
Cognitive control usually refers to the ability to guide 
information processing and behavior in the service of a 
goal; such control is a central aspect of many higher-level 
cognitive functions, including attention, working memory, 
and planning (E. K. Miller & Cohen, 2001). It has been 
noted that any theory of cognitive control would have to 
specify how the cognitive system is able to determine how 
much control is needed (Botvinick, Braver, Barch, Carter, 
& Cohen, 2001). Accordingly, we and others have sug-
gested that one monitoring function capable of regulating 
the extent to which control is engaged is the detection of 
conflict occurring between competing, concurrently ac-
tive, mutually incompatible representations (Botvinick 
et al., 2001; Botvinick, Cohen, & Carter, 2004; Gruber 
& Goschke, 2004; van Veen & Carter, 2002a, 2006). 
Following the detection of a conflict, control processes 
are thought to be engaged to resolve the conflict and to 
prevent future performance decrements. In particular, 
the monitoring system appears to have a distinct neural 
substrate—namely, the anterior cingulate cortex (ACC). 
Since top-down control appears to be mostly implemented 
in the dorsolateral prefrontal cortex (DLPFC; E. K. Miller 
& Cohen, 2001), it is suggested that following the detec-
tion of conflict by the ACC, these lateral areas are engaged 
in order to reduce conflict.

For illustration, consider the parallel distributed pro-
cessing model of the Stroop task displayed in Figure 1 
(adapted from Botvinick et al., 2001; E. K. Miller & 
Cohen, 2001). This model features two input layers (one 

for colors, one for words), a response layer, a control layer, 
and a conflict monitor. In the Stroop task, participants are 
presented with color names printed in a particular color, 
and they must name the color while ignoring the word. 
When a stimulus is incongruent (i.e., color and word are 
not identical), the color and word dimensions activate the 
associated responses, resulting in conflict between the ac-
tivated responses and an increased likelihood of errors. 
This conflict is proposed to activate a conflict monitor 
localized in the ACC, which in turn engages the con-
trol functions of the DLPFC (in the model, specifically 
it would engage the color naming unit in Figure 1). This 
increased engagement of the DLPFC increases attention 
to the color on subsequent trials, resulting in improved 
performance.

In this review, we will first discuss some of the evidence 
linking activation of the ACC to conflict as it occurs in 
speeded response interference tasks, during both correct 
trials and errors. In the next section, we will discuss evi-
dence linking the trial-by-trial modulation of control, as 
implemented in the DLPFC, to the conflict-monitoring 
functions of the ACC, suggesting that these mechanisms 
are linked to form a conflict–control loop, as illustrated 
in the model depicted in Figure 1. In the subsequent sec-
tions, we will discuss some areas of research that have 
yielded results that are not necessarily consistent with this 
theory, for which further theoretical and empirical work is 
needed if these results are to be reconciled with the theory. 
Finally, we will briefly discuss alternative theories that 
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compete with our view that the ACC functions as a con-
flict monitor.

CONFLICT DURING CORRECT 
AND ERROR TRIALS

Conflict During Correct Trials
The conflict–control loop (CCL) theory of ACC func-

tioning was originally based on data obtained from speeded 
response tasks. Not only are the notions of conflict and 
control relatively well understood in this type of task, but 
these tasks have also provided most of the empirical disso-
ciations of conflict and control, as well as empirical support 
for linking these component processes to a known neural 
circuitry understood to contribute to cognitive control. In 
this section, the concept of conflict in speeded response 
tasks will be elaborated, and we will discuss evidence for 
the relationship between cognitive conflict and activation 
of the ACC and other frontal cortical regions.

Conflict in cognitive tasks can be caused or modu-
lated by several experimental parameters. The most often 
studied experimental manipulation of conflict in speeded 
response tasks is the coactivation of different, incompat-
ible response channels induced by conflicting information 
present in a stimulus. For example, this occurs in the case 
of the Stroop task (MacLeod, 1991, 1992; MacLeod & 
MacDonald, 2000; Stroop, 1935), the Eriksen flanker task 
(B. A. Eriksen & Eriksen, 1974; C. W. Eriksen & Schultz, 
1979), and the Simon task (Ridderinkhof, 2002; Simon, 
1969; Simon & Berbaum, 1990). In such tasks, the par-
ticipant is to respond as quickly and accurately as pos-
sible to one (relevant) stimulus dimension while trying to 
ignore another (irrelevant) stimulus dimension; conflict is 

caused when the irrelevant stimulus dimension is mapped 
onto an incorrect response. Congruent stimulus–response 
(S–R) mappings exist when both stimulus dimensions are 
mapped onto the same response, leading to fast and ac-
curate responses; when the irrelevant stimulus dimension 
is mapped onto a different motor response, responses are 
characterized by increased reaction times (RTs) and error 
rates. So-called “neutral” conditions involve an irrelevant 
stimulus that is not mapped onto any response in the re-
sponse set. In this type of task, processing of the irrelevant 
stimulus dimension is thought to occur more quickly and 
automatically than processing of the relevant one, result-
ing in a fast activation of the response associated with the 
irrelevant stimulus. Conversely, processing of the relevant 
stimulus dimension in such tasks is usually slower and 
more controlled, leading to a relatively slow activation of 
the associated response (see, e.g., Cohen, Dunbar, & Mc-
Clelland, 1990; Gratton, Coles, & Donchin, 1992; Grat-
ton, Coles, Sirevaag, Eriksen, & Donchin, 1988).

The level of conflict depends on the extent to which 
competing responses are activated—either as a result of 
strategy or of automatic processes. The relative frequencies 
at which the stimuli and the associated responses occur are 
another way in which conflict can be manipulated. Partici-
pants have been found to respond more quickly to frequent 
S–R mappings than to infrequent ones; they are thought to 
optimize performance by priming the frequent response 
to each trial, at a cost of decreased performance in infre-
quent trials (Jones, Cho, Nystrom, Cohen, & Braver, 2003; 
J. Miller, 1998). For instance, in the “go/no-go” task (see, 
e.g., Karlin, Martz, & Mordkoff, 1970), participants have 
to respond to frequent stimuli (go trials) and withhold 
responses to certain infrequent stimuli (no-go trials). Be-
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Figure 1. Example of a computational model of an interference task. When relevant 
(color) and irrelevant (word) stimulus dimensions are incongruent and activate con-
flicting responses, the anterior cingulate cortex (ACC) detects this conflict and  engages 
attentional control mechanisms in the dorsolateral prefrontal cortex (DLPFC).
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cause go trials are frequent, participants tend to prepare a 
response to each stimulus and activate that response during 
each trial, including no-go trials. Thus, during no-go trials, 
the tendency to withhold (the no-go response) has to com-
pete with the primed go response, resulting in increased 
false alarms to no-go trials (Jones et al., 2003). Conversely, 
when participants have to withhold responding on a major-
ity of trials, as occurs in target detection tasks, they tend 
to adopt a strategy in which the infrequent go response is 
activated relatively slowly and less automatically because 
of competition with the tendency to withhold responding, 
resulting in greater RTs and reduced accuracy to the infre-
quent target stimulus (Jones et al., 2003).

Evidence indicating that the “automatic” response ac-
tivation in these tasks occurs relatively quickly, and that 
activation of the relatively more controlled S–R mapping 
occurs much more slowly, comes from many converging 
sources. These include studies of response force, electro-
myographical data, and lateralized readiness potentials, 
as well as distributional analyses of RT and accuracy 
(Coles, Gratton, Bashore, Eriksen, & Donchin, 1985; 
de Jong, Liang, & Lauber, 1994; de Jong, Wierda, Mul-
der, & Mulder, 1988; Dehaene et al., 1998; Eimer, 1995; 
Eimer, Hommel, & Prinz, 1995; Gehring, Gratton, Coles, 
& Donchin, 1992; Gratton et al., 1992; Gratton et al., 
1988; Kopp, Mattler, Goertz, & Rist, 1996; Kopp, Rist, 
& Mattler, 1996; Kornblum, Hasbroucq, & Osman, 1990; 
J. Miller, 1998; J. Miller & Hackley, 1992; Praamstra & 
Oostenveld, 2003; Ridderinkhof, 2002; Ridderinkhof & 
van der Molen, 1995; Spencer & Coles, 1999). Further-
more, neuroimaging studies have almost invariably found 
dorsal ACC and prefrontal cortex activity when compar-
ing high- and low-conflict trial types in these and related 
tasks (e.g., Braver, Barch, Gray, Molfese, & Snyder, 2001; 
Durston, Thomas, Worden, Yang, & Casey, 2002; Kerns 
et al., 2004; van Veen & Carter, 2005; van Veen, Cohen, 
Botvinick, Stenger, & Carter, 2001).

Conflict might, of course, not be limited to conflict be-
tween possible responses; in theory, it could occur any-
where within the information processing system. We and 
others initially found that the ACC appears to be engaged 
only during conflict between response representations 
(Milham et al., 2001; Nelson, Reuter-Lorenz, Sylvester, 
Jonides, & Smith, 2003; van Veen et al., 2001), suggesting 
that the ACC is activated selectively with such conflicts. 
However, subsequent studies have suggested that in some 
situations, the ACC can also be engaged with conflicts 
between other types of representations, such as semantic 
or conceptual representations (Badre & Wagner, 2004; 
van Veen & Carter, 2005; Weissman, Giesbrecht, Song, 
Mangun, & Woldorff, 2003).

Conflict During Error Trials
Trials in which errors are made have also been associ-

ated with ACC activation. People are very efficient and 
fast at correcting their own slips of action; in speeded 
response tasks, the time between the erroneous and the 
corrective responses is typically less than 200 msec, mak-
ing error correction one of the fastest cognitive processes 
known (Cooke & Diggles, 1984; Rodríguez-Fornells, 

Kurzbuch, & Münte, 2002). Event-related potential (ERP) 
research has shown that a slip of action is immediately fol-
lowed by a large-amplitude, sharp, negative waveform that 
peaks 50–100 msec following buttonpress (e.g., Dehaene, 
Posner, & Tucker, 1994; Falkenstein, Hohnsbein, Hoor-
mann, & Blanke, 1991; Falkenstein, Hoormann, Christ, 
& Hohnsbein, 2000; Luu & Tucker, 2001; Ridderinkhof 
et al., 2002; Rodríguez-Fornells et al., 2002; van Veen & 
Carter, 2002b) or 100–150 msec after electromyograph 
onset (e.g., Gehring & Fencsik, 2001; Gehring, Goss, 
Coles, Meyer, & Donchin, 1993; Kopp, Rist, & Mattler, 
1996; Scheffers & Coles, 2000; Scheffers, Coles, Bern-
stein, Gehring, & Donchin, 1996). This is the error-related 
negativity (ERN), and dipole-modeling studies have con-
sistently shown that this component might be generated by 
the ACC (Dehaene et al., 1994; Holroyd, Dien, & Coles, 
1998; Miltner et al., 2003; Nieuwenhuis, Yeung, van den 
Wildenberg, & Ridderinkhof, 2003; van Veen & Carter, 
2002b; Yeung, Botvinick, & Cohen, 2004). Converging 
evidence from fMRI studies has confirmed this result by 
showing that action slips are accompanied by ACC acti-
vation (Braver et al., 2001; Carter et al., 1998; Garavan, 
Ross, Kaufman, & Stein, 2003; Mathalon, Whitfield, & 
Ford, 2003; Rubia, Smith, Brammer, & Taylor, 2003; Ull-
sperger & von Cramon, 2001).

According to the first interpretations of the ERN, this 
component reflected a process that detected errors by 
comparing a representation of the actual response to a 
representation of the intended response; the ERN would 
be generated by a mismatch between these two represen-
tations (Falkenstein et al., 1991; Falkenstein et al., 2000; 
Gehring et al., 1993; Scheffers et al., 1996). One attractive 
and parsimonious feature of this theory is that it regards 
the ERN as comparable to other types of medial frontal 
negativities thought to be the results of a mismatch pro-
cess, including the “mismatch negativity” and the N400 
(Falkenstein et al., 1991).

The conflict theory of ACC functioning grew out of this 
“comparator” error detection theory of the ERN, and these 
two theories remain closely related. However, we view the 
conflict theory as more general than the comparator error 
detection theory, and therefore more parsimonious. Fur-
thermore, in speeded forced choice response tasks, errors 
are typically fast, impulsive responses. Analyses of the 
conditional accuracy functions of interference tasks such 
as the Eriksen task have shown that the accuracy of ex-
tremely fast responses to incongruent trials is frequently 
below chance, suggesting that these responses are for the 
most part based on the irrelevant stimulus dimension (see, 
e.g., Gratton et al., 1992, Experiment 1). The error detec-
tion theory assumes that such fast erroneous responses are 
nevertheless intended to be correct; we find this assump-
tion questionable, and know of no evidence supporting 
it. Nevertheless, the conflict and error detection theories 
are perhaps more similar than they are different; indeed, 
there is much overlap between the notions of a mismatch 
between two representations and of conflict between the 
representations.

Conflict theory treats errors as another type of conflict 
trial and assumes that errors are detected by the same pro-
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cess responsible for detecting conflict. In speeded forced 
choice response tasks, there are substantial similarities 
between error trials, on the one hand, and correct trials 
involving conflict, on the other, as well as in the patterns 
of neural activity associated with these two trial types. 
Psychophysiological evidence has suggested that the 
timing of the activation of the correct and incorrect re-
sponses appears to be similar during errors and correct 
conflict trials (e.g., Kopp, Rist, & Mattler, 1996). As 
discussed earlier, correct conflict trials are often charac-
terized by a fast, impulsive, small-amplitude activation 
of the response associated with the irrelevant stimulus 
dimension. Error trials, in contrast, are usually fast, im-
pulsive responses that are immediately followed by the 
tendency to correct the error. Ongoing processing of  
the stimulus is thought to continue during and after the 
commission of the error, leading to activation of the  correct 
response and to the frequent occurrence of a fast correc-
tion of the erroneous response (Kopp, Rist, & Mattler, 
1996; Rabbitt & Rodgers, 1977; Rabbitt & Vyas, 1981). 
Hence, during both errors and correct trials, activation of 
the incorrect response appears to precede  activation of the 
correct response; the difference between these two trial 
types appears to be that the fast activation of the incorrect 
response during correct conflict trials does not manage 
to reach response threshold, whereas it does during er-
rors trials (van Veen & Carter, 2002b). Kopp, Rist, and 
Mattler, using an Eriksen task, showed that the ERN  
and the frontal N2 have the same scalp topography and 
are both related in the same way to the amplitude of the 
initial incorrect response activation (as measured by lat-
eralized readiness potentials [LRPs] and squeeze force). 
We reasoned that the maximum response conflict and 
ACC activity should precede the response during correct 
conflict trials; conversely, response conflict and ACC ac-
tivity should occur immediately following the erroneous 
response during error trials, since these slips are usually 
immediately corrected. Indeed, we found that the fronto-
central N2 during correct conflict trials and the ERN could 
both be modeled by a dipole in the same area of the ACC 
(van Veen & Carter, 2002b). Thus, ACC activity appears 
to be reflected in the frontocentral N2 component during 
correct conflict trials, reflecting conflict prior to the mo-
ment of the response, and in the ERN during error trials, 
reflecting conflict immediately following the response. 
This finding has subsequently been replicated elsewhere 
(Nieuwenhuis et al., 2003; Yeung et al., 2004).1 Consistent 
with these dipole models, Mathalon et al. (2003) showed 
that on a between-subjects basis, both N2 and ERN am-
plitude are correlated with ACC activity as measured with 
fMRI. Thus, ACC activation appears to occur prior to the 
response during correct conflict trials and immediately 
following the response during error trials, consistent with 
predictions made by the conflict theory.

An important detail to note is that, according to the con-
flict theory, the detection of postresponse conflict does 
not trigger the corrective response itself. Rather, this cor-
rective response is considered to be triggered by ongoing 
processing of the stimulus (Rabbitt & Vyas, 1981; Yeung 
et al., 2004). Indeed, very fast corrective responses have 

been observed, as little as 20 msec after the initial erro-
neous response (Rabbitt, 1967, 2002). The much slower 
ERN latency would not be consistent with these findings 
if the ACC itself were proposed to trigger the corrective 
response.

The view that the ERN reflects the conflict between 
a fast erroneous response and a subsequent corrective 
response predicts that it is related to the amplitudes of 
both response signals. The results of several empirical 
and modeling studies confirm this prediction. Yeung et al. 
(2004) implemented in a series of computational models 
the hypothesized mechanism of an ERN that is related 
to conflict between a fast erroneous response and a sub-
sequent corrective response. Much as we had previously 
predicted on the basis of psychophysiological data (van 
Veen & Carter, 2002b), Yeung et al. showed that a model 
of conflict during this task does indeed predict that conflict 
would reach maximum prior to the response during cor-
rect conflict trials but immediately following the response 
on erroneous trials. Yeung et al. furthermore showed that 
this simple model can account for several key findings 
concerning the relationship of ERN amplitude to various 
experimental manipulations, which we will now discuss in 
turn (see Yeung et al., 2004, for details).

Scheffers and Coles (2000) observed that the ERN is 
greater for errors on congruent than on incongruent tri-
als. Yeung et al. (2004) found that their model readily ac-
counted for these data; postresponse conflict between the 
erroneous response and the subsequent corrective response 
appears to be greater because the activity of the correct-
response unit builds up faster in the case of congruent er-
rors, since congruent trials present greater evidence for the 
correct than for the incorrect response. Furthermore, the 
ERN appears to be greater for corrected than for uncor-
rected trials (Scheffers & Coles, 2000). When separating 
the model’s output responses on the basis of whether the 
corrective response reached the response threshold, Yeung 
et al. found that postresponse conflict was indeed greater 
for corrected than for uncorrected responses, showing that 
the theory can account for these data. Consistently, other 
studies have also found that the ERN is greater for cor-
rected than for uncorrected errors (Gehring et al., 1993; 
Rodríguez-Fornells et al., 2002). Rodríguez-Fornells et al. 
compared ERNs in conditions in which self-correction of 
action slips was either encouraged or forbidden, and they 
showed that ERN amplitude was greatly enhanced when 
participants corrected their errors. Moreover, in the condi-
tion in which correction was encouraged, the amplitude of 
the ERN was positively related to correction speed. Both 
of these effects were also clearly present in the LRP; the 
correction condition elicited a very small posterror LRP 
deflection, and faster correction elicited a posterror LRP 
deflection with an earlier peak.

Second, the ERN has been observed to have an 
 increasing amplitude the more participants emphasize ac-
curacy over speed in their performance (Falkenstein et al., 
2000; Gehring et al., 1993). Consistently, error-related 
ACC activation as measured by fMRI is greater under ac-
curacy emphasis than under speed emphasis (Ullsperger 
& von Cramon, 2004; van Veen, 2006). Yeung et al. (2004) 
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implemented accuracy emphasis in their model by means 
of a stricter response criterion and increased attention to 
the relevant stimulus dimension. These manipulations 
caused the model to display greater corrective response 
force under accuracy emphasis, as well as greater conflict 
following erroneous responses, again consistent with the 
observed data.

A third important finding is the observation that the 
ERN is greater when flanker stimuli are frequent than 
when they are infrequent (Holroyd & Coles, 2002). Yeung 
et al. (2004) accounted for these data by biasing the fre-
quent stimulus and response in the model, facilitating the 
buildup of evidence of the correct response unit when this 
corresponded to the frequent correct response. This ma-
nipulation resulted in greater conflict between the errone-
ous and corrective responses for frequent stimuli.

Finally, the models by Yeung et al. (2004) can account 
for the seemingly inconsistent results of Gehring et al. 
(1993), who found a greater ERN paired with smaller 
amplitude of the erroneous response, as measured by 
response force, and Scheffers et al. (1996), who found a 
greater ERN with increasing response force of the erro-
neous response. Yeung et al. noticed that the participants 
in the Scheffers et al. study were more likely to correct 
their errors than were the participants in the Gehring et al. 
study, and Yeung et al. showed that their models could 
account for the proportions of corrective responses and 
for the different relationships of the amplitude of er-
roneous responses to the amplitude of the ERN in both 
experiments.

Thus, these computational modeling studies show that 
conflict theory can account remarkably well for a variety 
of ERN data, including results that seem conflicting or 
paradoxical. In sum, the available research suggests that 
the ERN is a psychophysiological correlate of conflict de-
tection by the ACC between two simultaneously active, in-
compatible response channels: a fast, impulsive  erroneous 
response, and a subsequent corrective response (van Veen 
& Carter, 2002b). It is, however, important to note that 
although the Yeung et al. (2004) models can successfully 
simulate much of the available data on the ERN from 
within conflict theory, Holroyd, Yeung, Coles, and Cohen 
(2005) have also provided an alternative computational 
account that explains a great deal of the same data on the 
basis of an explicit comparator/mismatch mechanism.

CONTROL ENGAGEMENT 
FOLLOWING CONFLICT

Trial-to-trial adjustments of control (referred to by Rid-
derinkhof, 2002, as micro-adjustments, or the effect of a 
previous trial on performance on the present trial) have 
been shown in a number of studies to be related to the 
amount of conflict occurring on the previous trial. We and 
others have focused on two types of micro-adjustments 
that might reflect the recruitment of control mechanisms 
by conflict detection: the conflict adaptation effect and 
posterror slowing.

The conflict adaptation effect refers to the finding that 
the difference in performance between incongruent and 

congruent trials is dependent on the nature of the previ-
ous trial (see, e.g., Botvinick, Nystrom, Fissell, Carter, 
& Cohen, 1999; Burle, Possamaï, Vidal, Bonnet, & Has-
broucq, 2002; Egner & Hirsch, 2005a, 2005b; Gratton 
et al., 1992; Kerns et al., 2004; Kunde, 2003; Ridderin k-
hof, 2002; Stürmer & Leuthold, 2003; Stürmer, Leuthold, 
Soetens, Schröter, & Sommer, 2002; Ullsperger, Bylsma, 
& Botvinick, 2005; Wühr & Ansorge, 2005). Specifi-
cally, following correct incongruent trials, performance 
is less influenced by the distracting irrelevant stimulus 
dimension than following correct congruent trials, when 
performance is relatively more influenced by the distract-
ing stimulus dimension. When an incongruent trial is 
preceded by another incongruent trial (an iI trial), RTs 
are shorter and accuracy is higher than when the current 
trial is preceded by a congruent one (cI); likewise, when 
one congruent trial is preceded by another (cC), RTs are 
shorter than when the current trial is preceded by an in-
congruent one (iC). This phenomenon has been inter-
preted as the dynamic adjustment of control depending on 
conflict (Botvinick et al., 2001). Following a nonconflict 
trial, control is relaxed, and participants allow their re-
sponses to be more influenced by the distracting irrelevant 
stimulus dimension. Following a conflict trial, control is 
more highly engaged, resulting in less susceptibility to the 
irrelevant stimulus dimension. RTs to cC trials are very 
fast; the relevant and irrelevant stimulus dimensions both 
activate the same (correct) response, resulting in a faster 
buildup of activity leading to a faster response. RTs to iC 
trials are therefore relatively slow; the facilitating effect of 
the irrelevant stimulus dimension is reduced, and activa-
tion of the correct response is slower. Conversely, iI trials 
elicit relatively fast and accurate responses because the 
incongruent distracting stimulus is filtered out to a larger 
degree, resulting in a smaller activation of the incorrect 
response. On cI trials, the incongruent irrelevant stimulus 
dimension has a larger effect on the response, creating 
more response conflict, and thus resulting in a longer RT 
and reduced accuracy. Analyses of RT distributions have 
shown that the reduced accuracy to cI trials relative to iI 
trials is specifically due to fast, impulsive slips rather than 
to slow errors (Gratton et al., 1992; Stürmer et al., 2002). 
Similarly, LRP data have shown that the initial incorrect 
response activation typical of incongruent trials is greater 
for cI than for iI trials (Gratton et al., 1992; Stürmer & 
Leuthold, 2003; Stürmer et al., 2002). This pattern sup-
ports the notion that slips in these types of tasks are caused 
by the initial activation of the incorrect response by the 
irrelevant stimulus, and that control serves to attenuate 
this initial activation.

Consistently, neuroimaging data have shown that ACC 
activation is greatest to cI trials in the Eriksen task (Bot-
vinick et al., 1999), the Stroop task (Egner & Hirsch, 
2005b; Kerns et al., 2004), and the Simon task (Kerns, 
2006; van Veen, 2006, Experiment 1). Furthermore, the 
reduction of conflict on the subsequent trial has been re-
lated to activation of the DLPFC (Egner & Hirsch, 2005a, 
2005b; Kerns, 2006; Kerns et al., 2004; van Veen, 2006). 
Moreover, ACC activation during conflict trials has been 
found to predict both the DLPFC activation during the 
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subsequent high-control trials and the behavioral interfer-
ence effect (Kerns, 2006; Kerns et al., 2004; van Veen, 
2006).

Other data suggest that control does indeed operate to 
reduce interference by biasing stimulus processing toward 
the relevant stimulus dimension. Scerif, Worden, David-
son, Seiger, and Casey (2006) had participants perform 
an Eriksen task in which flankers without a central target 
were occasionally presented as foils. They showed that 
not only was the early P1 component of the ERP reduced 
for iI trials, suggesting that processing of the irrelevant 
stimulus features had been reduced due to increased con-
trol, but that this component was also reduced on foil trials 
preceded by incongruent rather than by congruent trials, 
 suggesting that control was engaged by the preceding in-
congruent trial. Egner and Hirsch (2005a) used a Stroop 
task analogue in which participants were presented with 
the names and faces of famous politicians or actors and 
were asked to respond to either the name or the face, the 
other stimulus being the distractor. The researchers ob-
served modulation of the fusiform face area by the conflict 
adaptation effect when faces were targets, but not when 
they were distractors, and also observed a tight functional 
coupling between the DLPFC and this area, suggesting 
that the role of the DLPFC in the conflict adaptation ef-
fect is to increase the processing of task-relevant stimuli, 
rather than to inhibit task-irrelevant stimuli, consistent 
with a biased-competition view of attentional selection.

Posterror slowing is another form of micro- trade-off 
that might reflect engagement of the conflict–control 
loop. It has long been known that people respond more 
slowly and accurately following error trials (Kleiter & 
Schwarzenbacher, 1989; Laming, 1979; Rabbitt, 1966; 
Rabbitt & Rodgers, 1977). Posterror slowing is frequently 
thought to be dependent on a control mechanism, and it 
appears to be associated with increased DLPFC activation 
on the trial following the error (Kerns et al., 2004; van 
Veen, 2006).

There also appears to be a relationship between 
 error-related ACC activity and posterror slowing within 
participants: the greater the activity, the greater the ex-
tent to which participants tend to slow down during the 
subsequent trial (Debener et al., 2005; Garavan, Ross, 
 Murphy, Roche, & Stein, 2002; Gehring et al., 1993). In 
an interesting recent study, Debener et al. simultaneously 
recorded both ERPs and fMRI and observed a within-
subjects, trial-to-trial coupling between the ERN ampli-
tude, error-related ACC activation as measured by fMRI, 
and posterror slowing. They suggested that the occasional 
failure to find a between-subjects relationship between 
ERN and posterror slowing (see, e.g., Hajcak, McDonald, 
& Simons, 2003) might be due to other between-subjects 
factors, such as individual differences, morphological 
variation of the ACC, or skull thickness.

Botvinick et al. (2001) implemented in several con-
nectionist models the notion that the conflict adaptation 
effect and posterror slowing are conflict-driven, and they 
showed that the behavior of these models on these tasks 
provided a good fit to the empirically observed behavioral 
and neuroimaging data. In their model, Botvinick et al. 

(2001) assumed that high conflict during errors reduced 
activation of the response units on the subsequent trial, 
which caused the model to respond more slowly on trials 
following errors because more buildup of activation was 
needed for the response units to reach the decision thresh-
old. Furthermore, since it had been found that posterror 
slowing tends to linger past the immediate posterror trial, 
Botvinick et al. (2001) assumed that the ACC integrates 
conflict over a series of several trials.

It should be emphasized here that the control mecha-
nism underlying posterror slowing that they proposed 
is somewhat different from the control mechanism un-
derlying the conflict adaptation effect. That is, in the 
models of Botvinick et al. (2001), control in the conflict 
adaptation effect was implemented as greater percep-
tual  attention toward the relevant stimulus dimension; in 
posterror slowing, however, control was implemented as 
a change in the strategic priming of the response units. 
Nevertheless, Kerns et al. (2004) found that the same 
area of the DLPFC was implicated in both the conflict 
adaptation effect and posterror slowing. How or why 
the DLPFC’s control mechanisms respond differently to 
the two instances of conflict is a question that remains 
to be addressed in empirical work and modeling studies. 
Interestingly, Brown, Reynolds, and Braver (2007) have 
recently described a computational model implementing 
two separate conflict–control loops. In their model, the 
detection of conflict between simultaneously active tasks 
and responses shifts control toward the processing of task-
relevant information (and toward exploitation rather than 
exploration), whereas the detection of conflict across suc-
cessively active tasks and responses shifts control toward 
accuracy on the speed–accuracy trade-off continuum (and 
toward exploration rather than exploitation). Their model 
is able to account for a large amount of task-switching 
data (including the finding that task switching takes lon-
ger following high-conflict trials; see Goschke, 2000; 
Gruber & Goschke, 2004), and it could very well explain 
why control engagement following error trials and control 
engagement following correct conflict trials are expressed 
somewhat differently in performance.

Interestingly, disturbances in conflict monitoring have 
been found in several psychiatric illnesses previously as-
sociated with control deficits, including schizophrenia, 
suggesting that at least part of the symptomatology and 
of the impaired executive control in these mental illnesses 
might be understood as arising from disturbances in ac-
tion monitoring. Schizophrenia patients appear to show 
reduced conflict-related ACC activation (Kerns et al., 
2005; Kopp & Rist, 1999) and a reduced conflict adapta-
tion effect (Kerns et al., 2005); likewise, they show re-
duced error-related ACC activation (Alain, McNeely, He, 
Christensen, & West, 2002; Kerns et al., 2005; Kopp & 
Rist, 1999; Mathalon et al., 2002) and reduced posterror 
slowing (Kerns et al., 2005). Similarly, patients with atten-
tion deficit/hyperactivity disorder show a reduced ERN 
(Liotti, Pliszka, Perez, Kothmann, & Woldorff, 2005) and 
reduced posterror slowing (Schachar et al., 2004).

Despite the similarities between ACC activation to 
errors and to conflict trials, dissociations between ACC 
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activation to conflict and error trials can be predicted 
on the basis of this theory. Whereas at first glance such 
dissociations might appear to be incompatible with the 
conflict theory, they can actually be predicted from, and 
accounted for by, computational models. Specifically, 
Yeung and Cohen (2006) noted several observed disso-
ciations in the literature and extended their computational 
models discussed earlier (Yeung et al., 2004) to account 
for these dissociations. First, it had been observed that 
alcohol intake reduces the ERN but leaves N2 intact (Rid-
derinkhof et al., 2002). In order to account for these data, 
Yeung and Cohen assumed that alcohol impairs stimulus 
processing, rather than directly affecting the functions of 
the ACC, and modeled this result by reducing the quality 
of the stimulus representations and reducing the model’s 
attention to the relevant stimulus dimension. Conflict to 
incongruent stimuli did not differ between the “sober” and 
“intoxicated” models, because stimulus degradation and 
reduced attention had opposite effects on response unit 
activity; in contrast, conflict following errors was reduced 
in the simulated alcohol condition, because the correc-
tive response activity was reduced. Thus, the model could 
account for the observed data by Ridderinkhof et al. A 
second observed dissociation between N2 and ERN in-
volved a patient with a small localized lesion to the ACC 
who displayed an increased N2 but reduced ERN (Swick 
& Turken, 2002). In their model, Yeung and Cohen as-
sumed that this lesion disrupted the control engagement 
following conflict detection rather than impacting con-
flict detection per se. Because of this reduced control, the 
model’s performance during incongruent trials was im-
paired, which increased conflict preceding the response 
on correct trials; in contrast, conflict following errors in 
the model was reduced. Thus, again, the model proved a 
good fit for the observed data, showing that the theory can 
account for observed dissociations between ACC activa-
tion during correct conflict trials and during error trials.

We recently have noted that modulation by speed– 
accuracy trade-off provides another predicted double dis-
sociation between conflict and errors (van Veen, 2006). 
We reasoned that conflict during correct trials should 
be greater when participants are emphasizing speed in 
their performance, but during error trials conflict should 
be greater when participants are emphasizing accuracy. 
Indeed, it is well known that error-related ACC activa-
tion is greater when participants are asked to emphasize 
accuracy (Falkenstein et al., 2000; Gehring et al., 1993; 
Ullsperger & von Cramon, 2004; van Veen, 2006), and 
neural network models of conflict can readily account for 
this (Yeung et al., 2004). Consistently, posterror slowing is 
greater when participants emphasize accuracy over speed 
(Jentzsch & Leuthold, 2006; Ullsperger & Szymanowski, 
2004; van Veen, 2006), as is DLPFC activation on the trial 
following the error (van Veen, 2006). Conflict during cor-
rect trials, on the other hand, should be greater when par-
ticipants emphasize speed, and indeed, the conflict N2 ap-
pears to be greater when participants emphasize speed over 
accuracy (Band, Ridderinkhof, & van der Molen, 2003; 
Jodo & Kayama, 1992). As predicted, and in contrast to 
how performance and network activation during and fol-

lowing errors are modulated by a speed–accuracy trade-
off, we found the conflict adaptation effect and underly-
ing neural activation to be greater under speed emphasis. 
Thus, the conflict adaptation effect,  conflict-related ACC 
activation, and the subsequent control-related DLPFC ac-
tivation are all greater under speed emphasis.

If conflict detection by the ACC leads to the engage-
ment of control, lesions to the ACC should lead to im-
pairment in the micro-adjustments discussed in the pre-
ceding paragraphs. Indeed, a recent study compared the 
performance of 8 patients with damage to the rostral ACC 
with the performance of control participants, and it found 
that ACC lesions reduced both posterror slowing and the 
conflict adaptation effect in a Simon task (di Pellegrino, 
Ciaramelli, & Làdavas, 2007). Thus, these results suggest 
that the ACC is indeed necessary for both types of micro-
adjustments.

DISCREPANCIES

Despite the good fit between theory and data in many 
areas of research, it should be noted that some discrep-
ancies exist. As explained, conflict theory predicts that 
greater conflict, with a greater ACC signal, should lead to 
greater engagement of control, and thus to greater subse-
quent performance adjustments. This relationship has not 
always been observed. One area of research that has led 
to inconsistent results involves the effect of pharmaco-
logical manipulations on performance and brain activity. 
For instance, it has been consistently observed that the 
administration of benzodiazepines reduces the ERN but 
does not impact posterror slowing (de Bruijn, Hulstijn, 
Verkes, Ruigt, & Sabbe, 2004; Riba, Rodríguez-Fornells, 
Münte, & Barbanoj, 2005). Likewise, administration of 
catecholamine agonists and antagonists affects the ERN 
but has inconsistent effects on posterror performance. For 
instance, haloperidol (a dopamine antagonist) reduces the 
ERN (Zirnheld et al., 2004), whereas yohimbine (an epi-
nephrine antagonist), D-amphetamine (a dopamine ago-
nist), and caffeine increase it (de Bruijn et al., 2004; Riba, 
Rodríguez-Fornells, Morte, Münte, & Barbanoj, 2005; 
Tieges, Ridderinkhof, Snel, & Kok, 2004); however, none 
of these drugs have been found to affect posterror slow-
ing. Thus, these data contradict the notion that increased 
ACC activation should result in subsequent performance 
adjustments, as predicted by the conflict theory.

Another source of discrepancies regarding conflict 
theory comes from studies of clinical populations. As 
mentioned earlier, some evidence supporting the con-
flict theory comes from data from patients suffering from 
schizophrenia; that is, schizophrenia patients, as com-
pared with controls, show reduced ACC activation on 
correct conflict trials and on error trials, and also show 
reduced engagement of control, as evidenced by a reduced 
conflict adaptation effect and reduced posterror slowing 
(see, e.g., Kerns et al., 2005). However, in other psychi-
atric populations, this relationship does not appear to be 
as clear cut. Specifically, obsessive–compulsive disorder 
(OCD) is characterized by increased ACC activation on 
correct conflict trials and on error trials (Gehring, Himle, 
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& Nisenson, 2000; Hajcak & Simons, 2002; Johannes 
et al., 2003; Santesso, Segalowitz, & Schmidt, 2006; 
Ursu, Jones, Shear, Stenger, & Carter, 2003), but OCD pa-
tients do not appear to display increased posterror slowing 
(Hajcak & Simons, 2002). Similarly, conflict-related and 
error-related ACC activation are reduced in older adults 
(West, 2004; West & Moore, 2005), but little difference 
in the conflict adaptation effect and posterror slowing is 
observed between older and younger adults; if anything, 
these effects tend to be increased in older adults (West & 
Moore, 2005).

Finally, inconsistent results have been obtained from 
individuals with lesions to the ACC. Fellows and Farah 
(2005) compared the performance of 4 patients with ACC 
lesions with that of a control group, and in the patient 
group they found intact Stroop interference and posterror 
slowing. Similarly, Critchley et al. (2003) observed that 3 
patients with ACC lesions were largely unimpaired on a 
variety of attentional tests, displaying only reduced auto-
nomic responsiveness. On the other hand, Ochsner et al. 
(2001) discussed a patient who, following a cingulotomy, 
displayed impairment on a variety of tasks requiring cog-
nitive control, including the Stroop task. In addition, as 
mentioned earlier, a recent study of 8 patients with ACC 
lesions showed that both the conflict adaptation effect 
and posterror slowing were reduced in the patient group 
relative to controls (di Pellegrino et al., 2007). Thus, evi-
dence from patients with ACC lesions is mixed. Perhaps 
one reason for such discrepancies is that some of these 
studies have lacked statistical power. Regardless, future 
research needs to address the findings that appear incon-
sistent with the theory. Perhaps modeling can be used to 
account for these discrepant findings, much as Yeung and 
Cohen (2006) used a model to account for the findings of 
Swick and Turken (2002).

ALTERNATIVE THEORIES

In addition to the theory that the ERN reflects error 
detection by a comparator process, as mentioned earlier, 
there have been other theoretical attempts to explain the 
evidence discussed so far. We will now discuss several of 
these alternative theories and their data and contrast them 
with conflict theory.

It has been claimed that stimulus priming effects can 
account for the behavioral conflict adaptation effect in the 
Eriksen task (Mayr, Awh, & Laurey, 2003). Mayr et al. 
pointed out that half of both cC and iI trials consist of 
exact repetitions and showed that, by removing these 
stimulus repetitions, the conflict adaptation effect was re-
moved. This finding suggested that the effect might exist 
independent of control. However, controlling for stimulus 
repetitions has never been shown to remove the conflict 
adaptation effect in the Simon task (Stürmer et al., 2002; 
Wühr & Ansorge, 2005) or in the Stroop task (Egner & 
Hirsch, 2005a, 2005b; Kerns et al., 2004); even in the Er-
iksen task, the Mayr et al. null effect has not always been 
replicated (Ullsperger et al., 2005). Ullsperger et al. sug-
gested that the null results found by Mayr et al. might have 
been due to negative priming or task switching. However, 

Nieuwenhuis et al. (2006) failed to find significant con-
flict adaptation effects after removing repetition effects in 
the Eriksen task, and they suggested that this task might 
differ from the Stroop, Simon, and related tasks in such 
important ways that it might simply not be suited to the 
study of control engagement following conflict. How or 
why these different findings occur remains to be seen, 
since conflict-related control engagement appears to be 
robust in the Stroop and Simon tasks (Egner & Hirsch, 
2005a, 2005b; Kerns, 2006; Kerns et al., 2004; Stürmer 
et al., 2002).

Holroyd and Coles (2002) have proposed a different in-
terpretation of conflict-related and error-related ACC acti-
vation, in a model based on reinforcement learning theory. 
They proposed that behavior is monitored by an “adaptive 
critic,” localized in the basal ganglia. This adaptive critic 
determines whether events are better or worse than ex-
pected, signaling this distinction with a phasic increase 
or decrease, respectively, in dopaminergic activity in the 
ACC. According to this elegant and biologically appealing 
theory, different cognitive processes compete for access to 
the motor system, and the function of the ACC is to select 
between these different cognitive processes on the basis of 
how it has been trained by the dopamine signal from the 
basal ganglia. Holroyd and Coles assume that error-related 
ACC activation is generated by a phasic reduction in dop-
amine influx; the inhibitory influence of the dopaminergic 
innervation in the ACC is briefly disrupted, fine-tuning 
the ACC to do a more appropriate selection job on future 
trials. Holroyd and Coles based their proposal in large part 
on findings involving an ERP component that is elicited 
by error feedback stimuli and that somewhat resembles 
the ERN (or N2), often referred to as the feedback-related 
negativity. This component has also been modeled as hav-
ing an ACC generator (Miltner, Braun, & Coles, 1997). 
However, fMRI studies of the Miltner et al. (1997) para-
digm have generally failed to show significant ACC acti-
vation to error feedback stimuli, thus casting doubt on the 
assumption that this component is necessarily generated 
by the ACC (Nieuwenhuis, Slagter, Alting von Geusau, 
Heslenfeld, & Holroyd, 2005; van Veen, Holroyd, Cohen, 
Stenger, & Carter, 2004).

Another compelling theory has been put forward by 
Brown and Braver (2005), who proposed that rather than 
detecting conflict, the ACC detects situations in which er-
rors are likely. They used a change-signal task, in which 
participants had to make a forced choice response to a 
go stimulus unless a second stimulus, presented shortly 
afterward, indicated that the opposite response was re-
quired (a “change” stimulus). Easy and hard conditions 
were obtained by varying the stimulus onset asynchrony 
between the go and change stimuli. Prior to the go and 
change stimuli, a cue instructed participants whether the 
upcoming stimulus set was going to be difficult or easy. 
Brown and Braver found that ACC activation was greatest 
to difficult change stimuli and smallest to easy go stimuli, 
as predicted by their model. According to them, a model 
in which the ACC responded to the conflict between the 
two responses would have predicted that the ACC should 
respond equally strongly to change stimuli under hard 
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and easy conditions, because of the equivalent levels of 
conflict in their model. However, other experiments have 
failed to find effects on ACC activation from cues that 
signal error likelihood (Nieuwenhuis, Schweizer, Mars, 
Botvinick, & Hajcak, 2007). Thus, we believe that more 
evidence is needed in order to properly evaluate both Hol-
royd and Coles’s (2002) reinforcement learning theory 
and Brown and Braver’s error likelihood theory. Neverthe-
less, an attractive feature of both theories is that they can 
account well for learning effects, something that conflict-
based models have not yet attempted to do.

Another interesting theory has been put forward by 
Critchley and colleagues (Critchley, 2005; Critchley et al., 
2003; Critchley, Tang, Glaser, Butterworth, & Dolan, 
2005). They have observed that ACC activation closely 
predicts various measures of autonomic arousal, and fur-
thermore, that task-induced autonomic arousal is consid-
erably reduced in patients with lesions to the ACC. They 
have suggested that, rather than a strictly cognitive func-
tion, the ACC appears to primarily regulate autonomic 
arousal in order to accommodate task demands. Critch-
ley (2005) has proposed that the generation of autonomic 
arousal is detected by areas including the insular and or-
bitofrontal cortices, and that this contributes to the moti-
vational state. We believe that this evidence linking ACC 
activation to autonomic arousal is entirely consistent with 
the view of the ACC as contributing indirectly to cognitive 
control and could be considered complementary to the no-
tion that this region has a fundamental role in regulating 
control by detecting conflict.

Another idea, based mostly on research involving non-
human animals, is that the ACC relates actions to their 
perceived consequences (see, e.g., Rushworth, Walton, 
Kennerley, & Bannerman, 2004). That is, the ACC is pro-
posed to play a role in encoding the relationship between 
an action and the reinforcement value of its outcome, even 
when the outcome is a reward and not an error. Although 
this work is interesting and provocative, the relationship 
between this theory and the notion of conflict monitor-
ing is unclear. There are, in fact, some parallels between 
the two theories, since according to the modeling work 
of Botvinick et al. (2001), conflict signals are integrated 
across several trials in much the same way as action–
outcome associations are in the Rushworth model. Future 
theoretical and modeling work might clarify the degree to 
which these theories are complementary or inconsistent 
with each other.

CONCLUSIONS

In this review, we have argued that one role of the ACC 
in the cognitive architecture is to detect conflicts between 
simultaneously active, competing representations and to 
engage context representations in the DLPFC, resulting 
in increased cognitive control. We have made this argu-
ment on the basis of data obtained from a limited set of 
tasks (speeded response interference tasks). However, the 
theory has also been applied to other areas of cognitive 
research, including underdetermined responding (Barch, 

Braver, Sabb, & Noll, 2000), moral judgment (Greene, Ny-
strom, Engell, Darley, & Cohen, 2004), causal reasoning 
(Fugelsang & Dunbar, 2005), emotion regulation in anxi-
ety (Bishop, Duncan, Brett, & Lawrence, 2004), the tip-
of-the-tongue phenomenon (Maril, Wagner, & Schacter, 
2001), thought suppression (Anderson et al., 2004), and 
mnemonic competition (Kuhl, Dudukovic, Kahn, & 
 Wagner, 2007), among others. We find this broadness of 
application particularly interesting; if this conflict–control 
loop is such an important part of cognitive architecture, its 
engagement should be evident in other phenomena above 
and beyond speeded forced choice response tasks, and we 
are interested in seeing whether the theory also general-
izes to other cognitive phenomena.

Several other issues will also need to be addressed, apart 
from those already mentioned in the preceding paragraphs. 
Future studies might, for instance, focus on how the ACC 
engages the DLPFC; this could be done via direct connec-
tions, or potentially by increasing activation of the locus 
coeruleus, thus increasing norepinephrine influx into the 
DLPFC (Aston-Jones & Cohen, 2005; Cohen, Botvinick, 
& Carter, 2000). Other lines of research might investigate 
the effects of cingulate lesions on conflict monitoring; to 
date, relatively few studies have done this, and they have 
achieved mixed results (di Pellegrino et al., 2007; Fellows 
& Farah, 2005; Ochsner et al., 2001). Another potentially 
interesting topic of future investigation is the relation-
ship among awareness of conflict, ACC activation (Mayr, 
2004), and trial-to-trial adjustments.

In addition, one area that needs further empirical inves-
tigation is data recorded from single cells in nonhuman 
primates. Much interesting work has suggested that differ-
ences might exist not only between monkey and human task 
performance (see Ito, Stuphorn, Brown, & Schall, 2003), as 
displayed in differences between ACC  activation as recorded 
by fMRI from humans and as recorded from single cells in 
nonhuman primates (see, e.g., Ito et al., 2003; Nakamura, 
Roesch, & Olson, 2005), but also between the cytoarchitec-
ture (Nimchinsky et al., 1999) and sulcal patterns (Fornito 
et al., 2004; Paus et al., 1996) of the different species. Future 
fMRI studies of behaving primates and different kinds of 
electrophysiology (e.g., recording field potentials) may shed 
light on this interesting and important issue.

In conclusion, the conflict–control loop theory provides 
an integrative and parsimonious account for a large body 
of empirical work concerning how humans adjust con-
trol during task performance in response to changing task 
demands. We are excited by the large amount of inter-
est this theory has received and the empirical research it 
has stimulated over the past decade. However, much more 
empirical and theoretical work remains in order to under-
stand the neural basis of cognitive control, in both healthy 
and mentally ill brains.
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NOTE

1. In the Stroop task, ACC activation appears to be reflected in a com-
ponent referred to as the N450, which also peaks prior to response and 
has a scalp topography similar to that of the frontocentral N2 (West, 
2003; West, Bowry, & McConville, 2004). We assume that the fronto-
central N2 and the N450 in the different types of tasks are functionally 
similar components, reflecting the detection of conflict by the ACC.

Note that the frontocentral N2 and the N450 mentioned in the present 
article should not be confused with other instances of N2 and N4, which 
might reflect different psychological processes and the activation of dif-
ferent brain regions (see Pritchard, Shappell, & Brandt, 1991).
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