT = [cT λT ] and Y ∈ C
n×p . Of course, one solution is c = c′ and

λ = λ′. If this is the only solution, the array is unambiguously parameterized.
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Also, note that if the equation in (4.7) holds for one source or one column
of the steering matrix A, it holds for all columns of A. Thus the derivation
is performed for only one source. The steering matrix A(λ) then reduces to
a vector a(λ) and Y reduces to the vector y. Furthermore, if there are q
coupling parameters and only one column is considered, then ψ ∈ C

q+1 .
Now, (4.7) represents a system of equations in ψ, and the implicit func-

tion theorem [Rud76] can be applied to obtain conditions for the existence
of a unique solution of the system of equations. However, the parameter vec-
tor, ψ, is in general complex and therefore an analytic form of the implicit
function theorem is used [Ber77].

Theorem 1 The Implicit Function Theorem

Let f be continuously differentiable in an open set E ⊂ C
n+q+1 , with values

in C
n . Suppose (a,b) ∈ E, f(a,b) = 0, and

det J(a,b) �= 0, (4.8)

where Jij =
∂fi

∂ψj
is the Jacobian.

Then there exists a neighborhood B of b (B ⊂ C
n) and a unique function

g which is continuously differentiable in B, with values in C
q+1 , such that

g(b) = a, and
f(g(y),y) = 0 (y ∈ B). (4.9)

Actually, if q = n− 1, the analytic implicit function theorem reduces to the
analytic inverse function theorem.

Before the question of general uniqueness of the array parameterization is
studied, two special cases will be considered. First, the uniqueness when esti-
mating the DOAs in the presence of a known coupling is examined. Secondly,
the calibration case where the DOAs are known and the coupling parameters
are estimated is studied.

When the coupling is known, the DOAs in (4.7) are simply obtained by
multiplication of the inverse of the coupling matrix.

A(λ) = C−1y (4.10)

Remember that the coupling matrix is assumed to be of full rank in all
the cases considered here. Furthermore, in this case the results of [BM86b,
NSS91, Swi92, WZ89b, Wax92] can then be applied since the introduction of
a known full rank coupling matrix can easily be eliminated by multiplication
by the inverse. Thus, the uniqueness properties do not change when a known
coupling is introduced.

Next, consider the case when the DOAs are known and the coupling
parameters are estimated. This corresponds to a calibration scenario using
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known sources at known locations. The system of equations in (4.7) now
becomes

f(ψ,y) = C(c)a(λ)− y = 0, (4.11)

where only one source is considered as mentioned previously. However, since
the unknown coupling parameters enter the expressions linearly, the equa-
tions can be rewritten as

f(ψ,y) = M(λ)c− y′ = 0. (4.12)

If the Jacobian is non-zero or the n × n matrix M is non-singular, then
according to Theorem 1 the solution is unique. Thus, the problem reduces
to examine the rank of the matrix M. Before a general formula for the M

matrix is presented, first consider a special case. For an array of 7 elements,
the relation C(c)a(λ) can be written as




1 c1 c2 c3 c4 c5 c6
c1 1 c1 c2 c3 c4 c5
c2 c1 1 c1 c2 c3 c4
c3 c2 c1 1 c1 c2 c3
c4 c3 c2 c1 1 c1 c2
c5 c4 c3 c2 c1 1 c1
c6 c5 c4 c3 c2 c1 1







1
λ
λ2

λ3

λ4

λ5

λ6




. (4.13)

The equations in (4.13) are linear in the coupling parameters and can be
rewritten as




1 λ λ2 λ3 λ4 λ5 λ6

λ 1 + λ2 λ3 λ4 λ5 λ6 0
λ2 λ+ λ3 1 + λ4 λ5 λ6 0 0
λ3 λ2 + λ4 λ+ λ5 1 + λ6 0 0 0
λ4 λ3 + λ5 λ2 + λ6 λ 1 0 0
λ5 λ4 + λ6 λ3 λ2 λ 1 0
λ6 λ5 λ4 λ3 λ2 λ 1







1
c1
c2
c3
c4
c5
c6




. (4.14)

The M matrix is obtained by omitting the first column of the matrix in
(4.14). If M is of full rank the coupling parameters are obtained by simply
multiplying with the left-inverse ofM. To examine the rank of theMmatrix,
a few steps of Gaussian elimination are performed. First, subtract from each
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row, except the first one, λ times the preceding row

rk M = rk




λ λ2 λ3 λ4 λ5 λ6

1 0 0 0 0 −λ7
0 1 0 0 −λ7 0
0 0 1 −λ7 0 0
0 0 −λ7 1 0 0
0 −λ7 0 0 1 0
−λ7 0 0 0 0 1




. (4.15)

Thus if λ7 �= ±1, the columns of M are independent and M is of full column
rank and the left-inverse exists. For the DOAs, this corresponds to

λ7 �= ±1⇒ ej14kd cosφ �= ej2π ⇒ cosφ �= lπ

7kd
l = 0, . . . , 6. (4.16)

Therefore, if the maximum number of coupling parameters are estimated,
the solution is unique for all angles except at 7 specific angles where the
matrix becomes rank deficient. However, if 3 coupling parameters (c1, c2, c3)
are estimated it works for all angles, since the first three columns in (4.15)
are independent.

By studying the structure in (4.15) and (4.14) a general formula for M

can be found. The rows of the upper half become

Mi,: = [λi, λi−1 + λi+1, . . . , 1 + λ2(i−1), λ2(i−1)+1, . . . , λn−1, 0, . . .] (4.17)

and rows of the lower half are given by

Mi,: = [λi, λi−1 + λi+1, . . . , λ2i+1−n + λn−1, λ2i−n, . . . , 1, 0, . . .]. (4.18)

If the number of sensors is odd, the middle row becomes

Mi,: = [λi, λi−1 + λi+1, . . . , 1 + λ2(i−1), 0, . . .] (4.19)

as was the case in the above example with 7 elements, see (4.14). The rank
of M is examined by performing a few row-reductions just as in the above
example. Using the expressions for the rows of M in (4.17)-(4.19), it is found
that the structure will be similar to the one in the above example. The row-
reduced matrix has ones on the main diagonal and −λn on the anti-diagonal
after row-reduction, and thus the M is of full rank if λn �= ±1 or

cosφ �= lπ

nkd
l = 0, . . . , n− 1. (4.20)

Therefore, if the DOA of a single source is known, n − 1 coupling parame-
ters defined like in (4.1) can be determined uniquely if the DOA does not
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coincide with the n locations defined by (4.20). However, if the number
of coupling parameters are reduced, the solution can be guaranteed to be
unique. Considering only the left half of M, those columns are guaranteed
to be independent, see (4.15). Note that the number of estimated coupling
parameters equals the number of columns of M. Therefore, if only the left
half of M is included, which corresponds to using2

q = q0 = ⌈n/2⌉ − 1 (4.21)

columns, q0 coupling parameters can be determined uniquely.
Therefore, in a calibration scenario, all n− 1 coupling parameters can be

uniquely determined if the signal and the DOA are known and not equal to
the ambiguity angles of (4.20). To avoid the DOA ambiguity, the number
of estimated parameters can be reduced to q0 in order to obtain guaran-
teed uniqueness. However, at least for small arrays, it seems rather unlikely
that the ambiguity angles can not be avoided in a calibration scenario. For
larger arrays and more coupling parameters, the number of ambiguity angles
increases. Since the problem experiences poor conditioning close to the am-
biguity angles, the full number of estimated coupling parameters should not
be estimated for larger arrays.

Now, the special cases of known DOAs or known coupling have been
discussed. The general case when solving for both DOA and coupling can
be analyzed by calculating the Jacobian of the system of equations in (4.7)
and invoking Theorem 1. Here, only one unknown DOA is considered, since
if the solution is unique for one column it will be unique for all columns, as
discussed previously. Start once again by considering a special case with 5
elements and 4 coupling parameters. In that case the Jacobian becomes




λ λ2 λ3 λ4 c1 + 2c2λ+ 3c3λ
2 + 4c4λ

3

1 + λ2 λ3 λ4 0 1 + 2c1λ+ 3c2λ
2 + 4c3λ

3

λ+ λ3 1 + λ4 0 0 c1 + 2λ+ 3c1λ
2 + 4c2λ

3

λ2 + λ4 λ 1 0 c2 + 2c1λ+ 3λ
2 + 4c1λ

3

λ3 λ2 λ 1 c3 + 2c2λ+ 3c1λ
2 + 4λ3



. (4.22)

Here, the left part of the Jacobian (n− 1 left columns) is recognized as the
matrix that appeared when assuming the DOA to be known and solving
for the coupling parameters. That matrix was possible to simplify using
row-operations and conditions for full rank was derived. The last column
corresponds to the estimation of the DOA and for the solution of both the
coupling parameters and the DOA to be unique, the Jacobian must be of

2The notation ⌈x⌉ denotes rounding off x to the nearest integer towards infinity.
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full rank according to Theorem 1. Therefore, by performing the same row-
operations as previously, the Jacobian can be written as




λ λ2 λ3 λ4 c1 + 2c2λ+ 3c3λ
2 + 4c4λ

3

1 0 0 −λ5 1 + c1λ+ c2λ
2 + c3λ

3 − 4c4λ4
0 1 −λ5 0 c1 + λ+ c1λ

2 + c2λ
3 − 4c3λ4

0 −λ5 1 0 c2 + c1λ+ λ
2 + c1λ

3 − 4c2λ4
−λ5 0 0 1 c3 + c2λ+ c1λ

2 + λ3 − 4c1λ4




(4.23)

To show that the determinant of the matrix in (4.23) is non-zero, i.e. full
rank, seems hard. An even harder problem is to generalize to n sensors and
q coupling parameters. That is an open problem which demands more work,
but for one simple special case the solution can be shown to be unique and
thus the parameterization of the array in that case unambiguous. Consider
the same 5 element array, but let only one coupling parameter be used. In
that case, it suffices to show that the first column (corresponding to the
coupling parameter) and the last column (corresponding to the DOA) are
independent 



λ c1
1 1 + c1λ
0 c1 + λ+ c1λ

2

0 λ(c1 + λ+ c1λ
2)

−λ5 c1λ
2 + λ3 − 4c1λ4



. (4.24)

Subtracting λ times the second row from the first and changing order gives




1 1 + c1λ
0 c1 − λ− c1λ2
0 c1 + λ+ c1λ

2

0 λ(c1 + λ+ c1λ
2)

−λ5 c1λ
2 + λ3 − 4c1λ4



. (4.25)

Furthermore, adding the third row to the second shows that the columns are
independent. Adding more sensors only results in taller columns but the first
rows remain unchanged. Therefore, the parameterization using one coupling
parameter is locally unambiguous for arrays containing 5 elements or more.
This analysis started with a five element array and more work is needed
to prove that a smaller number of elements also results in an unambiguous
parameterization using one coupling parameter. Also, extending to more
coupling parameters requires further work. However, the more elements that
are included the taller the vectors become and it becomes more likely that
the set of columns in question become independent.
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The preceding analysis examined if the parameterization of the array was
unique. To prove that the parameterization of the general case in equation
(4.5) with unknown signals, angles, and coupling is unique seems difficult.
Another interesting question is how many coupling parameters that can be
uniquely estimated using an n element array when p signals are incident
from unknown directions. In that case the analysis becomes much more
complicated. Therefore, a necessary condition is derived next that gives a
bound on how many coupling parameters that at best can be estimated.

A necessary condition for uniqueness, which is valid for all types of arrays
(not only ULAs), can also be derived using the analytical implicit function
theorem. According to the discussion in Section 3.3.1 all information is
contained in the second order moments, and since the uniqueness problem
is decoupled from the estimation problem, the noise can be eliminated. All
information is then contained in the signal eigenvectors Es. Assume that the
signal matrix S is of rank p′, then the uniqueness relation in (4.5) can be
written as

Es = C(c)A(φ)T, (4.26)

where the signals are accounted for through the p× p′ matrix T of rank p′.
A necessary condition for obtaining a unique solution of (c,φ,T) is of course
to have at least an equal number of unknowns and independent equations,
see for instance [Ber77, Rud76]. The number of real equations are 2np′ since
there are n sensors and p′ independent complex signals. The number of real
unknowns are 2q+p+2pp′ corresponding to q complex coupling parameters,
p real DOAs, and pp′ complex elements in T. The necessary condition for a
unique solution is that the number of equations is larger than the number of
unknowns

2np′ ≥ 2q + p+ 2pp′. (4.27)

A useful formulation of the above relation is to express the number of ele-
ments needed to estimate p signals with a total rank of p′ as

n ≥ p+ p

2p′
+
q

p′
. (4.28)

The estimation of the coupling parameters results in an increase of the
number of antenna elements needed to obtain unique estimates. How large
this cost becomes is easily seen in an example. Assume that the signal is full
rank, i.e. p′ = p, and study three different cases: 1) No coupling parameters
are estimated, 2) The reduced coupling model with n−1 parameters, and 3)
The reduced coupling model with only 2 complex parameters. A calculation
of the number of elements n needed to estimate p signals based on (4.28)
is shown in Figure 4.3. The cost of introducing the coupling parameters
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Figure 4.3: The number of elements necessary for the existence of a unique
solution when p signals are incident upon the array.

is rather small. Usually only one additional element is needed to obtain
unique estimates. Note that estimating a single DOA and the full number of
coupling parameters (n− 1) is not possible if the estimates are to be unique.
It is important to remember that the figures presented here only represent a
necessary condition for the solution to be unique. Furthermore, the result in
(4.28) reduces to the result in [BM86b, WZ89b] when no coupling is present,
but it differs slightly from the results in [FW91], which also includes coupling
and uncertainties in gain and phase of the elements.

4.3 Conclusions

If it is not possible to obtain the coupling matrix through calibration, one
way of reducing the effects of an unknown coupling is to estimate the coupling
along with the DOAs. However, in that case a simple model with relatively
few parameters is needed since it must be estimated using the same data.
In this chapter, a reduced coupling model with less parameters than the full
coupling model derived using electromagnetics, was introduced. This model,
a banded symmetric Toeplitz matrix, coincided with the model conjectured
in [FW91], but here it was based on physical reasoning. Note that although
the reduced model captures the properties of the full electromagnetical model
of the coupling, it of course deteriorates the direction finding. Therefore, a
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calibration scheme where the full coupling matrix is estimated should be
applied if possible. But if not possible, estimating the coupling reduces the
effects of an unknown coupling.

When estimating the coupling along with the DOAs new problems arise.
One problem is the question of uniqueness of the estimates of the parame-
ters of the reduced coupling model. This was analyzed in this chapter and
although no general results regarding the uniqueness were obtained, it was
shown that the parameterization of the array, in a calibration scenario, is
locally unambiguous. If the number of coupling parameters are equal to
or less than ⌈n/2⌉ − 1, the parameterization is locally unambiguous for all
DOAs. Otherwise the parameterization becomes ambiguous at n different
angles in that calibration scenario. For the case of both unknown DOA and
coupling, no general results were obtained, but it was found that arrays with
more than four elements are unambiguously parameterized (locally) if one
coupling parameter is used.

Furthermore, a necessary condition for uniqueness was presented. In the
next chapter, this reduced model is used to estimate both the coupling and
the DOAs using different methods.
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Chapter 5

Estimation With an Unknown

Coupling

I
f it is not possible to obtain the coupling matrix through calibration or
some other means, the effects of an unknown coupling can be mitigated
by estimating both the coupling and the DOAs. However, the number of

unknown parameters generally becomes too large if a direct estimation of the
elements of the coupling matrix is performed together with a DOA estima-
tion. Using the reduced coupling model, derived in the previous chapter, the
number of parameters becomes feasible. Here, the reduced coupling model
will be used throughout this chapter in the simple scenario of a completely
unknown coupling. In practice, some knowledge of the coupling usually ex-
ists, which of course should be used.

First, the model and the stochastic assumptions will be reviewed. Then,
the Stochastic Maximum Likelihood (SML) estimator for the present data
model, is derived. The Cramér-Rao lower Bound on the variance for the case
of an unknown coupling is derived based on the SML expressions.

After establishing the lower bound, several methods of estimation are dis-
cussed. Estimation of an unknown mutual coupling has received very little
interest in the signal processing literature. An iterative version of the MUSIC
method, that estimates both coupling and DOAs, was developed in [FW91].
Therefore, that iterative MUSIC algorithm is discussed first and some re-
lated methods are proposed. Furthermore, the NSF method is extended to
estimate both an unknown coupling and the DOAs. The properties of the
different estimation methods are then examined and compared to the CRB in
a few computer experiments. The chapter is concluded by briefly considering
the problem of signal detection in the presence of an unknown coupling.
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5.1 Data Model

The input data to the estimation algorithms in the following sections are
the measured voltages of the antenna elements. As before, the antenna is a
uniform linear array of n dipoles and p waves are incident upon the array.
One important difference to the case of a known coupling is that the reduced
coupling model is used here. Sampling the voltages x(t) at N time instants
t = t1, . . . , tN (taking N ”snapshots”) gives the following model

X = CA(φ)S+N, (5.1)

where

X =
[
x(t1) · · · x(tN)

]
(5.2)

S =
[
s(t1) · · · s(tN)

]
(5.3)

N =
[
n(t1) · · · n(tN)

]
. (5.4)

The matrix of measured voltagesX is n×N , the signal matrix S is p×N , the
noise matrix N is n×N , and the coupling matrix C is n× n with elements
Cij = c|i−j|. Note that c0 = 1 and |ci| < 1 ∀ 1 ≤ i ≤ q. The steering matrix
A(φ) is n× p, and for a ULA it has a Vandermonde structure with elements
[A(φ)]vw = e

−jkd(v−1) cos φw , where k is the wavenumber and d is the element
separation distance. The DOAs are contained in the parameter vector φ.
Furthermore, the coupling matrix is assumed to be of full rank and both
the signal s(t) and the noise n(t) are circularly Gaussian distributed as in
Section 3.1. Also, the number of dipoles are chosen as to fulfill the necessary
condition derived in previous section

n ≥ p+ p

2p′
+
q

p′
, (5.5)

where p′ is the rank of the signal matrix S and q ≤ n − 1 is the number of
coupling parameters used.

Based on the data model in (5.1) and the statistical assumptions above,
the maximum likelihood estimator for an unknown coupling and unknown
DOAs will be derived in the next section.

5.2 Maximum Likelihood

The method of Maximum Likelihood estimation is one of the most popu-
lar estimation method used in signal processing. One of the reasons is that
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for large enough data records the ML estimator is approximately the Min-
imum Variance Unbiased (MVU) estimator, and thus it is asymptotically
efficient. Here, the maximum likelihood estimator for the data model pre-
sented in the previous section will be derived. Since not only the noise, but
also the signals, are assumed to be stochastic, the resulting maximum like-
lihood method is usually called the Stochastic Maximum Likelihood (SML)
method, see Section 3.3.3. For the coupling-free case the SML has been de-
rived in a concentrated form [Böh86, Jaf88, SN95]. The derivation of the
SML, when an unknown coupling is present, follows basically the same lines
as the coupling-free case. However, some properties do change and of course
the number of unknowns increase, and therefore the important steps of the
derivation are included in some detail in Appendix 5A.

The SML estimation method is based on maximizing the likelihood by
choosing the values of the unknown parameters that give the maximum. The
unknown parameters are the DOAs φ, the coupling c, and the free parameters
of the signal and noise covariances. Note that both the coupling parameters ci
and the signal covariance P are in general complex. When the objective is to
estimate the DOAs, the signal and noise covariances are nuisance parameters
and the expression that is to be maximized can be concentrated into the
following form

Θ̂ = {φ̂, ĉ} = argmin
φ,c
VSML(φ, c) = argmin

φ,c
log det

[
CAP̂AHCH + σ̂2I

]
,

(5.6)
where

P̂ = (CA)†
[
R̂− σ̂I

]
(CA)†H (5.7)

σ̂2 =
1

n− pTr
{
P⊥
CAR̂

}
. (5.8)

Note that the dependence of C(c), A(φ), P̂(φ, c), and σ̂2(φ, c) on the pa-
rameters have been omitted in order to reduce the notation complexity. For
a more detailed discussion of deriving the likelihood function, see Appendix
5A. To obtain a closed form solution for the coupling or the DOAs is, in
general, not possible. Therefore, the parameter values are obtained through
a numerical search. Many different optimization techniques have been pro-
posed in the signal processing literature. Here, a damped Newton method
[DS83] will be used. The estimate is calculated iteratively as

Θk+1 = Θk − µkH−1V′, (5.9)

where Θk is the estimate at iteration k, µk is the step length, H denotes the
Hessian matrix of the criterion function, and V′ denotes the gradient. The
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Hessian and the gradient are evaluated at Θk. The step length is chosen
using a simple scheme, starting with a value µ ≤ 1 and then decreasing the
value until the value of the criterion function is less than in previous iteration.
If the criterion not decreases, the iteration is terminated. Of course there is
no guarantee that the search will end in the global minimum. However, if
the search is initiated ”sufficiently close”, the global minimum will be found.

When implementing the above search method, two problems appear.
First, for −H−1V′ to be a descent direction the Hessian must be positive def-
inite, which not necessarily have to be the case far from the true optimum.
Also, the evaluation of the Hessian is computationally cumbersome, and
therefore the Hessian is replaced by the Fisher Information Matrix (FIM),
which is more easily evaluated and also guaranteed to be positive definite if
the estimation problem is well posed. This leads to a method that in the sta-
tistical literature is known as the scoring method [OVSN93]. Furthermore,
it will be shown in the next section that the asymptotic Hessian essentially
coincides with the asymptotic covariance matrix of the estimates. Since,
the ML method is statistically efficient, an expression for the FIM and the
Cramér-Rao lower bound are thus also found.

In order to implement the search, the gradient and the asymptotic Hessian
of the criterion function in (5.6) must be calculated. The steps involved in
this calculation are similar to those in [SN90b], but the introduction of the
coupling matrix results in slight changes. The calculations are included in
Appendix 5A, where it also is shown that the gradient becomes

V′(Θ) =




2ReTr
[
ĜAHCHR̂P⊥

CA
∂(CA)
∂Θ1

]

...

2ReTr
[
ĜAHCHR̂P⊥

CA
∂(CA)
∂Θp+2q

]


 , (5.10)

where

Ĝ = (AHCHR̂CA)−1 − 1

σ̂2
(AHCHCA)−1, (5.11)

and σ̂2 is defined in (5.8). The estimated covariance matrix, R̂, is defined in
(3.15). The expression for the asymptotic Hessian is also derived in Appendix
5A

H = V′′
a(Θ) =

[
Hφφ Hφc
HTφc Hcc

]
. (5.12)

The block matrices are as follows

Hφφ =
2

σ2
Re

{(
PAHCHR−1CAP

)T ⊙
(
DHCHP⊥

CACD
)}
, (5.13)

94



5.3. DIRECTION FINDING ACCURACY

where

D =

[
∂a(φ)

∂φ


φ=φ1

, · · · , ∂a(φ)
∂φ


φ=φp

]
. (5.14)

Also,

Hφc =

[
∂2Va
∂φ∂cr

∂2Va
∂φ∂ci

]
= HTφc, (5.15)

where
[
∂2Va
∂φ∂cr

]

ij

= 2
σ2
ReTr

[
PAHCHR−1CAPAHΥjP

⊥
CAC

∂A
∂φi

]
(5.16)

[
∂2Va
∂φ∂ci

]

ij

= − 2
σ2
ImTr

[
PAHCHR−1CAPAHΥjP

⊥
CAC

∂A
∂φi

]
(5.17)

and Υk is banded symmetric Toeplitz matrix with zeros everywhere except
on the kth and the −kth subdiagonal which consists of ones. Finally,

Hcc =

[
Hcrcr Hcrci
HTcrci Hcici

]
, (5.18)

where

[Hcrcr ]ij =
2
σ2
ReTr

[
PAHCHR−1CAPAHΥjP

⊥
CAΥiA

]
(5.19)

[Hcrci]ij = − 2
σ2
ImTr

[
PAHCHR−1CAPAHΥjP

⊥
CAΥiA

]
(5.20)

[Hcici]ij = − 2
σ2
ReTr

[
PAHCHR−1CAPAHΥjP

⊥
CAΥiA

]
. (5.21)

Now, using the scoring method, i.e. equation (5.9) with the gradient and
Hessian in (5.10) and (5.12), the implementation of the SML method is
straightforward.

The relation between the SML method and the Cramér-Rao bound will
be used in the next section to derive a formula for the CRB.

5.3 Direction Finding Accuracy

When comparing different estimation schemes, it is important to known the
fundamental performance limit of the estimation problem at hand. The
Cramér-Rao lower bound gives the lowest possible variance of a unbiased
estimator and thus serves as a fundamental performance limit that is useful
when comparing different estimation schemes. In Section 3.2, the CRB was
calculated for the case of a known mutual coupling. Here, the bound will be
calculated when an unknown mutual coupling is present.
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The Cramér-Rao lower bound for a parameter vector Θ is defined as

E{(Θ̂−Θ0)(Θ̂−Θ0)
T} ≥ I−1(Θ), (5.22)

where I(Θ) is the FIM with elements

I(Θ)ij = −E
[
∂2 log p(x;Θ)

∂Θi∂Θj

]
. (5.23)

Note that p(x;Θ) is the probability density function for the measurements
parameterized by the unknown parametersΘ that are to be estimated. When
viewed as a function of the unknown parameters Θ, p(x;Θ) is termed the
likelihood function.

The CRB is usually evaluated using (5.22)-(5.23) and for the coupling free
case, formulas have appeared in [Ban71, Sch81]. However, when estimating
the DOAs, the signal and noise covariances can often be regarded as nuisance
parameters and thus the CRB for these parameters are not important. A
more compact expression for the CRB on the DOAs is possible to obtain by
observing the fact that the likelihood function can be concentrated regarding
the signal and the noise covariance as derived in the previous section. Com-
pact expressions for the CRB for the coupling free case have been derived in
[OWVK89, SN90b].

The CRB for the case when an unknown mutual coupling is present has
been derived in the literature [FW91], where also the phase and gain of the
antenna elements are considered unknown. In that derivation the definition
in (5.22) was used, resulting in a large Fisher matrix to be inverted. Here,
compact expressions for the CRB on the DOAs in the presence of an un-
known mutual coupling will be derived based on the concentrated likelihood
function.

An expression for the CRB on the DOAs can be derived by exploiting the
relation between the ML method and the CRB. From general statistical the-
ory it follows that if there is a unique solution, the ML estimator converges
in probability to the true parameter vector under very general conditions
[KS61]. Furthermore, the ML estimator is found to be asymptotically effi-
cient [KS61], i.e. the covariance matrix for the ML estimates coincides with
the CRB for large number of samples (N ≫ 1). Once the asymptotic expres-
sion for the covariance matrix for the ML estimates is obtained, the general
CRB formula is also obtained. The number of samples enters only as a scal-
ing, since the likelihood expression is proportional to the number of samples,
and therefore is the CRB expression valid for all N [SN90b].

An expression for the asymptotic covariance matrix for the SML estimates
is calculated in Appendix 5B and the general CRB with an unknown coupling
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becomes

E{(Θ̂−Θ0)(Θ̂−Θ0)
T} ≥ BSTOc

=
1

N
[V′′
a(Θ)]

−1, (5.24)

where the asymptotic Hessian is defined in (5.12).
However, in most cases the variance of the DOA estimates is important

and it is of interest to obtain an explicit expression for the these. In (5.12)
the asymptotic Hessian is written in a block matrix form and a partitioned
inverse can be obtained as

B
φφ
STOc

=
1

N
H−1
φφ +

1

N
H−1
φφHφc

(
Hcc −HTφcH

−1
φφHφc

)−1
HTφcH

−1
φφ . (5.25)

Note that since the Hessian is evaluated at the true parameters it is positive
definite and the inverse exists, if the problem is well posed. The first term
in (5.25) is the CRB in the case of a known coupling. The second term
is positive definite, since the second term is a quadratic form of the Schur
complement which is positive definite if the Hessian is [SS89]. The CRB,
when an unknown coupling is present, is therefore always larger than when
the coupling is known

B
φφ
unknown > B

φφ
known. (5.26)

The above result is very intuitive and of course expected. It is interesting to
examine how much larger the bound becomes when the DOAs are estimated
together with an unknown coupling compared to the case when the coupling
is known. Also, it is interesting to compare with the hypothetical coupling
free case.

First note that in this chapter, an unknown coupling is estimated us-
ing the data model in (5.1), where the reduced coupling model is used. That
model is also used when calculating the CRB. If the data are generated using
a different model, a modeling error will occur and in that case the formula for
the CRB should be modified to include a biased estimator, see [SS89]. How-
ever, in this case the analysis of the model errors seems complicated. Thus,
the different estimation schemes are examined using data generated from the
reduced coupling model and no model error is present. The calculated CRB
for a known coupling in this section will therefore differ from the CRB for a
known coupling calculated in Section 3.2 since different coupling matrices are
used. The difference will however be rather small, since the reduced coupling
model relatively well describes the coupling. The coupling parameter values
are here chosen from the first column of the coupling matrix calculated using
electromagnetics. Usually, only a few coupling parameters are included when
estimating and that also give rise to a small difference. In the following, the
increase in the square root of the CRB (the standard deviation) when the

97



CHAPTER 5. ESTIMATION WITH AN UNKNOWN COUPLING

0

20

40

60

80

0

20

40

60

80

0

0.5

1

1.5

2

2.5

3

3.5

4

φ1 φ2

Figure 5.1: The ratio of the standard deviation for unknown coupling and
known coupling for φ2 versus the angles for an array of 5 λ/2 dipoles spaced
λ/2 apart and q = 1.

coupling needs to be estimated (using the reduced model), is compared to
when the coupling is known. Although these comparisons of the CRB for
different cases gives some insight on how well it is possible to estimate the
DOAs, it is only meaningful for reasonably large SNRs. For high SNR sce-
narios the model error will dominate in a realistic scenario. Here, however,
the data are generated using the same model as the estimators are based on
and, thus the estimators considered here will be asymptotically unbiased.

In Figure 5.1, the ratio of the standard deviation for an unknown coupling
and a known coupling for φ2 versus the angles is shown. An array of 5
λ/2 dipoles spaced λ/2 apart is used, and only one coupling parameter is
estimated (q = 1). The ratio is larger than unity, but the increase is not
dramatic. Also, the ratio is above unity everywhere due to the fact that
the CRB for an unknown coupling is always larger than the CRB for a
known coupling as found in (5.26). It is also important to note that the
main diagonal corresponds to two waves arriving from the same angle and
thus impossible to discriminate. The Hessian becomes rank deficient and
the CRB becomes infinite. Therefore, it is hard to draw any conclusions
regarding the valley that appear along the main diagonal. A similar figure
for φ1 also exists, but is not shown since it is only a mirrored version.

Increasing the number of coupling parameters that are estimated also
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Figure 5.2: The ratio of the standard deviation for unknown coupling and
known coupling for φ2 versus the angles for an array of 5 λ/2 dipoles spaced
λ/2 apart and q = 2.

increases the CRB. In Figure 5.2, the same array as in Figure 5.1 is used but
the number of estimated coupling parameters, q, is two. Here, the increase
of the standard deviation when the coupling needs to be estimated is larger
than when only one parameter was estimated. For angles close to end-fire,
where it is hard also in the coupling free case to estimate the DOAs, the
increase is especially large.

Estimating more coupling parameters further increases the CRB, and the
numerical evaluation becomes more critical. When a full coupling matrix is
used, i.e. four coupling parameters for a 5 element array, then the smooth
surface in the previous figures disappears, indicating that the problem is close
to singular. Estimating a large number of coupling parameters, although be-
low the necessary condition derived in Section 4.2, results in a large variance
and often the gain in a smaller bias is not worth the large variance of the
estimates.

Increasing the number of elements allows for a larger number of coupling
parameters to be estimated. In Figure 5.3, two coupling parameters are
estimated using a 10 element array. Comparing with Figure 5.2 where also
two coupling parameters are estimated but with a five element array it is
found that the CRB ratio is much lower for the larger array. Thus, more
coupling parameters can be estimated using a larger array, and a better

99



CHAPTER 5. ESTIMATION WITH AN UNKNOWN COUPLING

0

20

40

60

80

0

20

40

60

80

0

0.5

1

1.5

2

2.5

3

3.5

4

φ1 φ2

Figure 5.3: The ratio of the standard deviation for unknown coupling and
known coupling for φ2 versus the angles for an array of 10 λ/2 dipoles spaced
λ/2 apart and q = 2.

model fit can therefore be obtained. The same array, as in in Figure 5.3,
but with almost a full coupling matrix is shown in Figure 5.4. Six out
of nine parameters are used, and since the coupling decreases rapidly (see
Figure 3.2), this many parameters are usually not needed.

All the CRB ratios presented in the above figures were calculated as the
ratio of the CRB for an unknown coupling to a known coupling, since that
clearly illustrates the increase in variance when the coupling is unknown.
However, the ratio of the CRB for an unknown coupling to the hypothetical
coupling free case is essentially the same. In Figure 5.5, the ratio for a known
coupling to the hypothetical coupling free case is shown for the 10 element
array with six coupling parameters used in Figure 5.4. The ratio is close to
unity for most angles, and thus using the CRB for a known coupling or the
CRB for the hypothetical coupling free case to calculate the ratio essentially
gives the same result.

Now, a lower bound on the variance (CRB) has been obtained that can be
used to address the quality of different estimation schemes. In the following
sections a few methods of estimating both an unknown coupling and DOAs
are discussed. Then, some simulations are performed where these methods
are compared to each other and to the CRB that was derived in this section.
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Figure 5.4: The ratio of the standard deviation for unknown coupling and
known coupling for φ2 versus the angles for an array of 10 λ/2 dipoles spaced
λ/2 apart and q = 6.
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Figure 5.5: The ratio of the standard deviation for a known coupling and
without coupling for φ2 versus the angles for an array of 10 λ/2 dipoles spaced
λ/2 apart and q = 6.
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5.4 Iterative MUSIC

The SML method requires a multidimensional search, which is computation-
ally demanding already when only DOAs are estimated. The search becomes
even more demanding when q coupling parameters are added. Also, the ini-
tialization of the search becomes more important the more parameters that
are estimated, and the possibilities of ending up in a local minimum increases.
Therefore, it is of great interest to eliminate the full parameter search, or at
least reduce the number of parameters that are needed to search over. In
[FW91], an iterative version of the MUSIC algorithm that accounts for an
unknown coupling as well as gain and phase uncertainties is presented. The
only search performed is the DOA search, i.e. search for peaks in the MUSIC
spectrum just as in the coupling free case. The price that has to be paid for
this reduction in computational complexity is that the estimation scheme
must be performed several times, i.e. iterated. Unfortunately, it was found
in [PK91] that the iterative MUSIC method of [FW91] gives nonunique esti-
mates and in [PF94] that is experiences slow convergence. The main reason
for this is the fact that both an mutual coupling and unknown gain and phase
are estimated in [FW91], leading to an ambiguous array parameterization.
However, for the case of only an unknown mutual coupling, the analysis in
Chapter 4 is valid and non-uniqueness can be avoided.

Using the notation in the previous sections the criterion that is minimized
becomes [FW91]

Jc = ‖Ê
H

nC(c)ΓA(φ)‖2F =
p∑

k=1

‖ÊHnC(c)Γa(φk)‖2F , (5.27)

where F denotes the Frobenius norm, Ên the noise eigenvectors (see (3.10)),
and Γ contains the gain and phase. Here, only the mutual coupling will be
studied and thus Γ = I will be assumed in the following. Furthermore, in
[FW91] the coupling model is the same as the reduced coupling model derived
in previous sections. In [FW91], however, no detailed physical motivation
was presented. A similar model for a circular array was also conjectured in
[FW91].

Now, when estimating the DOAs and the unknown mutual coupling the
estimation scheme becomes an iterative two step procedure.
Step 1: Estimating the DOAs
Search for the p highest peaks in the MUSIC spectrum

PMU(φ) = ‖Ê
H

nC(c)a(φ)‖−2. (5.28)

The DOAs estimates are then taken as the angles where these peaks appear.
Note that this is the same step as in the MUSIC algorithm for a known
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coupling. In the first iteration, the identity matrix is used as coupling matrix.
Step 2: Estimating the Mutual Coupling
Insert the estimated DOAs from previous step in the criterion function Jc.
The following lemma [FW91] will then prove useful.

Lemma 1 For any M×1 complex vector x and any M×M banded complex
symmetric Toeplitz matrix B

Bx = Q(x) · b (5.29)

where the L× 1 vector b is given by

bi = B1i, i = 1, 2, · · · , L (5.30)

and L is the highest subdiagonal that is different from zero. The M × L
matrix Q(x) is given by the sum of the following matrices

[W1]kl =

{
xk+l−1, k + l ≤M + 1

0, otherwise

[W2]kl =

{
xk−l−1, k ≥ l ≥ 2

0, otherwise

(5.31)

Using Lemma 1 the criterion function can be written as

Jc = c̄H

{
p∑

k=1

QH(k)ÊnÊ
H

nQ(k)

}
c̄, (5.32)

where

Q(k) = Q(a(φk)) (5.33)

c̄ = [1 cT ]T (5.34)

ck = C1k, k = 1, 2, · · · , L (5.35)

and the vector c contains the unknown coupling parameters. Now, (5.32)
represents a quadratic minimization problem under a linear constraint, since
the coupling matrix C is assumed to be unity on the main diagonal. Solving
the constrained minimization problem using Lagrangian multipliers

ˆ̄c = G−111(1
T
1G

−111)
−1, (5.36)

where

G =

p∑

k=1

QH(k)ÊnÊ
H

nQ(k). (5.37)
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Note that the vector 11 has a one in the first position and the rest is zero.

The iterative MUSIC algorithm thus estimates the DOAs in Step 1 and
estimates the coupling in Step 2, and the final estimates are obtained by
iterating between these two steps. At each iteration the value of the criterion
function decreases, and thus convergence is guaranteed [FW91] which is very
important. Another important property of an iterative algorithm is how
many iterations that are usually needed. The convergence rate of the iterative
MUSIC method and the iterative methods introduced in the next section will
be examined in some simulation examples in Section 5.7

5.5 Other Iterative Methods

The idea to iteratively estimate the DOAs and the coupling parameters is
very intuitive, and can of course be applied to other DOA estimation algo-
rithms. Many methods for estimating the DOAs when a known coupling is
present can be formulated iteratively when an unknown coupling is present.
The main reason for formulating an iterative procedure is to reduce the com-
putational cost by avoiding an extensive numerical search, and thus also
avoiding initialization and convergence problems. A closed form solution for
the coupling parameter should therefore exist in order to avoid a numerical
search for the coupling parameters. First, a straightforward extension of the
Root-Music to the case of unknown coupling will be discussed. The Root-
Music method can the formulated as two steps:
Step 1: Estimating the DOAs
When the array is a ULA, the search in the MUSIC method for the DOAs can
be avoided by viewing the MUSIC function as a polynomial in z = ejkd cosφ,
exactly like the known coupling case, see Section 3.3.3. The DOA estimates
are then obtained by picking the p roots of the polynomial (3.18)

f(z) = aT (z−1)CHÊnÊ
H

nCa(z). (5.38)

closest to the unit circle, ẑi, and calculate the angle and solve for φi in
\ẑi = \e

−jkd cosφi.
Step 2: Estimating the Mutual Coupling
Return to the MUSIC criterion and insert the DOA estimates into the crite-
rion

Jc = ‖Ê
H

n C(c)A(φ̂)‖2F , (5.39)

where the estimates of the coupling parameters ĉ are taken as the values of
c that minimize the criterion function. The same formulas result as in the
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iterative MUSIC method in the previous section

ˆ̄c = G−111(1
T
1G

−111)
−1, (5.40)

where

G =

p∑

k=1

QH(k)ÊnÊ
H

nQ(k). (5.41)

However, at the true parameters the noise eigenvectors are orthogonal to
the steering matrix or En ⊥ Ae, and the criterion in (5.39) becomes zero.
Since the criterion also can be written as a quadratic form of G, this means
that G becomes singular. Close to the minimum, G therefore becomes ill
conditioned, and the expression for coupling estimates that includes G−1

needs to be modified. By applying the formula of a partitioned inverse,
[Lüt96], the coupling estimates can be written as

ĉ = −G−1
22 G

H
12, (5.42)

where G is partitioned as

G =

[
G11 G12

GH12 G22

]
. (5.43)

Note that G11 is a scalar and that the matrix G is Hermitian, i.e. G =
GH . This expression for the coupling estimates is better conditioned and
can be used close to the minimum, i.e. close to the true parameters. This
modification of the coupling estimate is of course suitable to make also in
the iterative MUSIC method described in the previous section.

The iterative Root-Music algorithm estimates the DOAs in Step 1 and
estimates the coupling in Step 2, and the final estimates are obtained by
iterating between these two steps just as in the iterative MUSIC method.
The drawback of this method is that convergence is not guaranteed, since
the roots of the polynomial (3.18) are not exactly the minima of the criterion
function in (5.39). The minima for the criterion function lie by definition on
the unit circle, but the roots of polynomial lie close to the unit circle, but not
exactly on the unit circle. Usually this difference is small and the method
works well, but due to this fact convergence can not be guaranteed.

Another method that would be interesting to obtain an iterative form of
is the ESPRIT method. However, it appears difficult to obtain an iterative
method with guaranteed convergence without resorting to a numerical search.
Nevertheless, it is straightforward to extend the ESPRIT algorithm to a two
step iterative version for the case of an unknown coupling.
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Step 1: Estimating the DOAs
The DOAs are obtained as those φ:s that best fit the relation

JC−1Es = As(φ)T. (5.44)

The total least squares solution to this fitting problem can be put in a general
subspace fitting context as [VO91]

min
φ,T

‖JC−1Ês −AsT‖2F , (5.45)

where As is the steering matrix with the shift structure defined in (3.19).
Solving this minimization problem gives an estimate of the DOAs.
Step 2: Estimating the Mutual Coupling
It seems difficult to obtain an estimate of the coupling parameters from the
above criterion without resorting to a numerical search. In that case it is
probably better to use a multi-dimensional estimation scheme as SML from
the start. However, a closed form solution for the coupling parameters is
possible to obtain by changing of the criterion that is to be minimized to

min
c
‖JÊs − JC(c)AT‖2F , (5.46)

where the values of A and T are calculated using the DOA estimates from
Step 1. That, of course, eliminates any possibilities of guaranteed conver-
gence, but gives a computationally cheap solution with reasonably good
properties if the criteria are sufficiently similar.

The iterative ESPRIT algorithm thus estimates the DOAs in Step 1 and
estimates the coupling in Step 2, and the final estimates are obtained by
iterating between these two steps.

In the iterative versions of Root-Music and ESPRIT, a large numerical
search was avoided by jumping between two different criteria, that had an-
alytical solutions, at the expense of giving up any convergence guarantees.
The main motivation for this was that the computational demands of these
methods were kept small. Similar iterative formulations of multi-dimensional
search methods like WSF and MODE seem to be of little interest, since a
search for the DOAs still has to be performed. A better solution is probably
to include the coupling parameters in the search instead, even though this
increases the computational complexity. However, for one multi-dimensional
method, it is possible to concentrate the criterion function regarding the
coupling parameters in the same manner as the SML method was concen-
trated with respect to the noise and signal covariances. That method will be
discussed in the next section.
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5.6 Noise Subspace Fitting

Most DOA estimation algorithms are possible to adopt to an unknown cou-
pling, but solving for the unknown parameters usually requires a multi-
dimensional search. One method, the Noise Subspace Fitting method (see
Section 3.3.3), is however possible to concentrate in the same manner as the
SML method. Therefore, only a search for the DOAs are needed just as in the
coupling free case and the introduction of the unknown coupling parameters
only marginally increases the computational complexity. The NSF criterion
function can be formulated as

Θ̂ =
{
φ̂, ĉ

}
= argmin

Θ
VNSF (Θ) = argmin

Θ
‖ÊHnC(c)A(φ)‖2U , (5.47)

where U is a p× p positive definite weighting matrix. That function can be
concentrated regarding the coupling parameters, see Appendix 5C

VNSF (φ) = G11 −G12G
−1
22 G

H
12, (5.48)

where G is partitioned as in (5.43) and calculated as

G = MH
[
ÊnÊ

H

n ⊗A∗U∗AT
]
M, (5.49)

where M is a n2 × n selection matrix

M =




M1

M2
...

Mn


 where Mk =





I k = 1[
Ĩ I2:k,:

I1:n−k+1,:

]
k > 1

(5.50)

and Ik:m,: denotes the k
th to mth rows of the unity matrix and Ĩ is the reverse

permutation operator defined as

Ĩ =




0 1

. .
.

1

. .
.

1 0



. (5.51)

Alternatively, the matrix G can be written as

G =

p∑

k=1

QH(AUHk,:)ÊnÊ
H

nQ(A:,k), (5.52)

107



CHAPTER 5. ESTIMATION WITH AN UNKNOWN COUPLING

where the functionQ(x) is defined in Lemma 1. The criterion is concentrated
with respect to the q coupling parameters, and only a p dimensional search
for the DOAs are needed just as in the coupling free case. The DOA parame-
ters enter the expression non-linearly and a damped Newton method is used,
similar to the SML method in Section 5.2. In the SML method large simpli-
fications were possible by using an asymptotic Hessian in the search process
leading to the scoring method. Here, the true Hessian is used in a damped
Newton method. The gradient and Hessian, needed in the implementation
of the search method, are derived in Appendix 5C.

The weighting U in (5.47) can be chosen as to minimize the variance of
the DOA estimates. The derivation in the coupling free case is valid also
in this case since Ae(Θ) = C(c)A(φ) can be seen as an effective steering
matrix with parameters c and φ. Choose the weighting as [OVSN93]

Uopt = A†
e(Θ0)ÊsΛ̃

2
Λs

−1Ê
H

s A
†H
e (Θ0), (5.53)

where Θ0 are the true parameters, Λ̃ is defined in (3.12), and Λs is defined
in (3.10). Also, note that the replacement of Θ0 by a consistent estimate Θ̂

does not affect the asymptotic properties if p′ = p [OVSN93], and with this
weighting the variances of the estimates are minimized and achieves the CRB.
Furthermore, it can be shown that the estimates (not only in the distribution)
of the NSF method are asymptotically equivalent with those of the SML
method [OWVK89]. Thus, when an unknown mutual coupling is estimated,
the SML method that requires a search also for the coupling parameters is
asymptotically equivalent to the NSF method that only requires a search
for the DOAs. The NSF method is therefore a good candidate for DOA
estimation if the signal covariance is of full rank (p′ = p).

Now, several methods of estimating both DOAs and coupling have been
discussed and in the next section the properties of these algorithms will be
examined in some simulation scenarios.

5.7 Computer Experiments

Usually it is hard to analytically compare the performance of different es-
timation schemes, and here the different algorithms discussed in previous
sections will be evaluated by calculating the estimates in a few different sce-
narios numerically. First, the convergence rate of the iterative formulations
of the algorithms will be studied, and then variance of the different estimates
are compared to the CRB. Throughout this section the different methods of
estimation are compared using data generated by the reduced model and
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thus the bias of the estimation methods is small, since there is no model
error. That allows for comparisons with the CRB calculated in previous
sections. Further experiments are needed to examine how well the reduced
model approximates the full electromagnetic model, see Chapter 6.

The convergence rate of an iterative algorithm is of course very impor-
tant, and here the convergence of the DOA estimation schemes discussed
previously will be addressed. Consider a 10 element half-wavelength dipole
ULA with an element separation of λ/2. Two plane waves are incident upon
the array, and the DOAs (φ1, φ2) of these are estimated. Since it is the con-
vergence rate that is studied, the signal power is chosen large (SNR=50dB)
in order to avoid fluctuations due to the stochastic nature which is studied
later when the variance is studied. The signal waveforms are assumed uncor-
related and the model and assumptions in Section 5.1 are used. Furthermore,
the number of snapshots is large (N = 10000) to ensure that the covariance
estimate R̂ is close to the true covariance.

In the first example, the waves are incident from (76◦, 78◦) and the number
of coupling parameters is q = 9, i.e. the maximum number for a 10 element
array. The DOA estimates versus the number of iterations are shown in Fig-
ure 5.6 for the spectrally based iterative MUSIC, Root-Music, and for the
ESPRIT method. The iterative MUSIC experiences the best convergence
properties, followed by the Root-Music method. The ESPRIT method con-
verges very slowly, probably due to that the criteria in (5.45) and (5.46) differ
too much and the convergence properties deteriorate. That the Root-Music
performs worse than the iterative MUSIC is also due to jumping between
two different criteria, but the criteria are reasonably similar, in this case,
since the Root-Music method converges for a larger number of iterations.
Also, remember that the difference between the criteria is that the roots
of Root-Music do not lie exactly on the unit circle. However, calculating
the MUSIC spectra and searching for peaks is computationally demanding
compared to the rooting operation in Root-Music (especially when a large
resolution is wanted). Therefore, the Root-Music can use more iterations
and still be competitive. The extended ESPRIT method, on the other hand,
does not converge at all when the maximum number of coupling parameters
was estimated and is thus not a good alternative.

Next, it is interesting to compare the convergence rate of the iterative
MUSIC method with that of the SML and NSF methods that were imple-
mented using the damped Newton method. The initial values needed for
the search in the SML and NSF methods were obtained by inserting the
result from the first iteration of the Root-Music method, which requires a
modest amount of computations. The maximum number of coupling param-
eters was estimated in the previous example resulting in the most difficult
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Figure 5.6: The DOA estimates of the iterative MUSIC, Root-Music, and
ESPRIT method versus the number of iterations using a ULA of 10 λ/2
dipoles spaced λ/2 apart when two waves are incident from (76◦, 78◦) and
10000 snapshots with SNR=50dB and q = 9.

scenario. Usually only a few coupling parameters are estimated since the
magnitude falls off rapidly, see Figure 4.1. Therefore, in the next example
only 3 coupling parameters will be estimated.

In Figure 5.7, two plane waves are incident from (41◦, 49◦) and 3 coupling
parameters are used. Although the number of coupling parameters is less,
this is still a harder estimation scenario since the angles are closer to end-fire.
Here, the convergence properties of the iterative MUSIC method is worse
than for the SML and NSF methods. Furthermore, the iterative MUSIC
method does not converge to the true DOA even after 25 iterations. The
resolution in the spectrum calculation was 0.005 which probably is the reason
why it does not converge to the true value. The rate of convergence is,
however, much slower for the iterative MUSIC method than for the Newton
search methods SML and NSF.

Although the convergence rate is important, it is also of interest to ex-
amine how good estimates the estimator delivers on the average. The Root
Mean Square Error (RMSE) is calculated based on the true DOA and thus
also the bias is included. By comparing with the CRB, the quality of the esti-
mator is examined. Note that if the estimator is unbiased, the RMSE equals
the standard deviation of the DOA estimates. Furthermore, if the method
also is efficient, the RMSE coincides with the square-root of the CRB.
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Figure 5.7: The DOA estimate of φ1 for the iterative MUSIC, SML, and NSF
method versus the number of iterations using a ULA of 10 λ/2 dipoles spaced
λ/2 apart when two waves are incident from (41◦, 49◦) and 10000 snapshots
with SNR=50dB and q = 3.

In the first example, a 10 element half-wavelength dipole ULA with an ele-
ment separation of λ/2 is used. Two plane waves are incident from (75◦, 80◦),
100 snapshots are taken, and q = 3 coupling parameters are used and esti-
mated. The signals are assumed to be uncorrelated and the SNR is varied
from 0 dB to 30 dB. The ESPRIT method is excluded due the poor conver-
gence properties, and the Root-Music is excluded since it essentially is the
same method as the iterative MUSIC method, which performs slightly better.
In Figure 5.8, the RMSE of the DOA estimate of φ1 using the iterative MU-
SIC, SML and NSF methods is shown for different SNR. The RMSE of the
SML method essentially follows the CRB as it should, and the NSF method
requires slightly larger SNR to coincide with the CRB. The numerical search
in SML and NSF require initial values for the DOA, and these values are ob-
tained as the estimates from the Root-Music method after a few iterations.
Remember that the NSF method is only asymptotically equivalent to the
SML method, and for a small number of samples and low SNR the methods
will differ. The iterative MUSIC requires larger SNR than the NSF method
to work well. Also, by a close inspection of Figure 5.8 it is found that the
RMSE of the iterative MUSIC method is higher than that of the SML and
NSF methods that reach the CRB, see [Sva99e].
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Figure 5.8: The RMSE of the DOA estimate of φ1 for the iterative MUSIC,
SML, and NSF method versus SNR using a ULA of 10 λ/2 dipoles spaced
λ/2 apart using 200 Monte-Carlo simulations. Two waves are incident from
(75◦, 80◦) and 100 snapshots are used with q = 3.

Next, a more difficult scenario is considered where the DOAs are further
away from broad-side (41◦, 49◦) and two more coupling parameters (q = 5)
are estimated. In Figure 5.9 the RMSE for the iterative MUSIC, SML, and
NSF are shown together with the CRB. The SML and NSF methods follow
relatively closely the CRB, but the iterative MUSIC method has a larger
RMSE for high SNR. Note that the spectral resolution was 0.01◦, which
should be sufficient to give a lower RMSE than that obtained in Figure 5.9.
The high RMSE is due to slow convergence, and when the maximum number
of iterations is reduced to 10, the RMSE further increases [Sva99e]. But for
the SML and NSF methods the reduction in iterations does not affect the
RMSE.

The strength of the iterative MUSIC method is that convergence is guar-
anteed, unlike the Newton search employed in the SML and NSF methods
that can end up in a local minimum. However, in the examples studied here
the Newton search finds the true minimum. The initial values taken from the
first estimates from the Root-Music are close enough to the true minimum
for the search to converge at the global minimum. One important property
of an iterative method is the number of iterations needed to converge to the
minimum, and here the Newton methods require sometimes substantially
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Figure 5.9: The RMSE of the DOA estimate of φ1 for the iterative MUSIC,
SML, and NSF method versus SNR using a ULA of 10 λ/2 dipoles spaced
λ/2 apart using 200 Monte-Carlo simulations. Two waves are incident from
(41◦, 49◦) and 1000 snapshots with q = 5 and an iteration limit of 20.

less computations than the iterative-MUSIC method. Also, the calculation
of the MUSIC spectrum and searching for peaks is computationally demand-
ing when many iterations are needed. The implementation is of course very
important, but the iterative MUSIC method is not less demanding than the
NSF and SML methods, and for the coupling free case the main motivation
for using MUSIC is that it is computationally cheap.

An important drawback of the iterative MUSIC method is that its thresh-
old for resolving closely spaced signal sources is substantially higher than for
the Root-Music, SML, and NSF methods. This is especially important when
estimating DOAs in the presence of an unknown coupling, since the effect of
the coupling is to mix different steering vectors and thus blurring the MUSIC
spectrum. In Figure 5.10, the MUSIC spectrum for a known compensated
coupling and an uncompensated coupling when two waves are incident from
(30◦, 33◦) is shown. Two clearly discernible peaks appear when the coupling
is compensated for, but for the unknown coupling only one broad peak ap-
pears. This affects the iterative MUSIC method, since it estimates the angles
as a first step and then estimates the coupling. Obtaining two DOA estimates
appears difficult, and the method is not really applicable in this case.

However, resolving closely spaced sources can be of great importance and
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Figure 5.10: The MUSIC spectrum for a compensated coupling and an un-
compensated coupling using a ULA of 15 λ/2 dipoles spaced λ/2 apart when
two waves are incident from (30◦, 33◦) and 100 snapshots with SNR = 40dB.

a lot of work have been done in this field. Here, the RMSE for closely spaced
sources will be examined for the SML and NSF method. Also included in
this example is the Root-Music algorithm, since the array is a ULA and the
Root-Music can be applied. The initial values to the search performed for
the NSF and SML methods are, as previously, obtained from Root-Music. In
Figure 5.11, the RMSE of the DOA estimate of φ1 for the iterative MUSIC,
SML, and NSF method versus the angular separation is shown. The SML
method works best and achieves the CRB for relatively small angular sepa-
rations and the NSF method reaches the CRB for slightly larger separation.
As expected, the Root-Music method works much worse, since two different
criteria are used in that method.

The NSF method only requires a search over the DOAs, unlike the SML
method that also searches for the coupling parameters resulting in a larger
search. In most of the examples considered in this section. the NSF method
either coincided with the SML method or was quite close. Therefore, it
seems that the NSF method would be preferable in many instances, but it
has one drawback since it does not work for coherent signals. In Figure 5.12,
the RMSE of the DOA estimate of φ1 for the iterative MUSIC, SML, and
NSF method is shown for different correlations when two waves are incident
from (41◦, 49◦). Note that the signal covariance matrix and the correlation

114



5.7. COMPUTER EXPERIMENTS

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15

0.2

0.25

∆ θ

R
M

S
E

 (
d
e
g
re

e
s
)

SML
CRB
NSF
R−Music

Figure 5.11: The RMSE of the DOA estimate of φ1 for the iterative MUSIC,
SML, and NSF method versus angular separation using a ULA of 10 λ/2
dipoles spaced λ/2 apart using 300 Monte-Carlo simulations. One wave is
incident from 45◦ and the other is varied from 45.5◦ to 50◦. The number
of snapshots is 1000 and q = 5 coupling parameters are estimated with an
iteration limit of 40 and SNR = 35dB.

parameter ρ are defined as

P = SNR ×
[
1 ρ
ρ 1

]
. (5.54)

The SML method follows the CRB closely as it should, and for low corre-
lations, the NSF method coincides with the SML method. Examining the
figure closely, reveals that the NSF method starts to differ from the SML at
a correlation of ρ = 0.9. The RMSE for the NSF method turns much larger
for correlations above ρ = 0.95. The iterative MUSIC method has a larger
RMSE value for all correlations, but start to perform much worse around
ρ = 0.9 where the RMSE value becomes several times larger than the CRB.
Thus, for coherent signals the noise subspace methods do not work well and
other methods should be used for highly correlated signals.

The numerical examples in this section indicate that the extension of the
ESPRIT method derived herein is not a good candidate for DOA estimation
due to its convergence properties. A method that also uses two different cri-
teria is the Root-Music method, but the criteria were similar enough and the
method converged. Faster convergence was obtained by using the iterative
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Figure 5.12: The RMSE of the DOA estimate of φ1 for the iterative MUSIC,
SML, and NSF method versus correlation using a ULA of 10 λ/2 dipoles
spaced λ/2 apart using 200 Monte-Carlo simulations. Two waves are incident
from (41◦, 49◦) and 500 snapshots with q = 5 and an iteration limit of 20 and
SNR = 20dB.

MUSIC method that experienced rapid convergence in the easier scenarios.
However, for the more difficult scenarios also the iterative MUSIC method
experienced slow convergence.

The fastest convergence was obtained for the SML and NSF methods that
usually only needed a few iterations. When comparing the average error of
the estimates similar results were obtained. The Root-Music method was
slightly worse than the iterative MUSIC method that worked well in the
easier scenarios, but for the more difficult scenarios the convergence rate
became a problem. Also, the iterative MUSIC method experienced a higher
RMSE than the SML and NSF method that were asymptotically efficient,
i.e. reached the CRB.

One major drawback for the iterative MUSIC method is that it has a
higher resolution threshold than SML and NSF. This was found to be espe-
cially important when the coupling is unknown and needs to be estimated.
If not compensated for, the coupling will blur the MUSIC spectrum and fur-
ther reduce the resolution threshold. Thus, the iterative MUSIC method is
not suited for resolving closely spaced sources where SML and NSF probably
should be used.

Finally, it was found that both the MUSIC method and the NSF method
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do not work for highly correlated signals just as in the coupling free case.
Apart from the correlated case, the NSF method closely followed the SML
method. Therefore, the NSF method seems preferable since it only requires a
p dimensional search unlike the SML method that requires a p+q dimensional
search.

5.8 Signal Detection

All parametric methods in this section require that the number of incident
signals is known. If the number of incident waves is unknown it can be
estimated and that is usually called detection. However, when the coupling
also is unknown and estimated another problem appears. The number of
coupling parameters to use is also unknown, and two types of detection
results, signal detection and coupling detection.

The number of incident waves or signals is usually important since that
could correspond to the number of aircrafts or submarines. If the signal co-
variance matrix is of full rank, the signal detection part essentially reduces
to testing the rank of the steering matrix or the multiplicity of the smallest
eigenvalue. In that case, methods like AIC and MDL can be used and no
correction for the coupling is necessary. However, when the signal covari-
ance matrix is rank deficient, i.e. there are coherent signals, other detection
schemes are needed.

When the coupling is known, methods that simultaneously estimate the
DOAs and the number of signals are used, see Section 3.4. If the coupling
is not known and the number of coupling parameters also is unknown, those
methods needs to be modified. That will not be done here, and through out
this report the number of coupling parameters is assumed known. Also, in a
more realistic scenario the number of coupling parameters is simply chosen as
the minimum number parameters that reasonably well describe the coupling.

5.9 Conclusions

As a first approach of investigating the effects of mutual coupling, a simplified
scenario of a completely unknown and deterministic mutual coupling was
considered. Of course, in a more realistic scenario also a random coupling
error and gain and phase uncertainties should be studied. Here, estimating
an unknown coupling in this simplified scenario was investigated. First, the
SML estimator was derived and using those expressions, the CRB for the
unknown coupling case was also derived. If a feasible number of coupling
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parameters was used, it was found that the increase in the CRB was not
large.

Furthermore, a number of methods for estimating the DOAs in the pres-
ence of an unknown coupling was discussed. First, the iterative spectral
MUSIC method, was reviewed and then several extensions of coupling free
methods were introduced. The Root-Music method was extended to include
the presence of an unknown coupling. Also, the NSF method was extended
to include an unknown coupling, and it was shown that the criterion could
be concentrated with respect to the coupling and thus only a search for the
DOAs was needed.

These methods were also analyzed in a few numerical examples where it
was found that the convergence rate of the iterative MUSIC and the Root-
Music was slower than for the NSF and SML methods. The main argument
of using MUSIC in the coupling free case is that it is computationally cheap.
But with coupling those methods require many iterations and therefore do
not require less computational power than multidimensional search methods
like SML and NSF. One problem with multidimensional search methods is
to find initial values for the search. Here it was found that the Root-Music
method gave initial values accurate enough. Therefore, the SML and NSF
methods were found to be good candidates for finding the DOA. The NSF
method was found to have similar performance as the efficient SML method
in most cases and therefore the NSF was usually to prefer since it only
requires a search over the DOAs. But for highly correlated signals the NSF
method does not work well (together with the MUSIC methods) and the
SML method should be used instead.

5A The Maximum Likelihood Method

The Likelihood Function

The measured voltages x(t) are, using the stochastic assumptions and the
data model in Section 5.1, Gaussian distributed. However, since the voltages
in general are complex, they belong to a multivariate complex Gaussian
distribution. Especially, since both the signal and the noise are circularly
Gaussian, the likelihood function can be written in a compact form [Kay93]
as

p(X;Θ) =
1

πNn|R|N exp−
[
N∑

k=1

xH(tk)R
−1x(tk)

]
, (5A.1)

where
R = CAPAHCH + σ2I (5A.2)
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is the covariance matrix of the voltages. Note that both the signal and the
noise are assumed to be zero mean processes. Taking the logarithm of the
likelihood function results in

log p(X;Θ) = −N
(
n log(π) + log |R|+ 1

N

N∑

k=1

xH(tk)R
−1x(tk)

)
(5A.3)

Using that Tr(ABC) = Tr(BCA), the logarithm of the likelihood function
can be written as

log p(X;Θ) = −N
(
n log(π) + log |R|+ Tr(R−1R̂)

)
, (5A.4)

where

R̂ =
1

N

N∑

k=1

x(tk)x
H(tk). (5A.5)

Now it is possible to maximize this expression with respect to the signal and
noise covariances, see [SN95], and (5.6) results.

The Gradient and Hessian

In general, the coupling parameters are complex and instead of defining a
complex differentiation, here the complex parameters are divided into a com-
plex and real part. This results in a parameter vector Θ = {φ, cr, ci} and
the SML criterion function becomes

VSML(Θ) = log det
[
CAP̂AHCH + σ̂2I

]
, (5A.6)

and inserting the expression for P̂ in (5.7) gives

VSML(Θ) = log det
[
CA(CA)†

[
R̂− σ̂I

]
(CA)†HAHCH + σ̂2I

]

= log det
[
PCAR̂PCA + σ̂

2P⊥
CA

]
.

(5A.7)

The gradient and the Hessian are defined as

V′ =
∂VSML
∂Θ

(5A.8)

Hij =
∂2VSML
∂Θi∂Θj

. (5A.9)

Using the differentiation result [Kay93]

∂ log detA(x)

∂x
= Tr

[
A−1(x)

∂AH(x)

∂x

]
, (5A.10)
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and the simpler notation Ae = CA, the gradient can be written as

V′
k = Tr

[(
PAe

R̂PAe
+ σ̂2P⊥

Ae

)−1 ∂

∂Θk

(
PAe

R̂PAe
+ σ̂2P⊥

Ae

)]
. (5A.11)

Also,

∂PAe

∂Θk
=

(
PAe

∂PAe

∂Θk

)
+

(
PAe

∂PAe

∂Θk

)H
(5A.12)

and TrB(C+CH) = 2ReTr[BC] gives

V′
k = 2ReTr

[(
PAe

R̂PAe
+ σ̂2P⊥

Ae

)−1

PAe
R̂
∂PAe

∂Θk
+ σ̂2P⊥

Ae

∂P⊥
Ae

∂Θk

]

+ Tr

[(
PAe

R̂PAe
+ σ̂2P⊥

Ae

)−1 ∂σ̂2

∂Θk
P⊥
Ae

]
.

(5A.13)

From (5.8) it follows that

∂σ̂2

∂Θk
= − 1

n− dTr
[
∂PAe

∂Θk
R̂

]
. (5A.14)

Now, invoke the matrix inversion lemma

(
PAe

R̂PAe
+ σ̂2P⊥

Ae

)−1

=
(
CAP̂AHCH + σ̂2I

)−1

=
1

σ̂2

[
I−Ae

(
P̂AHe Ae + σ̂

2I
)−1

P̂AHe

] (5A.15)

and insert in (5A.13)

V′
k = 2ReTr

[
1

σ̂2

(
I−Ae

(
P̂AHe Ae + σ̂

2I
)
P̂AHe

)

(
PAe

R̂
∂PAe

∂Θk
+ σ̂2P⊥

Ae

∂P⊥
Ae

∂Θk

)]

− Tr
[
1

σ̂2

(
I−Ae

(
P̂AHe Ae + σ̂

2I
)
P̂AHe

) P⊥
Ae

n− pTr
(
∂PAe

∂Θk
R̂

)]
.

(5A.16)

However,

Tr
P⊥
Ae

n− pTr
(
∂PAe

∂Θk
R̂

)
= 2ReTr

[
PAe

R̂
∂PAe

∂Θk

]
(5A.17)
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and AHe P
⊥
Ae
= 0 gives

V′
k = 2ReTr

[
P⊥
Ae

∂P⊥
Ae

∂Θk
− 1

σ̂2
Ae

(
P̂AHe Ae + σ̂

2I
)−1

P̂AHe PAe
R̂
∂PAe

∂Θk

]
.

(5A.18)
Next, note that

Tr

(
P⊥
Ae

∂P⊥
Ae

∂Θk

)
= 0 (5A.19)

and

∂PAe

∂Θk
Ae = P⊥

Ae

∂Ae
∂Θk

(Ae)
†Ae+ (Ae)

†H ∂A
HCH

∂Θk
P⊥
Ae

Ae = P⊥
Ae

∂Ae
∂Θk

. (5A.20)

Furthermore,

P̂(Ae)
HAe + σ̂

2 =(Ae)
†
[
R̂− σ̂2I

]
(Ae)

†HAHe Ae + σ̂
2

=(AHe Ae)
−1AHe R̂Ae

(5A.21)

which reduces the gradient expression to

V′
k =− 2ReTr

[
1

σ̂2
(AHe R̂Ae)

−1AHe Ae

(
P̂AHe PAe

R̂P⊥
Ae

∂(Ae)

∂Θk

)]

= 2ReTr

[{
(AHe R̂Ae)

−1 − 1

σ̂2
(AHe Ae)

−1

}
AHe R̂P⊥

Ae

∂(Ae)

∂Θk

]
.

(5A.22)

Next, introduce the matrix

Ĝ = (AHe R̂Ae)
−1 − 1

σ̂2
(AHe Ae)

−1. (5A.23)

Inserting Ae = CA, the gradient can be written

V′(Θ) =




2ReTr
[
ĜAHCHR̂P⊥

CA
∂(CA)
∂Θ1

]

...

2ReTr
[
ĜAHCHR̂P⊥

CA
∂(CA)
∂Θp+2q

]


 . (5A.24)

Here, it is important to note that the expression for the differentiation with
respect to the DOA can be simplified by noting that

∂(CA)

∂φk
= C

∂A

∂φk
, (5A.25)
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where the derivative has only one non-zero column, ak, and thus can the
expressions for the p derivatives with respect to the DOAs be reduced to

∂V

∂φk
= 2Re

[
Ĝk,:A

HCHR̂P⊥
CACak

]
, (5A.26)

where Gk,: denotes the k
th row of the matrix G. For the derivatives with

respect to the coupling there are in general no non-zero columns and therefore
the expressions become

∂V

∂crk
= 2ReTr

[
ĜAHCHR̂P⊥

CAΥkA
]

(5A.27)

∂V

∂cik
= −2ImTr

[
ĜAHCHR̂P⊥

CAΥkA
]
, (5A.28)

where Υk is a banded symmetric Toeplitz matrix with zeros everywhere
except on the kth and the −kth subdiagonal which consists of ones.

The Hessian, using the chain-rule, becomes

∂2V

∂Θi∂Θj
= 2ReTr

[
∂

∂Θj

(
∂(CA)

∂Θi
Ĝ

)
AHCHR̂P⊥

CA

]

+ 2ReTr

[
∂(CA)

∂Θi
Ĝ

∂

∂Θj

(
AHCHR̂P⊥

CA

)]
.

(5A.29)

Evaluating this expression exactly leads to rather cumbersome expressions,
but by considering the asymptotic Hessian, i.e. a large number of samples
N →∞, the expression can be reduced considerably. Since the estimates of
σ and P are known to be asymptotically statistically consistent and efficient
[Böh86] and both are functions of R̂ which also is consistent and thus the
asymptotic Hessian is found by simply replacing R̂ withR. Also, the steering
matrix A(φ) is evaluated at the true DOAs φ0. Using the reduced notation
Ae = CA once again and observing that

AHe RP⊥
Ae
= AHe

(
AePAHe + σ

2I
) (

I−Ae(A
H
e Ae)

−1AHe
)
= 0, (5A.30)

the asymptotic Hessian expression becomes

∂2Va
∂Θi∂Θj

= 2ReTr

[
∂Ae
∂Θi

Ĝ

(
∂Ae
∂Θj

RP⊥
Ae
+AHe R

∂P⊥
Ae

∂Θj

)]
. (5A.31)

However,

AHe R
∂P⊥
Ae

∂Θj
= −AHe RAe(A

H
e Ae)

−1∂A
H
e

∂Θj
P⊥
Ae

(5A.32)
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and
RP⊥

Ae
= σ2P⊥

Ae
. (5A.33)

Thus,

∂2Va
∂Θi∂Θj

= 2ReTr

[
Ĝ

(
σ2I−AHe RAe(A

H
e Ae)

−1
) ∂AHe
∂Θj

P⊥
Ae

∂Ae
∂Θi

]
(5A.34)

and by applying the matrix inversion lemma

(
AHe RAe

)−1
=(AHe Ae)

−1
(
AHe AeP+ σ2I

)−1

=
1

σ2
(AHe Ae)

−1
[
I−PAeAe

(
PAHe Ae + σ

2I
)−1

] (5A.35)

the asymptotic Hessian reduces to

∂2Va
∂Θi∂Θj

=
2

σ2
ReTr

[
PAHe R

−1AeP
∂AHe
∂Θj

P⊥
Ae

∂Ae
∂Θi

]
. (5A.36)

Furthermore, the asymptotic Hessian can be written as a block matrix

H = V′′
a(Θ) =

∂2Va

∂Θ2 =

[
Hφφ Hφc
Hcφ Hcc

]
. (5A.37)

Since the derivative with respect to the DOA results in a matrix with only
one non-zero column, Hφφ can be written as

Hφφ =
2

σ2
Re

{(
PAHCHR−1CAP

)T ⊙
(
DHCHP⊥

CACD
)}
, (5A.38)

where

D =

[
∂a(φ)

∂φ


φ=φ1

, · · · , ∂a(φ)
∂φ


φ=φp

]
. (5A.39)

Also,

Hφc =

[
∂2Va
∂φ∂cr

∂2Va
∂φ∂ci

]
= HTφc, (5A.40)

where
[
∂2Va
∂φ∂cr

]

ij

= 2
σ2
ReTr

[
PAHCHR−1CAPAHΥjP

⊥
CAC

∂A
∂φi

]
(5A.41)

[
∂2Va
∂φ∂ci

]

ij

= − 2
σ2
ImTr

[
PAHCHR−1CAPAHΥjP

⊥
CAC

∂A
∂φi

]
.(5A.42)

Finally,

Hcc =

[
Hcrcr Hcrci
HTcrci Hcici

]
, (5A.43)
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where

[Hcrcr ]ij =
2
σ2
ReTr

[
PAHCHR−1CAPAHΥjP

⊥
CAΥiA

]
(5A.44)

[Hcrci]ij = − 2
σ2
ImTr

[
PAHCHR−1CAPAHΥjP

⊥
CAΥiA

]
(5A.45)

[Hcici]ij = − 2
σ2
ReTr

[
PAHCHR−1CAPAHΥjP

⊥
CAΥiA

]
. (5A.46)

5B The Asymptotic Covariance of SML

The SML estimates Θ̂ are obtained as

Θ̂ = {φ̂, ĉ} = argmin
Θ
VSML(Θ), (5B.1)

where VSML(Θ) is defined in (5A.6). Introducing the simplified notation
VSML(Θ) = V (Θ), the gradient of V with respect to Θ which is derived in
Appendix 5A becomes

V′(Θ̂) =
∂V(Θ)

∂Θ


Θ=

ˆΘ
= 0. (5B.2)

A Taylor series expansion of (5B.2) around the true parameter vector Θ0

gives

0 = V′(Θ0) +V′′(Θ0)(Θ̂−Θ0) + · · · , (5B.3)

where V′′(Θ0) denotes the Hessian matrix. The higher order terms can be
neglected since Θ̂ converges to Θ0 as N →∞ under very general conditions
[KS61]. Furthermore, the Hessian can be replaced by the asymptotic Hessian

V′′
a(Θ0) = lim

N→∞
V′′(Θ0), (5B.4)

since all terms that tend to zero faster than (Θ̂ −Θ0) can be neglected in
the asymptotic analysis. The asymptotic Hessian were derived in Appendix
5A. Thus,

Θ̂−Θ0 = − [V′′
a(Θ0)]

−1
V′(Θ0) (5B.5)

assuming that the inverse exists which is true if the problem is well posed,
see Section 5.3. The covariance matrix for the asymptotic SML estimates
then becomes

BSML = [V′′
a(Θ0)]

−1
B [V′′

a(Θ0)]
−1
, (5B.6)

where

B = lim
N→∞

E [V′(Θ0)] [V
′(Θ0)]

T
(5B.7)
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Since the asymptotic Hessian already is derived in previous appendix, it is
left to evaluate B. The gradient has elements

V′(Θi) = 2ReTr

[
ĜAHCHR̂P⊥

CA

∂(CA)

∂Θi

]
, (5B.8)

where Ĝ is defined in (5A.23). Since AHCHR̂P⊥
CA tends to zero as N →∞,

Ĝ can be replaced with G, and R̂ and σ̂ are replaced by R and σ without
affecting the asymptotic covariance matrix B [SN90b]. Using the simpler
notation Ae = CA, the elements become

Bij = 4 lim
N→∞

E

{
Re Tr

(
GAHe R̂P⊥

Ae

∂(Ae)

∂Θi

)
· Re Tr

(
GAHe R̂P⊥

Ae

∂(Ae)

∂Θj

)}

= 2 lim
N→∞

E

{
Re

[
Tr

(
GAHe R̂P⊥

Ae

∂(Ae)

∂Θi

)
· Tr

(
GAHe R̂P⊥

Ae

∂(Ae)

∂Θj

)]}

+ 2 lim
N→∞

E

{
Re

[
Tr

(
GAHe R̂P⊥

Ae

∂(Ae)

∂Θi

)
· Tr

(
∂(AHe )

∂Θj
P⊥
Ae

R̂AeG

)]}
.

(5B.9)
Now, using TrA · TrB = TrA⊗B [Lüt96] the first term in (5B.9) becomes

Re

{
E

[
Tr

[(
GAHe R̂P⊥

Ae

∂(Ae)

∂Θi

)
⊗

(
GAHe R̂P⊥

Ae

∂(Ae)

∂Θj

)]]}

= Re

{
E

[
Tr

[
1

N

N∑

m=1

(
GAHe x(tm)x

H(tm)P
⊥
Ae

∂(Ae)

∂Θi

)

⊗ 1

N

N∑

n=1

(
GAHe x(tn)x

H(tn)P
⊥
Ae

∂(Ae)

∂Θj

)]]}
,

(5B.10)

where the expression for R̂ (5A.5) has been inserted. Furthermore, since

xH(tn)P
⊥
Ae
= nH(tn)P

⊥
Ae

(5B.11)

the first term can be written as

1

N2
E

[ p∑

l=1

p∑

k=1

N∑

m=1

N∑

n=1

Gk,:A
H
e x(tm)︸ ︷︷ ︸
A

nH(tm)P
⊥
Ae

∂(Aek)

∂Θi︸ ︷︷ ︸
B

×Gl,:A
H
e x(tn)︸ ︷︷ ︸
C

nH(tn)P
⊥
Ae

∂(Ael)

∂Θj︸ ︷︷ ︸
D

]
. (5B.12)
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Here, Gk,: denotes the k
th row of G and

∂(Ael
)

∂Θj
denotes the lth column.

The expectation of the product of four Gaussian random variables can be
expressed as [JS88]

E[ABCD] =E[AB] · E[CD]

+

b2∑

k=1

E[(1TkC)⊗A] · E[D⊗ (B1k)]

+ E[A(E[BC])D]− 2E[A]E[B]E[C]E[D],

(5B.13)

where 1k denotes the vector having a ”1” at the k
th position and zero else-

where. Also, A,B,C,D are jointly Gaussian random variables of dimen-
sions (a1 × a2), (b1 × b2), (c1 × c2), (d1 × d2). In the present case, A,B,C,D
are scalars. Since the noise and the signal are assumed uncorrelated and
AHe P

⊥
Ae
= 0

E[AB] = E[BC] = 0. (5B.14)

Next, note that E[n∗(tm)n
H(tn)] = 0 ∀ m,n giving

E[D⊗B1k] = E[DB] = E[BTD] = 0. (5B.15)

Finally, since both the signal and the noise are assumed to be zero mean
E[B] = 0 and all the terms in (5B.12) become zero, and so also the first term
in (5B.9).

Proceeding with the second term in (5B.9), it can also be rewritten along
the same lines as

1

N2
E

[ p∑

l=1

p∑

k=1

N∑

m=1

N∑

n=1

Gk,:A
H
e x(tm)︸ ︷︷ ︸
A

nH(tm)P
⊥
Ae

∂(Aek)

∂Θi︸ ︷︷ ︸
B

× ∂(A
H
el
)

∂Θj
P⊥
Ae

n(tn)

︸ ︷︷ ︸
C

xH(tn)AeG
H
l,:︸ ︷︷ ︸

D

]
. (5B.16)

The product formula in (5B.13) will be used also for the second term in
(5B.9), but first the different expectations need to be evaluated. Since the
matrices A and B are the same as in previous case E[AB]=0. Next, note
that

E[DB] = E

[
xH(tn)AeG

H
l,:n
H(tm)P

⊥
Ae

∂(Aek)

∂Θi

]

=
∂(ATek)

∂Θi
P⊥
Ae

T
E[n∗(tm)n

H(tn)]AeG
H
l,: = 0 (5B.17)
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and also that

E]BC] = E

[
nH(tn)P

⊥
Ae

∂(Aek)

∂Θi

∂(AHel )

∂Θj
P⊥
Ae

n(tm)

]

=
∂(AHel )

∂Θj
P⊥
Ae
E[n(tm)n

H(tn)]P
⊥
Ae

∂(Aek)

∂Θi
= σ2

∂(AHel )

∂Θj
P⊥
Ae

∂(Aek)

∂Θi
δmn,

(5B.18)

where δmn denotes the Kronecker delta. Furthermore,

E[A (E[BC])D] = E[BC]E[AD] = E[BC]Gk,:A
H
e E[x(tn)x

H(tm)]AeG
H
l,:

= σ2
∂(AHel )

∂Θj
P⊥
Ae

∂(Aek)

∂Θi
Gk,:A

H
e RAeG

H
l,:δmn (5B.19)

and since E[B] = 0 the second term in (5B.9) becomes

Re

[
1

N2

p∑

l=1

p∑

k=1

N∑

m=1

N∑

n=1

σ2
∂(AHel )

∂Θj
P⊥
Ae

∂(Aek)

∂Θi
Gk,:A

H
e RAeG

H
l,:δmn

]

=
σ2

N2
Re

[
N∑

k=1

N∑

l=1

∂(AHel )

∂Θj
P⊥
Ae

∂(Aek)

∂Θi
Gk,:A

H
e RAeG

H
l,:

]

=
σ2

N
ReTr

[
∂(AHel )

∂Θj
P⊥
Ae

∂(Aek)

∂Θi
GAHe RAeG

H

]
.

(5B.20)

Thus, the elements of the asymptotic covariance matrix B becomes

Bij =
2σ2

N
ReTr

[
∂(AHel )

∂Θj
P⊥
Ae

∂(Aek)

∂Θi
GAHe RAeG

H

]
. (5B.21)

However, that is only a scaled version of the asymptotic Hessian in (5A.36)
and therefore

B =
1

N
V′′
a(Θ). (5B.22)

Thus, the covariance matrix of the gradient of the concentrated log likelihood
coincides with the expected value of the Hessian of the concentrated log
likelihood apart from a scale factor N . For the full log likelihood function,
this is a general result [MKB79]; and it is not surprising that it is valid also
for the concentrated likelihood function. Finally, the asymptotic covariance
matrix for the SML estimates, using (5B.6), becomes

BSML =
1

N
[V′′
a(Θ)]

−1. (5B.23)
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5C The Noise Subspace Fitting Method

The NSF estimates are obtained as

Θ̂ =
{

φ̂, ĉ
}
= argmin

Θ
VNSF (Θ) = argmin

Θ
‖ÊHnC(c)A(φ)‖2U , (5C.1)

where U is a p× p positive definite weighting matrix. The criterion can also
be written as

VNSF (φ, c) = Tr
[
UAH(φ)CH(c)ÊnÊ

H

n C(c)A(φ)
]
=

Tr
[
A(φ)UAH(φ)︸ ︷︷ ︸

A

CH(c)︸ ︷︷ ︸
B

ÊnÊ
H

n︸ ︷︷ ︸
C

C(c)︸ ︷︷ ︸
D

]
(5C.2)

Using the following rule for the Kronecker product [Lüt96]

Tr{ABCD} = vec(DT)T(CT ⊗A)vec(B) (5C.3)

gives

VNSF = vec
(
CT

)T [
Ê

∗
nÊ

T

n ⊗AUAH
]
vec

(
CH

)
. (5C.4)

Next, the vectorized coupling matrix can also be written as

vec(C) = Mc̄, (5C.5)

where c̄T = [1 cT ] and M is a n2 × n selection matrix

M =




M1

M2
...

Mn


 where Mk =





I k = 1[
Ĩ I2:k,:

I1:n−k+1,:

]
k > 1

(5C.6)

and Ik:m denotes the k
th to mth rows of the unity matrix and Ĩ is the reverse

permutation operator defined in (5.51). Now, the criterion becomes

c̄TMT
[
Ê

∗
nÊ
T

n ⊗AUAH
]
Mc̄∗. (5C.7)

However, since the criterion is real it can be conjugated

VNSF = c̄HGc̄, (5C.8)

where

G = MHVM (5C.9)

V = ÊnÊ
H

n ⊗A∗U∗AT . (5C.10)
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Note that since the norm in (5C.1) is nonnegative, the matrix G is a positive
semidefinite matrix and due to Sylvester’s law of inertia [Lüt96] so is the
matrix V. Furthermore, the dimensions of the matrices G and V are impor-
tant. The matrix G is q+1× q+1, but the dimension of V is n2×n2 which
can be large if the array is large. Thus, the above vectorization operation
may not be feasible for large arrays.

However, it is possible to use Lemma 1 on page 103 to rewrite the criterion
in (5C.1) to the same form as in (5C.8) with the corresponding G matrix
defined as

G =

p∑

k=1

QH(AUHk,:)ÊnÊ
H

nQ(ak), (5C.11)

whereUk,: denotes the k
th row ofU and ak denotes the k

th column ofA. This
formulation avoids the large matrix V at the cost of introducing a sum of p
terms. Depending on the scenario either (5C.11) or (5C.9) may be the best
expression for evaluating the criterion. The Kronecker expression in (5C.9) is
valid also for other linear parameterizations of the coupling matrix that not
result in a banded complex symmetric Toeplitz matrix. However, Lemma 1
can also be generalized to other parameterizations, and which formulation to
choose depends on the explicit parameterization and the size of the array.

Now, in order to concentrate the criterion regarding the coupling param-
eters c use the partitioned form of the matrix G

G =

[
G11 G12

GH12 G22

]
(5C.12)

which follows since G is Hermitian and

VNSF =G11 +G12c+ cHGH12 + cHG22c =

G11 +
(
G−1

22 G
H
12 + c

)H
G22

(
G−1

22 G
H
12 + c

)
−G12G

−1
22 G

H
12.

(5C.13)

The coupling parameters that minimize the criterion become

ĉ = −G−1
22 G

H
12. (5C.14)

Inserting (5C.14) into (5C.13) gives the concentrated criterion function

VNSF (φ) = G11 −G12G
−1
22 G

H
12. (5C.15)

The criterion is concentrated with respect to the q coupling parameters and
only a p dimensional search for the DOAs are needed, just as in the coupling
free case. The DOA parameters enter the expression non-linearly, and a
damped Newton method is used, similar to the SML method in Section 5.2.
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But in the SML method, large simplifications were possible by using an
asymptotic Hessian in the search process leading to the scoring method. In
the NSF method, the FIM could be used instead of the true Hessian if the
weighting matrix U is chosen as to minimize the variance of the estimates.
That is possible since the NSF method achieves the CRB. Here, however, the
true Hessian is used in a damped Newton method.

To implement the search, it is necessary to find expressions for the gra-
dient and Hessian of the NSF criterion and that is done next.

The kth element of the gradient becomes

V′
k =

∂VNSF
∂φk

=
∂G11

∂φk
− 2Re

[
∂G12

∂φk
G−1

22 G
H
12

]
+G12G

−1
22

∂G22

∂φk
G−1

22 G
H
12.

(5C.16)
The expression for the Hessian becomes

Hkm =
∂2VNSF
∂φk∂φm

=
∂2G11

∂φk∂φm
+ 2Re

[
∂G12

∂φk
G−1

22

∂G22

∂φm
G−1

22 G
H
12+

∂G12

∂φm
G−1

22

∂G22

∂φk
G−1

22 G
H
12 −G12G

−1
22

∂G22

∂φk
G−1

22

∂G22

∂φm
G−1

22 G
H
12−

∂2G12

∂φk∂φm
G−1

22 G
H
12 −

∂G12

∂φk
G−1

22

∂GH12
∂φk

]
+G12G

−1
22

∂2G22

∂φk∂φm
G−1

22 G
H
12.

(5C.17)
The derivatives of G depends on which of the formulations (5C.9) or (5C.11)
is used. First, the expressions for the Kronecker formulation in (5C.9) will
be given and then the expressions for the summation form in (5C.11). Since
neither the selection matrix nor the noise eigenvalues depend on the DOAs,
the derivative becomes

∂G

∂φk
= MH

[(
ÊnÊ

H

n

)
⊗

(
∂A∗U∗AT

∂φk

)]
M, (5C.18)

where

∂A∗U∗AT

∂φk
=

(
∂a∗
k

∂φk
U∗
k,:A

T

)
+

(
∂a∗
k

∂φk
U∗
k,:A

T

)H
. (5C.19)

Furthermore,

∂2G

∂φk∂φm
= MH

[(
ÊnÊ

H

n

)
⊗

(
∂2A∗U∗AT

∂φk∂φm

)]
M, (5C.20)

where

∂2A∗U∗AT

∂φk∂φm
=

(
U∗
km

∂a∗
k

∂φk

∂aTm
∂φm

)
+

(
U∗
km

∂a∗
k

∂φk

∂aTm
∂φm

)H
(5C.21)
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if k �= m and

(
∂2a∗

k

∂φ2k
U∗
k,:A

T +U∗
kk

∂a∗
k

∂φk

∂aTk
∂φk

)
+

(
∂2a∗

k

∂φ2k
U∗
k,:A

T +U∗
kk

∂a∗
k

∂φk

∂aTk
∂φk

)H
(5C.22)

for k = m. For the summation form of G in (5C.11), the derivative becomes

∂G

∂φk
=

p∑

l=1

U∗
lkQ

H(
∂ak
∂φk

)ÊnÊ
H

nQ(al) +QH(AUHk,:)ÊnÊ
H

nQ(
∂ak
∂φk

). (5C.23)

The second derivatives become

∂2G

∂φk∂φm
= U∗

mkQ
H(
∂ak
∂φk

)ÊnÊ
H

nQ(
∂am
∂φm

) +U∗
kmQ

H(
∂am
∂φm

)ÊnÊ
H

nQ(
∂ak
∂φk

)

(5C.24)
if k �= m and

p∑

l=1

U∗
lkQ

H(
∂2ak
∂φ2k

)ÊnÊ
H

nQ(al) + 2U
∗
kkQ

H(
∂ak
∂φk

)ÊnÊ
H

nQ(
∂ak
∂φk

)+

QH(AUHk,:)ÊnÊ
H

nQ(
∂2ak
∂φ2k

)

(5C.25)

if k = m. Finally, inserting the expressions for the derivatives of G into
(5C.16) and (5C.17) gives the gradient and the Hessian.
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Chapter 6
Effects of Model Errors

I
n the preceding chapter, the effects of an unknown coupling were miti-
gated by estimating the coupling along with the DOAs. To reduce the
number of estimated coupling parameters, the reduced coupling model

derived in Chapter 4, was used. For this coupling model, the CRB was cal-
culated and several estimation methods were derived. The quality of these
estimation methods was then addressed by comparing the empirical variance
of the estimates in a few Monte-Carlo simulations with the CRB. However,
the data used in those comparisons were generated using the reduced cou-
pling model, in order for the comparison to the CRB to be valid. Usually
when examining different estimation schemes the correct data model is used
(as in Chapter 5), since when designing estimation schemes the focus is on
finding the best way of utilizing the model at hand. But for the methods to
work well in practice, it is of course important to examine how well the model
actually describes the measured data. This will be examined in this chapter,
but instead of measured data, the expressions for the induced voltages, de-
rived in Section 2.2 using fundamental electromagnetics, will be used. The
DOAs and the coupling parameters will then be estimated using the reduced
coupling model introduced in Chapter 4 and the estimation schemes from
Chapter 5.

How the estimation of both the coupling and the DOAs work is examined
in a few scenarios. Several methods are used to estimate the parameters and
the result is presented using the MUSIC spectra to gain some insight of
the problems. Then, the average RMSE error is calculated for a few cases
using the different estimation methods. Finally, since the effect of coupling
essentially changes the response of the array and in some way blurs the
response, it is interesting to examine the effects on the signal estimates when
a jammer is present.
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Figure 6.1: The MUSIC spectrum calculated from the estimates of the Root-
Music (with known and estimated C), SML, and NSF with 8 coupling pa-
rameters using an array of 15 λ/2 dipoles spaced λ/2 apart. Three waves are
incident from (75◦, 77◦, 80◦) and 1000 snapshots with SNR = 30dB are used.

6.1 Impact of Model Errors

How the joint estimation of both the coupling and DOAs works on data
generated using the electromagnetic model and how large impact the model
errors have on the DOA estimation is examined in this section. The focus is
on the effects on the DOA estimation, since usually the coupling parameters
are only nuisance parameters. The effects will be examined by calculating
the estimates using the Root-Music, SML, and the NSF methods. Also, the
DOA estimates are calculated without any compensation for the coupling
using the Root-Music method. The Root-Music method is used instead of
the iterative MUSIC, due to the the lower resolution threshold of the latter
method. The results of the calculations are illustrated by displaying the
MUSIC-spectra using the estimates from the different methods.

First, consider a 15 element half-wavelength dipole array with an element
separation of λ/2. Three plane waves are incident upon the array and the
DOA:s (75◦, 77◦, 80◦) are to be estimated. The signal to noise ratio (SNR)
is 30dB and N = 1000 snapshots are collected. If the coupling is left un-
compensated, the MUSIC spectrum in Figure 6.1 fails to resolve the sources,
and therefore the iterative MUSIC method can not be used. Here, the Root-
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Music method, SML method, and the NSF method are used with 8 coupling
parameters, and the resulting estimates are illustrated by calculating the
MUSIC spectrum using the estimated coupling. When the coupling is con-
sidered unknown and estimated along with the DOAs, peaks in the spectra
appear for the different methods.

Estimating the coupling along with the DOAs results in a larger model
that better describes the data, and therefore the peaks become sharper. But
the estimation methods are affected differently from the fact that the reduced
coupling model only partly captures the properties of the full electromagnetic
model. The Root-Music method just barely resolves three sources. The SML
and NSF methods produce similar spectra and three sharper peaks appear.
Remember that NSF is an asymptotic version of the SML method. But
the peaks do not appear at the true DOAs, due to the modeling error that
results from using the simpler coupling model. How large the error in the
DOA estimates becomes depends on the angles.

Furthermore, since the different methods are affected in different ways by
the model error, any general conclusions are hard to find. Also included in
the figure is the MUSIC spectrum for the case of a known coupling, and in
that case three sharp peaks appear. In that case, the only difference to the
usual MUSIC method is that the steering matrix has changed into an effective
steering matrix, as discussed in Section 3.3.2. The spectrum is essentially
the same as in the hypothetical coupling free case.

In the next example, two waves are incident from (80◦, 84◦) upon a smaller
array of 8 elements and 4 coupling parameters are used, see Figure 6.2. The
uncompensated MUSIC method almost fails to resolve the sources, whereas
MUSIC with known coupling gives sharp peaks. When the coupling is esti-
mated, the Root-Music method gives two peaks, but rather far from the true
DOAs. Slightly higher peaks are obtained using the SML method, that also
appear closer to the true DOAs. The best method in this example is the NSF
method, that gives the sharpest peaks closest to the true DOAs. Here, the
difference between the NSF and SML methods indicate that a large portion
of the error is due to the model error, since otherwise these methods would
give almost identical estimates. The effect of the model error is heavily de-
pendent on the incidence angles, thus making comparisons for specific angles
of less interest. Therefore, in the next section, an average measure of the
model error will be introduced.

Another parameter that affects the estimation performance is how many
coupling parameters that are estimated. If too few parameters are used,
the model does not capture the properties of the coupling. If too many
parameters are used, the variance is increased as analyzed in Section 5.3. In
Figure 6.3, both the DOAs and the coupling parameters are estimated using
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Figure 6.2: The MUSIC spectrum calculated from the estimates of the Root-
Music (with known and estimated C), SML, and NSF with 4 coupling pa-
rameters using an array of 8 λ/2 dipoles spaced λ/2 apart when two waves
are incident from (80◦, 84◦), and 1000 snapshots with SNR = 20dB.

the SML method with an array of 10 λ/2 dipoles spaced λ/2 apart when
two waves are incident from (80◦, 85◦). The RMSE for φ = 80◦ is calculated
for different SNRs and numbers of coupling parameters. The number of
snapshots used was 1000, and the initialization values in the search were taken
as the estimates obtained from the Root-Music method after 5 iterations.

Increasing the SNR does not help if the coupling is left uncompensated,
since the dominating error source in that case is the model error. However, al-
ready when using only one single coupling parameter, the situation improves
significantly. The RMSE decreases when the SNR is increased, indicating
that the model works better now. The best performance is obtained using
two or three coupling parameters depending on the SNR value. Thus, the
performance can be increased by estimating only a few coupling parameters
indicating that coupling can be accounted for.

Now, the MUSIC spectrum for several different cases and also the influ-
ence of the number of coupling parameters on the estimation performance
have been examined. The model errors were found to dominate the error
in the DOA estimation in many cases, indicating that if the full coupling
matrix can be found by a calibration scheme it should be used. However,
that is not possible in all cases and by using a few coupling parameters the
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Figure 6.3: The RMSE for φ = 80 when estimating both DOAs and coupling
parameters using an array of 10λ/2 dipoles spaced λ/2 apart when two waves
are incident from (80◦, 85◦). The RMSE is calculated for different SNR and
number of coupling parameters where 1000 snapshots were used.

estimation performance can be improved. Furthermore, the effects of the
model error was highly dependent on the DOAs, and also the different meth-
ods worked quite differently for different incidence angles, and any general
conclusions were hard to find. Therefore, in the next section an average error
is calculated that makes more general conclusions possible.

6.2 Average Error

The impact of the model errors is heavily dependent on the incidence angles,
and therefore it is hard to draw any general conclusions. To obtain more
knowledge of how well the reduced model and estimation methods work, an
extensive simulation study or even better a large scale measurement study is
needed. But since both of these options are time- and resource-consuming,
an averaging operation is used to get some overall performance measure,
although without any claims of being exhaustive. Since the effects of coupling
are heavily dependent on the incidence angles, a natural measure is to average
the RMSE over all possible incidence angles. Assuming that the DOAs (φ)
are uniformly distributed in the area of interest, the average RMSE can be
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defined as

R̃ =

p∑

k=1

E [RMSE(φk)]. (6.1)

However, calculating the expectation is difficult, and therefore an approxi-
mative measure can be defined as

R̄ =

p∑

k=1

1

Nav

Nav∑

n=1

RMSEn(φk), (6.2)

where the RMSE value is averaged over Nav Monte-Carlo simulations using
DOAs that are uniformly distributed over the area of interest. Using this
average RMSE value, the effect of the modeling errors can be evaluated and
the different algorithms compared. Such a comparison, of course, only tells
part of the story, but at least it is better than calculating the estimates for
specific scenarios.

First, a 5 element half-wavelength dipole array with element separation of
λ/2 will be considered, since the coupling effects are larger for a small array.
Two plane waves are incident upon the array and the DOAs of these are
assumed to be uniformly distributed in the interval 20◦−90◦. Waves incident
closer to end-fire are excluded, since the estimation performance there is
severely reduced. The signal to noise ratio (SNR) is chosen large (50dB), in
order to let the part of the RMSE due to the model errors dominate over
the variance part. Also, N = 1000 snapshots are collected and Nav = 5000
Monte-Carlo simulations are averaged to calculate the average RMSE value
R̄ in Figure 6.4.

To avoid that a single realization dominates the RMSE value, i.e. so-
called outliers, estimates that are more than 10◦ off are excluded from the
averaging operation. The uncompensated Root-Music method results in an
average RMSE value close to 4◦. However, by modeling the coupling and es-
timating only one coupling parameter the average RMSE can be significantly
reduced. The averaging operation gives only a very rough picture of the ef-
fects of model errors and the different estimation methods behave similarly
in this case. To examine the quality of the different estimation methods a
more detailed analysis is needed.

Adding more coupling parameters does not further reduce the average
RMSE error significantly. The RMSE error is still quite large, thus the
reduced coupling model considered here only captures some of the coupling
properties. But that the RMSE decreases significantly when only estimating
one coupling parameter, indicates that the model is reasonably good.

For larger arrays, more coupling parameters can be estimated and next, a
larger array of 15 elements is considered. The average RMSE is calculated by
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Figure 6.4: The average RMSE R̄ for the Root-Music (with uncompensated
and estimated C), SML, and NSF methods versus the number of coupling
parameters. An array of 5 λ/2 dipoles spaced λ/2 apart is used. Two waves
are incident from uniformly distributed angles in (20◦, 90◦). The number of
snapshots is N = 1000, SNR = 50dB, and Nav = 5000.

averaging the results from 5000 simulations. Here, the average RMSE error
is smaller due to the larger array, and therefore estimates that deviates more
than 3◦ are considered to be outliers and are excluded from the averaging
operation. Another implication of a larger array is that it allows for more
parameters to be estimated with just a small increase in variance, as discussed
in Section 5.3. The RMSE value when estimating 5 coupling parameters is
decreased to less than half the value when no compensation is applied. The
different estimation methods give similar results, also in this case.

The contribution to the average RMSE from model errors is quite large
and for larger SNR values, the model error part will dominate. In Figure 6.6,
the average RMSE is shown for an array of 8 elements for different SNRs.
For small SNRs, the variance of the estimates dominate R̄ and estimating
coupling parameters further increases the RMSE. For larger SNRs, the model
error part dominate, and here the RMSE can be decreased by estimating a
few coupling parameters.

The RMSE values in these simulations are relatively large indicating that
better models than the reduced coupling model can be found. Of course,
the full coupling matrix should be estimated if possible, but if the DOAs are

139



CHAPTER 6. EFFECTS OF MODEL ERRORS

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of coupling parameters

A
v
e

ra
g

e
 R

M
S

E

No Comp
Root
SML
NSF

Figure 6.5: The average RMSE R̄ for the Root-Music (with uncompensated
and estimated C), SML, and NSF methods versus the number of coupling
parameters. An array of 15 λ/2 dipoles spaced λ/2 apart is used. Two waves
are incident from uniformly distributed angles in (20◦, 90◦). The number of
snapshots is N = 1000, SNR = 50dB, and Nav = 5000.

unknown only a few coupling parameters can be estimated. In that case, only
part of the properties of the coupling can be obtained. But the estimation
problem considered here with no knowledge about the coupling is probably
not a realistic one. In reality some knowledge about the coupling usually
exists and should be incorporated and some deviation from a nominal model
could be estimated using the reduced coupling model considered here. Also,
the mutual coupling between dipoles is strong and other antenna elements
usually experience less coupling, which probably makes it easier to model
the coupling in that case. Therefore, other models that better describe the
coupling, can probably be found and if the coupling parameters enter the
coupling matrix linearly, the methods considered here are easily modified to
this model. For example, in the NSF method this corresponds to simply
changing the M matrix.

Now, the effects of the model errors introduced by using the reduced
model for estimating the coupling on the average RMSE value of the DOAs
have been studied. Next, the effects on signal estimation in the presence of
jammers is examined.
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Figure 6.6: The average RMSE R̄ for the Root-Music (with uncompensated
and estimated C), SML, and NSF methods versus SNR using an array of 8
λ/2 dipoles spaced λ/2 apart when two waves are incident from uniformly
distributed angles in (20◦, 90◦). The number of snapshots is N = 500, q = 3,
and Nav = 5000.

6.3 Interference Rejection

One problem when estimating the signals that are incident on the array is
the interference from other signals that also induce voltages on the antenna
elements. In particular, if the interfering signals are of significantly higher
power, the estimation problem becomes difficult. Interfering signals of large
power are usually called jammers and a rich literature on the subject of
interference suppression exists [Far92, He93, VB88]. Here, the influence of
an unknown coupling will be examined in a very simple manner. Only one
signal is transmitted and there is only one jammer present. First, the DOAs
of these waves are estimated and then the signal values of the interesting
signal is estimated as

ŝ = (C(ĉ)A(φ̂))†X, (6.3)

where X is the measured data and (ĉ, φ̂) are the estimated parameters. This
is of course a very simple method to obtain an estimate of the signal, but
here the effects of mutual coupling will be examined using this method. In
[Adv97, AS96], a MOM solution of the antenna is used to account for the
mutual coupling by considering also the reflections from the open circuited
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Figure 6.7: The MSE of the estimated signal versus jammer power using the
Root-Music (with compensated and uncompensated C), SML, and NSF with
3 coupling parameters using an array of 8 λ/2 dipoles spaced λ/2 apart. The
jammer signal is located 10◦ off the interesting signal. The result is averaged
over the incidence angle of the interesting signal in the interval (50◦, 90◦).

neighboring elements and thus obtaining close to complete jammer cancella-
tion. Using the simple method suggested here, the cancellation will be far
from complete, but on the other hand no explicit knowledge of the actual
antenna setup and no MOM solution is necessary. Also, this simple method
will work on most antenna arrays, but of course with various result. Further-
more, if the NSF method is used, the numerical search will be of the same
dimension as if the coupling was known.

Consider an array of 8 λ/2 dipoles spaced λ/2 apart and the DOAs and
3 coupling parameters are estimated with the Root-Music, SML, and NSF
methods respectively. The noise power is −30dB and 1000 snapshots are
taken. The jammer signal is 10◦ off the interesting signal in this simulation.
However, since the effects of mutual coupling are highly dependent on the
DOA, the result is averaged over the incidence angle of the interesting signal
in the interval (50◦, 90◦). In Figure 6.7, the Mean Square Error (MSE) of the
estimated signal using the different methods is shown.

If the coupling is left uncompensated, the signal estimate deviates signif-
icantly already for equal signal powers, and increases rapidly with increasing
jammer power. The Root-Music method reduces the error in signal power
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for low jammer power, but for high jammer power the reduction is small.
The NSF method offers more error reduction or interference suppression for
higher jammer power. The best method is the SML method, that offers
the best interference rejection especially for high jammer power. Thus, the
interference rejection can be increased significantly by estimating a few cou-
pling parameters along with the DOAs. For better performance, a more
complex model is needed. However, as discussed in previous section usually
some knowledge about the coupling exists and should be used to formulate
another coupling model.

6.4 Conclusions

If it is not possible to obtain the coupling matrix by calibration measure-
ments, an unknown uncompensated coupling will deteriorate the DOA esti-
mation performance. However, the effects of the unknown coupling can be
mitigated by estimating the unknown coupling and that was examined in
this chapter. Data was generated using the full electromagnetical coupling
model, and the coupling was estimated using the reduced coupling model.
That introduces model errors and the impact of these errors was examined.

First, the effects of an unknown coupling was investigated by estimat-
ing the DOAs, and the coupling parameters using the methods derived in
Chapter 5. It was found that the effects were angle dependent, but the es-
timation performance could be improved by estimating only a few coupling
parameters.

To get some general result of the improvement by estimating the coupling,
an average RMSE value was calculated and it was found that the model error
could be substantially reduced by estimating only a few coupling parameters.
But for high SNRs, the model error dominated the RMSE value. The value
was reduced compared to the uncompensated case, although much larger
than the RMSE value for the known coupling case. But, if it is not possible
to obtain the coupling matrix by some calibration scheme, the effects can
thus be reduced by estimating a few coupling parameters.

Finally, the effects of an unknown mutual coupling were examined in a
scenario where an interesting signal was received in the presence of a jammer
signal. If coupling was not compensated for, the estimated signal deviated
significantly from the true signal. However, by estimating the coupling along
with the DOAs, the deviation was decreased substantially.
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Chapter 7
Multimode Based Direction Finding

D
irection finding by exploiting higher order modes of a modified bicon-
ical antenna is considered. The DOA of an incident wave is estimated
by using the fact that the different modes have different directional

properties. Since only one antenna element is used, several problems encoun-
tered when using an array of elements are avoided such as problems with
mutual coupling between antenna elements. The direction finding perfor-
mance is examined by calculating the CRB and the ML estimator for several
different cases. It is found that an antenna employing multiple modes, i.e.
an multimode antenna, offers direction finding performance comparable to
the traditional antenna array using only a single physical antenna element.

7.1 Introduction

Direction finding is of great importance in a variety of applications, such as
radar, sonar, communications, and recently also personal locating services.
In the last two decades, direction finding and sensor array processing has at-
tracted considerable interest in the signal processing community. The focus
of this work has been on high resolution DOA estimation algorithms [KV96].
These algorithms exploit the fact that an electromagnetic wave that is re-
ceived by an array of antenna elements reaches each element at different time
instants. A different approach was presented in [NP94], where the DOA is
estimated from the cross-product of the electric and magnetic field that are
measured using an EM Vector Sensor (VS). Of these, the antenna array has
received by far the most attention in the signal processing literature.

Recently, a modified biconical antenna was introduced in [DW98]. It
offers interesting possibilities of forming directional beams by exiting higher
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order modes. The biconical antenna is known as an easy to build broad-
band antenna with omnidirectional radiation. If higher order modes are
excited, directional radiation patterns can be achieved [DW98]. By exciting
the different modes separately, a number of antenna ports are obtained while
only using a single antenna element. In a sense, the biconical antenna offers
characteristics similar to an antenna array through multiple modes, without
requiring many expensive antenna elements. The possibilities of forming
directional beams, using a multimode antenna, was considered in [DW98],
but no direction finding analysis was undertaken. Another application of a
biconical antenna can be found in [ZHM+00], where several directional beams
are used when studying angular properties at both transmitter and receiver,
i.e. the Direction Of Departure (DOD) and DOA, in an indoor scenario. The
direction finding performance of the biconical antenna and its potential use
in high resolution direction finding will be analyzed in this paper.

7.2 Biconical Antenna

Many different types of antenna elements support excitation of higher modes.
Here, a biconical antenna [DW98] will be analyzed. An example of how a
multimode microstrip antenna can be used as a diversity receiver, is given in
Chapter 10. A biconical antenna consists of two conical horns facing opposite
directions as illustrated in Figure 7.1, where α denotes the flare angle and
l the length of the horn. Note that the flare angle of the upper and lower
cones are identical, i.e. the antenna is symmetric.

The concept of exciting higher order modes is rather unknown in the sig-
nal processing society, but is well known by antenna designers. Essentially,
different modes in electromagnetics represent different solutions to Maxwell’s
equations that fulfill the boundary conditions for the geometry at hand. In
fact, it is possible to separately excite several modes at the same frequency on
one antenna structure and regard these as different antenna ports. A multi-
mode antenna is thus an antenna where several modes are excited separately
on the same antenna structure.

In the traditional analysis of the biconical antenna, a coaxial waveguide
is used to to excite the antenna. By enlarging the diameter of the coaxial
feed, more solutions or modes are possible. The enlargement of the coaxial
waveguide allows for higher order circular modes in the feed. These circular
waves are then transformed into spherical waves that propagate on the bi-
conical structure that in turn radiates a field. It is important to note that it
is possible to design the overmoded coaxial feed in such a way that no modal
coupling between modes occurs [DW98].
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Figure 7.1: The geometry of the biconical antenna and the relation to the
coordinates.

In principle, the far-field is derived by integrating the fields from an infi-
nite biconical transmission line over the biconical aperture [Bal89, Sva00h].
The lowest order mode, the dominant or fundamental mode, is a so-called
Transverse ElectroMagnetic (TEM) mode, where both the electric and mag-
netic field are perpendicular to the propagation direction. The higher order
modes result in solutions of Transverse Electric (TE) type, i.e. where only the
electric field is perpendicular to the propagation direction. Note that these
modes are simply solutions to Maxwell’s equations that fulfill the bound-
ary conditions of the biconical structure for specific values of l and α. The
far-field expression for the TEM mode can be written as

�E0 = �θ
e−jkr

r
G0(θ, l, α), (7.1)

where k denotes the wave number1, r the radial distance from the antenna,
and G0(θ, l, α) denotes the element pattern. The expression for the element
pattern is quite complicated, see Appendix 10A and [DW98, Sva00h].

The corresponding expression of the far-field of the TEmn mode can also
be written as in (7.1). Here, the first index refers to the azimuthal mode order
and the second to the elevation order [Bal89, DW98]. There is, however, one

1The wave number k = 2π
λ

= ω
√

µǫ, where λ is the wavelength. The symbols ǫ and µ
denote the dielectric constant and the permeability of the medium respectively.
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important difference to the TEM case. While the TEM field actually is
independent of φ, the TE field does have an azimuth dependency

Gm(θ, φ, l, α) = cos(mφ) G′
m(θ, l, α) m ≥ 1 , (7.2)

where G′
m(θ, φ, l, α) is the remaining azimuth independent term of the radi-

ation pattern, see Appendix 10A and [DW98, Sva00h].
Since the radiation intensity pattern provides some insight into the prop-

erties of the biconical antenna with higher order modes, it will be calculated
next. The radiation intensity U(θ, φ) can be written as

U(θ, φ) =
r2

2η

∣∣ �Etot
∣∣2, (7.3)

where η is the intrinsic impedance of the propagation medium and the total
field radiated from the biconical antenna �Etot is the sum of the modal fields
as

�Etot =
M∑

m=1

Am �Em(θ, φ), (7.4)

where Am is the amplitude of mode m. Only the azimuth radiation pat-
tern will be considered here. Also, to reduce the notational complexity the
patterns are normalized to G′

m(θ, l, α) = 1. The radiation pattern of the
multimode biconical antenna can then be written as

U(90◦, φ) =
1

2η

∣∣∣∣
M∑

m=1

Am cos(mφ)

∣∣∣∣
2

. (7.5)

The radiation pattern using Am = 1 ∀ m = 1, . . . ,M for a biconical antenna
with M = 4 modes is shown in Figure 7.2. The width of the main lobe is
actually smaller than that of the antenna array for this case when φ = 0◦

(end-fire). However, if the beam is steered towards broadside (φ = 90◦) the
opposite result is obtained. To steer the beam towards angle φ0, the weights
should be chosen as Am = cosmφ0, which is related to the Discrete Cosine
Transform (DCT) in the same manner as the uniformly spaced linear array
is related to the Discrete Fourier Transform (DFT).

In order to analyze the direction finding properties, an expression for the
antenna in receive mode is needed. Unfortunately, no explicit expressions
are included in antenna textbooks, since antennas are usually analyzed in
transmit mode and not in receive mode. However, expressions for the re-
ceived voltages are easily derived [Mey00, Kil99]. The analysis is based on
reciprocity and knowledge of the far-field radiation function of the antenna
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Figure 7.2: The radiation pattern using Am = 1 ∀ m = 0, . . . ,M for a
biconical antenna with M = 4 modes (solid) and the corresponding pattern
of a four element array with λ/2 element separation (dashed).

�G = �gG(θ, φ), where �g is the orientation of the far-field. Using the results
from [Kil99], the induced voltage becomes

v = −j 4π
kη

(
1

Iin
�G · �Ei

)
, (7.6)

where k is the wave number, Iin the input current used when calculating �G,
and �Ei denotes the incident field. In the following, only waves incident in
the x− y plane, i.e. (θ = 90◦) will be considered. Assuming an incident field
from the φ direction of strength Es and polarization �ρ

�Ei = �ρEs, (7.7)

the received voltage of mode m can be written, using (7.1), (7.2), and (7.6)
as

xm(t) = cos(mφ)Es�ρ · �θ, (7.8)

if the normalization G′
m(θ, l, α) = 1 is used. It is further assumed that no

polarization losses occur, i.e. �ρ · �θ = 1. If p waves are incident upon an
antenna with M modes, the received voltages can be written in matrix form
as

x(t) = A(φ)s(t) + n(t), (7.9)

where the vector of measured voltages x(t) is M × 1. The matrix A(φ)
(M ×p) corresponds to the response of the different modes and has elements
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[A(φ)]pq = cos pφq. This matrix is typically called steering matrix in the
sensor array processing literature. The signal vector s(t) is p×1 and contains
the strength of the received fields. Finally, the noise vector n(t) is M × 1.

7.3 Direction Finding Performance

The data model (7.9) is identical to the usual data model used in sensor
array processing [KV96], except for a new steering matrix. This will of
course change the direction finding properties. Before the properties of a
specific DOA estimation scheme is studied, a lower bound, the Cramér-Rao
lower Bound (CRB), on the variance of the DOA estimates will be analyzed.
Note that it is possible to asymptotically achieve this bound with methods
that are described in the next section. Expressions for the CRB was derived
for an array of antenna elements in [OWVK89]; and can also be applied to
the multimode antenna by changing the steering matrix.

E{(φ̂− φ0)(φ̂− φ0)
T} ≥ B (7.10)

B =
σ2

2N

[
Re{(DHP⊥

AD)⊙ (SAHR−1AS)T}
]−1

,

where

D =

[
∂a(φ)

∂φ


φ=φ1

, · · · , ∂a(φ)
∂φ


φ=φp

]
(7.11)

Here, ⊙ denotes the Hadamard (or Schur) product, i.e., element-wise multi-
plication and P⊥

A = I−PA = I−AA† 2 is the orthogonal projector onto the
null space of (A)H . The matrix R = ASAH + σ2I is the covariance matrix
of the measured voltages x(t) and N denotes the number of time samples.

The square root of the CRB, i.e. the standard deviation, is shown in Fig-
ure 7.3 for different antenna configurations as two waves are incident from
(30◦, 30◦ + ∆). Only the CRB for the first DOA, i.e. the wave arriving
from 30◦, is shown since the CRB for the second DOA will behave similarly.
Therefore, in the following CRB comparisons only the first DOA will be
considered. The standard deviation for a uniform linear array of three ele-
ments spaced λ/2 apart is compared to a biconical antenna employing three
to five modes. As expected, the performance increases with the number of
modes. Also, note that the three element array behaves similar to the bicon-
ical antenna employing four modes. However, these results depend on the

2
M

† is the Moore-Penrose pseudo inverse of M.
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Figure 7.3: The square root of the CRB for several different configurations
when two waves are incident from (30◦, 30◦ +∆) with SNR=10dB and 1000
samples.

incidence angles, since the array will work best for broadside and worst for
end-fire incidence.

In Figure 7.4, the standard deviation is shown for the same antenna con-
figurations as in Figure 7.3 when two waves are incident from (φ0, φ0 + 5◦).
It is found that the multimode antenna performance is worse for angles close
to end-fire φ0 = 0◦ (similar to the traditional array). Also, the manner in
which the performance increases when moving away from end-fire, is almost
identical for the array and the multimode antenna. However, since the re-
ceived power of the biconical antenna depends on the DOA, due to the real
sinusoidal terms, the performance will vary with the DOA. This dependency
will be different for each mode since the sinusoidal terms are different, see
(7.2).

Thus, the multimode antenna offers DOA estimation performance similar
to that of an array. In the next section, two methods for DOA estimation
with a multimode antenna are evaluated.

In order for the analysis in the following sections to be valid, some addi-
tional assumptions are needed:

• the steering matrix has full rank, i.e., rk(A) = p
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Figure 7.4: The square root of the CRB for several different configurations
when two waves are incident from (φ0, φ0 + 5◦) with SNR=10dB and 1000
samples.

• n(t) is temporally white and circularly Gaussian distributed: n(t) ∈
N (0, σ2I)

• s(t) is also temporally white and circularly Gaussian distributed: s(t) ∈
N (0,S)

The noise is both spatially and temporally white, while the signal is only
assumed to be temporally white. Furthermore, the signal is assumed to be
uncorrelated with the noise.

7.4 Estimation Methods

The analysis in the previous section was based on the CRB on the estima-
tion error. In this section, algorithms that approximately achieve this lower
bound will be discussed. In principle, all DOA estimation schemes derived
for a general antenna array can also be applied to the multimode antenna
by inserting the new steering matrix. For an overview of DOA estimation
methods, see [KV96, VS01]. Here, the DOA estimation performance for two
of the most well known algorithms will be examined and compared to the
CRB.
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Figure 7.5: The normalized MUSIC spectrum when two waves are incident
from 30◦ and 40◦ upon a five mode multimode antenna and a four element
array with SNR=10dB and 1000 samples.

In [Sch79], a very popular high resolution DOA estimation method, MU-
SIC, was introduced where the DOA estimates are taken as those φ that
maximizes the MUSIC criterion function

φ̂ = argmax
φ

aH(φ)a(φ)

aH(φ)ÊnÊ
H

n a(φ)
. (7.12)

Usually this is formulated as finding the p largest peaks in the ”MUSIC
spectrum”. Here, Ên denotes the M − p eigenvectors corresponding to the
M − p smallest eigenvalues of the estimated covariance matrix R̂. A typical
example of a MUSIC spectrum is shown in Figure 7.5, where two waves
are incident from 30◦ and 40◦ upon a five mode multimode antenna and a
4 element array with SNR=10dB and 1000 samples. This figure indicates
that the multimode antenna, in this case, offers a performance similar to
the antenna array. Furthermore, when the incident signals are uncorrelated,
the MUSIC method is unbiased and approximately achieves the CRB (i.e.
efficient). Unfortunately, the method breaks down for correlated signals,
which are common in communication applications due to multipath. Thus,
in these cases another method is required.

The Maximum Likelihood (ML) method is the chief systematic approach
of model-based estimation. In [Böh86], the ML DOA estimator for an array
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Figure 7.6: The RMSE (first DOA) for ML and MUSIC when two waves are
incident from 40◦ and 60◦ upon a four mode antenna versus SNR with 1000
samples and correlated signals (0.9).

of antenna elements was introduced. The ML estimates are unbiased and
efficient also for correlated signals. Furthermore, the ML method is easily
modified to the multimode antenna by inserting the new steering matrix.
Using the model in (7.9) and the statistical assumptions in Section 7.2, the
negative log likelihood function to be minimized becomes

φ̂ = argmin
φ

log

∣∣∣∣PAR̂PA +
Tr[P⊥

AR̂]

M − p P⊥
A

∣∣∣∣ (7.13)

and the DOA estimates are taken as the minimizing arguments of it. In
Figure 7.6, the RMSE for ML and MUSIC when two waves are incident from
40◦ and 60◦ upon a four mode antenna, is shown for different SNRs. Two
highly correlated signals S1,2 = S2,1 = 0.9 are used. As expected, the MU-
SIC method fails, while the ML method achieves the CRB already at quite
low SNRs. The simulation examples clearly indicates that the biconical an-
tenna offers DOA estimation performance comparable to that of a traditional
antenna array, although with one additional mode than elements.
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7.5 Conclusions

By exciting the biconical antenna with higher order modes, directional radi-
ation patterns are obtained that successfully can be used to estimate DOAs.
Since the multimode antenna only requires one antenna element it avoids
many of the problems encountered when employing an array of elements.
Another advantage of the biconical antenna is that it can be manufactured
at a very low cost [DW98]. A data model for the multimode antenna was
derived and the direction finding performance was examined by calculating
the CRB and the ML estimator for several different cases. It was found that
the multimode antenna offers direction finding performance comparable to
the traditional antenna array using only a single antenna. Thus, exploiting
multimodes for direction finding is a new and interesting alternative that
offers several advantages over traditional arrays.

However, it should be stressed that only the theoretical possibility of
using the higher order modes of antennas for direction finding was examined.
More work on the antenna design is needed to find suitable positions of the
feeds, appropriate dimensions, and a matching network that minimizes the
losses in the antenna. It is also important to note that in this chapter, only
the case of exploiting the individual modes directly is examined. Many other
possibilities exists. For instance, is also possible to use several modes to form
narrow beams, that can be used for direction finding applications. Hence,
exploiting higher order modes for direction finding offers many interesting
possibilities.
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Chapter 8
Direction Finding Using a Switched

Parasitic Antenna

D
irection finding by exploiting the directional radiation patterns of a
Switched Parasitic Antenna (SPA) is considered. By employing pas-
sive elements (parasites), which can be shorted to ground using pin

diodes, directional radiation patterns can be obtained. The direction finding
performance of the SPA is examined by calculating a lower bound on the
direction finding accuracy, i.e. the CRB. It is found that the SPA offers a
compact implementation with high-resolution direction finding performance
using only a single radio receiver. Thus, exploiting SPAs for direction finding
is an interesting alternative to traditional antenna arrays offering compact
and low-cost antenna implementations.

8.1 Introduction

Direction finding is of great importance in a variety of applications, such as
radar, sonar, communications, and recently also personal locating services.
In the last two decades, direction finding and sensor array processing has
attracted considerable interest in the signal processing community. The fo-
cus of this work has been on high resolution, i.e. a resolution higher than
the width of the main lobe, DOA estimation algorithms [KV96]. These al-
gorithms exploit the fact that an electromagnetic wave that is received by
an array of antenna elements reaches each element at different time instants.
Although the performance of these systems is excellent, an unfortunate as-
pect is the high costs of employing a radio receiver for each antenna element.
Furthermore, it is expensive to calibrate and maintain antenna arrays with
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many antenna elements.

Recently, it was proposed to employ an SPA for direction finding [PTS+98,
PTL+97] that only uses a single active radio receiver, thereby significantly
reducing the cost. The SPA offers characteristics similar to an array antenna
with several beams by using passive antenna elements that serve as reflectors
when shorted to ground. Different directional patterns can be achieved by
switching the short-circuits of the passive elements using pin diodes. The
possibilities of exploiting these patterns for high-resolution DOA estimation
will be examined in this paper, since no attempt to employ high-resolution
DOA methods was undertaken in [PTS+98, PTL+97].

8.2 Switched Parasitic Antenna

Switched Parasitic Antennas offering directional patterns dates back to the
early work of Yagi and Uda in the 1930’s [Bal82]. The concept is to use a
single active antenna element, connected to a radio transceiver, in a struc-
ture with one or several passive antenna elements, operating near resonance.
These passive elements are called Parasitic Elements (PEs) and act together
with the active element to form an array, as in the well known Yagi-Uda
array [Bal82]. To alter the radiation pattern, the termination impedances of
the PEs are switchable, to change the current flowing in those elements. The
PEs become reflectors when shorted to the ground plane using pin diodes
[STLO00] and when not shorted, the PEs have little effect on the antenna
characteristics. The receiver is always connected to the center antenna ele-
ment so there are no switches in the RF direct signal path.

An interesting possibility to obtain directional information is to sample
the received signal with several different radiation patterns, since the switch-
ing time of a pin diode is only of the order of a few nanoseconds. This
technique of oversampling the received signal is common in many commu-
nication systems, but here the oversampling is performed in both time and
space, i.e. spatio-temporal oversampling. If the increased sampling rate (or
bandwidth) poses a problem, a bandpass sampling strategy could also be em-
ployed. In this chapter, the potential in using the different radiation patterns
of an SPA for direction finding will be examined. However, further work is
needed on the practical aspects of the antenna design as well as sampling
strategies.

In the literature, it has been proposed to use monopoles on a ground plane
[STLO00] or patch antennas [PT97] as SPAs. In this paper, a monopole on
a ground plane is used because of its omnidirectional properties. A four
Direction Symmetric (4-DS) monopole parasitic antenna is shown in Figure
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Figure 8.1: A five element monopole SPA. The center element is active and
connected to the transceiver. The four passive antenna elements can be
switched in or out of resonance using appropriately biased pin diodes.

8.1 and a three Direction Symmetric (3-DS) antenna is shown in Figure 8.2.
The antenna in Figure 8.2 has an additional circle of parasitic elements that
always are shorted to ground. The effect of this arrangement is an increased
directivity as their lengths are shorter than the corresponding resonant length
(≈ λ/4) and will lead the induced Electro-Motive Force (EMF) [Bal82]. The
lengths and distances displayed in Figure 8.1 and 8.2 are not optimal in
any way. Note that the resulting antennas are very compact (λ/4 and λ/2)
compared to corresponding linear arrays with λ/2 separation distance (2λ
and 3λ/2).

The antennas in Figures 8.1 and 8.2 were simulated using the HFSS (High
Frequency Structure Simulator) from Agilent Technologies Inc. which is a
3D simulator using the Finite Element Method (FEM), to solve for the elec-
tromagnetic field. The software was used to calculate the far-field radiation
pattern of the antenna for different settings of the switched parasitics. The
monopole elements were cylindrical with a length to radius ratio l/r = 100
which yields a first resonance at approximately 0.24λ [Bal82].

The far-field power radiation pattern in the azimuth plane F (φ) for the
4-DS SPA is shown in Figure 8.3. The corresponding pattern for the 3-DS
SPA is similar and not shown. The directivity of the two antennas are 9.9
dB and 10.0 dB respectively. Thereby, only a small gain in directivity was
achieved by the extra ring of shorted parasites.

Once the far-field radiation properties are found, it is straightforward
to derive a model for the received voltages [Kil99, Mey00]. If p waves are
incident upon an antenna withM symmetry directions, the received voltages
can be written in matrix form as

x(t) = A(φ)s(t) + n(t), (8.1)
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Figure 8.2: A seven element monopole SPA. The center element is active and
connected to the transceiver. The three passive antenna elements closest to
the active can be switched in or out of resonance using appropriately biased
pin diodes. The three outermost monopoles are hardwired to ground.

where the vector of measured voltages x(t) is M × 1. The matrix A(φ)
(M × p) corresponds to the response of the different symmetry directions
and has elements [A(φ)]qr = F (φr+2qπ/M). This matrix is typically called
steering matrix in the sensor array processing literature. The signal vector
s(t) is p×1 and contains the strength of the received fields. Finally, the noise
vector n(t) is M × 1.

In order for the analysis in the following sections to be valid, some addi-
tional assumptions are needed:

• the steering matrix has full rank, i.e., rk(A) = p

• n(t) is temporally white and circularly Gaussian distributed: n(t) ∈
N (0, σ2I)

• s(t) is also temporally white and circularly Gaussian distributed: s(t) ∈
N (0,S)

The noise is both spatially and temporally white, while the signal is only
assumed to be temporally white. Furthermore, the signal is assumed to be
uncorrelated with the noise.

8.3 Direction Finding Performance

The data model (3.1) is identical to the usual data model used in sensor
array processing [KV96], except for a new steering matrix. This will of course
change the direction finding properties. Before the properties of a specific
DOA estimation scheme is studied, a lower bound, the Cramér-Rao lower
Bound (CRB), on the variance of the DOA estimates will be analyzed. Note
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Figure 8.3: Power radiation pattern of the five element monopole antenna
shown in Figure 8.1 with three parasitics shorted (S) to ground and one open
(O).

that it is possible to asymptotically achieve this bound with many methods
in the literature [KV96].

Expressions for the CRB was derived for an array of antenna elements
in [OWVK89]; and can also be applied to the parasitic antenna by changing
the steering matrix.

E{(φ̂− φ0)(φ̂− φ0)
T} ≥ B (8.2)

B =
σ2

2N

[
Re{(DHP⊥

AD)⊙ (SAHR−1AS)T}
]−1

,

where the elements of Dqr =
∂F (φ+2qπ/M)

∂φ


φ=φr

. Furthermore, ⊙ denotes the

Hadamard (or Schur) product, i.e., element-wise multiplication and P⊥
A =

I−PA = I−AA† 1 is the orthogonal projector onto the null space of (A)H .
The matrix R = ASAH + σ2I is the covariance matrix of the measured
voltages x(t) and N denotes the number of time samples.

The square root of the CRB, i.e. the standard deviation, is shown in
Figure 8.4 for the antenna configurations in Figure 8.1 and 8.2 as two waves
are incident from (30◦, 30◦ + ∆). Only the CRB for the first DOA, i.e.

1
M

† is the Moore-Penrose pseudo inverse of M.
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Figure 8.4: The square root of the CRB for the configurations in Figure 8.1
and 8.2 when two waves are incident from (30◦, 30◦ + ∆) with SNR=10dB
and 1000 samples.

the wave arriving from 30◦, is shown since the CRB for the second DOA
will behave similarly. The standard deviation for a uniform linear array of
three elements spaced λ/2 apart is compared to the 4-DS and 3-DS SPAs.
As expected, the performance is better when using four rather than the
three symmetry directions. Also, note that the three element array performs
slightly better than the 4-DS SPA. However, these results depend on the
incidence angles, since the array will work best for broadside and worst for
end-fire incidence.

In Figure 8.5, the standard deviation is shown for the same antenna con-
figurations as in Figure 8.4 when two waves are incident from (φ0, φ0 + 5

◦).
The parasitic antenna, due to its symmetrical properties, offers similar di-
rection finding performance properties for all incidence angles. The linear
array performs worse than the parasitic antenna at end-fire incidence, while
performing much better at broad-side incidence. However, for many direc-
tion finding applications, the direction finding performance of the parasitic
antenna is sufficient and the cost reduction of using only a single radio re-
ceiver outweighs the loss in performance for broad-side angles. It should also
be stressed that the antenna designs in Figure 8.1 and 8.2 are by no means
optimal and better DOA properties may be obtained by a proper optimiza-
tion.
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Figure 8.5: The square root of the CRB for the configurations in Figure 8.1
and 8.2 when two waves are incident from (φ0, φ0+5

◦) with SNR=10dB and
1000 samples.

8.4 Estimation Methods

The analysis in the previous section was based on the CRB on the estimation
error. In this section, algorithms that approximately achieve this lower bound
will be discussed. In principle, all DOA estimation schemes derived for a
general antenna array can also be applied to a parasitic antenna by inserting
a new steering matrix. For an overview of DOA estimation methods, see
[KV96, VS01].

In [Sch79], a popular high resolution DOA estimation method, MUSIC,
was introduced where the DOA estimates are taken as those φ that maximizes
the MUSIC criterion function

φ̂ = argmax
φ

aH(φ)a(φ)

aH(φ)ÊnÊ
H

n a(φ)
, (8.3)

where the steering vector has elements aq(φ) = F (φ+2qπ/M), q = 1, . . . ,M .
Usually this is formulated as finding the p largest peaks in the ”MUSIC
spectrum”. Here, Ên denotes the M − p eigenvectors corresponding to the
M − p smallest eigenvalues of the estimated covariance matrix R̂. A typical
example of a MUSIC spectrum is shown in Figure 7.5, where two waves are
incident from 25◦ and 45◦ upon a 4-DS SPA and a three element array with
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Figure 8.6: The normalized MUSIC spectrum when two waves are incident
from 25◦ and 45◦ upon a 4-DS parasitic antenna and a three element array
with SNR=10dB and 1000 samples.

SNR=10dB and 1000 samples. This figure indicates that the SPA, in this
case, offers a high-resolution direction finding performance similar to that of
an antenna array without the cost of many radio receivers. Most other DOA
estimation schemes [KV96, VS01] can also be applied to SPAs with similar
results. For instance, the SML algorithm [OWVK89] for this type of antenna
was implemented. The RMSE of the ML estimator achieved the CRB bound
from Section 7.3, as expected.

8.5 Conclusions

The potential use of an Switched Parasitic Antenna for high-resolution di-
rection finding was investigated. By employing passive elements, which can
be shorted to ground using pin diodes, directional radiation patterns are ob-
tained that can be used successfully to estimate DOAs. The main advantage
with this concept is that only one radio receiver is needed, thereby reduc-
ing the costs significantly compared to traditional antenna arrays where one
radio receiver per element typically is employed. Another advantage of the
SPA is that a very compact implementation of the antenna is possible.

A data model for the SPA was presented and the direction finding perfor-
mance was examined by calculating the CRB and the MUSIC estimator. It
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was found that the SPA offers a compact implementation with high-resolution
direction finding performance using only a single radio receiver. Thus, ex-
ploiting SPAs for direction finding is an interesting alternative that offers
several advantages over traditional arrays.
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Chapter 9
Physical Channel Modeling of MIMO

Systems

A
general framework for physical spatio-temporal channel modeling is
presented. Based on this framework, models for single antenna sys-
tems as well as Multi-Input Multi-Output (MIMO) models for multi-

element antenna systems, are derived. The model is based on results from
ElectroMagnetic (EM) scattering and wave propagation, thereby including
many of the channel characteristics encountered in practice. A general de-
scription that captures the most important scattering properties of arbitrary
objects is derived in a compact dyad formulation by using results from rough
surface scattering. The polarization properties of the channel and the anten-
nas are thus included in the model, which allows for studies of the impact
of different antenna arrangements and polarizations. Several channel envi-
ronments are simulated, and properties such as spatial correlation, channel
capacity, and time evolution of the channel are calculated. The proposed
physical channel model is also suitable for other interesting application ar-
eas, such as long-range prediction of fading signals, feedback based transmit
diversity schemes, and wideband MIMO systems where the temporal prop-
erties are important.

9.1 Introduction

An accurate knowledge of the mobile communications channel is of greatest
importance when designing radio systems. The performance of a detector or
receiver is highly dependent on the characteristics of the radio channel. If
an accurate model of the channel is available, it is possible to design receiver
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algorithms that achieve a high performance by exploiting the properties of
the channel. Thus, to accurately model the radio channel is an important
problem that affects the performance of wireless communication systems.
Consequently, radio channel modeling has been a subject of intense research
for a long time.

The type of channel model that is desired depends critically on the type
of system that is considered. For instance, different types of channel models
are needed for narrowband, broadband, single antenna systems, and multiple
antenna systems. Early channel modeling work studied the behavior of the
received envelope of a single antenna system. This lead to statistical models
of the fading of the received signal [Aul79, Cla68, Jak74].

With the advent of antenna array systems, new types of channel char-
acteristics appeared that needed to be modeled. The correlation between
different antenna elements was now modeled using different assumptions re-
garding the physical properties of the channel [Jak74, Lee73, Lee89]. These
models were typically developed for narrowband systems, where only the spa-
tial domain of the channel was considered while the temporal domain was
largely neglected. As the need for higher data rates was increased, larger
bandwidths was necessary. To accurately model broadband systems, the
temporal domain must be considered and properties such as time-of-arrival
and delay spread must be modeled. The success of cellular communication
systems has resulted in a vast literature on radio channel modeling. The
interested reader is referred to the following textbooks [Jak74, Lee89, Par92,
Pro95, Sau99, Ste92] and further references therein. See also the tutorials
and overviews [ARY95, Ert98, FL96, Has93] for further information.

The need to model many different types of radio channels has resulted in
a large number of different modeling approaches that can be found in the lit-
erature. One reason for the abundance of approaches is that the propagation
of a transmitted radio signal is a very complicated process, and modeling all
the phenomena in a physically correct manner is virtually impossible. The
transmitted signal will usually arrive at the destination along several paths,
i.e. multipaths, where the signal is reflected, refracted or diffracted. Thus,
many different types of simplifications and approximations are necessary in
order to obtain a simple yet accurate model of the wireless radio communi-
cations channel. The different approaches to channel modeling may roughly
be divided in the following categories:

1. Ray-Tracing Models
The advances in computing power has made it possible to accurately
predict the radio channel if a detailed map of the area is available.
By employing optical concepts, i.e. treating the waves as rays, the
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field strength can be calculated. Hence, these approaches are usu-
ally called ray-tracing approaches [AN00, Ami92, CPdAG98, DKW97,
SI94]. However, ray-tracing methods are still very computer inten-
sive and their application is limited to modeling deterministic scenarios
where a good map is available. The main application of ray-tracing in
channel prediction is cell-planning where the average received power
over an area is needed.

2. Empirical Models
A number empirical channel models have been developed that also
rely on optical concepts [Ber00, Bla00, Zha97], where two of the the
most well known examples are the Okumura [Oku68] and Hata [Hat80]
models. In this case, no detailed modeling of the area is performed.
Instead, simplified versions of ray-tracing are fitted to measured data
through a number of parameters. Typical examples of models that
are fitted to data are diffraction via roof-tops and propagation over
smooth/irregular terrain. These models are also mainly used in cell-
planning.

3. Statistical Models
These models typically use a highly simplified physical reasoning to
arrive at an statistical description of the radio channel [Aul79, Cla68,
Ert98, SV87, SJJS00, TCJ+72]. Although in some cases, these sta-
tistical models are obtained by fitting statistical models to measure-
ment data. A more elaborate physical reasoning may be found in
[BD91, DR93]. A stochastic spatial channel model that can be em-
ployed for studies of different antenna arrangements, is proposed in
[ZFDW00]. In that work, the statistical properties are estimated from
huge ray-tracing data sets. Statistical models are used both for simu-
lating channel data but also serves as a starting point when designing
optimal receivers.

4. Semi-Deterministic Models
Here, a more accurate physical modeling is performed. A typical ap-
proach is to place scattering objects in the area to be modeled and
then calculate the properties of this deterministic scenario using fun-
damental physics [BJ98, Ert98, FMB98, LR96, LLL97, NA98, PRR96,
RDNP95, ZFW98]. By assuming some statistical distribution of the
location of these objects and their properties, a semi-deterministic ra-
dio channel model is obtained. Similar to the purely statistical mod-
els, these models may be used to simulate data and designing receiver
algorithms. Their main benefit is, however, that they provide some
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physical insight of the channel properties while avoiding the intensive
computations of ray-tracing schemes.

Note that the ray-tracing channel models are often called propagation models
in the literature, while models of more statistical nature are called channel
models. The term propagation models is mostly used for models that calcu-
late the received signal from a deterministic environment employing theory
from EM wave propagation. The term channel model is typically used in
communication and signal processing literature for statistical based models
that do not rely on detailed results from wave propagation. Here, the term
channel model is used throughout the report for all these model types.

Recently, it has been proposed to use multiple antennas at both the trans-
mitter and receiver, resulting in MIMO channels. Impressive capacity gains
using these MIMO systems have been demonstrated for rich scattering envi-
ronments [FG98, Tel95]. The success of MIMO systems is due to the fact that
they more fully exploit the spatial dimension of the available radio spectrum
than previous systems. These MIMO systems require a new set of channel
models that accurately models the correlation between the antenna elements,
not only on the receiver side, but also on the transmitter side. Furthermore,
the high data rates that these systems will support also requires that the
temporal domain is accurately modeled. Thus, MIMO channels puts a set of
new demands on the channel model. The literature on MIMO channel mod-
els is relatively scarce [Bur00, GBGP00, PAKM00, SJBF00]. This report
aims to derive a more general model of the MIMO channel that is applicable
to arbitrary antennas (including dual-polarized antennas) and also suitable
for channel prediction studies.

To obtain a realistic model for the MIMO channel results from fundamen-
tal electromagnetic, scattering theory as well as linear algebra and mathe-
matical statistics will be used. Thus, the proposed model may fall under
the semi-deterministic category above. In principle, a simple and realistic
MIMO channel model for simulation and receiver design may be of either
statistical or semi-deterministic nature. Here, a semi-deterministic model
will be derived, since it provides some physical insight of the new phenom-
ena that are introduced by using antenna arrays at both transmitter and
receiver. Furthermore, a semi-deterministic model may more easily incorpo-
rate the effect of different antenna arrangements that will form an integral
part of most MIMO systems. It also makes it possible to relate different
channel capacity figures to environmental factors [BFHS00] such as angular
spread, dual-polarized antennas, and Doppler-spread. Finally, using a model
that incorporates physical dimensions, the time-variation of the channel due
to motion may be accurately modeled [HHDH99]. Thus, it may be used
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Figure 9.1: Typical suburban scatter environment with local scattering and
a dominant scatterer.

for studying channel prediction schemes that have gained increased interest
in the literature [DHHH00, EK99]. Channel prediction is of particular im-
portance in transmit diversity applications and MIMO systems, where the
amount of signaling may be significantly reduced by using prediction schemes.

The outline of this report is as follows: Since the MIMO radio channel
model exploits some results from electromagnetic wave propagation and scat-
tering, some topics from these areas are reviewed in Section 9.2 and Section
9.3. Based on these results, a model of the impulse response for the sin-
gle antenna case is derived in Section 9.4. This model is then extended to
a Single-Input Multi-Output (SIMO) model for the case of a multi-element
antenna, i.e. array, at the receiver in Section 9.5. The general case of arrays
at both receiver and transmitter, i.e. a MIMO channel, is then treated in
Section 9.6. Finally, some conclusions are presented in Section 9.7.

9.2 Radio Wave Propagation

The propagation situation in a practical wireless communication channel is
very complex. The signal that is transmitted from the mobile phone will
reach the base station antenna through many different paths. Consider the
propagation scenario in Figure 9.1 that contains a mobile antenna and a
base station antenna as well as numerous scattering objects. Several local
scattering objects (houses) are located in the vicinity of the mobile and a
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large scattering object (large house) is located further away. The transmitted
field from the mobile will experience electromagnetic scattering, reflection,
refraction, and diffraction before it reaches the base station antenna where a
voltage finally is induced.

In principle, it is possible to quite accurately calculate the received signal
at the base station by employing ray-tracing concepts. Of course, a detailed
map and the electrical properties of the materials are required in that case.
However, that type of calculation is only valid in that particular scenario and
does not provide much insight into the general characteristics of the channel.
Another alternative is to conduct extensive measurements and fit a statistical
model to the measured data. Although the measurements provide much
physical insight, the resulting statistical model is only valid for the channel
conditions under which the measurements were conducted. In the case of
a MIMO system relatively few extensive measurement campaigns have been
conducted and many parameters are needed to describe the relations between
the transmit- and receive-elements. Thus, a physics based channel model will
be derived in this report by employing results from radio wave propagation,
antenna theory, and electromagnetic scattering. However, measurement data
may be used also here to find the distributions of the channel parameters that
best describe different types of channels.

Consider the scenario in Figure 9.2 that contains a transmit antenna
(mobile) and a receive antenna (base station) as well as a scattering object
(scatterer). The vector �rms is defined as the vector from the mobile to the
scatterer and the vector �rsb as the vector from the scatterer to the base
station. In the uplink scenario, the mobile transmits a wave along the �rms
direction. This wave reaches the scatterer after some time and gives rise
to a scattered wave. The scattered wave later impinges on the base station
antenna from the �rsb direction and induces a voltage which is measured. If
only one scattering object is present, as in Figure 9.2, it is rather straight-
forward to find an expression for the received field at the base station using
fundamental wave propagation and scattering theory. However, if many ob-
jects are present, things become much more involved since the interaction
between the different objects must be accounted for. For instance, the signal
in one of the paths in Figure 9.1 is first reflected by two building walls before
being received by the base station antenna. A very complex model would be
obtained if these types of paths, i.e. multiple scattering, are accurately mod-
eled. In fact, that model would resemble the computer intensive ray-tracing
schemes previously alluded to.

By placing a scattering object at the last reflection and neglecting the
interaction between scatterers, some of the properties of multiple scattering
will be retained but a much simpler model is obtained. This would in Figure
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9.1 correspond to placing a scatterer at some of the houses. Using this ap-
proach, the total field at the receiving antenna at the base station is obtained
by summing the contributions from all scatterers. The following analysis will
use some results from wave propagation. For an introduction to scattering
and wave propagation, see [Bal89, Sau99]. Further material on scattering
may be found in [BS63, BSea87, FM94, dH57, Wai55] and the references
therein. Numerous textbooks on radio channel characteristics have been
written with applications in cellular networks [Ber00, Bla00, Jak74, Par92].

The different parts of the propagation path in Figure 9.2 will now be
examined in detail and expressions for the transmitted field, the scattered
field and the received voltages will be derived.

The transmitted field is of course determined by what type of antenna
that is used. Antenna theory is a mature research area where analytical
expressions exists for many different types of antennas. Most of the an-
alytical results were obtained rather early, before the computer revolution
occurred. For results on most common antenna types refer to the following
textbooks and further references therein [Bal82, Bal89, Kra50, Ell81, KH69,
SF52, ST98, Wee68].

For all antennas it is possible to express the transmitted field at a point
�rms, with the antenna positioned at the origin, in the form

�Et(�rms) =
e−jk|�rms|

|�rms|
Gt(�rms)�gt(�rms), (9.1)

where the first term includes a phase shift due to the propagation time and
the divergence of the transmitted field, k denotes the wave number1, Gt(�rms)
is the element pattern and �gt(�rms) is the orientation of the transmitted field.

Example Radiation from a Dipole Antenna

For example, the corresponding expressions for a �z oriented dipole an-
tenna of length l, is

Gt =
jηI0
2π

[
cos

(
kl
2
cos θ

)
− cos

(
kl
2

)

sin θ

]
(9.2)

�gt = �θ = �x cos θ cos φ+ �y cos θ sin φ− �z sin θ, (9.3)

1The wave number k = 2π
λ

= ω
√

µǫ, where λ is the wavelength. The symbols ǫ and µ
denote the dielectric constant and the permeability of the medium respectively.
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�rms
�rsb

Mobile

Base Station

Figure 9.2: Example of a propagation path where a mobile transmits a signal
that is received by a base station antenna via a scattering object.

where �x, �y, �z denotes the basis vectors in the rectangular coordinate
system, η is the intrinsic impedance of the medium2, I0 is the input
current, and (θ, φ) are the respective angles of the spherical coordinate
system which are calculated from the direction of �rms.

2

After some time, the transmitted wave will reach the scatterer in Figure
9.2. Scattering occurs and a new field �Es is radiated, that is received at the
base station. The field at the base station can be expressed in a manner
similar to (9.1) as

�Es(�rsb) =
e−jk|�rsb|

|�rsb|
E0�α (9.4)

where E0 is the amplitude of the field incident upon the scatterer and �α
represents the scattering process and contains both direction and amplitude.
The amplitude of the field, E0 may be expressed using (9.1) and the following
expression for the scattered field is obtained

�Es(�rsb) =
e−jk(|�rms|+|�rsb|)

|�rms||�rsb|
Gt(�rms)�α. (9.5)

The scattering function �α depends on the direction of incidence, the direc-
tion of scattering, and the orientation of the incident field (�gt) as well as the
properties of the scatterer. For objects of simple shapes, it is possible to
derive analytic expressions for �α that can be used to study the underlying

2The intrinsic impedance is defined as η =
√

µ/ǫ. For free space the intrinsic impedance
becomes 120π Ω ≈ 377 Ω.
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physics [Sva00a]. However, for channel simulation purposes it is usually suf-
ficient with much simpler forms that are based on statistical electromagnetic
scattering theory. Section 9.3 will treat the choice of scattering function in
more detail.

An expression for the received voltage can be obtained once the scattered
field is known. However, antennas are typically analyzed in transmission
mode and no expressions for the induced voltages, when using the antenna in
receive mode, are included in the antenna textbooks. Recently, expressions of
the antenna in receive mode was presented in [Kil99, Mey00, Sva98b], where
the induced voltage from a plane wave was derived. Using those results, the
induced voltage at the base station antenna due to the scattered field �Es, is
obtained as

v = CGr(−�rsb)�gr(−�rsb) · �Es, (9.6)

where Gr and �gr are the element pattern and polarization of the receiving
antenna. The scalar C is defined as

C = −j4π/kηI0, (9.7)

where I0 is the input current used in the calculation of the radiation function.
Note that the evaluation of the voltage in (9.6) involves the scalar product

between the vector �gr and the field �Es. Using (9.1),(9.5), and (9.6), the
received voltage can also be written as

v = C
e−jk(|�rms|+|�rsb|)

(|�rms| ⋆ |�rsb|)γ
Gt(�rms)Gr(−�rsb)�gr(−�rsb) · �α. (9.8)

Note that the wave travels along �rsb but is incident along the −�rsb direction,
hence the minus sign in the element pattern and directional dependency of the
receive antenna. A more general formulation of the attenuation of the wave
is employed in (9.8), where the symbol |�rms| ⋆ |�rsb| denotes either |�rms||�rsb|
or |�rms| + |�rsb|. The first is used if scattering is the dominant process and
the second is used when specular reflection dominates. Although deviating
slightly from the strict physical motivation, both may be used for channel
modeling, depending on what channel properties that are desired [FMB98].
Furthermore, the factor γ determines the attenuation over distance of the
wave. Here, a value of γ = 1, corresponds to free space propagation.

The expression in (9.8) represents the voltage due to the scattered field
from one object. Here, the field resulting from the direct path from mobile
to base station is not included. If the direct path is needed, the expression
in (9.8) should be combined with an additional term containing the field
transmitted from the mobile that induces the voltage at the base station. By
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combining (9.1) and (9.6), the voltage from the direct path becomes

vd = C
e−jk|�rmb|

|�rmb|γ
Gt(�rmb)Gr(−�rmb)�gr(−�rmb) · �gt(�rmb), (9.9)

where �rmb is the vector from the mobile to the base station. The contribution
of vd to the total voltage can be large if the scattering parameter �α is small.
In the following, the direct wave will not be included.

A shift in the frequency of the received signal, i.e. the Doppler shift,
will occur if the mobile is moving [Jak74, Sau99]. This effect is implicitly
included in both (9.8) and (9.9) which can be illustrated by considering a
moving mobile. The movement of the mobile will result in a change in the
vector �rms. If we assume a reasonably large distance between the scatterer
and the mobile, the vector can be approximated as [BD91]

k|�rms| = k|�rs − �rm| ≈ k|�rs − �rmo
|+ νdt, (9.10)

where νd = kvs cos ζ is the Doppler frequency, ζ is the angle between the
velocity of the mobile and the vector �rms. Note also that the speed and the
original position of the mobile are denoted vs and �rmo

. Thus, the expressions
in (9.8) and (9.9) includes fundamental properties such as the Doppler shift.
In the following the implicit form of (9.8) and the explicit form of (9.10) will
be used alternatively.

The total received field of a typical radio channel that has many scattering
objects is obtained, as previously alluded to, by summing the contributions
from each individual propagation path. Using the results above, it is now
possible to form a frequency domain transfer function for a scenario with
several scatterers, one mobile antenna, and a receiving antenna at the base
station. Using (9.8) gives the following transfer function when Ns scatterers
are included

h(ω, t) =
Ns∑

q=1

C
e−jk(|�rmsq |+|�rsqb|)

(|�rmsq | ⋆ |�rsqb|)γ
Gt(�rmsq)Gr(−�rsqb)�gr(−�rsqb) · �αq, (9.11)

Note that the vectors and the distances in (9.11) depend on time t and that
all antenna parameters, k, and the scattering dyad depend implicitly on the
frequency ω. Although the expression for the voltage in (9.8) is somewhat
complicated, it consists of relatively simple functions of the antennas, the
propagation distance, and the properties of the scattering objects. However,
the fact that the direction of propagation as well as the directions of the fields
are included, results in a more realistic model of the spatial domain than just
working with scalars. Also, the impact of polarization is correctly accounted
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for by calculating both the direction and the amplitude of the fields. Hence,
using the above expression, it is possible to examine different types of an-
tenna arrangements and polarization effects. This is particularly desirable in
MIMO channels where some physical insight is useful when designing systems
and evaluating receiver algorithms.

Note that the channel model is time-variant if the mobile, base station, or
any of the scatterers are moving. To reduce the notational complexity only
movement of the mobile will be considered here. Furthermore, the Doppler
shift is included in (9.11) in its implicit form to further simplify the notation.

The expression in (9.11) was derived for a single transmit and receive an-
tenna. It is straightforward to extend the scalar expression above to vector
and matrix expressions for the more general cases of antenna arrays at either
the base station or the mobile or at both. In Section 9.5, an expression for a
SIMO channel is presented that takes into account an array at the base sta-
tion (or mobile). The general case of multiple antennas at both transmitter
and receiver is treated in Section 9.6. First, the scattering function �α will be
examined in some detail in the next section.

9.3 Electromagnetic Scattering

A simple radio channel model based on EM wave propagation was intro-
duced in the previous section. The received voltage was obtained by adding
the contribution from many propagation paths, where each path involved
a scattered wave. However, the actual properties of the scattering objects
was not discussed. In this Section, the scattering function �α will be ana-
lyzed in detail. First, two objects of simple shape will be analyzed which
will give some insight into the scattering process. This insight is then used
to formulate a general scattering function that captures the most important
scattering properties of scattering objects.

9.3.1 Objects of Simple Shapes

For objects of simple shapes, it is possible to solve the scattering problem
and obtain an analytical expression of the scattered field. Many of these ana-
lytical results were developed rather early when no computers were available
and the value of analytical results was greater. In the beginning of the last
century, analytical results for many objects of simple shapes were derived. In
the following sections, the field scattered by two simple objects, the sphere
and the cylinder, will be examined.
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Figure 9.3: The geometry of the sphere and the orientation of the fields.

Scattering by Spheres

The scattering of a plane wave incident upon a dielectric sphere was one of
the first the scattering problems that was solved. For detailed derivations
of the scattering calculations, see [Bal89, BSea87, KCH71, Mie08]. Consider
a sphere of radius a located at the origin, see Figure 9.3. A uniform plane
wave polarized in the �x direction, traveling along the �z axis, is incident upon
the sphere. The incident electric field can be written as

�Ei = �xE0e
−jkz, (9.12)

where k denotes the wave number. For objects with a geometry coincid-
ing with a coordinate system, the scattered field can be found using modal
techniques. In the case of a sphere, the incident plane wave is expressed in
spherical wave functions. The scattered field is expressed in similar functions
and the fields are then matched at the surface of the sphere using boundary
conditions. The scattered field at a point (r, θs, φs) that is sufficiently far
from the sphere, i.e. the far-field expressions, then becomes

�Es(r, θs, φs) = E0
e−jkr

r
�α. (9.13)

The expression for the scattering function �α is quite complicated and is given
in Appendix 9A.

178



9.3. ELECTROMAGNETIC SCATTERING

0 2 4 6 8 10 12
10

−2

10
−1

10
0

10
1

k
0
a

σ
/(

π
a

2
)

Figure 9.4: Normalized radar cross section of a perfectly conducting sphere.

The scattering function �α is closely related to another quantity that com-
monly is used in scattering analysis, namely the Radar Cross Section (RCS)
[Ruc70]. The RCS simply relates the scattered energy to the incident energy
and can actually be expressed using �α as

σ = 4π|�α|2. (9.14)

For a thorough study of the RCS of the sphere and many other objects, see
[BSea87, Ruc70, CS68]. Also, the RCSs of spheroids and crushed rocks are
studied in [NS96b]. It is interesting to examine the frequency behavior of
�α or σ since these functions will have a large impact on the channel model.
Remember that the expressions for the received voltage in Section 9.2 were
derived in the frequency domain, and that an impulse response can easily
be obtained via the inverse Fourier transform of these expressions. Thus,
the frequency behavior of the scattering function �α will partly determine the
impulse response.

The normalized RCS of a perfectly conducting sphere is shown in Figure
9.4 as a function of frequency. Note that the frequency axis is normalized as
k0a = 2πfa/c where c denotes the speed of light and a denotes the radius of
the sphere. For a sphere of radius 0.1m, the frequency range in Figure 9.4 is
0-5.7 GHz. Three different regions are clearly visible in Figure 9.4. For low
frequencies, the RCS rapidly increases (∼ f 4) with increasing frequency. This
region is usually called the Rayleigh region. In this region, the dimension
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of the object is small compared to the wavelength. At higher frequencies,
the wavelength is comparable to the dimensions of the object which gives
rise to some resonances in the RCS. Therefore, this region is often called the
resonance region or the Mie region. As the frequency increases even further,
the dimensions of the object become much larger than the wavelength and
the resonances decay with increased frequency. For objects with dimensions
much larger than the wavelength, it is possible to use optical theory. Thus,
this region is often called the optical region. Note that the material of the
scattering object will of course affect the RCS, but the three different regions
will still be distinct. In Figure 9.4, the RCS of a perfectly conducting sphere
was shown. If a dielectric sphere would have been examined, the results
would have been similar but with other amplitude levels and a more noisy
shape of the curve.

Future wireless communication systems will be able to support high data
rates and require significantly more bandwidth than present systems. Hence,
these systems are often called broadband systems. However, in terms of the
physical bandwidth, i.e. the bandwidth relative to the carrier frequency,
these systems can still be regarded as narrowband systems. For example,
consider a system such as HiperLAN/2 [KJSWW99] which operate on the
5GHz band with a channel bandwidth of 20MHz. The difference in scattering
properties for the sphere considered in Figure 9.4, in this frequency band,
is negligible since the above bandwidth corresponds to values of k0a in the
range 10.47-10.51. In this range, the changes in backscattered energy are
very small. Thus, in this respect the bandwidth is quite narrow which will
prove useful in Section 9.4 where the impulse response of the channel model
is derived.

Of course, the radius of the sphere does not only affect the amount of
scattering but also the directional properties of the scattered field. In Fig-
ure 9.5, the magnitude of the scattered field as a function of the scattering
direction is shown. Here, a plane wave is incident upon a sphere with a di-
electric constant (relative permittivity) ǫr = ǫ1/ǫ0 = 4. Two different cases
are considered; Rayleigh scattering with a sphere of size k0a = 0.42 and Mie
scattering with a sphere of size k0a = 4.2. For the case of the smaller sphere,
the wavelength is large compared to the radius of the sphere. In this case, the
sphere scatters almost isotropically and thus acts as a point source. However,
in the second case, the radius of the sphere is comparable to the wavelength
and the scattering is more confined to the forward direction. In the optical
region, the beamwidth of the scattered field becomes even narrower. Thus,
as the size of the scattering object is increased, the scattered energy comes
more focused to one scattering direction. This property will be used later in
Section 9.3.2, where a general scattering function will be derived.

180



9.3. ELECTROMAGNETIC SCATTERING

(a) k0a = 0.42 (b) k0a = 4.2

Figure 9.5: Scattering from a dielectric sphere with ǫr = 4 and varying size
parameter k0a when a wave is incident from below.

Another interesting observation from Figure 9.5 is that the forward scat-
tering is much more pronounced than the backscattering. In fact, in most
cases, the forward scattering term dominates for dielectric spheres. However,
for a perfectly conducting sphere the backscattered energy dominates. For
more details on scattering from spheres, see [BSea87, CS68, KCH71, Kri99,
dH57]. Next, the scattering properties of finite cylinders will be examined.

Scattering by Finite Cylinders

The scattering of a plane wave incident obliquely upon a dielectric circular
cylinder results in more complicated expressions than those for the sphere.
Consequently, expressions for the scattered field appeared in the literature
significantly later than for the sphere [Wai55]. Due to the complexity of
the exact solution and the fact that it is only valid for infinite cylinders, a
number of approximative solutions have appeared in the literature. Earlier
work may be found in [PK83, Ric65] that gives numerical results for various
objects. More recent work includes dyad and tensor approximative formu-
lations [SS90a, SS96]. Scattering from dielectric and conducting cylinders is
also treated in some textbooks on scattering and radar cross section analysis
[BSea87, Ruc70, CS68].
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Figure 9.6: Cylinder Geometry

Consider a uniform plane wave incident obliquely upon a cylinder, see
Figure 9.6. Here, θi denotes the elevation incidence angle while θs and φs
denotes the desired scattering direction. The length of the cylinder is denoted
l and the radius is denoted a. The scattered field is found using similar
techniques as for the sphere. The solution is more complicated since the
cylinder is of more complicated geometry. Furthermore, the final solution is
only valid for infinite cylinders. However, an approximation is possible that
is sufficiently accurate for channel modeling. Using those approximations for
the finite cylinder along with the original solutions then gives the far-field
expressions for the scattered field in a point (r, θs, φs), see Figure 9.6, as

�Es(r, θs, φs) = E0
e−jkr

r
�α. (9.15)

The expression for the scattering function �α is even more complicated that
for the sphere and is given in Appendix 9B.

The scattering parameter for the dielectric cylinder is related to the RCS
in the same manner as the sphere, see (9.14). The normalized radar cross
section of a dielectric cylinder as a function of the size parameter k0a is
shown in Figure 9.7. An axial ratio l/a ≫ 1 is used in order for the ap-
proximative solution to be valid. Furthermore, a cylinder of lossy dielectric
(ǫr = 2.56 − i0.1024) is considered in this example. The three different re-
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Figure 9.7: Normalized radar cross section of a dielectric cylinder with ǫr =
2.56− i0.1024 (TMz).

gions, the Rayleigh, Mie and optical region are again clearly visible in Figure
9.7. Note that this RCS figure exhibits more rapid variations than the corre-
sponding figure for the sphere, see Figure 9.4. This is partly due to the more
complicated geometry and partly due to the fact that the sphere is perfectly
conducting while the cylinder is of lossy dielectric material.

It is also interesting to note that the scattering from a cylinder, in a
manner similar to the sphere, may be considered as narrowband. Returning
to the HiperLAN/2 example and a cylinder radius of 0.1m, the frequency
range in Figure 9.7 is 0-23.9GHz. Thus, a HiperLAN/2 channel corresponds
to the range 10.47-10.51, as for the sphere, in which the RCS remains almost
unchanged. In this respect, the scattering from a cylinder can be considered
to be of narrowband type.

The directional properties of the scattered field of a dielectric cylinder
are illustrated in Figure 9.8. Here, the axial ratio is l/a = 10, the size
parameter is k0a = 0.1, and two values of the relative permittivity ǫ = 4 and
ǫ = 4000 are considered. Since the size of the cylinder is of comparable size
as the wavelength, the width of the scattering lobe is rather broad. If the
cylinder would have been smaller, close to isotropical radiation would have
been obtained. On the other hand, if the cylinder would have been much
larger than the wavelength, a very narrow scattering lobe would have been
obtained. Thus, the scattering characteristics are, in this respect, similar to
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(a) ǫr = 4 (b) ǫr = 4000

Figure 9.8: Scattering from a dielectric cylinder with size parameter k0a = 0.1
and varying relative permittivity ǫr when a wave is incident from the left.

those of the sphere. In fact, the same is true for most scattering objects.

Furthermore, for the case of ǫr = 4 forward scattering dominates while
two scattering lobes are obtained for the case of ǫr = 4000. These type of
results have been verified by several authors [CS68, PK83, Ruc70]. Note that
scattering objects with very high ǫr values show similar scattering properties
as perfectly conducting objects. Thus, also in this respect do the cylinder and
the sphere exhibit similarities. The width of the scattering lobes in elevation
is due to the fact that the cylinder is finite. For an infinite cylinder, the
energy is scattered along a conical surface with half-angle θi. As the length
of the cylinder becomes smaller, the energy will be spread around this cone,
as seen in Figure 9.8.

Another interesting aspect of the scattering properties of the cylinder is
that the dielectric cylinder depolarizes the signal [Bal89]. Depolarization
means that the scattering introduces additional components in the scattered
field as compared to the incident field. This depolarization occurs only for
dielectric cylinders and not for smooth perfectly conducting cylinders. The
symmetry of the scattering object as well shape of the surface determines
the polarization properties of the object [Bal89, BS63, Kri99]. For instance,
the symmetry of the sphere assures no depolarization of the scattered field.

The polarization of the scattered wave is, along with the amplitude and
directional dependency, the main important properties of the scattering pro-
cess. The next section will introduce a general scattering model that is based
on the typical scattering properties found in this section.
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Figure 9.9: Scattering from a dielectric plate with oblique incidence.

9.3.2 General Scattering Model

In the previous section, the scattering properties of objects of simple shapes
such as the sphere and the cylinder were examined. The most important
characteristics were the width of the scattering lobe, the polarization, and
the frequency dependency. However, the amount of scattered energy is also
of great importance. The backscattered energy is mainly dependent on the
size of the scattering object. For instance, a large building wall will obviously
contribute more to the total scattering environment than a small lamp post.
Even in an indoor environment the scattering from the walls of the building
plays an important part, although not as dominant as in the outdoor scenario.
Therefore, is is interesting to examine the scattering from walls of finite
extent. Also, it will show that the scattering from walls depend quite strongly
on the shape of the surface. In particular, walls with a non-smooth surface,
i.e. a rough surface, will show quite a different scattering behavior than that
of a smooth wall or plane.

Scattering from a wall may accurately be described by considering the
classical electromagnetic problem of plane wave scattered by a flat rectangu-
lar plate. Explicit solutions of this problem may be found in many textbooks
[Bal89, Kri99]. These solutions rely on approximations such as Physical Op-
tics (PO) or Geometrical Theory of Diffraction (GTD). For the purpose of
obtaining a simple channel model, these approximations are satisfactory.

An example of scattering by a dielectric plate with oblique incidence is
shown in Figure 9.9. Here, �ki and �ks denote the normalized incidence and

185



CHAPTER 9. PHYSICAL CHANNEL MODELING OF MIMO SYSTEMS

scatter wave vectors (|�ki| = |�ks| = 1) and �x, �y and �z denote the axis in
the rectangular system of coordinates. In fact, throughout this section, the
wave vectors will be assumed to be normalized. Note also that the plane of
incidence, i.e. the plane spanned by �ki and the surface normal vector �n = �z,
is shaded in dark gray. The width of the scattering lobe depends strongly
on the size of the plate. For a plate of infinite extent, the width would be
infinitely small. If on the other hand, the plate is very small, the energy
will scatter in all directions and appear as a point source. Thus, the size
of the plate essentially determines the width of the scattering lobe. This
is in agreement with the results from the scattering analysis of spheres and
cylinders. However, note that the size of the plate, as well as the size of the
spheres and cylinders, also determines the magnitude of the scattered field.

Based on the above analysis, it is easy to draw the conclusion that large
buildings would only scatter in a very small angle and therefore contribute
only for a very narrow spatial section. However, there are two other factors
that affects the total scattering. Since the building is large, it is typically
possible to find a point where the directions of the incident wave and the
scattered or reflected wave fulfills Snell’s law [Bal89] and specular reflection
will dominate. Furthermore, the surface of a building will not be perfectly
smooth which affects the scattering properties significantly. An often used
criterion for a surface to be smooth is that the height difference ∆h between
two points on the surface, should obey [BS63]

∆h <
λ

8 cos θi
, (9.16)

where λ denotes the wavelength and θi the incidence angle relative the surface
normal. This criterion for a surface to be smooth or rough is usually called the
Rayleigh criterion. If the surface is rough, the energy in the specular direction
will decrease while increasing the scattered energy in other directions. The
reason is that a rough surface will have a large number of scattering points
on the surface with different surface normals that will scatter the energy in
many different directions. Thus, the scattered lobe in Figure 9.9 could also
be interpreted as scattering from an infinite plate with a rough surface.

An interesting property of rough surface scattering is that the depolariza-
tion phenomenon is determined by the incidence and scatter directions. In
fact, it can be shown [BS63, Bla00] that the field scattered by a rough surface
is depolarized in the same way as the field reflected by a plane inclined in
such a way that the specular direction coincides with the scatter direction
�ks. For more details regarding the depolarization of rough scattering, see
[BS63, Bla00].
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Figure 9.10: A wave incident upon the surface of a scatterer when the desired
scattering direction does not coincide with the specular scattering direction.

A simple model of scattering by arbitrary objects can be obtained by
employing the results from rough surface scattering and the scattering by
a dielectric plate. The polarization of the scattered field is obtained by
employing the depolarization result from rough surface scattering while the
width of the scattering lobe is obtained by relating the size of the scattering
object to a dielectric plate. The resulting model is then based on fundamental
electromagnetic theory while still being relatively straightforward to apply.

Consider the scattering scenario in Figure 9.10, where a wave is incident
along the �ki direction upon an object with surface normal �n. The specular
direction that fulfills Snell’s law is indicated as �ksp, and the desired scattering

direction is denotes �ks as usual. In Figure 9.10, the incidence plane and the
scattering plane are shaded using a slightly darker gray than the surface of
the scattering object. Based on the above observations, the scattered field is
modeled as

�Es = ρ�Sp · �Ei, (9.17)

where �S denotes a scattering dyad3 or a scattering matrix [Bal89, FM94]. In

(9.17), the depolarization is determined by the dyad �S while the shape and
the width of the scattering lobe is determined by ρ. Note that both these
quantities are functions of the incidence and scattering directions as well as
the orientation of the scattering objects.

An expression for the scattering dyad �S is easily obtained by employing
the result from rough surface scattering that states that the polarization of

3A dyad is defined by the juxtaposition �ab of the vectors �a and �b, with no dot product
or cross product between them. In matrix form this corresponds to the outer product of
two vectors a and b, i.e. ab

T (assuming column vectors). Thus, a dyad is simply a linear
transform [Bal89].
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Figure 9.11: Illustration of scattering geometry and the orientation of the
vectors.

the scattered field can be obtained from the polarization of a wave incident
upon a plane inclined in such a way that the specular direction of that plane
coincides with the desired scattering direction. In Figure 9.11, a simple
illustration of the inclination of such a plane is shown. Here, �n denotes the
original surface normal and �n0 denotes the surface normal of the inclined
plane. Note that �ksp denotes the specular direction of the original plane and

that �ks now denotes both the desired scattering direction and the specular
reflection direction of the inclined plane. The new surface normal is easily
obtained as

�n0 =
�ks − �ki
||�ks − �ki||

, (9.18)

where the denominator assures a unit length surface normal. Furthermore,
the incidence angle (and now also the scattering angle) becomes

�ks · �n0 = −�ki · �n0 = cos θ0. (9.19)

It is now straightforward to obtain an expression for the scattered field for
the scenario illustrated in Figure 9.11, and formulas may be found in many
textbooks [Bal89, Bla00, FM94]. Unfortunately, these textbooks do not em-
ploy dyad notation. A more convenient expression may be found in [Foc65],
where a coordinate independent formulation of the scattering problem of a
plane wave incident obliquely upon an infinite dielectric plate was obtained
using a dyad notation. Using the notation in Figure 9.11 and (9.17)-(9.19),
the expression for the scattering dyad becomes

�Sp =
−1

sin2 θ0

[
R1(�n0 cos 2θ0 + �ki cos θ0)�n0 − R2(�n0 × �ki)�n0 × �ki

]
, (9.20)
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where the coefficients R1 and R2 depend on the material of the dielectric as

R1 =
cos θ0 −

√
ǫ1
ǫ2

√
1− ǫ1

ǫ2
sin2 θ0

cos θ0 +
√
ǫ1
ǫ2

√
1− ǫ1

ǫ2
sin2 θ0

R2 =
cos θ0 −

√
ǫ2
ǫ1

√
1− ǫ1

ǫ2
sin2 θ0

cos θ0 +
√
ǫ2
ǫ1

√
1− ǫ1

ǫ2
sin2 θ0

. (9.21)

Here, ǫ1 and ǫ2 denote the permittivity of the surrounding medium and the
dielectric of the plate, respectively. These coefficients are usually called re-
flection coefficients in the literature. An interesting special case is a perfectly
conducting plane, where the coefficients become R1 = 1 and R2 = −1. The
scattering dyad in (9.20) can also be expressed in matrix form as

Sp =
−1

sin2 θ0

[
R1(n0 cos 2θ0 + ki cos θ0)n

T
0 − R2Mvec(n0k

T
i )vec

T(n0k
T
i )M

T
]
,

(9.22)

where a matrix formulation of the vector cross product �v = �a×�b is used
v = M vec(abT). (9.23)

The selection matrix M is defined as

M =




0 0 0 0 0 −1 0 1 0
0 0 1 0 0 0 −1 0 0
0 −1 0 1 0 0 0 0 0



 . (9.24)

Now, two equivalent expressions for the depolarization have been given in
(9.20) and (9.22). The dyad formulation is frequently used in the propa-
gation literature, but the matrix formulation may appear more intuitive to
researchers in the fields of signal processing and wireless communications.
Next, an expression for the model parameter ρ in (9.17) that determines the
shape and width of the scattered field will be presented.

Obviously, the expression for ρ depends strongly on the shape of the scat-
terer. Expressions are readily available in the literature for objects such as
flat rectangular plates or cylindrical plates [Bal89, BSea87, BS63]. However,
the aim is to design a single function that is able of modeling most scatter-
ers. However, most scatterers exhibits a maximum in the specular direction
and decrease smoothly as the desired scattering direction diverges from the
specular direction, in the manner observed in Figures 9.5, 9.8, and 9.9. A
simple function that produces this type of behavior is

ρ = sinc(a||�ks − �ksp||), (9.25)
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where a denotes a size related parameter that determines the rate of decrease
as the scattering direction diverges from the specular direction and sinc(x) =
sin(x)/x. By using the relation

�ksp = �ki − 2(�ki · �n)�n (9.26)

equation (9.25) can also be written as

ρ = sinc(a||�ks − �ki + 2(�ki · �n)�n||), (9.27)

where �n as previously denotes the surface normal of the scattering object.
The model for scattering by arbitrary objects can, using the above results,

finally be formulated as
�S = Aρ�Sp, (9.28)

where ρ is given in (9.25) and either of the two formulations (9.20) and
(9.22) may be used. The parameter A is included to account for the size
of different objects or the amount of scattered energy. The scattering dyad
in (9.28) depends on the parameters �ki, �ks, �n, ǫ2, a, and A. To reduce
the number of model parameters, the special case of a perfectly conducting
object will be used in the following. Thereby, the number of parameters that
models the scattering dyad are reduced to three. In Section 9.4, the impact of
different choices of these parameters on the channel impulse response will be
discussed. These parameters may be modeled as stochastic or deterministic,
depending on the scenario. Here, measurements may be used to decide upon
the distributions of the parameters.

9.4 SISO Channel Modeling

The impulse response of a channel with a single transmitting and a single
receiving antenna, i.e. an Single-Input Single-Output (SISO), will be derived
in this section using the results from Section 9.2 and Section 9.3. The spatio-
temporal properties of the channel model are then examined and discussed
in a few channel scenarios.

9.4.1 Impulse Response

The frequency domain transfer function for a scenario with several scatter-
ers was derived in Section 9.2. The form of this transfer function may be
simplified by using the general scattering model introduced in Section 9.3.
In particular, it is possible to relate the scattering function �α to the trans-
mitted field in more direct way. Since, the scattering function �α denotes the
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polarization of the scattered field it can be rewritten (with a slight abuse of
notation) using (9.17) as

�α = �Es = �S �Ei = �S�gt, (9.29)

where the polarization of the incident field �Ei is expressed using the polar-
ization of the transmitted field from the antenna �gt. Note that �gt depends
on the direction of radiation as well as the antenna type. Furthermore, the
relationship to the radar cross section can now be written as

σ = 4π|�S�gt|. (9.30)

A more compact form of the frequency domain transfer function may be
written using (9.29)

h(ω, t) =

Ns∑

q=1

C
e−jk(|�rmsq |+|�rsqb|)

(|�rmsq | ⋆ |�rsqb|)γ
Gt(�rmsq)Gr(−�rsqb)�gr(−�rsqb)�Sq�gt(�rmsq),

(9.31)

where C is given in (9.7), �S in (9.28), and the antenna parameters Gt, Gr, �gt,
and �gr are defined in Section 9.2. By selecting the antennas and determining
the properties of the scatterers and their positions, the frequency domain
transfer function is easily calculated using (9.31). Throughout this section,
⋆ denotes a multiplication, and an attenuation factor of γ = 1 will be used.

A time domain transfer function is typically employed when analyzing
and simulating the wireless channel. Fortunately, it is straightforward to
obtain a complex baseband channel impulse response from the frequency do-
main transfer function (9.11) by performing an inverse Fourier transform.
First, several things should be noticed. Even if a wideband system is con-
sidered, the bandwidth compared to the carrier frequency can typically be
considered narrow. For instance, the HiperLAN/2 standard, that supports
high data rates, has a relative bandwidth of less than one percent. Thus, the
antenna parameters C,Gt, Gr, �gt, and �gr are almost constant over the signal
bandwidth. Furthermore, the scattering dyad �S was in Section 9.3 also found
to be almost constant over the bandwidth. The remaining term that depends
on the frequency is the phase shift that corresponds to the time delay. Thus,
for a system with bandwidth ωb, the complex baseband impulse response can
be written as

h(τ, t) = C ′
Ns∑

q=1

sinc [ωb(τ − τq)]
(|�rmsq | ⋆ |�rsqb|)γ

Gt(�rmsq)Gr(−�rsqb)�gr(−�rsqb)�Sq�gt(�rmsq),

(9.32)

191



CHAPTER 9. PHYSICAL CHANNEL MODELING OF MIMO SYSTEMS

where τq = (|�rmsq |+ |�rsqb|)/c, c denotes the speed of light in the surrounding
medium, and

C ′ = −j 4ωb
kcηI0

, (9.33)

where kc denotes the wave number of the carrier frequency. The impulse
response in (9.32) is a function of both the delay τ and the time t, that
accounts for the time evolution of the impulse response. One example of
time evolution effects is the Doppler shift that occurs due to movement of
either the mobile, the base station, or the scatterer. Note that the Doppler
is included implicitly in (9.32), but explicit expressions were given in Section
9.2. Furthermore, the impulse responses given above is the baseband impulse
response where the carrier frequency is suppressed.

The functions given in (9.31) and (9.32) are two characterizations of the
wireless channel which are related through the Fourier transform with re-
spect to the delay τ . Another set of functions can be obtained by Fourier
transforming with respect to the time t. Altogether, four different functions
can be obtained by Fourier transforming with respect to both time and de-
lay. This characterization is known as the family of Bello functions, after
their originator [Bel63]. For example, by taking the Fourier transform of
(9.32) with respect to the time t results in the delay Doppler-spread function
that is widely used to determine the Doppler spread. This function will be
calculated for a scattering scenario in Section 9.4.2.

The constant C ′ can of course be omitted when simulating a particular
type of system, since it is just a constant. However, when studying the
frequency dependency it should be included, and care must be taken not to
violate the narrowband assumption used to arrive at (9.32).

The expression for the impulse response may be simplified even further, by
evoking another narrowband assumption. If the bandwidth ωb of the system
is small compared to the spread in arrival times ∆τ , i.e. ωb ≪ 2π/∆τ , the
different time delays corresponding to each scatterer (or path) can then be
treated as simple phase shifts as

hnb(t) =

Ns∑

q=1

e−jωcτq

(|�rmsq | ⋆ |�rsqb|)γ
Gt(�rmsq)Gr(−�rsqb)�gr(−�rsqb)�Sq�gt(�rmsq), (9.34)

where the constant C ′ has been omitted and ωc denotes the carrier angular
frequency. Thus, it is important to separate the two different narrowband
assumptions. The first narrowband assumptions is regarding the bandwidth
of the system relative the carrier frequency, while the second narrowband
assumption regards the system bandwidth relative the delay spread of the

192



9.4. SISO CHANNEL MODELING

channel. Thus, a system may be narrowband in the first sense, but not in
the second sense.

It is possible to relate the second narrowband assumption to a spread
in path length ∆l instead of delay time ωb ≪ 2π/∆τ = c/∆l. For exam-
ple, a system of bandwidth 20MHz at a carrier frequency of 5.2GHz can be
considered narrowband in the second sense if the difference in path length
is less than 15m, while it is still narrowband in the first sense. For a sys-
tem with a bandwidth of 1MHz, the corresponding distance becomes 300m.
However, for all reasonable communication systems it is always possible to
apply (9.32).

In (9.32) and (9.34), a continuous time representation has been used.
However, the major part of the signal processing and communication theory
is performed using a discrete time representation of the channel. Fortunately,
a discrete impulse response can be obtained by sampling the functions given
above [Pro95]. An example of how this can be performed in a MIMO setting
is given in [SJBF00], where also the pulse shaping filter response of the com-
munication system is included. Next, some of the most important properties
of the channel model will be illustrated in a few simulation examples that
provide some insight into the different physical phenomena.

9.4.2 Spatio-Temporal Properties

The spatio-temporal properties of the channel model will be examined in a
few examples in this section. First, a very simple example of a single scatterer
will be considered to illustrate the general properties of the model and the
scattering dyad �S. Next, a more complicated example with many scattering
elements with different polarization characteristics will be examined.

Consider the channel scenario illustrated in Figure 9.12, where only a
single scatterer is present. The scatterer is oriented as �n = −�y, and the
mobile travels along a path in the �x direction with a speed of 10m/s. The
base station is situated beneath the scatterer and the mobile trajectory. The
scatterer is assumed to be perfectly conducting, and the scattering amplitude
is A = 3. At both the base station and the mobile, �z oriented dipole antennas
are used (see (9.2) and (9.3)). Since all objects are situated in the x−y plane,
all wave propagation is horizontal and no polarization losses occur. Several
fundamental channel properties can now be illustrated using the channel
models introduced above and also explained since the geometry of the channel
is simple. Since only one scatterer is present, the delay spread will be zero
and the narrowband model in (9.34) may be used.

First, the received power as the mobile moves along the trajectory will
be examined. The squared magnitude of the received voltage |hnb(t)|2 ver-
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Figure 9.12: Geometry of a simple channel scenario example with only one
scatterer oriented as �n = −�y.

sus time t is shown in Figure 9.13 for three different scatterer sizes. As is
intuitively expected, the maximum received power occurs when the mobile
is the closest to the scatterer. Also, the impact of different scattering object
sizes is examined by using several values for the size parameter a, see (9.25).
A large value of the scatterer size parameter a results in a narrow scattering
lobe, while a lower value gives a broader area of scattering as expected. This
figure may be useful when determining suitable values for a when simulating
different channels.

Although the scattered power reveals much of the scattering properties,
the Doppler effects are not included since the phase is neglected. In Figure
9.14, the real part of the complex baseband response is shown for the same
scenario as previously. Note that this corresponds to the output of a filter
matched to a single sinusoid of carrier frequency. Here, the Doppler effect
is clearly visible. As the mobile approaches the scatterer, the angle ζ be-
tween the velocity of the mobile (�x) and the direction towards the scatterer
approaches 90◦. Using the results obtained in Section 9.2, the Doppler fre-
quency is νd = kvs cos ζ . Thus, the Doppler frequency should be zero at the
scatterer, as found in Figure 9.14, since the angle ζ then becomes 90◦. The
maximum Doppler frequency is consequently expected at the beginning and
the end of the mobile path in Figure 9.12. In the simulation of Figure 9.14,
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Figure 9.13: Received energy versus time for the scenario in Figure 9.12, and
for three different scatterer sizes.

0 1 2 3 4 5 6
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

−4

time (s)

R
e

(h
n
b
(t

))

Figure 9.14: The real part of the complex response, Re(hn(t)) versus time,
for the scenario in Figure 9.12 when a = 0.5 and fc = 200MHz.
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Figure 9.15: The Doppler spectrum for the scenario in Figure 9.12 when
a = 0.5 and fc = 200MHz resulting in a maximum theoretical Doppler
frequency of 6.7Hz.

a carrier frequency of 200MHz was used, which gives a maximum Doppler
frequency of 6.7Hz. This agrees reasonably well with Figure 9.14. However,
by calculating the Doppler spectrum, i.e. taking the Fourier transform of the
signal in Figure 9.14, the Doppler effects are illustrated more explicitly.

The Doppler spectrum for the scenario in Figure 9.12 is shown in Fig-
ure 9.15. It is clearly visible that the Doppler frequencies are in the range
0 − 7Hz, which agrees well with the expected maximum Doppler of 6.7Hz.
Thus, the channel model is capable of reproducing the most fundamental
characteristics of the wireless channel, such as the Doppler and the time evo-
lution of the channel. However, since only one scattering object was used,
no multipath effects were present. Furthermore, no polarization effects were
included since all wave propagation was horizontal, and both antennas were
vertically polarized. Next, a more complicated scenario that contains some
of these aspects will be studied.

Consider the channel geometry in Figure 9.16, where a more complicated
scattering scenario is shown. Here, the base station is located at (0, 0, 20)
while the mobile travels between (98, 0, 0) and (102, 0, 0), where all values
are are given in meters. The mobile moves with a velocity of 2m/s, i.e. the
total travel time is 2s. The mobile dipole antenna is oriented as �a = �x+�y+�z
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Figure 9.16: The geometry of a more complicated channel scenario with 50
scatterers clustered around the mobile. The base station and mobile antennas
are denoted as in Figure 9.12.

and the expressions in Section 9.2 can be used after an appropriate rotation
of the antenna coordinate system. For a brief review on rotating antennas
using Euler rotation angles, see [Mil99]. Two different antenna arrangements
at the base station will be considered, one �z oriented and one �y oriented. A
carrier frequency fc = 5GHz will be used, and both a narrowband system
and a wideband system with a bandwidth of 100MHz will be examined. The
position of each scatterer �rs is obtained as

�rs = �x (100 + r sin θ cosφ) + �y r sin θ sinφ+ �z cos θ, (9.35)

where the radius of the scattering cluster r is uniformly distributed r ∈
U(1, 20), and the angles θ, φ are also uniformly distributed as φ ∈ U [0, 2π)
and θ ∈ U [0, π). Furthermore, the scattering properties of each scattering
object, as defined in Section 9.3 equation (9.28), are distributed as

a ∈ U(0.01, 0.5)
ǫ2 =∞
A ∈ N(0, 1)
�n ∈ U(0, 1)

. (9.36)
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Figure 9.17: The received power from both the �z oriented and the �y oriented
base station dipoles for the channel scenario in Figure 9.16.

Note that the surface normal �n, with the above definition, will be equally
probable in all directions. Further, the size parameter a is chosen as to obtain
a large scattering lobe and thus energy contributions from most objects. The
scattering amplitude is simply modeled using a complex normal distribution
while all objects are assumed to be perfectly conducting.

The received power from both the �z oriented and the �y oriented base
station dipoles are shown in Figure 9.17 for a narrowband system employ-
ing (9.34). The wideband case will be treated later. Note that the powers
are normalized to the maximum received power of the �z dipole. The rapid
variations of the received power is due to the interaction of several scatterers
and propagation paths, i.e. multipath effects. This is an example of a fading
signal, where deep fades are encountered quite frequently. Note that some
slow fading properties due to the movement also is visible in Figure 9.17. It is
important to stress that Figure 9.17 may be compared to Figure 9.13, where
the corresponding curve is shown for a single scatterer. The corresponding
curve for the real part of the complex response for the channel scenario in
Figure 9.16 exhibits similar behavior as the power plot in Figure 9.17 and is
therefore not plotted here.

The received power is almost the same for the �z dipole as for the �y dipole,
i.e. the vertical polarization is of similar strength as the horizontal, in this
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Figure 9.18: The Doppler spectrum for the scenario in Figure 9.16 with
fc = 5GHz and a velocity of 2m/s resulting in a theoretical maximum Doppler
frequency of 33.3Hz.

case. For other simulation environments, such as larger separation distances,
vertical polarization will be slightly larger as found in several measurement
studies [Sor98, KTS84, Vau90]. However, it is important to stress that the
geometry of the channel determines the polarization properties. Here, it
can be useful to use measurement results to determine suitable values and
distributions for the different parameters involved in the model [PMF99].

In Figure 9.18, the Doppler spectrum for the scenario in Figure 9.16 when
fc = 5GHz, is shown. Using the formulas given in Section 9.2 and the fact
that the mobile is moving with a speed of 2m/s, the maximum theoretical
Doppler frequency becomes 33.3Hz. This theoretical result agrees very well
with the simulations presented in Figure 9.18. However, the actual shape of
the Doppler spectra obviously differs significantly from the theoretical curves
usually presented in textbooks [Jak74, Pro95, Yac93], that assume uniformly
distributed scatterers around the receiver.

The arrival times of the individual waves and the magnitude of the am-
plitudes are shown in Figure 9.19 for the �z oriented base station dipole. Also
shown is the magnitude of the wideband impulse response as given in (9.32),
for a system with a bandwidth of 100MHz. First, it is noted that the ar-
rival times correspond well with the distance over the speed of light for the
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Figure 9.19: The magnitude of the wideband impulse response, the arrival
times, and the magnitude of the amplitudes of the individual waves for the
channel illustrated in Figure 9.16.

channel scenario. A number of parameters may be used to characterize the
wideband impulse response [Jak74, Pro95, Sau99, Yac93]. For example, the
mean delay

τo =
1

PT

Ns∑

q=1

Pqτq, (9.37)

where PT =
∑Ns

q=1 Pq, and the Root Mean Square (RMS) delay spread which
is defined as

τRMS =

√√√√ 1

PT

Ns∑

q=1

Pqτ 2q − τ 2o . (9.38)

Here, Pq denotes the received power from path q and τq denotes the delay
of path q. For the simulation in Figure 9.19, the mean delay is 356ns and
the RMS delay spread 16ns. The RMS value is rather low for this type
of channel and indicates that a few additional scatterers at other locations
typically contribute to the received signal. For instance, several clusters of
scatterers may be considered. This would also increase the depolarization of
the signals and result in a quite small difference between the received power
for different polarizations. This is frequently encountered in practice.

200



9.4. SISO CHANNEL MODELING

Furthermore, the amplitudes decrease quite rapidly as the delay increases,
which agrees quite well with previous measurements and models [SV87,
Sau99, TCJ+72]. In those models, the envelope of the impulse response
was modeled as exponentially decaying, which also could be used as a model
for the response in Figure 9.19. However, it needs to be re-iterated that all
results depend on the chosen channel scenario, the position, and the char-
acteristics of the scatterers. The possibilities of calculating different channel
properties are virtually endless, and in the next section a few alternatives
will be indicated. Also, some relationships to existing channel models will
be established.

9.4.3 Discussion

An important contribution of the proposed channel model is that the po-
larization properties and the antenna properties are included in the model.
For example, it is easy to examine the impact of different antenna solutions
by simply inserting different antenna functions. Here, both analytical and
numerical results can be employed. This is of particular interest, since smart
antennas in communication systems are rapidly becoming a key element in
the design of future high data rate systems. Also, since the full electromag-
netic field is obtained at the receiver, it is possible to examine the potential
of employing different electromagnetic polarizations as a diversity receiver
[Sva00b]. Already, many communication systems employ dual polarized an-
tennas as two diversity branches. However, recent results indicate that up to
six different diversity branches may be available by exploiting the full poten-
tial of electromagnetic polarization [AMd01]. All this is possible to model
with the proposed channel model, and some results will be presented for the
case of MIMO channels in Section 9.6.

Another interesting channel characteristic which is captured by the chan-
nel model is the time evolution of the impulse response. As the mobile moves,
the directions to the scattering objects will change gradually, and thus af-
fect the characteristics of the channel in a physically sound manner. This is
typically not modeled in the purely statistical models often suggested in the
signal processing and communications literature. However, with the advent
of transmit diversity and MIMO systems, the time evolution of the channel
is becoming increasingly more important. In particular, it is important to
be able to predict the behavior of the channel in order to more fully ex-
ploit the wireless channel [DHHH00, Ekm00, HHDH99]. Hence, the channel
model proposed here may be used to simulate mobile radio channels also for
this purpose. These properties are even more relevant for multiple antenna
systems and in Section 9.6 the topic of channel prediction will be further
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discussed.
Furthermore, by using the scattering dyad formulation of the channel

model, compact expressions are obtained that are physically intuitive. It is
possible to relate effects in the impulse response to features in the channel
scenario. Furthermore, it is also possible to relate effects in different receiver
algorithms in a similar manner, which is not possible in a measurement cam-
paign. The model also covers both narrowband and wideband systems. Thus,
it can be used to simulate many types of radio systems since it does not rely
on a specific frequency or time resolution.

By varying the properties and the locations of the scattering objects,
many different channel types are possible to simulate. These choices can, of
course either be made by physical reasoning, or by calculating these param-
eters from measurement data. In fact, almost any type of channel can be
obtained by an appropriate selection of scattering objects and positions. By
making some specific assumptions, it is possible to relate the new channel
model to existing ones.

If only horizontal propagation is considered and all antennas are verti-
cally polarized, the scattering dyad may be replaced by a scalar parameter.
In that case, the proposed channel model essentially reduces to a model
proposed in [FMB98]. That model is also based on positioning scattering
objects and calculating the received signal, but without explicitly including
any electromagnetic wave propagation. Several channel environments are
proposed in [FMB98] that can be adopted to the proposed model by includ-
ing electromagnetic polarization effects. A similar model was proposed in
[BKM96] that also exploits the concept of positioning scattering objects and
calculating the received signal, however, without including polarization and
3-D wave propagation. Interestingly, the channel parameters were extracted
using measurements and a number of interesting results were obtained. A
similar scheme may be applied also to the present channel model, if suitable
channel measurements that includes polarization are available.

Finally, it is possible to relate the channel model to some of the purely
statistically based channel models. For instance, by placing the scattering
objects in a circle in a plane surrounding the receiver, a uniform distribu-
tion of the incidence angles at the receiver would result. Thus, in this case
the proposed channel model would reduce to the Clark’s model [Cla68]. If
the scatterers instead were placed on a circular segment within an elevation
sector, the extension of Clark’s model proposed in [Aul79] would result. Fur-
thermore, if the scatterers are positioned along a circle circumventing the
mobile, the well known Jake’s model [Jak74] is obtained. A number of other
relationships to well known models may also be established. However, many
of these assume that an array antenna is used which will be discussed in the
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following sections.

9.5 SIMO Channel Modeling

The impulse response of a channel with a single transmitting antenna and an
array of receiving antennas, i.e. an Single-Input Multi-Output (SIMO), will
be derived in this section using the results from previous Section. The spatio-
temporal properties of the channel model are then examined and discussed.

9.5.1 Impulse Response

The transfer function or impulse response for a SIMO channel is easily ob-
tained by calculating the SISO channel impulse response for each individual
element at the array and combining the final response as

h(τ, t) =




h1(τ, t)
h2(τ, t)

...
hn(τ, t)


 , (9.39)

where n denotes the number of antenna elements and hi(τ, t) the time domain
impulse response of antenna i. The impulse response of each antenna is
calculated using (9.32) for the wideband channel and using (9.34) for the
narrowband channel.

A simpler expression of the SIMO channel may be obtain if the reciprocal
of the bandwidth of the signal is large in comparison with the time needed
for the wave to propagate across the array aperture. This assumption is
usually called the narrowband assumption in sensor array signal process-
ing literature. Note that this narrowband assumption is different from the
narrowband assumptions discussed previously. Here, the bandwidth of the
signal is related to the array aperture while previously narrowband related to
either the bandwidth of the signal or the delay spread. Thus, a signal may be
narrowband related to the array aperture while being wideband when related
to the delay spread.

For a signal, narrowband in the aperture sense, the arrival time at each
antenna element may be modeled using simple phase shifts which eliminates
many of the calculations involved in evaluating (9.39) The induced voltages

for an array of n elements when a wave is incident along �kq can then be
written as the following n× 1 vector

vT = vaT (�kq) = v
[
e−j
�l1·�kq , e−j

�l2·�kq , . . . , e−j
�ln·�kq

]
, (9.40)
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where �li is the location vector of element i, �kq is the wave vector of the
incident wave, and v is the induced voltage already given in (9.8). Often
the first element is chosen as the phase reference center or origin, thereby
measuring all the other time delays or distances are relative to the first
element. Using (9.40), the wideband SIMO impulse response may be written
as

h(τ, t) = C ′
Ns∑

q=1

a(�kq)sinc [ωb(τ − τq)]
(|�rmsq | ⋆ |�rsqb|)γ

Gt(�rmsq)Gr(−�rsqb)�gr(−�rsqb)�Sq�gt(�rmsq),

(9.41)
and the narrowband SIMO impulse response as

hnb(t) =
Ns∑

q=1

a(�kq)e
−jωcτq

(|�rmsq | ⋆ |�rsqb|)γ
Gt(�rmsq)Gr(−�rsqb)�gr(−�rsqb)�Sq�gt(�rmsq), (9.42)

where a(�kq) is calculated for qth incident wave using (9.40). An implicit
assumption in the above simplified expression is that the wave fronts are
planar. If the array is close to the source or the array aperture is very large,
the expressions need to be corrected for non-planar (spherical) wavefronts
[HB91]. This is not necessary using the first expression (9.39), where the full
path length is used to calculate the response of each element.

The introduction of several antenna elements gives rise to several new
channel characteristics that will be examined in the next section.

9.5.2 Spatio-Temporal Properties

The temporal properties of the SIMO model are similar to the SISO model,
since the SIMO response essentially consist of a number of SISO impulse
responses. However, there is one important new property, namely the relation
or correlation between the signals received by the different array elements.
The correlation properties will be examined for the same scattering scenario
as described in Section 9.4.2 and illustrated in Figure 9.16. Each individual
impulse response will exhibit similar Doppler shift, fading, and RMS delay as
found in the SISO analysis and will not be further examined here. Instead,
angular properties such as the DOA and the angular spread will be examined
in conjunction with the correlation properties. All channel parameters will
be the same as in Figure 9.16 except for the attenuation of the waves and
the orientation of the mobile antenna �a = �z. Here, |�rmsq | ⋆ |�rsqb| will denote
|�rmsq | + |�rsqb|, while the attenuation factor γ still is γ = 1. This change
will result in a less rapid attenuation of the scattering around the mobile
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and thus increase the delay spread and the angular spread. An alternative
way of obtaining this effect is to use a smaller attenuation factor γ, which
also would result in a less rapid attenuation. What parameter values to use
depends critically on the type of scenario that is desired.

The correlation properties of the received signals from the array depend
strongly on the angular properties of the channel. In particular, the angular
spread and the mean Direction Of Arrival essentially determine the correla-
tion levels. The mean DOA is calculated in a manner similar to the mean
delay as

φo =
1

PT

Ns∑

q=1

Pqφq, (9.43)

where PT =
∑Ns

q=1 Pq and the RMS angular spread becomes

φRMS =

√√√√ 1

PT

Ns∑

q=1

Pqφ2q − φ2o. (9.44)

Here, Pq denotes the received power, φq denotes the DOA, and τq denotes
the delay of path q. In Figure 9.20, the angular spread φRMS is shown for
the scenario in Figure 9.16. The average RMS angular spread in this case
is 3.9◦. Also, the variations between different realizations of the channel are
not very large. The angular spread value may appear low. However, with the
chosen distribution of scatterers the concentration of scatterers will be denser
close to the mobile. Also, the scatterers further from the mobile will often
experience longer path delays and consequently also a larger attenuation, and
will therefore contribute less to the total received power. An RMS angular
spread of 3.9◦ is, therefore, reasonable.

A very important property of a wireless system employing multiple anten-
nas is the correlation between the signals received by the different antennas.
In principle, the correlation properties determine the performance of diver-
sity combining and essentially also the channel capacity. The basic idea of
diversity combining is that if the received signal in one antenna experiences
a deep fade (low signal SNR), the signals received by the other elements may
not, provided that the signal levels exhibit low correlation. The correlation
between the envelopes of the received signals, i.e. the envelope correlation,
is obtained using [PS60] as

ρe ≈
|E[h1nbh2nb

∗
]|2

E[|h1nb|2]E[|h2nb|2]
. (9.45)

The envelope correlation between two �z oriented base station antenna ele-
ments, as a function of the element separation distance, is shown in Figure
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Figure 9.20: The angular spread φRMS for the channel illustrated in Figure
9.16.

9.21. Also shown is the correlation when assuming a Gaussian or Uniform
distribution of the DOA with the same angular spread [Ast96]. First, it is
noted that the correlation using the Gaussian assumption follows the actual
correlation behavior of the scenario under consideration fairly well. A slightly
higher correlation is obtained using the Uniform assumption. It is also ob-
served that the ripple behavior is not accounted for by using the Gaussian
assumption. The above properties of the correlation as a function of the sep-
aration distance have been confirmed both using measurements and other
channel models in numerous papers. An excellent overview of spatial chan-
nel models can be found in [Ert98]. Since the correlation properties are of
great importance when designing receiver algorithms, much work has been
performed on deriving accurate channel models for the correlations prop-
erties. However, these models only account for the spatial separation and
not the polarization of the antennas. Most future communication systems
will most likely exploit polarization diversity, since it offers relatively com-
pact antenna solutions. Therefore, it is of great interest to model also the
correlation properties between different polarization branches.

In Figure 9.22, the square root of the envelope correlation between two �z
oriented antennas, two �y oriented and the correlation between one �z oriented
and one �y oriented antennas are shown vs separation distance. Here, 100
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Figure 9.21: The envelope correlation between two �z oriented base station
antenna elements as a function of the element separation distance. Also
shown is the correlation when assuming a Gaussian or Uniform distribution
of the DOA with the same angular spread.

channel realizations were used to calculate the correlations. Note that the �z
oriented case corresponds to the curve shown in Figure 9.21. The correlation
for the �y oriented case is relatively similar to the vertical case as might be ex-
pected. One possible explanation for the slightly slower decorrelation in the
horizontal plane is that the wave propagation is predominantly horizontal,
leaving more degrees of freedom in the vertical plane that can contribute to
the decorrelation. Also, it is interesting to note that the received signals from
an �x and an �y oriented dipoles are almost uncorrelated in this scenario. Ob-
viously, the polarization correlation properties depends on the choice of the
channel parameters, and care should be taken to not draw to many conclu-
sions regarding the levels of correlation. However, if polarization dependent
measurements are available, the values of the channel parameters may be
tuned to produce similar results as the measurements. The resulting chan-
nel model may then be used to simulate different systems and also to relate
physical parameters to effects in the signal processing schemes. In the next
section, the possibilities of the SIMO model as well as some relationships to
existing channel models will be discussed.
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Figure 9.22: The square root of the envelope correlation between two �z ori-
ented, two �y oriented, and between one �z oriented and one �y oriented antennas
vs separation distance.

9.5.3 Discussion

The introduction of an array antenna at the base station offers many ad-
vantages compared to the single antenna case, such as beamforming and
diversity combining. Therefore, there has been a significant interest in mod-
eling the channel with a single mobile and a base station antenna array, i.e.
the SIMO channel. The focus of this research has been on obtaining models
for the correlation between the elements and how the correlation depends on
environmental parameters such as element spacing. Excellent overviews of
spatial channel models may be found in [Ert98, LR99], where references are
given to numerous papers on SIMO channel models. Analytical expressions
for the correlation under different assumptions can, for instance, be found in
[Ast96, Jak74, Sau99].

Most of the SIMO channel models presented in the literature are possible
to obtain as a special case of the channel model proposed in this report, by
assuming an appropriate distribution of the scatterers and their respective
properties. In particular, if the polarization properties are neglected and a
scalar scattering coefficient is used, the proposed channel model reduces to
models proposed in [BKM96, FMB98]. In those works, suggestions for real-
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istic values of the channel parameters, such as number of scatterers, number
of scatter centers, attenuation factors, radius of scattering centers, and typ-
ical distances between base and mobile can be found. Essentially, the SIMO
model presented in this section is only a combination of several SISO models.
This is one advantage of physical modeling compared to statistical modeling,
where a whole set of new correlation functions and distributions need to be
determined.

If it is difficult to accurately model the correlation between the different
antennas at the base station, it is even more difficult to model systems with
multiple antennas at both transmitter and receiver. Thus, models based on
fundamental physics are well suited for this modeling task which is the topic
of the next section.

9.6 MIMO Channel Modeling

The impulse response of a channel with multiple transmit and receive anten-
nas, i.e. an Multi-Input Multi-Output (MIMO), will be derived in this section
using the results from previous sections. The spatio-temporal properties of
the channel model are then examined and discussed.

9.6.1 Impulse Response

Essentially, the extension from a single transmit antenna and single receive
antenna to a MIMO system with nt transmit and nr receive antennas only
requires the calculation of nt × nr impulse responses or channel coefficients.
Using the proposed physical channel model, this simply means evaluating
(9.32) and (9.34) for many different transmit and receive positions.

Most of the analysis of MIMO systems, so far, has been regarding nar-
rowband systems [CJT98, FG98, SFGK00, NSC00]. In that case, the MIMO
channel can be expressed as an nr × nt channel matrix H(t) with elements
Hij(t) = h

ij
nb(t), where h

ij
nb(t) denotes the channel coefficient between trans-

mit antenna j and receive antenna i, calculated using (9.34). Different nor-
malizations of this narrowband MIMO channel matrix have been used in the
literature, where ||H||2F = nrnt appears to be the most common normaliza-
tion [Bur00].

For wideband MIMO channels, numerous possibilities of representing
the channel exist, such as tensor notation or concatenated matrices [LP00,
SJBF00]. However, the set of channel impulse responses that define the
MIMO channel, {hij(t, τ); i = 1, 2, . . . , nr, j = 1, 2, . . . , nt}, is easily evalu-
ated using (9.32), with the corresponding antenna positions for each impulse
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Figure 9.23: Microcell channel environment.

response. Although most of the MIMO analysis has been performed for nar-
rowband systems, future systems will be wideband where it is critical that
the temporal properties of the MIMO channel is accounted for [LP00].

Both narrowband and wideband MIMO systems will be simulated and
discussed in the next section.

9.6.2 Spatio-Temporal Properties

Some of the properties of MIMO channels will be examined in this section.
In particular, the correlation properties as seen from the transmitter and the
receiver will be examined along with the achievable data rate (channel capac-
ity). The potential of using EM polarization as diversity branches will also be
briefly addressed. Two examples of channel environments will be examined
where suitable values of the channel parameters are given. First, a micro-
cell propagation environment will be presented that allows for comparisons of
spatial correlations with previous SIMO models [Ert98, Sau99]. A picocell or
indoor model will also be presented, that models areas where the scattering
is dense and high channel capacities have been measured [KSMP00, SOK00].

In Figure 9.23, a channel environment is shown that may be characterized
as a microcell environment. The scatterers are uniformly distributed within
a sphere of radius R, centered at the mobile that is located a distance D
from the base station. The antenna element separation is denoted dms and
dbs at the mobile and base respectively. Values for the number of scatterers
Ns and the carrier frequency fc together with the distances D and R are
given in Table 9.1. These values correspond to similar environments given
in [BJ98, FMB98], that were found to yield realistic channel characteristics.
The polarization properties are determined by the parameters �n, a, and A.
Here, it is assumed that the surface normals are uniformly distributed, re-
sulting in strong depolarization. Other choices can of course be made such
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Microcell Environment Picocell/Indoor Environment
D = 5km D = 30m
R = 0.5km R = 100m
Ns = 50 Ns = 50
fc = 5GHz fc = 5GHz
�n ∈ U [0, 1], |�n| = 1 �n ∈ U [0, 1], |�n| = 1
a ∈ U [0.01, 0.5] a ∈ U [0.01, 0.5]
A ∈ CN (0, 1) A ∈ CN (0, 1)

Table 9.1: Channel parameters for two channel environments.

as a distribution biased towards horizontal normals, to account for the fact
that buildings and walls typically have vertical surfaces. A uniform distribu-
tion also models the width of the scattering lobe that is of sufficient range
to include both broad and narrow scattering lobes. Finally, the scattering
coefficient is modeled as a zero mean complex Gaussian process, see Table
9.1.

A channel environment with picocell and indoor characteristics can be
obtained using almost the same modeling approach as above. In this case,
a scattering sphere is located between the base and the mobile that has a
scattering radius large enough to enclose both mobile and base. The corre-
sponding channel parameters are given in Table 9.1. Both the microcell and
indoor environments use γ = 1 and multiplicative attenuation, i.e. |�rms|⋆|�rsb|
denotes |�rms||�rsb|.

Since the overwhelming part of the analysis of channel capacity and space-
time processing has been conducted for narrowband systems, the correlation
properties of narrowband MIMO systems will be examined first. Wideband
characteristics and polarization properties are discussed after that.

A very important property of the channel that essentially determines the
channel capacity is the correlation between different antennas or channel
coefficients. The related case of a single mobile antenna and a base station
array has been thoroughly studied in numerous theoretical and practical
investigations, as discussed in the previous section. However, the MIMO case
is less understood, where essentially only theoretical results and conjectures
have appeared in the literature [CRFLL00, SFGK00, PAKM00].

In Figure 9.24, the envelope correlation ρe [Jak74, Sau99] of a signal re-
ceived by two base station antennas separated by a distance dbs is shown for
various separation distances. Here, 500 realizations of the microcell scenario
given in Figure 9.23 and Table 9.1 is used, and the antennas are �z oriented
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Figure 9.24: The envelope correlation ρn1m1
n2m2

, as seen from the base station,
for various element separation distances.

dipole elements. The solid curve is directly comparable to the previous anal-
ysis on SIMO systems [Ert98, Jak74, Sau99], and is well modeled using a
Gaussian distribution for the angular properties. Also included in the plot
is the corresponding envelope correlation when the signal is emanating from
two mobile antennas separated by a distance dms, i.e.

ρn1m1
n2m2

≈ E2[Hn1m1H
∗
n2m2

]

E[|Hn1m1 |2]E[|Hn2m2 |2]
, (9.46)

where the channel matrix H is defined in Section 9.6.1. The base station
antennas n1 and n2 are separated a distance dbs while the mobile antennas
m1 and m2 are separated a distance dms.

It has been conjectured [CRFLL00, PAKM00] that the correlation prop-
erties at the transmitter and receiver are independent from one another, and
that the overall correlation properties may be obtained through multiplica-
tion. This is supported by the simulations presented in Figure 9.24, where
the correlation decreases in a multiplicative manner as the mobile correlation
decreases with increasing dms.

However, this is not the case in Figure 9.25, where instead the correlation
properties are shown versus mobile separation distance dms. Here, the general
shape of the correlation curve changes as dbs is changed, thus indicating that
the correlation properties are not independent. Further measurements are
needed to determine if the predictions of the model are in agreement with
practical channel environments.
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Figure 9.25: The envelope correlation ρn1m1
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, as seen from the mobile, for
various element separation distances.

For systems with a high degree of correlation in one end and relatively
low correlation at the other, the multiplicative conjecture may provide a rea-
sonable first order approximation. The magnitude of the envelope correlation
matrix, i.e. a normalization of the correlation matrixR = E[vec(H)vecH(H)],
is shown in Figure 9.26 for a 3× 3 microcell MIMO system with dms = 0.5λ
and dbs = 0.75λ. In this case, the correlation is well approximated by
R = Rbs ⊗Rms (see Figure 9.27), where ⊗ denotes the Kronecker product
and the correlation properties at the base station and mobile are denotedRbs
and Rms, respectively. However, for systems with intermediate correlation,
the simulations indicate that the correlation properties cannot accurately be
described by multiplication. As mentioned above, further measurements are
needed to investigate these properties in detail.

Many future MIMO systems are designed to offer high data rates in in-
door environments, where most likely multiple polarizations will be used to
obtain compact implementations suitable for hand-held devices. The chan-
nel capacity of a 2 × 2 MIMO system using co-located 45◦ slanted dipoles
[Bal82, Sau99], will be simulated next. The channel capacity is calculated
using formulas given in [FG98] and the indoor channel parameters given in
Table 9.1.

In Figure 9.28, the channel capacity is shown for the dual-polarized
MIMO system along a path of length 10λ (0.6m), with an average SNR of
10dB (path-average). For comparison, the corresponding capacities of a SISO
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Figure 9.26: The magnitude of the envelope correlation matrix for a 3 × 3
MIMO system with dms = 0.5λ and dbs = 0.75λ.
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Figure 9.27: The magnitude of the Kronecker envelope correlation product
matrix R = Rbs ⊗ Rms for a 3 × 3 MIMO system with dms = 0.5λ and
dbs = 0.75λ.
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Figure 9.28: The channel capacity of a dual-polarized MIMO system along
a path of length 10λ (0.6m), with an average SNR of 10dB (path-average).
Also, shown is the corresponding capacities of a SISO system and a 2 × 2
spatially separated MIMO system.

system and a 2× 2 MIMO system of �z oriented dipole elements separated as
dms = 0.5λ and dms = 2λ, are also shown. In this case (a single channel real-
ization), the dual-polarized and the spatially separated systems offer similar
capacities that are about three times the corresponding capacity of a single
antenna system. Here, the normalization ||H||2F = nrnt = 4 is employed,
thereby including both antenna gain and diversity gain [And00, Bur00],
which can be observed in Figure 9.28 where the deeper capacity dips are
avoided in the 2× 2 systems.

It was recently proposed that all six possible EM polarizations can be used
as diversity branches [AMd01] to increase capacity. In Figure 9.29, the CCDF
of the magnitude of the eigenvalues of H are shown for an indoor MIMO
system employing 6 co-located elements, i.e. three electrical dipoles and
three ring antennas (magnetic dipoles). The magnitude of the eigenvalues in
Figure 9.29 are similar enough to provide relative large capacity gains over
a single antenna system. This is clearly indicated in Figure 9.30, where the
CCDF of the channel capacity for the same scenario is shown. The channel
capacity of a corresponding SISO system and a hypothetical independent
and identically distributed (i.i.d) system is also shown. In fact, the capacity
of the multipolarized system is close to the i.i.d system that serves as an
upper bound on the capacity [FG98]. Thus, employing all EM polarizations
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Figure 9.29: The CCDF of the magnitude of the eigenvalues of an indoor
MIMO system employing all six EM polarizations.
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Figure 9.30: The CCDF of the channel capacity in an indoor MIMO system
employing all six EM polarizations.
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offers interesting new possibilities of achieving high capacities, where novel
antenna solutions may offer very compact implementations.

As mentioned in the beginning of this section, most of the MIMO analysis
has been of narrowband character. However, future system will most likely
be wideband. Thus, the temporal domain also needs to be modeled. Using a
physical channel model, this is easily included in a similar manner as in the
SISO case, see Figure 9.16.

A number of numerical examples of channel environments have been pre-
sented in this section. However, many other types of channels can be obtained
by adjusting the channel parameters, and it is an ongoing work to determine
parameter sets which based on measurements match reality.

9.6.3 Discussion

Essentially, the extension from a single transmit antenna and single receive
antenna to a MIMO system only requires that several impulse responses need
to be calculated. Using the proposed physical channel model, this simply re-
sulted in evaluating the SISO expressions for many different transmit and
receive positions. This is one of the advantages with employing a physical
channel model compared to a purely stochastic model, where a whole set of
new correlation functions and distributions needs to be determined. Further-
more, in a manner similar to the SISO and SIMO cases, it is straightforward
to simulate a system employing different polarizations. By positioning the
scatterers and using different characteristics, most types of channels may be
simulated. One important benefit of the proposed physical model is that it
provides physical insight, which is especially interesting in the less measured
and understood MIMO systems.

The framework presented in this report has been used to simulate MIMO
channels employing novel antenna solutions such as multimode antennas
[Sva00c] and parasitic antennas [WS01]. See also Chapter 10 and 11 for
more details. Moreover, the impact of mutual coupling on the channel ca-
pacity [SR01] has been studied using a version of the channel model presented
in this section, see Chapter 12. In this section, the recently proposed idea
of exploiting all six EM polarizations in MIMO systems [AMd01] was briefly
addressed. The distribution of the eigenvalues of the channel matrix was
calculated for such a system in an indoor scenario. It was found that the
capacity, in that case, was close to the theoretical capacity. Thus, exploiting
EM polarization offers essentially the same capacity as a traditional spatially
separated antenna array. Since very compact antenna solutions may be pos-
sible for systems employing EM polarizations, this is an interesting future
topic. The effect of antenna separation on the correlation properties was
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also examined in this section. The possibility of modeling the correlation
at each end as independent, was also studied. These issues are important
when designing MIMO systems, and they have therefore been addressed in
several recent publications [Bur00, CRFLL00, PAKM00]. Although a num-
ber of measurements have been presented [KSMP00, MWS00, SOK00], more
empirical results are needed in order to confirm the simulation results that
has been presented. Finding parameter sets for the proposed channel model
that satisfactorily matches reality is an important ongoing work.

Since the model naturally incorporates temporal channel properties, the
proposed physical model also appears to be suitable when analyzing the per-
formance of wideband MIMO systems [LP00]. Another interesting area of
physical channel modeling is long-range prediction of fading signals, where
realistic channel models are desired to evaluate the performance of adap-
tive transmission techniques [DHHH00]. Realistic channel models based on
physics may also prove useful when designing efficient feedback strategies for
systems employing transmit diversity [NLTW98].

9.7 Conclusions

A spatio-temporal channel model based on EM scattering and fundamental
physics was presented. By studying the scattering properties of objects of
simple shapes, such as spheres and cylinders, a simple function that captures
the most important scattering properties was derived. A compact formula-
tion was obtained by using a dyad notation and concepts from rough surface
scattering. A simple, yet detailed, channel model was then obtained by em-
ploying results from EM wave propagation theory and elementary antenna
theory. In a sense, the model bridges the gap between the complicated wave
propagation environment of radio signals and the idealized models previously
used when analyzing MIMO systems.

These results were then used to formulate SISO, SIMO, and MIMO chan-
nel models. Essentially, the extension from a single transmit antenna and
single receive antenna to multiple antennas only requires that several im-
pulse responses or channel coefficients need to be evaluated. Hence, a physi-
cal channel model can be modified to different antenna arrangements rather
easily as compared to a purely stochastic model where a whole set of new
correlation functions and distributions need to be determined. For each type
of channel model, important channel characteristics were simulated and dis-
cussed. For instance, properties such as antenna correlation, Doppler spread,
channel evolution, channel capacity, fading, and polarization diversity were
analyzed.
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In principle, most channel types can be obtained by positioning the scat-
terers and using different object characteristics. However, it is important
to find parameter sets that yield channel properties that correspond to real
channel environments. Here, measurements are needed and it is an ongo-
ing work to determine parameter values which match reality. An interesting
method of doing that is Matched Field Processing (MFP), which has been
employed for estimation of physical channel parameters in CDMA systems
[AG00].

One important contribution of the proposed physical model is that it pro-
vides physical insight, which is especially interesting in the less measured and
understood MIMO systems. It also provides the possibility of evaluating the
potential of different polarization schemes, such as dual-polarized antennas
and sixth-fold polarization diversity that recently was proposed [AMd01].
The proposed model also appears suitable for wideband analysis [LP00] and
for evaluating channel prediction schemes [DHHH00]. Other applications
where the time evolution of the channel is important is transmit diversity
schemes with feedback [NLTW98]. Thus, the proposed channel model has
many interesting applications. The framework of this report has already
been used to analyze the impact of several different antenna configurations
[Sva00a, Sva00b, Sva00c, SR01, WS01].

9A Scattering by a Sphere

Expressions of �α, that were introduced in Section 9.2, for scattering of a plane
wave by a sphere will be presented in this appendix. Consider a sphere of
radius a located at the origin, see Figure 9.3. A uniform plane wave polarized
in the �x direction traveling along the �z axis is incident upon the sphere. The
incident electric field can be written as

�Ei = �xE0e
−jkz, (9A.1)

where k denotes the wave number. For objects with a geometry coincid-
ing with a coordinate system, the scattered field can be found using modal
techniques. In the case of a sphere, the incident plane wave is expressed in
spherical wave functions. The scattered field is expressed in similar functions
and the fields are then matched at the surface of the sphere using boundary
conditions. The scattered field at a point (r, θs, φs) that is sufficiently far
from the sphere, i.e. the far-field expressions, then becomes

�Es(r, θs, φs) = E0
e−jkr

r

[
�θEsθ +

�φEsφ

]
, (9A.2)
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where

Esθ =
j cos(φs)
k

∑∞
n=1 j

n 2n+1
n(n+1)

[anu1(θs)− bnu2(θs)] (9A.3)

Esφ =
j sin(φs)
k

∑∞
n=1 j

n 2n+1
n(n+1)

[anu2(θs)− bnu1(θs)] . (9A.4)

Here, u1(θs) = sin θsP
1′
n (cos θs) and u2(θs) =

P 1
n(cos θs)
sin θs

, where Pmn is the asso-
ciated Legendre function [Bal89] and the prime denotes differentiation with
regards to the function argument. The coefficients an and bn depend on the
electrical size of the sphere s = ka and s1 = k1a. It should also be noted
that k1 is the wave number for the sphere and k for the surrounding medium.
Thus, the dielectric properties of the sphere enter the expressions through
the wave number. Assuming that the permeability of the sphere is the same
as the surrounding medium, i.e. µ1 = µ. The coefficients can then be written
as [Bal89, BSea87, KCH71]

an = − k2jn(s)[s1jn(s1)]
′−k21jn(s1)[sjn(s)]

′

k2h
(2)
n (s)[s1jn(s1)]

′−k21jn(s1)
h
sh

(2)
n (s)

i′ (9A.5)

bn = − jn(s)[s1jn(s1)]
′−jn(s1)[sjn(s)]′

h
(2)
n (s)[s1jn(s1)]

′−jn(s1)
h
sh

(2)
n (s)

i′ , (9A.6)

where jn(x) is the spherical Bessel function [Bal89] of order n, h
2
n(x) is the

spherical Hankel function of the second kind [Bal89] of order n, and the prime
denotes differentiation with regards to the function argument.

At the time these solutions were derived, evaluation of the expressions was
almost impossible. However, with access to a computer the above expressions
are readily evaluated. Furthermore, only a few terms of the sum need to be
included to achieve the accuracy needed in this application. To obtain more
accurate values, a rule of thumb of how many terms that should be evaluated
is [Wis80]

nc = s + 4.05s
1/3 + 2. (9A.7)

The solution given in (9A.2)-(9A.6) is the general solution valid for all
frequencies, where the special case of a perfectly conducting sphere is also
included by choosing a complex value for the dielectric constant. However,
the solution is based on a �x oriented field incident along the �z axis. These
conditions will rarely be fulfilled in the channel model derived in Section 9.2,
since the same coordinate system is used for all scatterers. By employing a
local coordinate system for each object, the above solution can be applied.
Thus, a coordinate transformation is necessary where the local coordinate
system should be oriented such a way that �x′ coincides with the direction
of �gt and that �z

′ coincides with the direction of �rms. The final basis vector
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is then obtained as �y′ = �z′ × �x′, where × denotes the vector cross product
[Bal89]. The transformation from local to global coordinates becomes

Tlg =

[
�gt
|�gt|
,
�rms × �gt
|�rms||�gt|

,
�rms
|�rms|

]
. (9A.8)

The scattering angles (θs, φs) are easily found from the scattering direction
expressed in local coordinates as �r′sb = T−1

lg �rsb. Unfortunately, the scattered
field is also expressed in local coordinates. To get the scattered field back
into the global coordinate system, the vectors �θ and �φ in (9A.2) need to be
transformed to the global rectangular coordinate system. Combining these
steps, the scattering parameter �α can finally be written as

�α = TlgTsr�θ
′ESθ +TlgTsr�φ

′ESφ , (9A.9)

where Tsr denotes the transformation from spherical to rectangular coordi-
nates [Bal89], ESθ is given in (9A.3), and E

S
θ is given in (9A.4). Thus, �α

depends on �rms, �rsb, and �gt as well as on the size and the electric properties
of the sphere.

9B Scattering by a Finite Cylinder

Expressions of �α, that were introduced in Section 9.2, for scattering of a plane
wave by a cylinder will be presented in this appendix. Consider a uniform
plane wave incident obliquely upon the cylinder, see Figure 9.6. The incident
electric field can be written as

�Ei = E0e
jk(z cos θi−x sin θi)�e = E0e

jk(z cos θi−x sin θi)
[
αTM (�x cos θi + �z sin θi) + α

TE�y
]
, (9B.1)

where the incident field has been separated in a Transverse Magnetic (TM)
and Transverse Electric (TE) part. That is, one part where the electric
field is perpendicular to �z (TE) and one part where the magnetic field is
perpendicular to �z (TM). The reason for this is that the solution will be
different for the TE and TM parts. The scattered field is found in a manner
similar to the sphere case using modal techniques. However, in this case
the plane wave is expressed in cylindrical functions. An exact solution is
unfortunately only available for an infinite cylinder [Wai55]. Approximate
solutions exist [Bal89, Ruc70] that employ concepts from PO, and thus give
good results for scattering directions close to specular reflection. However,
for this application of channel modeling, the accuracy is acceptable. Using
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those approximations for the finite cylinder along with the original solutions
then gives the far-field expressions for the scattered field in a point (r, θs, φs),
see Figure 9.6, as

�Es(r, θs, φs) = E0
e−jkr

r

[
�θEsθ +

�φEsφ

]
, (9B.2)

where

Esθ =
jl
π
sinU
U

sin θs√
sin θi

∑∞
n=−∞

(
αTEf2,n − αTMf1,n

)
ejnφ (9B.3)

Esφ =
jl
π
sinU
U

sin θs√
sin θi

∑∞
n=−∞

(
αTEf1,n + α

TMf2,n
)
ejnφ, (9B.4)

where U = kl
2
(cos θi + cos θs) and l is the length of the cylinder. The coeffi-

cients f1,n and f2,n are defined as

f1,n = −
Jn(v)

H
(2)
n (v)

−
2j H

(2)′
n (v)

vH
(2)
n (v)

− KJ ′n(u)
uJn(u)

πv2
[
H

(2)
n (v)

]2
D

f2,n = −
2

πv2

(
1

u2
− 1

v2

)
n cos θi[

H
(2)
n (v)

]2
D
,

(9B.5)

where

D =

[
H

(2)′
n (v)

vH
(2)
n (v)

− KJ
′
n(u)

uJn(u)

][
H

(2)′
n (v)

vH
(2)
n (v)

− N2J ′
n(u)

KuJn(u)

]

−
[
1

v2
− 1

u2

]
n2 cos2 θi (9B.6)

and K = µ1/µ, v = ka sin θi, u =
√
k21 − k2 cos2 θia, and N = k21/k

2. Also,
the cylindrical Bessel function [Bal89] of order n is denoted Jn(x) and the

Hankel function of the second kind [Bal89] of order n is denoted H
(2)
n . The

prime denotes differentiation with regards to the function argument. The
rule of thumb given in (9A.7) for spheres can be applied also here.

Similar to the sphere analysis, a coordinate transformation is needed in
order to apply the above results in the channel model in Section 9.2. In
this case, the �z′ axis of the local coordinate system should coincide with the
cylinder axis �rcyl. Also, the field should be incident along the �x

′ axis (see
Figure 9.6). This is ensured by choosing �x′ = �rms− (�rms ·�rcyl)�rcyl. Thus, the
transformation from local to global coordinates can be expressed as

Tlg =

[
�rms − (�rms · �rcyl)�rcyl
|�rms − �rms · �rcyl)�rcyl|

,
�rcyl × (�rms − (�rms · �rcyl)�rcyl)
|�rcyl × (�rms − (�rms · �rcyl)�rcyl)|

, �rcyl

]
. (9B.7)
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Using Tlg the incident field in local coordinates is easily found as �Ei′ =

T−1
lg
�Ei, from which the TE and TM parts of the field (αTE , αTM) are calcu-

lated . Furthermore, the angles θ′i and θ
′
s are obtained from the transformed

vectors �r′ms = T−1�rms and �r
′
sb = T−1�rsb.

Finally, the scattering parameter �α can be written as

�α = TlgTsr�θ
′ESθ +TlgTsr�φ

′ESφ , (9B.8)

where Tsr denotes the transformation from spherical to rectangular coordi-
nates [Bal89], ESθ is given in (9B.3), and E

S
θ is given in (9B.4). Note that

the scattering parameter for the cylinder is related to the RCS in the same
manner as for the sphere, see (9.14).
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Chapter 10
Exploiting Multimode Diversity in

MIMO Systems

A
novel way of exploiting higher modes of antennas as diversity branches
in MIMO systems is introduced. Essentially, antennas employing mul-
tiple modes offer characteristics similar to an antenna array, through

multiple modes and using only a single element. Analytical expressions for
the correlation between different modes in a realistic environment is pre-
sented for a biconical and a circular microstrip antenna that employs higher
order modes. It is found that the correlation is low enough to yield a di-
versity gain. Furthermore, the channel capacity of a MIMO system using
a multimode antenna, i.e. an antenna employing multiple modes, is found
to be comparable with the capacity of an array. Since only one element is
needed, the multimode antenna offers several advantages over traditional ar-
rays, and is an interesting antenna solution for future high capacity MIMO
systems.

10.1 Introduction

The outstanding growth of wireless communication during the last years has
resulted in an enormous demand for higher data rates. Recently, it has
been proposed to use multiple antennas, i.e. arrays, at both the transmit-
ter and the receiver to substantially increase the attainable data rate, i.e.
the channel capacity. Impressive capacity gains using these MIMO systems
have been shown for rich scattering environments, both theoretically and
experimentally [FG98, LP00, WFGV98].

Unfortunately, several practical aspects pose problems for achieving the
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predicted high data rates. Introducing antenna arrays at both the transmitter
and receiver will undoubtedly increase the cost of producing the terminals,
since it is expensive to manufacture, calibrate, and maintain antenna arrays
with several elements. Furthermore, fitting several elements onto a small
hand-set introduces several new and interesting challenges in antenna design.
Practical problems with the feed and size requirements need to be overcome,
while still providing an aesthetically pleasing design. Hence, the deployment
of MIMO systems introduces several new challenges in antenna design that
also encourages the development of new antenna solutions.

An interesting antenna solution, which appears well suited for MIMO
systems is the multimode antenna. In a sense, the multimode antenna offers
characteristics similar to those of an antenna array through multiple modes,
but using only a single antenna element. Therefore, this type of antenna
appears to be an interesting candidate for MIMO systems that are thought
to operate in environments where employing many antenna elements may
pose several problems related to size requirements, low cost implementations,
mutual coupling, and design issues.

Employing the higher order modes of antennas has not received much
attention in the literature. In [Vau88], a circular microstrip antenna em-
ploying higher order modes, was designed based on an element figure of
merit that was introduced in [Vau86]. Recently, a modified biconical an-
tenna that employs several modes to form directional beams was introduced
in [DW98, ZHM+00]. The microstrip and biconical elements appear to be the
only antennas that have been used to excite multiple modes in the context of
beamforming and diversity. Hence, these antennas will be used in this chap-
ter to examine the channel capacity using an antenna employing multiple
modes, i.e. a multimode antenna, in a realistic propagation environment.

The correlation between the signals received by different modes will also
be calculated since this is one of the most important properties when using
several antennas for diversity or as a part of a MIMO system. If the re-
ceived signals exhibit low correlation, it is likely that at least one mode or
antenna yields a strong signal, while others may experience a deep fade. By
properly combining the received signals from the different modes or anten-
nas, a higher average SNR can be achieved. The correlation properties also
essentially determine the success of MIMO systems, since these need several
independent transmission paths to be able to support the desired high data
rates. Hence, the correlation properties of multimode antennas will be stud-
ied and an analytical expression of the modal correlation will be derived.
Based on the insight of the correlation analysis, the channel capacity of a
MIMO system employing multimode antennas is then calculated in a typical
channel scenario using a spatial channel model. First, however, the concept
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of higher order modes will be introduced, and the properties of two antennas
employing higher order modes will be briefly reviewed.

10.2 Multimode Antennas

A multimode antenna is an antenna where several modes are excited sepa-
rately on the same antenna structure. The concept of modes is well known
in the antenna community, but relatively unknown in the communications
and signal processing communities. Essentially, different modes in electro-
magnetics represent different solutions to Maxwell’s equations that fulfill the
boundary conditions for the geometry at hand. In fact, it is possible to ex-
cite several modes at the same temporal frequency on one antenna structure
separately, and regard these as separate antenna ports. Here, two different
antenna structures, namely the biconical and microstrip, will be briefly de-
scribed. These structures are then used in the following sections, where the
correlation properties and the channel capacity of the resulting channel are
studied.

10.2.1 Multimode Biconical Antenna

Many different types of antenna elements support excitation of several modes,
but recently a multimode antenna based on a biconical element was proposed
in [DW98]. A biconical antenna consists of two conical horns facing opposite
directions as illustrated in Figure 10.1. Here, α denotes the flare angle and
l the length of the horn. Note that the flare angle of the upper and lower
cones are identical, i.e. the antenna is symmetric.

In the traditional analysis of the biconical antenna, a coaxial waveguide
is used to excite the antenna. By enlarging the diameter of the coaxial feed,
more solutions or modes are possible. The enlargement of the coaxial waveg-
uide allows for higher order circular modes in the feed. These circular waves
are then transformed into spherical waves that propagate on the biconical
structure, that in turn radiates a field. It is important to note here that
it is possible to design the overmoded coaxial feed in such a way that no
modal coupling between modes occurs [DW98]. The radiated far-field from
the higher order modes was in [DW98] found to be angularly dependent. This
will show to be the key to achieve diversity by using multimode antennas.

The expressions for the transmitted far-field is derived by integrating the
fields of an infinite biconical transmission line over the biconical aperture
[Bal89, Dem98]. The far-field expression for mode m can be written [DW98,
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Figure 10.1: The geometry of the biconical antenna and the relation to the
coordinates.

Sva00h] as

�Em = �θ
e−jkr

r
Gm(θ, φ, l, α), (10.1)

where k denotes the wave number1, r the radial distance from the antenna,
and Gm(θ, φ, l, α) denotes the element pattern of mode m. Note that the
fields of the different modes are simply the solutions of Maxwell’s equations
that fulfill the boundary conditions of the biconical structure for specific
values of l and α. The full expression for Gm(θ, φ, l, α) is quite complicated
and is given in Appendix 10A. However, the azimuthal dependency of the
radiation pattern is easily factored out as

Gm(θ, φ, l, α) = cosmφ G′
m(θ, l, α), (10.2)

where G′
m(θ, l, α) is the remaining azimuth independent term of the radiation

pattern.

10.2.2 Multimode Circular Microstrip Antenna

There is a large volume of literature devoted to microstrip antennas. Nearly
all of the literature deal with the fundamental mode. However, [Der79,

1The wave number k = 2π
λ

= ω
√

µǫ, where λ is the wavelength. The symbols ǫ and µ
denote the dielectric constant and the permeability of the medium respectively.
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Figure 10.2: The geometry of the circular microstrip antenna and the relation
to the coordinates.

How75, Hua84, LSR79] allude to some higher order modes. Furthermore,
in [Vau88] a two-port higher order mode circular microstrip antenna, based
on a figure of merit calculation [Vau86], is proposed.

An illustration of a circular microstrip antenna is shown in Figure 10.2,
where a denotes the radius and h denotes the thickness. The upper circular
conductor (shaded dark-gray) is separated from the underlying ground plane
by a dielectric substrate (shaded light-gray). The main principle behind the
antenna is that the upper conductor and the ground plane together form a
circular slot that radiates. Typically, this type of antenna is excited using a
co-axial feed or a microstrip feed. Details regarding the design of microstrip
antennas can be found in antenna textbooks. Here, only a simple model
for the radiation of this type of antenna is needed. For the purposes of
this paper, an adequate model of the radiation of mode m is to view the
antenna as a magnetic ring current with an edge voltage Vm = V 0

m cosmφ
[Der79, JHW81, Vau88]. Using this simple model, the radiated far-field may
be written as

�Em =
e−jkr

r
Em,θ�θ + Em,φ�φ, (10.3)
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where

Em,θ =
jmV 0

mka

2
· (Jm+1(ka sin θ)− Jm−1(ka sin θ)) · cosmφ

Em,φ =
jmV 0

mka

2
· (Jm+1(ka sin θ) + Jm−1(ka sin θ)) · cos θ sinmφ .

(10.4)

Here, Jn(x) denotes the Bessel function of the first kind and of order n. More
involved models and more accurate solutions can be found in antenna text-
books. For the purposes here, the above solution is sufficient. Interestingly, it
is found that the expressions for the multimode microstrip antenna are very
similar those of the multimode biconical antenna. If only the horizontal plane
(θ = 90◦) is considered, the �φ component of the field vanishes, and only a �θ
component remains. Thus, the far-field expression of the biconical antenna
in (10.1) is also valid for the microstrip antenna. In fact, the φ dependency
of the microstrip antenna reduces to cosmφ, so also the expression for the
radiation pattern of the bicone in (10.2) is applicable. The same analysis
regarding correlation and capacity is thereby valid for both the biconical and
the microstrip antennas with higher order modes. In the following, both of
these antennas will be referred to as a multimode antenna.

In a multipath scenario, the radiation patterns of (10.2) for the different
modes are different enough to yield significantly different received signals.
For example, one mode may be in a deep fade while the others still receive a
strong signal. Thus, the signals received by the different modes may be com-
bined to increase the average SNR, i.e. yield a diversity gain. However, the
potential diversity gain of employing a multimode antenna depends strongly
on the correlation between the different modes. Hence, an expression for the
correlation between different modes will be derived in the next section for a
typical channel scenario encountered in practice.

10.3 Modal Correlation

The correlation between the different modes ultimately determines the di-
versity gain, but also the potential increase in capacity that can be achieved
by employing the multimode antenna as a MIMO receiver. Therefore, an ex-
pression for the correlation between two modes will be derived and examined
in different channel scenarios. The correlation between signals received by
two spatially separated antennas has been investigated in numerous works,
but the modal correlation has not been treated in any detail.

The level of correlation depends on the angular distribution of the re-
ceived power, i.e. the Power Azimuth Spectrum (PAS). Several different
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PAS models have been proposed in the literature. However, recent measure-
ment campaigns have shown that for both urban and rural areas, a Laplacian
distribution offers the best fit [PMF98]. Therefore, the modal correlation cal-
culations will use a truncated Laplacian model of the PAS P (φ)

P (φ) = ce
−
√
2 |φ−φ̄|

σφ φ ∈ [−π, π), (10.5)

where the value of the constant c is chosen so as to get a probability weight
of one, i.e.

∫ π
−π P (φ)dφ = 1. Note that φ̄ denotes the main azimuth direction,

i.e. φ̄ =
∫ π
−π φP (φ)dφ and that the parameter σφ controls the angular spread.

The received signals by mode m and n, assuming L multipaths, can be
written as

sm =
∑L
l=1 αle

jβl cos(mφl) (10.6)

sn =
∑L
l=1 αle

jβl cos(nφl), (10.7)

where αl is a random scattering amplitude and βl is a random phase of path
l. It is further assumed that the phase is uniformly distributed β ∈ U [−π, π)
and that both β and φ are independent stochastic quantities. Here, it is also
assumed that α and β are independent.

Now, an approximative expression for the envelope correlation ρe(m,n)
between the signals sm and sn can be obtained from the correlation coefficient
ρmn as ρe(m,n) ≈ |ρmn|2 [PS60]. Tedious, but straightforward, calculations
then give the envelope correlation coefficient ρe(m,n) as

ρe(m,n) ≈ |ρmn|2 =
|E[sms∗n]|2

E[|sm|2]E[|sn|2]
=

κ2(m,n)

κ(m,m)κ(n, n)
, (10.8)

where

κ(m,n) =

√
2σφ cos(m− n)φ̄
2 + σ2φ(m− n)2

+

√
2σφ cos(m+ n)φ̄

2 + σ2φ(m+ n)2
−

−
√
2σφe

−
√

2π
σφ

(
e

√
2φ̄

σφ + e
−

√
2φ̄

σφ

)[
(−1)m−n

2 + σ2φ(m− n)2
+

(−1)m+n
2 + σ2φ(m+ n)2

]
.

(10.9)

The full derivation of the envelope correlation coefficient is given in Ap-
pendix 10B. In Figure 10.3, the envelope correlation between two modal
combinations (1, 2) and (2, 5) is evaluated for different azimuth angles φ̄,
and compared to the correlation between two spatially separated antennas
[PMF98]. Note that the azimuth spread in this comparison is 20◦, which
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Figure 10.3: The envelope correlation of two spatially separated elements
and two modal correlations ρe(1, 2) and ρe(2, 5) versus main azimuth φ̄ with
an angular spread σφ of 20

◦.

could constitute a dense urban environment [PMF98]. The correlation be-
tween modes (1, 2) is quite high, but the correlation between (2, 5) is well
below 0.7, that usually is taken as a rule of thumb limit for obtaining “un-
correlated” channels [PS60]. Hence, the modal correlation is low enough to
give a diversity gain [Sva00h], and thereby also has the potential of increas-
ing the channel capacity. Since the correlation is strongly dependent on the
main azimuth angle, a natural performance measure is therefore to calculate
the correlation averaged over azimuth. The average correlation between the
modes from the scenario in Figure 10.3 becomes in matrix form

R̄=




1.00 0.73 0.54 0.36 0.23
0.73 1.00 0.37 0.45 0.22
0.54 0.37 1.00 0.46 0.27
0.36 0.45 0.46 1.00 0.45
0.23 0.22 0.27 0.45 1.00



. (10.10)

Most of the modal correlations are below 0.7, and thus can contribute to a
diversity and capacity gain. In fact, the two correlations shown in Figure
10.3, correspond to the highest and lowest modal correlations.

How the modal correlation depends on the azimuth spread is shown in
Figure 10.4, where again the highest and lowest modal correlations are shown.
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Figure 10.4: The average envelope correlation of two spatially separated
elements and two modal correlations ρe(1, 2), ρe(1, 3), and ρe(2, 5) versus the
angular spread.

Also shown is the correlation between modes (1,3) that represents a typical
correlation level. The figure clearly indicates that the modal correlation
decreases with increased azimuth spread, as in the case of spatially separated
antennas. The conclusion from the correlation analysis is thus that the modal
correlations are generally slightly higher than the spatial correlations for well
separated elements, but still low enough to give a diversity and capacity
gain. Of course, the level of correlation for the spatially separated antennas
is strongly dependent on the element separation distance. However, it is
important to remember that the multimode diversity branches are obtained
using only one antenna element but several modes.

10.4 Multimode Channel Capacity

Recently, a number of researchers have pointed out the remarkable channel
capacity gains available using multi-element antennas at both the transmit-
ter and receiver. Typically, the analysis of these systems, often called Multi-
Input Multi-Output (MIMO) systems, have used the rather ideal assump-
tions of independently fading channels and no mutual coupling. Correlated
fading at the antenna elements could pose a serious problem, typically at the
mobile hand-set where the elements are closely spaced. Thus, the multimode
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antenna appears to be suitable for this type of application, since only a single
antenna element is needed and there is no coupling between modes.

The instantaneous channel capacity of a MIMO channel H can be written
as [FG98]

C = log2 det

[
I+

ξ

N
HHH

]
, (10.11)

where ξ/N denotes the SNR at each receive antenna. Note that the channel
matrix H is M × N , where M,N denotes the number of antenna elements
at the receiver and transmitter, respectively. Furthermore, the element Hij
represents the complex path gain from transmitter j to receiver i. A simple,
yet detailed, channel model that includes the spatial dimension is to place
a circular disc of uniformly distributed scatterers around the mobile. Al-
though the full model presented in Chapter 9 can be applied also here, the
polarization properties and the attenuation of the waves are not important
in this application. Thus, a reduced version that still includes the radiation
patterns of the antennas is better suited for this channel scenario. Hence,
the following model can be used

Hij =
L∑

l=1

αle
jk(rtjsl

+rslri
)gtj(φ

T
l )gri(φ

R
l ), (10.12)

where the number of scatterers is denoted L, and αl is a complex gaussian
distributed reflection coefficient with zero mean and unit variance. Further-
more, rtjsl and rslri denote the distances from mobile antenna j to scatterer
l and from scatterer l to base antenna i respectively. Finally, gtj (φ

T
l ) and

gri(φ
R
l ) denote the radiation patterns of the antennas. The channel is normal-

ized in the sense that ||H||2 = 1. It should be noted that the normalization of
the channel (or SNR) removes the signal strength and focuses on the richness
of the scattering. In practice, both will of course affect the capacity. In fact,
it has been found in [MBKF00] that a high capacity is still obtained in LOS
scenarios with high correlations due to a high SNR value.

With the above channel model, the channel capacity is a random value,
and in Figure 10.5, the Complementary Cumulative Distribution Function
(CCDF) of the capacity for a scenario with L = 20 scatterers and ξ/N =
10dB is shown. The capacity is calculated when a multimode antenna is
used at the mobile station (MS), and when a multimode antenna is used
at both the MS and the base station (BS). These capacity figures are then
compared to the corresponding figures when using an array at both MS and
BS. To simplify the comparison, the calculations are performed for an equal
number of antenna ports at the MS and BS,M = N = 4. Also included in the
comparison is the capacity for an independently fading identically distributed
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Figure 10.5: The CCDF of C with M = N = 4 for an array at both MS
and BS, multimode at MS, multimode at both MS and BS, and independent
Rayleigh channel. For the array, the element separation is dbs = 2λ and
dms = 0.5λ. The scatterers are distributed on a disc of radius R = 35λ, the
MS-BS distance is D = 50λ , and φ̄ = 45◦.

Rayleigh channel [FG98]. For the array, the element separation is dbs = 2λ
at the BS and dms = 0.5λ at the MS. Furthermore, the radius of the scatter
disc is R = 35λ, the distance between the MS and BS is D = 50λ, and the
main azimuth towards to mobile is φ̄ = 45◦. The scattering environment is
rich enough in order for the array to be close to the theoretical curve. Using
a multimode antenna at the mobile results in only a slightly lower capacity.
Using a multimode antenna also at the BS results in lower capacity, since
seen from the BS, the angular spread is much lower than at the MS. A
lower angular spread gives a lower capacity, since it will result in a higher
correlation, see Figure 10.4.

The correlation between the different modes also strongly depends on the
main azimuth angle, as found in Figure 10.3. How the capacity depends
on the main azimuth is shown in Figure 10.6. The dependency is found
to be much less pronounced than in the correlation study. Note that in
Figure 10.6, the capacity obtained at 90% of the time (i.e. 10% outage) is
shown. The antenna array of course performs worse at φ̄ = 90◦ (end-fire),
but the differences are in general small. Thus, the capacity is similar for
most azimuth orientations for both the array and the multimode antenna.
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Figure 10.6: The channel capacity with 10% outage probability versus main
azimuth for the same scenario as in Figure 10.5.

The capacity with 10% outage versus the radius of the scatter disc is
shown in Figure 10.7. A richer scattering environment is obtained with
increased radius, and thus the capacity increases as expected. This is in
agreement with Figure 10.4, where it was found that the correlation decreases
with increased azimuth spread. The increase in capacity is smaller for the
multimode antenna than for the array, but the differences in capacity are
not large. If the number of scatterers is increased to a large value, the
capacity of the array attains the capacity of the Rayleigh channel, while the
multimode antenna does not. However, here it is important to note that only
one antenna element is used for the multimode receiver, while the antenna
array employs four elements.

10.5 Conclusions

A novel way of exploiting diversity by employing the higher order modes of
antennas was introduced. Two different types of multimode antennas were
studied, namely a biconical and a circular microstrip antenna. Essentially,
multimode antennas offer characteristics similar to an antenna array through
multiple modes using just a single element. An analytical expression for the
correlation between different modes in a realistic environment was presented,
and it was found that the correlation is low enough to yield a diversity gain.
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Figure 10.7: The channel capacity with 10% outage probability versus the
radius of the scatter disc for the same scenario as in Figure 10.5.

Furthermore, the channel capacity of a MIMO system employing multiple
antennas or modes at the MS and BS was simulated using a spatial channel
model.

Surprisingly, it was found that the multimode antenna offers capacity
gains similar to that of the array antenna for realistic MIMO scattering en-
vironments. Since the multimode antenna only requires a single antenna
element, it avoids some of the problems of an array such as calibration prob-
lems and mutual coupling. Furthermore, the fact that only a single antenna
structure is needed, a compact antenna can be obtained that also provides
new possibilities in designing aesthetically pleasing antennas. One benefit
of the biconical antenna is that it can be manufactured at very low cost,
since it contains no expensive parts or materials [DW98]. However, the mi-
crostrip antenna may be more interesting when considering mobile hand-set
implementations, due to its shape and “paste on” features. Thus, employing
multimode antennas is an interesting antenna solution for future high capac-
ity MIMO systems that offers several advantages over traditional arrays.

The concept of multimode antennas does not end with the antenna shapes
considered here. In principle, most antennas can support higher order modes.
Hence, it is an interesting antenna design topic to find and evaluate other
structures with perhaps better characteristics than the microstrip and bicon-
ical antenna. More work on the antenna design is needed to find suitable
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positions of the feeds, appropriate dimensions, and a matching network that
minimizes the losses in the antenna. It is also important to note that in
this chapter, only the potential of exploiting the individual modes are exam-
ined. Many other possibilities exists. For instance, a combination of spatial,
modal, and polarization diversity is an interesting alternative that may of-
fer very good performance. Furthermore, only the possibility of using the
individual modes as diversity branches was studied in this chapter. It is
also possible to use several modes to form narrow beams, that each could
be used as a diversity branch. In that approach as well as the approach
analyzed in this chapter, the diversity is based on the fact that the different
signals are obtained through different radiation patterns. Hence, these diver-
sity schemes are often called pattern or angular diversity, which for example
has been studied in [Vau98], where the necessary beam separation of multi-
beam antennas in a uniformly distributed PAS has been treated. Thus, there
are many interesting possibilities of using higher order modes of antennas in
future high capacity MIMO systems.

10A Radiation Pattern of Biconical Antenna

The element pattern for the TEM mode can be written as [Dem98]

GTEM(θ, l, α) =
jωµI0l

4
√
π ln cot α

2

·
∫

θ′
[(u1 + 1)jJ1(klu2) + u2J0(klu2)] e

jklu1dθ′, (10A.1)

where I0 is the input current, u1 = cos θ cos θ′, u2 = sin θ sin θ′, and Jk
denotes the cylindrical Bessel function of order k [AS70, Bal89]. Note that
the expression is independent of φ.

The element pattern for the TEmn mode can be written as [Dem98]

GTE(θ, φ, l, α) = cosmφ G′
TE(θ, l, α), (10A.2)
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where

G′
TE(θ, l, α) =

−jωµI0ljm−1m

2
· (10A.3)

[∫

θ′

(
(u1 + 1)m

klu2
+ ju2

)
L(θ′)ejklu1Jm(klu2)dθ

′

−
∫

θ′
(u1 + 1)L(θ

′)ejklu1Jm+1(klu2)dθ
′

+

∫

θ′

(cos θ′ − cos θ)
kl sin θ

∂L(θ′)

∂θ′
ejklu1Jm(klu2)dθ

′
]

and

L(θ) = Pmn (cos θ)
∂Pmn (− cosα)

∂θ
− Pmn (− cos θ)

∂Pmn (cosα)

∂θ
. (10A.4)

Here, Pmn (x) denotes the associated Legendre function of the first kind [AS70,
Bal89]. The far-field expressions (10A.1)-(10A.3), although quite compli-
cated, are easily evaluated numerically using a computer.

10B Correlation Analysis

The signals received by antenna 1 and 2, assuming L multipaths, can be
written as

s1 =
L∑

l=1

αle
jβlg1(φl) (10B.1)

s2 =
L∑

l=1

αle
jβlej∆g2(φl), (10B.2)

where αl is a scattering amplitude and βl is a random phase of path l. Fur-
thermore, ∆ = 2πd

λ
sinφl, where d is the separation distance between the

antennas and φl is the azimuth angle of arrival of path l. The radiation
pattern of antenna i for path l is denoted gi(φl) and the azimuth angle is
measured relative the normal of the array axis. Furthermore, the phase is
assumed to be uniform β ∈ U [−π, π), and both α and φ are stochastic quan-
tities. It is also assumed that β and φ are independent. Finally, it assumed
that α and β are independent. Using this formulation for the signals s1 and
s2, both multimode and array antennas are included in the analysis.

Now, the envelope correlation ρe between the signals s1 and s2 can be
calculated, approximately, from the correlation coefficient ρ12 as [PS60]

ρe ≈ |ρ12|2. (10B.3)

239



CHAPTER 10. EXPLOITING MULTIMODE DIVERSITY IN MIMO SYSTEMS

Due to the independence assumption and that the phase is uniformly dis-
tributed, the mean values of the signals are zero, and thus the expression for
the correlation coefficient becomes

ρ12 =
E[s1s

∗
2]√

E[|s1|2]E[|s2|2
. (10B.4)

By introducing the real and imaginary part of the signals, s = x + jy, the
expression for the numerator can be written as

E[s1s
∗
2] = E[(x1 + jy1)(x2 + jy2)

∗] =

= E[x1x2] + E[y1y2] + j (E[x2y1]− E[x1y2]) . (10B.5)

Note that the expectation is taken over α, β, and φ. The first term in (10B.5)
can be written as

E[x1x2] = E
[
(
L∑

l=1

αl cos(βl)g1(φl)

)
×

(
L∑

l=1

αl cos(βl +∆(φl))g2(φl)

)
]
=

= LE
[
E [cos(β) cos(β +∆(φ))|φ]α2g1(φ)g2(φ)

]
. (10B.6)

Since

E [cos(β) cos(β +∆(φ))|φ] = cos∆

2
, (10B.7)

the expression in (10B.6) becomes

E[x1x2] =
L

2
E

[
E

[
α2|φ

]
cos(∆)g1(φ)g2(φ)

]
=

=
L

2

∫ π

−π
cos(∆)g1(φ)g2(φ)E

[
α2|φ

]
pΦ(φ)dφ, (10B.8)

where pΦ(φ) denotes the probability density function for the azimuth angle.
However, this distribution is related to the PAS [Ped00] as

P (φ) = LE
[
α2|φ

]
pΦ(φ). (10B.9)

Therefore,

E[x1x2] =
1

2

∫ π

−π
cos(∆)g1(φ)g2(φ)P (φ)dφ. (10B.10)

In a similar manner,

E[y1y2] = LE
[
E [sin(β) sin(β +∆(φ))|φ]α2g1(φ)g2(φ)

]
=

=
L

2
E

[
E

[
α2|φ

]
cos(∆)g1(φ)g2(φ)

]
= E[x1x2], (10B.11)

240



10.5. CONCLUSIONS

since

E [sin(β) sin(β +∆(φ))|φ] = cos∆

2
. (10B.12)

Furthermore,

E[x2y1] = LE
[
E [sin(β) cos(β +∆(φ))|φ]α2g1(φ)g2(φ)

]
=

= −L
2
E

[
E

[
α2|φ

]
sin(∆)g1(φ)g2(φ)

]
= −1

2

∫ π

−π
sin(∆)g1(φ)g2(φ)P (φ)dφ,

(10B.13)
since

E [sin(β) cos(β +∆(φ))|φ] = −sin∆
2
. (10B.14)

Also,

E[x1y2] = LE
[
E [cos(β) sin(β +∆(φ))|φ]α2g1(φ)g2(φ)

]
=

=
L

2
E

[
E

[
α2|φ

]
sin(∆)g1(φ)g2(φ)

]
= −E[x2y1], (10B.15)

since

E [cos(β) sin(β +∆(φ))|φ] = sin∆

2
. (10B.16)

Finally,

E[|s1|2] = E[x21 + y21] = E
[
(
L∑

l=1

αl cos(βl)g1(φl)

)2

×
(
L∑

l=1

αl sin(βl +∆(φl))g1(φl)

)2
]
=

= LE
[
α2 cos2 βg21(φ) + α

2 sin2 βg21(φ)
]
= LE[α2g21(φ)] (10B.17)

and
E[|s2|2] = LE[α2g22(φ)]. (10B.18)

Employing (10B.4), (10B.5), (10B.11), and (10B.15)-(10B.18), the correla-
tion coefficient can be written as

ρ12 =
2E[x1x2] + 2jE[x2y1]√
L2E[α2g21(φ)]E[α

2g22(φ)]
, (10B.19)

where E[x1x2] is given in (10B.10) and E[x2y1] is given in (10B.13). Finally,
using (10B.3), the envelope correlation coefficient becomes

ρe =
ρ2rr + ρ

2
ri

ρ1ρ2
, (10B.20)
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where

ρrr =

∫ π

−π
cos

(
2πd

λ
sin φ

)
g1(φ)g2(φ)P (φ)dφ

ρri =

∫ π

−π
sin

(
2πd

λ
sinφ

)
g1(φ)g2(φ)P (φ)dφ

ρ1,2 =

∫ π

−π
g21,2(φ)P (φ)dφ

(10B.21)

The expressions for the envelope correlation coefficient for the antenna array
and the multimode antenna are now readily obtained by inserting the corre-
sponding radiation functions and locations. Here, the correlation evaluations
will be performed using a truncated Laplacian model of the PAS

P (φ) = ce
−
√
2 |φ−φ̄|

σφ φ ∈ [−π, π), (10B.22)

where the value of the constant c is chosen so as to get a probability weight
of one, i.e.

∫ π
−π P (φ)dφ = 1. Note that φ̄ denotes the main azimuth direction,

i.e. φ̄ =
∫ π
−π φP (φ)dφ and that the parameter σφ controls the angular spread.

The Laplacian PAS has been experimentally verified in several measurement
campaigns [PMF98].

Spatial correlation: The Antenna Array Assuming omnidirectional
elements, i.e. g1(φ) = g2(φ) = 1 results in the following expressions

ρe = ρ
2
rr + ρ

2
ri

ρrr =

∫ π

−π
cos

(
2πd

λ
sin φ

)
e
−
√
2
|φ−φ̄|

σφ dφ

ρri =

∫ π

−π
sin

(
2πd

λ
sinφ

)
e
−
√
2 |φ−φ̄|

σφ dφ,

(10B.23)

since ρ1 = ρ2 = 1 due to the omnidirectionality. The expressions in (10B.23)
were also given in [PMF98], however without a detailed derivation.

Modal correlation: The multimode antenna Assuming that one mul-
timode antenna is used, the separation distance will vanish (i.e. d = 0) and
the radiation patterns of antenna port 1 and 2, i.e. mode m and n, are

g1(φ) = cos(mφ)

g2(φ) = cos(nφ).
(10B.24)
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Inserting (10B.24) into the expression for the envelope correlation coefficient
(10B.20) and (10B.21) gives

ρe =

(∫ π

−π
cos(mφ) cos(nφ)e

−
√
2 |φ−φ̄|

σφ dφ

)2

∫ π

−π
cos2(mφ)e

−
√
2 |φ−φ̄|

σφ dφ

∫ π

−π
cos2(nφ)e

−
√
2 |φ−φ̄|

σφ dφ

(10B.25)

Evaluation of the integrals give

ρe(m,n) =
κ2(m,n)

κ(m,m)κ(n, n)
, (10B.26)

where

κ(m,n) =

√
2σφ cos(m− n)φ̄
2 + σ2φ(m− n)2

+

√
2σφ cos(m+ n)φ̄

2 + σ2φ(m+ n)2
−

−
√
2σφe

−
√

2π
σφ

(
e

√
2φ̄

σφ + e
−

√
2φ̄

σφ

)
×

[
(−1)m−n

2 + σ2φ(m− n)2
+

(−1)m+n
2 + σ2φ(m+ n)2

]
. (10B.27)
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Chapter 11
Employing Switched Parasitic

Antennas in MIMO systems

A novel technique for obtaining diversity in MIMO systems via electronically
directing the radiation pattern of a Switched Parasitic Antenna (SPA), is
studied. The correlation between the received signal modes are shown to
be sufficiently low to yield a diversity gain. The capacity limit using the
SPA is investigated for different SPA configurations and it is found that
the capacity is comparable with an array antenna configuration in certain
situations. Finally, a space time block coding scheme is used to evaluate the
bit error rate of a MIMO-SPA system. It is found that the SPA requires a
5 dB higher SNR than an antenna array solution to achieve a BER=10−2.
However, the array antenna requires a radio transceiver for every antenna,
as opposed to the SPA which uses only one transceiver.

11.1 Introduction

Recent information theory results have demonstrated an enormous capacity
potential of wireless systems with multiple antennas at both transmitter
and receiver, so called Multi-Input Multi-Output (MIMO) systems [FG98].
An unfortunate aspect of MIMO systems is the high cost of multiple radio
transceivers at the access point and at the user terminal. Furthermore, it
is expensive to calibrate and maintain antenna arrays with many antenna
elements. Recently, Switched Parasitic Antennas (SPAs) have been subject
to an increased interest in the literature, for improving capacity in indoor
Local Area Networks LANs [AKT00], as a diversity antenna [SLTV99, Vau99]
and for tracking of base-stations [PTS+98].
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In a sense, SPA offers characteristics similar to an array antenna with
several fixed beams, but is more compact in size, and might be more suit-
able on certain mobile equipments. This chapter will examine the use of
SPAs in MIMO systems, where the SPA is primarily used at the User Equip-
ment (UE), in a realistic flat fading environment. It has been observed that
when the fades of the MIMO receive channels are correlated, the channel ca-
pacity can be significantly smaller than when the fades are independent and
identically distributed (i.i.d.) [SFGK00]. Hence, the capacity of the SPA in
this type of scenarios is studied and compared to the capacity of a completely
uncorrelated scenario. Furthermore, Space Time Block Coding (STBC) tech-
niques are applied to examine how this correlation affects the BER of a SPA
system.

11.2 Switched Parasitic Antennas

SPAs offering directional patterns dates back to the early work of Yagi and
Uda in the 1930’s. For mobile communications, Vaughan [Vau99] gave some
examples of this technology to provide angle diversity by employing two
parasitics on a mobile phone handset. The concept is to use a single active
antenna element, connected to a radio transceiver, in a structure with one
or several passive antenna elements, operating near resonance. The passive
elements are called Parasitic Elements (PEs) and act together with the active
element to form an array, as in the well known Yagi-Uda array [Bal82].
To alter the radiation pattern, the termination impedances of the PEs are
switchable, to change the current flowing in those elements. The PE become
reflectors when shorted to the ground plane using pin diodes [STLO00] and
when not shorted, the PE have little effect on the antenna characteristics.
The receiver is always connected to the center antenna element so there are
no switches in the RF direct signal path.

The parasitic antennas can be designed using monopoles on a ground
plane [STLO00, Vau99] or as parasitic patch antennas [PTL+97]. Here, a
monopole on the ground plane will be analyzed due to its omnidirectional
properties. Examples of parasitic antennas are shown in Figure 11.1 for a 4-
direction symmetry and in Figure 11.2 for a 3-direction symmetric antenna.
The antenna in Figure 11.2 have an additional circle of parasitic elements that
always are shorted to ground. The effect of this arrangement is an increased
directivity as their length are shorter than the corresponding resonant length
(≈ λ/4) and will lead the induced emf [Bal82].

The lengths and distances displayed in Figure 11.1 and 11.2 are not op-
timal in any way. The lengths can be adjusted to give the antenna certain
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Figure 11.1: A five element monopole SPA. The center element is active
and connected to the transceiver. The four passive antenna elements can be
switched in or out of resonance using appropriately biased pin diodes.
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Figure 11.2: A seven element monopole SPA. The center element is active and
connected to the transceiver. The three passive antenna elements closest to
the active can be switched in or out of resonance using appropriately biased
pin diodes. The three outermost monopoles are hardwired to ground.

characteristics, such as directivity and/or dual band tuning, as demonstrated
in [STLO00], where a genetic algorithm approach was taken to optimize a
six element switched beam antenna. If the parasitics are moved closer to the
active element, the mutual coupling increases and the change in the radiation
pattern when switching is greater. However, the antenna impedance changes
also more dramatically, which makes the antenna matching difficult. Hence,
a too large mutual coupling renders an inefficient antenna. The trade-off is
thereby between compactness and high directivity on one hand, and antenna
efficiency on the other.

The antennas in Figures 11.1 and 11.2 were simulated using High Fre-
quency Structure Simulator (HFSS) from Agilent Technologies Inc., which is
a 3D simulator using the finite element method to solve for the electromag-
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Figure 11.3: Power radiation pattern of the five element monopole antenna
shown in Figure 11.1 with three parasitics shorted (S) to ground and one
open (O).

netic field. The software was used to calculate the far-field radiation pattern
of the antenna for different settings of the switched parasitics. The monopole
elements were cylindrical with an length to radius ratio l/r = 100 which have
a first resonance at approximately 0.24λ [Bal82]. The monopoles were as-
sumed to be perfect conductors, which forces the electrical field to be normal
to the surface. Furthermore, to shorten the simulation time, the ground plane
was assumed to be of infinite extent. The chosen frequency was 2.15 GHz,
suitable for the downlink in Universal Mobile Telephone System (UMTS) Fre-
quency Division Duplex (FDD) mode. Hence, the wavelength is λ=0.1395
meter.

The far-field power radiation pattern for three shorted parasitics and one
open for parasitic antenna 11.1 is shown in Figure 11.3 and the correspond-
ing plot for Figure 11.2 is shown in Figure 11.4 for two shorted and one
open parasitic. The directivity of the two antennas are 9.9 dB and 10.0 dB
respectively.

11.3 MIMO Channel Capacity and Diversity

Gain

To achieve a high capacity in MIMO systems or a large diversity gain, the
signals received by different settings of the parasitics, called the M modes,
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Figure 11.4: Power radiation pattern of the seven element monopole antenna
shown in Figure 11.2 with two parasitics shorted (S) to ground and one open
(O) plus three hardwired to ground (S).

must have low correlation (ideally zero). Hence, the correlation coefficient of
the signal voltages received by two patterns are defined as [VA87]

ρ12 =

∫ 2π

0

∫ π

0

S(θ, φ)E1(θ, φ) ·E∗
2(θ, φ) sin θdθdφ (11.1)

where the two far field patterns E1(θ, φ) and E2(θ, φ) are normalized as

∫ 2π

0

∫ π

0

S(θ, φ)|Ei(θ, φ)|2 sin θdθdφ = 1 (11.2)

for i = 1, 2. Above, S(θ, φ) is the pdf of the incident waves.
The correlation coefficients for the complex voltage patterns correspond-

ing to the power radiation patterns in Figure 11.3 and 11.4 are calculated
assuming the Clark scenario [Cla68] with pdf S(θ, φ) = δ(θ−π/2)/(2π sin θ)
to model a ring of dense sources on a horizon about the receiving antenna.
Here, it is assumed that three (two) parasitics are always shorted, to get four
(three) different directions with 90◦ (120◦) separation. This gives the corre-
lation coefficient for adjacent patterns, or modes, for the parasitic antenna in
Figure 11.3 as |ρi,i+1|2 = 0.1157, and for opposite patterns |ρi,i+2|2 = 0.0120.
For the parasitic antenna in Figure 11.4, a value of |ρi,i+1|2 = 0.1002 is ob-
tained. The envelope correlation coefficients for the signals received from
the modes are taken as ρeij ≈ |ρij|2 [PS60]. A well known rule of thumb is
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that “uncorrelated” signals in diversity branches corresponds to an envelope
correlation lower than 0.7 [VA87]. Hence, the SPAs presented here would
achieve a diversity gain in Clarke’s scenario.

11.3.1 Channel capacity

The MIMO channel capacity is calculated using the SPA at the Base Station
(BS) and/or at the User Equipment (UE). Here, a single user system is
considered that employs point to point communication over a flat-fading
channel with N transmit modes (or array antenna elements) and M receive
modes (or array antenna elements) and no co-channel interference. The
channel output corresponding to an input block spanning T symbol times is

Y = HX+V (11.3)

where the received signal Y is M × T , the fading channel H is M × N , the
codeword matrix X is N×T and the receiver noise V is aM×T matrix. The
entries of the noise matrix are i.i.d. Complex Gaussian with zero mean. It is
also assumed that the channel is quasi-static, i.e. constant over the block of
length T symbols.

With n parasitic elements, there are 2n different modes, or settings of the
switchable diodes. The transmit and receive modes of the parasitic antennas
are chosen among these to minimize the envelope correlation. Here, it is
assumed that the receiver switches through and samples the chosen modes
during one symbol interval. This should be possible for many systems, since
the switching time of a pin diode is only of the order of a few nanoseconds.
The technique of oversampling the received signal is common in many com-
munication systems, but here the oversampling is performed in both time
and space, i.e. spatio-temporal oversampling. If the increased sampling rate
(or bandwidth) poses a problem, a bandpass sampling strategy could also
be employed. In this chapter, the potential in using the different radiation
patterns of an SPA for diversity and capacity improvements are examined.
However, further work is needed on the practical aspects of the antenna
design as well as sampling strategies.

As the underlying concept here is angle diversity, a simple, yet detailed
channel model that includes the spatial dimension is used. Since no polar-
ization or time dependency is studied, a simpler version of the full model of
Chapter 9, is used. A model similar to that used in the previous chapter will
be used, where a circular disc of uniformly distributed scatterers is placed
around the UE. Since the model is still based on fundamental physics, the
correlations between the different antenna arrangements, which are of great
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importance in this type of study, are physically motivated. Different chan-
nel scenarios can easily be obtained by varying the radius of the scattering
disc as well as the location of the BS relative the disc, see also the previous
chapter and [Sva00c].

The channel capacity of the following cases are investigated; BS an-
tenna array-UE antenna array, BS antenna array-UE SPA, BS SPA-UE SPA.
When the array is used, omnidirectional antenna elements are assumed with
dBS = 2λ spacing at the BS, and dUE = 0.5λ spacing at the UE. Furthermore,
it is assumed that the channel response is flat over frequency, an approxima-
tion valid if the communication bandwidth W is much less than the channel
coherence bandwidth.

Shannon’s capacity formula for an N input, M output MIMO channel,
assuming equal power radiated from each transmitting antenna and H un-
known at the transmitter can be written as

C = log2 det

[
IM +

ξ

N
HHH

]
(11.4)

where ξ/N is the signal to noise ratio (SNR) at each receive antenna. The
matrix elements Hi,j represents the complex path gain from transmitter j to
receiver i.

Using the channel model [PRR96, Sva00c], the path gain can be written
as

Hi,j =

L∑

l=1

αl exp
{
jk(rtj→sl + rsl→ri)

}
gtj (φ

T
l )gri(φ

R
l ), (11.5)

where the number of scatterers are L and αl is the complex Gaussian dis-
tributed reflection coefficient with zero mean and unit variance. Further-
more, rtj→sl and rsl→ri, denotes the distance from UE antenna j to scatterer
l and scatterer l to BS antenna i respectively. Note that the wave number is
denoted k = 2π/λ. Finally gtj (φ

R
l ) and gri(φ

R
l ) are the complex voltage ra-

diation patterns of the antennas. The channel matrix in (11.4) is normalized
in the sense that ‖H‖F =

√
M , where F denotes the Frobenius norm.

As the channel matrix H is a function of the random position and re-
flection coefficients of the scatterers, the capacity C in (11.4) is a random
variable. With the SNR set to 4 dB, a Monte Carlo simulation with 4000 tri-
als was performed to calculate the Complementary Cumulative Distribution
Function (CCDF) for a scenario with L = 20 scatterers. The calculations are
performed for an equal number of modes at transmit and receive (N=M=4).
The distance between the BS and UE is D = 50λ. The CCDF of the ca-
pacity is shown in Figure 11.5 for the scattering disc radius R = 50λ. The
curves are compared to the channel matrix H with i.i.d. elements with a
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Figure 11.5: The complementary cumulative distribution function of the
MIMO channel capacity for the N=M=4 case. The SNR is 4 dB and the
scattering disc radius is 50λ. The parasitic antenna is shown in Figure 11.1.

complex Gaussian distribution. Using the array antenna at the UE results
in a slightly higher capacity than the array-parasitic configuration, however
at the expense of more hardware due to the use of four transceivers instead
of one. If the SPA is used also at the BS, the capacity is further decreased,
as the signals from the modes becomes correlated due to the small angular
spread as seen at the BS.

The capacity at 10% outage is presented in Figures 11.6 and 11.7 for the
two types of antenna configurations respectively. A large disc correspond
to an indoor scenario, where both BS and UE are surrounded by scatterers.
The other extreme, with a small scattering disc centered at the UE, as in an
outdoor to indoor channel, results in a smaller capacity, due to the reduced
angular spread, and hence, lower angle diversity gain. This can especially be
seen in the case where the BS and the UE are both equipped with parasitic
antennas. The capacity increases when the radius of the scattering disc
exceeds the BS to UE distance, where full angular diversity also is possible
at the BS.

At high bit rates, it might not be possible to switch through several
modes during a symbol interval. Therefore, a system with only two modes
was investigated. The parasitic antenna in Figure 11.1 was used, but only two
modes with lowest signal correlation (opposite in direction) were exploited.
The capacity at 10% outage is shown in Figure 11.8. Comparing Figure 11.6
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Figure 11.6: The channel capacity at 10% outage versus the radius of the
scattering disc for the N=M=4 case. The parasitic antenna is shown in
Figure 11.1. SNR=4 dB.
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Figure 11.7: The channel capacity at 10% outage versus the radius of the
scattering disc for the N=M=3 case. The parasitic antenna is shown in
Figure 11.2.

253



CHAPTER 11. EMPLOYING SWITCHED PARASITIC ANTENNAS IN MIMO SYSTEMS

10
0

10
1

10
2

10
3

1.81

1.82

1.83

1.84

1.85

1.86

1.87

Radius (λ)

C
0
.1

i.i.d.             
Array−Array        
Array−Parasitic    
Parasitic−Parasitic

Figure 11.8: The channel capacity at 10% outage versus the radius of the
scattering disc. Only N=M=2 of the 4 modes in the parasitic antenna in
Figure 11.2 are used. SNR=4 dB.

and 11.8, it is observed that the overall capacity is lower, but the difference
between the array and the SPA is slightly smaller at scattering disc radius
around 10λ.

11.4 Evaluating BER Using STBC

In this section, Space Time Block Coding (STBC) [TJC99] will be used to ex-
ploit the available channel capacity discussed in the previous section. Here,
it is assumed that the transmitter has no knowledge of the channel state
information, and uses a very simple maximum likelihood detector based on
linear processing at the receiver. The coding consists of mapping P consec-
utive symbols x1, . . . xP onto the transmission matrix X. The entries of X
are linear combinations of x1, . . . xP and their conjugates. For example, with
N = 2 transmit antennas the Alamouti’s scheme [Ala98] can be used

X =

(
x1 −x⋆2
x2 x⋆1

)
. (11.6)

Since P time slots are used to transmit P symbols, the rate of the code
is one. For complex symbol constellations, rate one STBC only exists for
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Figure 11.9: BER using STBC with N=M=2 and N=M=4 modes. The
scattering disc radius is 750λ and 15λ. The BER curves a compared to the
N =M = 1 reference antenna.

N = 2 [TJC99], however for real constellations there exists orthogonal, delay
optimal rate one codes for N = 2, 4, 8, as for example

X =




x1 −x2 −x3 −x4
x2 x1 x4 −x3
x3 −x4 x1 x2
x4 x3 −x2 x1


 . (11.7)

To study the performance in terms of BER using the SPA, the systems are
simulated employing the STBCs (11.6) and (11.7), using the 4-direction SPA
in Figure 11.3 and comparing the results with the array antenna solution.
When the Alamouti’s STBC scheme is used, two opposite (180◦ separation
direction) modes are used as the two receiving/transmitting modes for the
SPA. The BER for these configurations is compared in Figure 11.9. Here,
BPSK modulation is used in both cases, hence the bit rate 1 bit/s/Hz. It is
observed that at the bit error rate of 10−2, the 2-mode SPA gives 8 dB gain
over the uncoded system with one antenna, and the 4-mode gives about 16
dB gain in SNR. The large and small scattering radius gives a difference in
SNR gain less than 1 dB. The array-array configuration is about 5 dB better
than the array-SPA configuration.
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11.5 Conclusions

A MIMO system using a switched parasitic antenna has been analyzed, in
terms of capacity and BER, assuming orthogonal space time block codes.
The channel capacity was simulated using a spatial channel model. It was
found that the SPA offered capacities close to those provided by an array
antenna, in realistic MIMO scattering environments. Since the SPA only
requires one receiver, it could be an attractive low cost solution to future
user terminals using space time coding to increase data rates. The examples
of SPA:s presented here are only for demonstrative purposes, the design of
the SPA depends on the dimensions of the user equipment.
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Chapter 12
Mutual Coupling Effects on the MIMO

Capacity

A
study of the capacity of multiple element antenna systems is presented,
with particular emphasis on the effect that mutual coupling between
the antenna elements has on the capacity. The results presented here

shows, contrary to some earlier claims, that correlation between different
channel coefficients as a function of antenna spacing, can in fact decrease
when the mutual coupling effect is accounted for. As a consequence, capacity
also improves. A realistic channel model is used to perform simulations to
support these claims.

12.1 Introduction

The topic of Multi-Input Multi-Output (MIMO) communications systems
have received considerable attention in recent years, and in particular the
study of the capacity of such systems. Several authors have shown that
the capacity gains resulting from the use of MultiElement Antenna (MEA)
systems are potentially very significant [FG98, SFGK00]. A common as-
sumption in the study of such systems is that the fading coefficients between
different pairs of transmit-receive antennas are independent and identically
distributed (i.i.d.). However, in practice the signals received by different
antennas will be correlated which will reduce the capacity.

Measurement campaigns have been reported [KSMP00], that show a sub-
stantial capacity increase when using MEA systems, as long as elements are
placed sufficiently far apart. Since the capacity of MEA systems is strongly
dependent upon the number of transmit and receive elements available, it is
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highly desirable to use as many antennas as possible. On the other hand, one
typically has a limited amount of space/volume to distribute the antenna el-
ements over. Unfortunately, closely spaced elements increase the correlation
and thus decrease the capacity.

The effects on the correlation and thus also the capacity gain when using a
MIMO system with a small inter-element antenna spacing will be investigated
in this paper. Previously published studies in this area [Bur00, SFGK00] have
ignored the fact that small inter-element antenna spacing will cause mutual
coupling between elements. Mutual coupling is well known in the antenna
community, but rather unknown in signal processing circles. In principle,
the received voltage on each element will depend not only on the incident
field, but also on the voltages on the other elements. This effect becomes
significant at inter-element spacings of less than half a wavelength, and thus
needs to be included in a correlation/capacity study when closely spaced
elements are employed.

The general belief is that mutual coupling will deteriorate the channel,
increase the correlation and reduce the achievable capacity. For instance,
it was stated in [FG98] that since mutual coupling increases with reduced
antenna spacing, it will also cause problems for achieving high capacity. In
this paper, it is found that mutual coupling, actually can increase the channel
capacity for scenarios with closely spaced antennas. It will be shown that
for a typical realistic scattering model, mutual coupling can in fact have a
decorrelating effect on the channel coefficients, and thereby also improve the
capacity.

12.2 System Model

Consider a communication link with nT transmit antennas and nR receive
antennas. Some important assumptions used throughout are:

• There is only a single user transmitting at any given time, so the re-
ceived signal is corrupted by additive white Gaussian noise only.

• The communication is carried out in frames/packets of finite time-
span, and the coherence-time of the channel is longer than the packet
duration.

• The bandwidth of the transmitted signal is less than the coherence-
bandwidth of the channel, i.e. the fading is frequency-flat.
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Figure 12.1: Geometry of channel

The following discrete-time vector/matrix model for the relation between
input signal st and received signal rt can then be formulated as

rt = Hst + vt, (12.1)

where rt = [r
(1)
t , . . . , r

(nR)
t ]T , st = [s

(1)
t , . . . , s

(nT )
t ]T , vt is spatially and tempo-

rally additive white Gaussian noise (AWGN) with unit variance, and t is a
discrete-time index. The nR × nT channel matrix H is made up of elements
hi,j as follows

H =



h1,1 . . . h1,nT

...
. . .

...
hnR,1 . . . hnR,nT


 , (12.2)

where hi,j denotes the channel coefficient between the j:th transmit antenna
and the i:th receiver element. In principle, any channel model that accurately
includes the spatial dimension could be used to investigate the correlation
properties of two spatially separated antennas. For an excellent overview,
see [Ert98].

Here, the simple, yet detailed, channel model that has been used in several
of the previous chapters will be employed. As previously, a circular disc of
uniformly distributed scatterers is placed around the mobile. In Figure 12.1,
a simple illustration of the scatter disc and the orientation of the mobile and
base station is shown. Based on this model, the elements of the channel
matrix in (12.2) are generated as follows. Assume there are L scatterers Sl,
l = 1, . . . , L, uniformly distributed on a disc of radius R, centered around
the mobile. The channel parameter hi,j connecting transmit element j and
receive element i is thus

hi,j =
L∑

l=1

αl exp

(
−j 2π

λ
· (DBi→Sl

+DSl→Mj
)

)
(12.3)
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where DBi→Sl
and DSl→Mj

are the distances from base station antenna i to
scatterer l, and scatterer l to mobile antenna j, respectively, as shown in
Figure 12.1. Also, αl is the scattering coefficient from scatterer l, and is
modeled as a normal complex random variable, with zero mean and unit
variance. The channel matrix is finally normalized such that ‖H‖2F = nT .
Thus, the increased antenna gain due to the use of multiple antennas is not
included [Bur00].

12.3 Mutual Coupling

The principal function of an antenna is to convert an electromagnetic field
into an induced voltage or current to be measured. However, the measured
voltage at each antenna element will depend not only on the incident field,
but also on the voltages on the other elements. Essentially, the received
voltage on each element will induce a current on the element which in turn
radiates a field which affects the surrounding element, i.e. the elements are
said to be mutually coupled.

Mutual coupling is well known in the antenna community, since coupling
between antenna elements is one of the most important properties to consider
in antenna design. However, this phenomenon is is rarely accounted for or
studied in the signal processing or communications literature. It is a simple
matter to include the coupling effect in the model for the received voltage,
by inserting a mutual coupling matrix, modifying (12.1) to

rt = CHst + vt. (12.4)

It is then natural to include the coupling effects into the channel by com-
bining the two terms into a new channel matrix H′. Note that (12.4) only
includes coupling at the receiving antenna elements. In the scenario depicted
in Figure 12.1, several closely spaced elements at the transmitter (mobile)
will also experience mutual coupling. Thus, including this effect at both the
transmitter and receiver, the expression for the channel becomes

H′ = CbHCm, (12.5)

where the coupling matrix at the base Cb is nR × nR and the corresponding
matrix at the mobile Cm is nT × nT . Using fundamental electromagnetics
and circuit theory, the coupling matrix of an array antenna can be written
as [GK83]

C = (ZA + ZT )(Z+ ZT I)
−1, (12.6)
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Figure 12.2: The effect of the coupling on the correlation between paths
E[h1,1, h1,2] versus different element spacings dm at the mobile. The base
station separation is db = 0.5λ, and the scatter disc radius R = 200λ.

where ZA is the antenna impedance, ZT is the impedance of the measurement
equipment at each element, and Z is the mutual impedance matrix. This ex-
pression can be used for any array antenna, but for many types of elements
an analytical expression for the mutual impedance matrix and the antenna
impedance is difficult to obtain. However, one noticeable exception is the
case of dipoles, which will be used as antenna elements in the communica-
tions scenarios investigated here. A more detailed derivation of the received
voltages of an array of thin finite dipoles where coupling is included can be
found in [Sva99b]. See also, Chapter 2 for further details. In the following,
the impedance of the measurement equipment ZT is chosen as the complex
conjugate of the dipole impedance in order to reduce the power loss. The
effect of the coupling on the correlation between paths E[h1,1, h1,2] is shown
in Figure 12.2 for different element spacings dm at the mobile. Interestingly,
the correlation between these two channel coefficients decreases faster when
coupling is included in the calculations. In fact, it is possible to cut the
element separation in half due to the coupling at the 0.1 correlation level
(0.4λ to 0.2λ). Thus, the coupling phenomenon actually decorrelates the
signals by acting as an additional ”channel”. Interestingly, it was recently
reported in [LSM00] that coupling can in fact decrease the Bit-Error-Rate
performance on a Nakagami fading channel. In summary, the mutual cou-
pling may, contrary to common belief, actually decrease the correlation level
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between channel coefficients and thereby also increase the channel capacity.

12.4 Channel Capacity

Considering a (nT , nR) MEA system, with channel matrix H, the channel
capacity is given by the expression

C = log2(|InR
+ ρ

HH∗

n
|) =

n∑

k=1

log2(1 + ρ
λk
n
), (12.7)

where H is the nR × nT channel matrix, n = min(nT , nR), and λk are the
eigenvalues of HH∗. Note that this expression assumes that the available
transmit power ρ is uniformly allocated to the nT transmit elements, which is
the practical approach when the transmitter has no knowledge of the channel.

It is easily realized from this expression that a large capacity hinges on
the presence of a rich scattering environment, being directly related to the
rank of the channel matrix. Conversely, little or no scattering will result in
a channel matrix of unit rank and thus low capacity.

In the event that there is coupling between the antenna elements of the
mobile, the channel matrix should be modified to Hcm = HC, where C is
given in (12.6). The capacity in this case thus becomes

C = log2(|InR
+ ρ

HcmH
∗
cm

n
|). (12.8)

Likewise, modifications for the case of coupling at the base or both at base-
and-mobile, are similarly straightforward, as discussed in Section 12.3. In
what follows, the capacity is computed for a large number of channel real-
izations, each with a random location of scattering elements within the disc.
Hence, the capacity becomes a random variable, and its Complementary Cu-
mulative Distribution Function (CCDF) as well as the outage capacity, will
be computed for different parameter settings.

A scenario where the mobile has nT = 2 antenna elements will be con-
sidered, where the elements are placed at broadside relative to the nR = 4
element base-array. Furthermore, the distance between the base and mobile
is D = 300λ. For each channel realization, a total of 100 scatterers are placed
randomly and uniformly distributed on a disc of radius R = 200λ, centered
on the mobile. The mobile has a total power ρ = 10, and 1000 channel
realizations were generated for each value of dm to compute the required
statistics.
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Figure 12.3: Capacity with and without coupling at mobile, for different
values of mobile antenna separation, dm.

Figure 12.3 shows the CCDF:s, both with and without mutual coupling
between the mobile antenna elements, for two different values of mobile an-
tenna separation, dm. The separation between base-elements was held con-
stant at db = 0.5λ. It also shows the capacity for the case of idealized i.i.d.
channel coefficients [FG98]. If one ignores the effect of mutual coupling, it
can be seen that one suffers a significant capacity loss by placing the mo-
bile antennas closer together, i.e. from dm = 0.5λ to dm = 0.1λ, as would
be expected. The more interesting result is that when the coupling effect
is accounted for, the difference in capacity is essentially identical for these
two values of mobile antenna separation. In short, the advantage that is lost
from the decreased antenna separation is more than compensated for when
also the coupling between the same elements is taken into account. It should
be mentioned that these observations hold true in the event that also the
coupling between the base antenna elements, is included. Figure 12.4 shows
the 10 % outage capacity C0.1, i.e. there is a probability of 0.10 that the
capacity is less than what is seen in the plot. First, notice how the capacity
when coupling is included is higher for small separation distances, as com-
pared to the no coupling case. For large separation distances, the strength
of mutual coupling diminishes, and the capacities coincide. These results
should be seen in conjunction with the correlation plot in Figure 12.2; The
largest disparity between the two outage capacity curves occur at values of
dm for which the corresponding correlation curves also have a large disparity,
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Figure 12.4: 10 % Outage capacity as a function of antenna spacing

in favor of the system which includes the coupling effect.
Other scenarios were also simulated to support the generality of the above

conclusions to different propagation conditions. In summary, in the case of
very localized scattering, the elements of the channel matrix will have a
high degree of correlation regardless of whether coupling is included or not.
Hence, there is little or nothing to be gained from an MEA system in terms
of capacity improvements in such scenarios. For the other extreme, when the
scattering environment is sufficiently rich to approach the i.i.d. assumption,
coupling between antenna elements will clearly only degrade the performance.
The results presented here have focused on more realistic scenarios that fall
between these two extremes.

12.5 Conclusions

The capacity of multiple element antenna systems was studied, focusing on
the effect of antenna spacing at the mobile terminal. In particular, the effect
of mutual coupling between antenna elements was considered, and its effect
on the correlation between channel coefficients and thereby on the capacity
of such systems. Contrary to earlier claims regarding the effect of mutual
coupling on capacity of MEA systems, results were presented that support
the conclusion that coupling can in fact have a decorrelating effect on the
channel coefficients and thereby also increase the capacity.
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Chapter 13
Conclusions and Future Work

T
he main results from the different chapters together with some general
conclusions are presented in this chapter. Finally, some interesting
future work is proposed in last section.

13.1 Conclusions

This thesis has studied several aspects of topics within the area of antennas
and propagation from a signal processing perspective. However, theory and
methods from electromagnetics and communications have also been used.
This interdisciplinary character has been a major theme of the thesis, that
has resulted in several novel studies of antennas as well as spatio-temporal
signal processing channel models. It should also be mentioned that when
trying to incorporate physical properties into signal processing schemes, new
data models are often required. Hence, an important part of this thesis is
physical modeling, where the theories of electromagnetics and wave propa-
gation meet signal processing. On the other hand, the borderline between
signal processing and communication theory has also been studied in this
thesis. This is a very interesting research area with an intense activity in
MIMO and STC communication systems, of which both were briefly con-
sidered in connection with different antenna solutions. This thesis has thus
studied a few problems along these interesting borderlines, and in the follow-
ing the main results and some general conclusions from these studies will be
presented.

The first chapters considered direction finding in the presence of mutual
coupling between the elements of an antenna array. The effects of mutual
coupling were studied from a signal processing perspective by analyzing sig-
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nal processing schemes for direction finding. Electromagnetic aspects were
also included by deriving the necessary expressions for the received voltages
at the antenna elements in the presence of mutual coupling. Using these ex-
pressions, the direction finding performance that is possible to achieve with
coupling was analyzed, unlike previously published work that analyzed spe-
cific estimation methods. A lower bound for the variance of any unbiased
estimator was calculated. It was found that if the coupling is known, the
effects on direction finding are small. In fact, in some cases a small increase
in performance results due to the coupling.

If the coupling is unknown, there will be a loss of performance. The effects
of an unknown mutual coupling can, however, be mitigated by estimating the
unknown coupling along with the DOAs. A reduced coupling model suitable
for estimation was derived, and its uniqueness properties were analyzed.

A number of DOA estimation schemes were extended to the case of both
known and unknown coupling. In particular, the Noise Subspace Fitting
method was shown to be a computationally attractive solution, while pro-
viding high estimation performance. Furthermore, the potential gain of es-
timating the unknown mutual coupling was examined by generating data,
calculated using the EM derivation of the coupling, and employing the pro-
posed algorithms. It was found that the effects of an unknown mutual cou-
pling were substantially reduced by estimating the coupling along with the
DOAs.

The direction finding part of the thesis ended with an analysis of two
novel antenna arrangements for high resolution direction finding, namely the
multimode and the switched parasitic antenna. Here, it was found that it is
possible to obtain high resolution without employing an array of physically
separated elements. Instead, the higher order modes were used to provide
different copies of the received signal, that can be used for direction find-
ing. Alternatively, a set of different radiation patterns may be obtained by
employing a switched parasitic antenna. By calculating the CRB for these
types of antennas, it was shown that high-resolution direction finding is pos-
sible. Some DOA estimation methods were also extended to these antennas,
indicating good performance. However, there are many other interesting pos-
sibilities in using these types of antennas, of which some will be outlined in
Section 13.2.

A large part of the thesis was also devoted to channel modeling and di-
versity studies. In particular, a spatio-temporal channel model based on EM
scattering and fundamental physics was presented. By studying the scatter-
ing properties of objects of simple shapes, such as spheres and cylinders, a
simple function that captures the most important scattering properties was
derived. A compact formulation was obtained by using a dyad notation and
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concepts from rough surface scattering. Hence, a simple, yet detailed, chan-
nel model was obtained by employing results from EM wave propagation
theory and elementary antenna theory. These results were then used to for-
mulate SISO, SIMO, and MIMO channel models. Essentially, the extension
from a single transmit antenna and single receive antenna to multiple an-
tennas only required that several impulse responses or channel coefficients
need to be evaluated. For each type of channel model, important channel
characteristics were simulated and discussed. The polarization properties of
the channel as well as those of the antennas are included in the model, thus
allowing for studies of different antenna arrangements. This is one of the
main benefits of the model, and several different types of antennas were ana-
lyzed in the following chapters. Another important property of the model is
that it is possible to relate various effects in the impulse responses to physical
entities, since the model is derived from fundamental electromagnetics and
wave propagation. Several performance measures, that can be found in the
literature, were calculated in order to find suitable values for the channel
parameters. However, measurements would of course be of great value in
this task. In the next section, a few suggestions of how measurements may
be used to find reasonable parameter values are given.

The potential use of the multimode and the switched parasitic antennas
in mobile communications was also examined using the above channel model.
Here, the use of these antennas as diversity receivers in MIMO systems was
investigated. It was found that the performance was comparable to that
of an antenna array of reasonable element separation. In particular, the
multimode microstrip antenna offers interesting ”paste on” features, while
the switched parasitic provides a compact and cheap (only one RF-chain)
solution. However, the studies presented here only considered some aspects of
the use of these antennas. Some further possibilities and studies are suggested
in the next section.

Finally, the mutual coupling issue was revisited from a slightly differ-
ent point of view. In this study, the impact of coupling upon the channel
capacity of a MIMO system consisting of closely spaced antenna elements,
was examined. Surprisingly, it was found that mutual coupling actually can
increase the capacity for certain channels. A plausible explanation for this
effect is that the mutual coupling acts as an additional “channel” that may
decrease the correlation by creating some additional multipath. In the light
of the results from the DOA analysis in the presence of mutual coupling, it is
not obvious that mutual coupling of necessity severely degrades systems and
thereby should be avoided at all costs. However, further analysis is necessary
and there will obviously be cases where coupling significantly does degrade
the performance.
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Although some results were obtained, there are still many open problems
regarding the above issues that needs to be settled. It is the author’s belief
that most of the above topics essentially only are touched upon, and there are
many interesting and important problems that need to be addressed. Some
of these are indicated in the next section.

13.2 Future Work

In this thesis, the effects of mutual coupling on DOA estimation were ana-
lyzed via theoretical calculation of the mutual impedance between dipoles. It
would of course be interesting to extend this analysis to other elements, such
as patch elements. Furthermore, only the case of an equidistantly spaced
linear array, was analyzed. Other array geometries would of course be in-
teresting to examine. In particular, planar arrays such as circular arrays
should be examined, since these offer 2-D DOA estimation. Since these also
are known to experience problems with mutual coupling, it is an interesting
topic for future research. Obviously, measurements would be interesting to
examine, in order to determine the potential performance gain by estimating
an unknown coupling together with the DOAs. Another topic for future work
is to study other models of the coupling that better describes the coupling
properties.

Two different multimode antennas, the biconical and microstrip antenna,
were analyzed in the thesis. These antennas were studied in a DOA esti-
mation context, and also as diversity receivers in MIMO systems. However,
many interesting possibilities and problems in exploiting multiple modes still
exist. In principle, most antennas can support higher order modes. Hence,
it is an interesting antenna design topic to find and evaluate other struc-
tures with perhaps better characteristics than the microstrip and biconical
antenna. More work on the antenna design is needed to find suitable po-
sitions of the feeds, appropriate dimensions, and a matching network that
minimizes the losses in the antenna. It is also important to note that in this
thesis, only the potential of exploiting the individual modes were examined.
Many other possibilities exists. For instance, a combination of spatial, polar-
ization, and modal diversity is an interesting alternative that may offer very
good performance. Furthermore, only the possibility of using the individual
modes as diversity branches was studied. It is also possible to use several
modes to form narrow beams. Here, there may be interesting connections
to high-resolution direction finding schemes for traditional mechanically ro-
tating narrow beam antennas, that may be exploited. Thus, there are many
interesting possibilities of using higher order modes of antennas, both for
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direction finding and in future high capacity MIMO systems.
There are also many exciting directions for parasitic antennas that can

be explored. For instance, the concept is not limited to monopoles. An even
better solution may be a switched parasitic patch antenna that may be very
well suited for deployment at the mobile. Furthermore, many other options of
how these different radiation patterns can be used need to be explored. More
work is also needed in designing the oversampling in space and time. This
may prove especially critical for high data rates, where instead a selection
scheme could be explored for MIMO systems and STC applications.

Another topic that may be studied is joint optimization of both the re-
ceiver, antenna, signal processing, and communication schemes. For exam-
ple, simulating the full system of receiver network, antenna, channel, and
receiver algorithms is useful in optimizing the overall performance of sys-
tems. With the rapid development of software in the electromagnetic and
applied electronics area, this may not be unrealistic. Even if it should prove
intractable to simulate the full system, it should be possible to analyze signal
processing properties of different antenna arrangements via electromagnetic
computation tools. This is something that most likely will benefit both the
signal processing schemes and the antenna design process. An example of an
interesting problem that could be analyzed is the relation between the com-
munication quality and the radiation of mobile phones into human tissue. By
an appropriate design of the antenna radiation pattern, the communication
quality may increase while reducing the microwave exposure. In this type of
study, models of both the antenna, head and channel may be used.

A large part of the thesis was spent on physical channel modeling. How-
ever, further work is needed in both validation and determining suitable
parameter values. Here, measurements is an important tool. As previously
mentioned, some measurements were performed shortly before writing this
thesis. Some preliminary results of how measurements may be used to de-
velop the channel model will therefore be given in this section. On the other
hand, ray-tracing is also an interesting possibility of obtaining data that can
be used to derive suitable parameter values. In this case, the surrounding
environment is under complete control. Hence, it is possible to relate effects
to physical entities in a more direct manner than using measurements that
contains more uncertainty.

In the presented simulation results, the direct wave was neglected. How-
ever, for systems with LOS conditions, the direct wave will obviously affect
the result. The normalized impulse response of an indoor measurement with
LOS in an corridor, is shown in Figure 13.1. Also shown is an impulse
response collected in NLOS conditions from an adjacent room. These mea-
surements were collected at the office of Telia Research in Malmö, Sweden.
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Figure 13.1: Wideband impulse responses from a typical office environment.

The measurements were conducted at a carrier frequency of 3.1GHz and a
bandwidth of 200MHz. This equipment has also been used to collect syn-
thetic MIMO measurements [Str01]. Since the aim of this section is only to
indicate how measurements can be used to improve the model, the descrip-
tion of the system is brief. For details regarding the measurement equipment,
see [Bör00].

Returning to Figure 13.1, it is obvious that the direct wave in the corridor
needs to be included. Also, it is necessary to determine suitable values for
the attenuation of the waves over distance to accurately model the decay of
the impulse response. The geometrical distribution of the scatterers must
also be determined to obtain an appropriate length of the impulse response
in the obstructed scenario of the room. Another important implication of the
location of the scatterers is the time evolution of the channel. In Figure 13.2,
the impulse responses over a distance of four wavelengths is shown. These
data were collected when moving along a corridor at the Telia office. Here,
it is clear that the number of significant peaks (or filter taps) are changing
as the location is changed. Hence, a suitable distribution for the scatterers
needs to be determined. In particular, a good performance measure for fitting
parameter distributions to the measured data is needed.

In most practical measurements, it has been observed that multipath
components generally arrive in clusters. Considering the underlying physics,
where the scatterers have a spatial extent and there are multiple small reflec-
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Figure 13.2: The evolution of the impulse response over distance (along a
corridor).
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tance (along a corridor).
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Figure 13.4: The magnitude of a single narrowband channel coefficient versus
separation distance (along a corridor). The channel capacity of a 4×4 MIMO
system for the same corridor is also shown.

tion points that contribute to the total signal, this seems reasonable. This
clustering affects, for instance, the correlation between signals received by
spatially separated antennas. Hence, these clusters should also be incor-
porated into the model. Here, some of the work on clusters of scatterers
proposed in [BJ98, FMB98] could be useful. An example of the narrowband
correlation between two signals received by spatially separated antennas is
shown in Figure 13.3 versus separation distance. Here, the correlation decays
with distance as it should. However, the decay is of oscillating character. By
an appropriate positioning of the scatterers and clustering, this should be
possible to model.

Furthermore, the rapid variation of the MIMO channel should be stud-
ied in more detail. In Figure 13.4, the variation of the magnitude of one
channel coefficient of a 4× 4 MIMO system is shown together with the total
calculated channel capacity of the system. Here, it is found that although
the individual coefficient experiences severe fading dips, the overall capacity
appears much more stable. How this best is exploited in STC schemes and
the relationship to different antenna solutions is also an interesting topic for
future research. For instance, can the multiple polarization available through
an electromagnetic vector sensor [NP97] be exploited here ?
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[DR93] U. Dersch and R.J. Rüegg. “Simulations of the Time and
Frequency Selective Outdoor Mobile Radio Channel”. IEEE
Trans. on Vehicular Technology, 42(3):338–344, August 1993.

[DS83] J.E. Dennis and R.B. Schnabel. Numerical Methods for Uncon-
strained Optimization and Nonlinear Equations. Prentice Hall,
Englewood Cliffs, NJ, 1983.

[DW98] F. Demmerle and W. Wiesbeck. “A Biconical Multibeam An-
tenna for Space-Division Multiple Access”. IEEE Trans. on
Antennas and Propagation, 46(6):782–787, June 1998.

[EK99] T. Ekman and G. Kubin. “Nonlinear Prediction of Mobile
Radio Channels: Measurements and MARS Model Designs”.
In Proc. ICASSP 99, Phoenix, AZ, March 1999.

[Ekm00] T. Ekman. “Prediction of Mobile Radio Channels”. Licenti-
ate thesis, Signals and Systems, Uppsala University, November
2000.

[Ell81] R. S. Elliot. Antenna Theory and Design. Prentice-Hall, En-
glewood Cliffs NJ, 1981.

[Ert98] R.B. Ertel et al. “Overview of Spatial Channel Models for An-
tenna Array Communication Systems”. IEEE Personal Com-
munications Magazine, 5(1):10–23, February 1998.

[Far92] A. Farina. “Antenna-Based Signal Processing Techniques for
Radar Systems”. Artech House, Boston, 1992.

[FB00] B.P. Flanagan and K.L. Bell. “Improved Array Self Calibration
with Large Sensor Position Errors for Closely Spaced Sources”.
In Proc. of the 2000 IEEE Sensor Array and Multichannel Sig-
nal Processing Workshop, pages 484–488, Boston, MA, 2000.

[FG98] G.J. Foschini and M.J. Gans. “On Limits of Wireless Commu-
nications in a Fading Environment when Using Multiple Anten-
nas”. Wireless Personal Communications, 6:311–335, March
1998.

278



BIBLIOGRAPHY

[FK92] A.J. Fenn and G.A. King. “Adaptive Nulling in the Hyperther-
mia Treatment of Cancer”. The Lincoln Laboratory Journal,
5(2):223–240, 1992.

[FL96] B.H. Fleury and P.E. Leuthold. “Radiowave Propagation in
Mobile Communications: An Overview of European Research”.
IEEE Communications Magazine, pages 70–81, February 1996.

[FM94] L.B. Felsen and N. Marcuvitz. Radiation and Scattering of
Waves. Series on Electromagnetic Waves. IEEE Press, 1994.
Reprint. Originally Published 1972.

[FMB98] J. Fuhl, A.F. Molisch, and E. Bonek. “Unified Channel Model
for Mobile Radio Systems with Smart Antennas”. IEE Proc.-
Radar, Sonar Navig., 145(1):32–41, February 1998.

[Foc65] V.A. Fock. Electromagnetic Diffraction and Propagation Prob-
lems. Pergamon Press, New York, 1965.

[FW88] B. Friedlander and A.J. Weiss. “Eigenstructure Methods for
Direction Finding with Sensor Gain and Phase Uncertainties”.
In Proc. IEEE ICASSP 88, pages 2681–2684, New York City,
April 1988.

[FW91] B. Friedlander and A.J. Weiss. “Direction Finding in the Pres-
ence of Mutual Coupling”. IEEE Trans. on Antennas and
Propagation, 39(3):273–284, March 1991.

[Gab80] W.F. Gabriel. “Spectral Analysis and Adaptive Array Super-
resolution Techniques”. Proceedings of the IEEE, 68(6):654–
666, June 1980.

[GBGP00] D. Gesbert, H. Bölcskei, D.A. Gore, and A.J. Paulraj. “Out-
door MIMO Wireless Channels: Models and Performance Pre-
diction”. In Proc. 34th Asilomar Conf. Sig., Syst., Comput.,
Pacific Grove, CA, October 2000.

[GK83] I.J. Gupta and A.K. Ksienski. “Effect of Mutual Coupling on
the Performance of Adaptive Arrays”. IEEE Trans. on Anten-
nas and Propagation, 31(5):785–791, September 1983.

[God97] L.C. Godara. “Applications of Antenna Arrays to Mobile Com-
munications: Part II-Beamforming and Direction-of-Arrival
Considerations”. Proceedings of the IEEE, 85(8):1195–1245,
August 1997.

279



BIBLIOGRAPHY

[Has93] H. Hashemi. “The Indoor Radio Propagation Channel”. Proc-
cedings of the IEEE, 81(7):943–968, July 1993.

[Hat80] M. Hata. “Empirical Formula For Propagation Loss in Land
Mobile Radio Services”. IEEE Trans. on Vehicular Technology,
29(3):317–825, 1980.

[Hay95a] S. Haykin, editor. Advances in Spectrum Analysis and Array
Processing, volume I-III. Prentice-Hall, 1991-1995.

[Hay95b] S. Haykin, editor. Advances in Spectrum Analysis and Array
Processing, volume III. Prentice-Hall, 1995.

[HB91] Y-D Huang and M. Barkat. “Near-Field Multiple Source Lo-
calization by Passive Sensor Array”. IEEE Trans. on Antennas
and Propagation, 39(7):968–975, July 1991.

[He93] S. Haykin and J. Litva T.J. Shepherd (eds). Radar Array Pro-
cessing. Springer-Verlag, Berlin, 1993.

[HHDH99] S. Hu, H. Hallen, and A. Duel-Hallen. “Physical Channel Mod-
eling, Adaptive Prediction and Transmitter Diversity for Flat
Fading Mobile Channels”. In Proc. IEEE Workshop Signal
Processing Advances in Wireless Communications SPAWC’99,
pages 387–390, May 1999.

[How75] J.Q. Howell. “Microstrip Antennas”. IEEE Trans. on Antennas
and Propagation, 23:90–93, 1975.

[Hua84] J. Huang. “Circularly Polarized Conical Patterns from Cir-
cular Microstrip Antennas”. IEEE Trans. on Antennas and
Propagation, 32:991–994, 1984.

[HW90] B. Himed and D.D. Weiner. “Compensation for Mutual Cou-
pling Effects in Direction Finding”. In Proc. IEEE ICASSP 90,
volume 5, pages 2631–2634, 1990.

[IN71] N. Inagaki and K. Nagai. “Exact Design of an Array of
Dipole Antennas Giving the Prescribed Radiation Patterns”.
IEEE Trans. on Antennas and Propagation, 18:128–129, Jan-
uary 1971.

[Jaf88] A.G. Jaffer. “Maximum Likelihood Direction Finding of
Stochastic Sources: A Separable Solution”. In ICASSP 88,
volume 5, pages 2893–2896, New York, April 1988.

280



BIBLIOGRAPHY

[Jak74] W. Jakes. Microwave Mobile Communications. Wiley-
Interscience, New York, 1974.

[JHW81] J.R. James, R.S. Hall, and C. Wood. Microstrip Antenna The-
ory and Design. Peregrinus, 1981.

[Jos94] L. Josefsson. “Mutual Coupling Effects on the Performance
of Finite Radar Antenna Arrays”. In Proc. Radar 94, pages
713–716, Paris, 3-6 May 1994.

[JS88] P.H. Janssen and P. Stoica. “On the Expectation of the Product
of Four Matrix-Valued Gaussian Random Variables”. IEEE
Trans. on Automatic Control, 33(9):867–870, September 1988.

[Kay93] S. M. Kay. Fundamentals of Statistical Signal Processing.
Prentice-Hall, Englewood Cliffs, NJ, 1993.

[KB86] M. Kaveh and A. J. Barabell. “The Statistical Performance of
the MUSIC and the Minimum-Norm Algorithms in Resolving
Plane Waves in Noise”. IEEE Trans. on ASSP, ASSP-34:331–
341, April 1986.

[KCH71] R.W.P. King and Jr. C.W. Harrison. “Scattering by Imper-
fectly Conducting Spheres”. IEEE Trans. on Antennas and
Propagation, AP-21(2):191–207, March 1971.

[KH69] R.W.P. King and C.W. Harrison. Antennas and Waves: A
Modern Approach. The M.I.T. Press, 1969.

[Kil98] P-S. Kildal. “Foundations of Antennas: A Unified Approach”.
Compendium, Gothenburg, 1998.

[Kil99] P-S. Kildal. “Equivalent Circuits of Receive Antennas in Signal
Processing Arrays”. Microwave and Optical Technology Letters,
21(4):244–246, May 1999.

[KJSWW99] J. Khun-Jush, P. Schramm, U. Wachsmann, and F. Wenger.
“Structure and Performance of the HiperLAN2 Physical
Layer”. In Proc. IEEE VTC 1999 Fall, pages 2667 – 2671,
September 1999.

[KP85] Y-W. Kang and D.M. Pozar. “Correction of Error in Reduced
Sidelobe Synthesis due to Mutual Coupling”. IEEE Trans. on
Antennas and Propagation, AP-33:1025–1028, September 1985.

281



BIBLIOGRAPHY

[Kra50] J. D. Kraus. Antennas. McGraw-Hill, New York, 1950.

[Kra88] J. D. Kraus. Antennas. McGraw-Hill, New York, second edi-
tion, 1988.

[KRB00] A. Kuchar, J-P. Rossi, and E. Bonek. “Directional Macro-Cell
Channel Characterization from Urban Measurements”. IEEE
Trans. on Antennas and Propagation, 48(2):137–146, February
2000.

[Kri99] G. Kristensson. Spridningsteori med antenntillämpningar. Stu-
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