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The dACC stands out as one of the most extensively studied regions 
of the brain, and yet its basic functions are still a matter of inten-
sive debate1–7. Historically, functions attributed to this region have 
included the encoding of pain5, surprise3,8, value9, and level of cogni-
tive demand5,10,11, including the difficulty posed by conflict between 
competing choices12–16.

A recent study by Kolling, Behrens, Mars and Rushworth17 
(KBMR) presented a significant and intriguing detour from previous 
approaches to understanding the function of this region. The authors 
echo previous proposals that the dACC is responsive to the value of 
choice options. However, they propose that this is restricted to the 
value of diverging from one’s default behavior in a given context. They 
suggest that this function has its evolutionary roots in the encoding of 
the overall value of foraging for food in a new patch rather than con-
tinuing to engage the current food patch. To test this, they designed 
a task to model foraging decisions. KBMR showed that, in this task, 
dACC activity was positively associated with the value of foraging 
for better rewards and negatively associated with the value of engag-
ing currently available ones (the default behavior). Their conclusion, 
that dACC is involved in foraging decisions per se, has already had 
a significant impact on perspectives regarding the function of this 
region1,18 and has generated several high-profile follow-up studies 
that reach similar conclusions19–21.

In the present work, we challenge KBMR’s interpretation of their 
findings and present strong evidence that dACC’s role in foraging-like 
decisions is instead connected with decision difficulty. Although it has 
not been widely remarked, standard theories of foraging imply an inti-
mate relationship between foraging and decision difficulty. There are 
two key quantities in the dynamics of foraging: the rate of intake within 
a patch and the value of foraging—that is, leaving for another patch 
(Fig. 1). According to optimal foraging theory22–24, the best moment 
to leave a patch is when these two values coincide. If, like KBMR, we 

view foraging choices as involving comparisons between two values 
or utilities, the optimal moment to forage is precisely the moment at 
which the value-based decision becomes most difficult: that is, the 
moment at which the values to be compared are most similar.

A more careful look at the pattern described above (Fig. 1) forces a 
reconsideration of KBMR’s findings. Note in particular the relation-
ship between foraging value and decision difficulty. These two are 
closely linked: as foraging value rises, so does decision difficulty. This 
correlation raises a serious concern in connection with the theory 
advanced by KBMR and related work. Specifically, it suggests that 
foraging value and decision difficulty might be confounded in the 
experiments that motivate the theory.

We show here, on the basis of two functional magnetic resonance 
imaging (fMRI) experiments, not only that these two factors have been 
confounded in previous studies, but that when they are adequately dis-
sociated, dACC activity is found clearly to track choice difficulty rather 
than foraging value. We begin with a replication of the KBMR study, 
revealing a fundamental problem with the measure of choice difficulty 
used in that study, and introducing a more principled measure based on 
observed choice behavior. In a second experiment, we take advantage 
of features of the KBMR task that distinguish it from standard forag-
ing tasks in order to deconfound choice difficulty from foraging value. 
When we do this, we obtain precisely the opposite result from the one 
they reported: dACC activity in foraging tasks tracks choice difficulty 
rather than foraging value. The set of results we report highlight (i) a 
fundamental point about the structure of foraging-like tasks, and the 
potential role of dACC in the performance of such tasks, and (ii) a key 
methodological consideration in studies of value-based choice.

RESULTS
In experiment 1 we scanned 15 human participants while they per-
formed KBMR’s original foraging task (Fig. 2). Each trial involved 
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Anterior cingulate engagement in a foraging context 
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Previous theories predict that human dorsal anterior cingulate (dACC) should respond to decision difficulty. An alternative theory 
has been recently advanced that proposes that dACC evolved to represent the value of ‘non-default’, foraging behavior, calling into 
question its role in choice difficulty. However, this new theory does not take into account that choosing whether or not to pursue 
foraging-like behavior can also be more difficult than simply resorting to a default. The results of two neuroimaging experiments 
show that dACC is only associated with foraging value when foraging value is confounded with choice difficulty; when the two are 
dissociated, dACC engagement is only explained by choice difficulty, and not the value of foraging. In addition to refuting this 
new theory, our studies help to formalize a fundamental connection between choice difficulty and foraging-like decisions, while 
also prescribing a solution for a common pitfall in studies of reward-based decision making.
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two stages of decision-making (Fig. 2a). In stage 1, the participant 
was offered a pair of potential rewards (the “engage” set) and a set 
of six alternative possible rewards (the “forage” set), all presented as 
abstract symbols designating numerical points that could be earned. 
The participant could choose to proceed directly to stage 2 (engage 
option) or first swap the current engage pair for a new pair randomly 
selected from the forage set as many times as they wished (forage 
option). Each swap generated a new forage set but incurred a cost  
(a designated number of lost points, as well as a time delay). Choosing 
to engage advanced the trial to stage 2, at which time a probability was 
paired with each of the two options in the engage set. The participant 
then chose between the reward-probability pairs on the left versus 
right side of the screen, and received the chosen reward based on the 
outcome of a random draw with the corresponding probability.

KBMR reported three key findings from this task. First, in stage 1  
they found a strong bias to engage. Second, they found that dACC 
tracked the degree to which the points offered for each option favored 
the foraging option—that is, increased its relative value (RVforage) 
as compared to the engage option. Third, in stage 2, they found no 
prepotent bias between the two options (left versus right), and found 
that dACC activity increased as the expected value of the two engage 
options became more similar. We replicated all of these findings  
(Fig. 3a,b and Supplementary Fig. 1). KBMR point out that, although 
the third finding is consistent with accounts that predict that dACC 
activity should track the difficulty of a given choice4,14, the second 
finding cannot be explained in these terms. Crucially, they argue that 
a difficulty account of dACC should predict greatest activity when 
choices to forage and engage were equivalent in point value (that is, 
at RVforage = 0). But this was not so; rather, dACC activity continued 
to increase past this point, as forage value continued to increase. 
KBMR interpreted this as evidence that dACC activity encoded the 
value of the foraging option and not choice difficulty. Furthermore, 
noting the strong overall bias to engage, they argued that the default 
action was to engage and that the association of dACC activity with 
the value of foraging was consistent with a role in encoding the value 
of the non-default action. For stage 2, they postulated that the uncho-
sen option was prima facie the non-default, and thus dACC activity 
increased as its value increased (that is, it became more similar to 
the chosen one).

KBMR’s task confounds foraging value and choice difficulty
On the surface, KBMR’s evidence for a foraging account of dACC may 
seem persuasive. However it depends on a problematic assumption, 
namely that difficulty is greatest when the points offered for the two 

options are most similar (that is, when RVforage is closest to zero). The 
validity of this assumption can be checked against the empirically 
observed choice behavior, by plotting RVforage against the observed 
frequency of choices to forage. If KBMR’s assumption is correct, then 
the point on the curve at which RVforage equals zero should coincide 
with the point at which the forage and engage options each had a 50% 
likelihood of being selected; that is, the empirical indifference point. 
It should also coincide with the point at which decisions take the 
longest, reflecting a maximum in choice difficulty. For the unbiased 
choices made in stage 2, both conditions held (Fig. 2c). However, in 
stage 1, neither was the case: KBMR assumed that choice difficulty 
would reach its maximum at RVforage = 0; our results showed that both 
the empirical indifference point (Fig. 2b, left) and the point of longest 
response times (RTs) (Fig. 2b, right) aligned at a similar RVforage value, 
but that this point was substantially to the right of RVforage = 0.

Given these observations, a more appropriate measure of choice 
difficulty would adjust the inferred value of the options such that they 
are shifted to the right and their point of equal relative value is cen-
tered on each participant’s empirical indifference point. To identify 
these empirical indifference points, we fit a standard model of deci-
sion making4,25–29 to each participant’s choice and RT data (Fig. 2b,c;  
see Online Methods and Supplementary Fig. 2). The best fit of the 
model to these behavioral data required setting the indifference point, 
on average, at RVforage = 1.65, significantly to the right of 0 (s.e.m. = 0.26,  
t14 = 6.5, P = 1.4 × 10−5; Fig. 2b), and consistent with the observed 
bias to engage. We used each participant’s estimated shift from this 
zero point to generate estimates of relative foraging value that better  
match their empirical choice behavior. We refer to this corrected  
estimate as RVforage-C.

While these analyses reveal a problem with KBMR’s index of 
difficulty, they also uncover a more serious concern: when a more 
appropriate index of difficulty is applied (on the basis of RVforage-C),  
it becomes evident that KBMR’s experimental design confounds 
foraging value and choice difficulty. Consider the range of foraging 
choices used in their study (and in our replication). This range was 
reasonably evenly distributed around the zero point for RVforage, but 
not for RVforage-C (Fig. 2b). Critically, the vast majority of choices fell 
to the left of or near participants’ actual choice indifference points 
(at RVforage-C = 0). This resulted in a high correlation between for-
aging value and an empirically derived estimate of value similarity 
(and therefore choice difficulty) based on the absolute magnitude 
of RVforage-C (−|RVforage-C|; average Spearman’s ρ = 0.80, t14 = 14.1, 
P = 1.2 × 10−9). Accordingly, when we regressed fMRI activity on 
this empirical measure of difficulty, we identified the same regions of 
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Patch 3Figure 1  The role of choice difficulty in a standard foraging setting. In a 
typical patch-leaving scenario, an animal faces the recurring decision of 
whether to continue harvesting a patch with decreasing marginal returns 
(for example, fewer ripe fruits; blue line) or leave for a new patch. The 
expected value of switching to a new patch (green line) accounts for the 
expected reward in the new patch, as well as the travel time between 
patches (gray region). The best moment to depart the current patch for a 
new patch is the point at which the value of switching exceeds the value 
of staying. Therefore, an optimally foraging animal will exit the patch at 
the point where blue and green lines meet (dashed horizontal black line), 
which is also the indifference point between these options. Dashed blue 
and green lines indicate theoretical values of staying and switching that 
an optimally foraging animal typically would not encounter (having already 
departed the patch) but that could theoretically be examined with a task 
like KBMR’s that examines cross-sections through a foraging-like context 
(see Fig. 2). For simplicity, we assume here a situation where the value of 
each new patch, the (exponential) reward decay rate, and the travel time 
to a new patch remain constant across patches.
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dACC as KBMR found to track foraging value in stage 1 and the value 
of the unchosen option in stage 2 (Fig. 3c and see below).

Difficulty explains dACC activity better than forage value
KBMR’s original analyses thus appear both to incorrectly model 
choice difficulty and to confound it with foraging value. As suggested 
above, the latter is a consequence of the range of choices tested in their 
study. Critically, in this range both interpretations of the findings—in 
terms of foraging or difficulty—make the same prediction: activity 
of dACC should increase as the value of foraging increases and the 
pair of options approaches the indifference point (Fig. 4a). However, 
the two theories make different predictions as the value of foraging 
increases further and begins to strongly favor selection of that option. 
The foraging theory predicts that dACC activity should continue to 
increase (or perhaps approach an asymptote) in this range as foraging 
continues to increase in value. In contrast, a difficulty-based account 
predicts that dACC should decrease past the indifference point, as the 
value of foraging more decisively exceeds that of engagement and thus 
choices become easier. In other words, the foraging account predicts 
a monotonic relationship between foraging value and dACC activity, 
whereas the difficulty account predicts a non-monotonic relationship, 
with activity maximal at the point of indifference and dropping off 
as one option or the other becomes more clearly preferred, and the 
choice becomes easier.

Experiment 2 (N = 14) tested these predictions. We used a modi-
fied version of KBMR’s task that maintained an engage bias (mean 

indifference point = 5.0, s.e.m. = 1.3, t13 = 3.9, P = 0.0018; see also 
Supplementary Fig. 1) but included choice sets that spanned a wider 
range, from ones that strongly favored the engage option to others that 
strongly favored the forage option (Fig. 4a,b; see Online Methods). 
When testing a range of foraging values comparable to that in experi-
ment 1, we again found a linear relationship between foraging value  
and dACC activity (Supplementary Fig. 3). However, as we tested value 
ranges that increasingly favored the forage option (using a sliding- 
windowed analysis), dACC’s relationship with foraging value  
became less positive and then reversed, such that, at the upper end 
of foraging values, dACC had a significant negative correlation with 
foraging value (Supplementary Fig. 3b; t13 = −3.4, P = 0.0046; see 
also Supplementary Fig. 8). The results of experiment 2 thus clearly 
demonstrated a non-monotonic relationship between foraging value 
and dACC activity, whereby activity was least when the choice options 
strongly favored either engaging or foraging, and greatest when they 
were equiprobable (Fig. 5c; compare Fig. 5a). Furthermore, as in 
experiment 1, we found that choice difficulty explained dACC activity 
at both stages of the task (Fig. 5d; compare Fig. 5b). Finally, because 
choice difficulty and foraging value were orthogonal in this task  
(Mρ = 0.07, t13 = 0.8, P = 0.45), we were also able to directly compare 
the ability of each to predict dACC activity. We did so by entering them 
into the same general linear model (GLM) and found a significant effect 
of difficulty (t13 = 2.8, P = 0.014) but not foraging value (t13 = 0.47, 
P = 0.64) (Supplementary Fig. 4a). In two more tests, we confirmed 
that dACC activity in this study was better accounted for by choice 

Figure 2  KBMR’s estimates of value and choice 
difficulty do not align with behavioral data.  
(a) Schematic of an example trial in KBMR’s 
task. In stage 1 (top), participants are offered  
a pair of potential rewards (center numbers).  
They can choose to forage for a better pair of 
rewards from the set shown at the top of the 
screen (red box), in which case a random pair 
from that set is swapped with the current offer 
and they incur a forage cost (shown at left below 
red box) and a delay until the new choice is 
shown. They can forage as many times as they 
prefer (or not at all) before opting to proceed  
to stage 2 (lower panel) and engage in the 
selected choice. At that point, a probability is 
randomly assigned to each reward (height of 
violet bar beside each number), and they  
choose which reward-probability pair to attempt.  
They receive the outcome of this gamble as 
points that accumulate at the bottom of the 
screen (not shown). While potential rewards 
were indicated numerically in experiment 2 
(as shown here), abstract symbols with learned 
reward associations were used in the original 
task and experiment 1. (b,c) Choice (left) 
and RT (right) data from the two stages of 
experiment 1 (black curves). Gray bars show 
histograms of trial frequencies. (b) In stage 1, 
both the indifference point in the choice curve 
and the peak in response times exhibit clear 
(and comparable) shifts to the right of RVforage = 0. (c) In contrast, in stage 2, both the indifference point and RT peak coincide with the point on the  
x axis where the relative value of choosing right versus left (RVright) = 0. Red curves show the predicted RTs and choice probabilities, and corresponding 
indifference points (vertical dashed lines) based on fits of the decision-making model (see Online Methods). We corrected RVforage so that it was centered 
on this empirical indifference point (RVforage-C = 0) and defined choice difficulty as value similarity with respect to this corrected measure (−|RVforage-C|;  
blue-red shading). These data further show that in experiment 1, as in KBMR’s study, the indifference point occurs toward the higher end of forage 
values tested, confounding forage value and choice difficulty. For display purposes, b,c (and Fig. 4b) show the result of a fixed-effects model across all 
participants (error bars reflect s.e.m.), but all analyses reported in the main text were based on individual participant fits. Note also that continuous 
data were used in all fits but are shown here binned. We have also truncated the x axis to only show RVforage bins with an average of five or more trials 
per participant, but we show complete fits in Supplementary Figure 2.
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difficulty than foraging value. First, a direct contrast of the regressors 
in the aforementioned GLM showed a significantly greater average 
parameter estimate for difficulty than foraging value (paired t13 = 2.2, 
P = 0.046; see also Supplementary Fig. 4b). Second, we performed a 
Bayesian model comparison over separate GLMs that accounted only 
for foraging value or only for choice difficulty, and found that the 
difficulty model was favored across dACC (Supplementary Fig. 4c),  
including within our a priori region of interest (Supplementary  
Fig. 4d). These findings weigh heavily in favor of choice difficulty and 
against foraging value as an account of responses in dACC.

In keeping with analyses performed in KBMR’s study, the analyses 
above assume that choice difficulty is a simple linear function of value 
similarity. Further analyses showed that our findings hold for alter-
nate formulations of difficulty that instead focus on the relative likeli-
hood of choosing one option or another, based on either the decision 
model described above (the drift diffusion model25; Supplementary 
Fig. 5b) or a simpler model of the decision process (a logistic regres-
sion; Supplementary Fig. 5c). These measures of difficulty have the 
benefit of accounting for nonlinearities in choice behavior (Figs. 2b,c 
and 4b), including the tendency for choice probabilities to become 
asymptotic beyond a certain point on the relative value scale. Similar 

activations are found when simply regressing 
dACC activity on RT, which is assumed to 
provide a ‘model-free’ estimate of difficulty 
for two-alternative forced-choice tasks like 
this one. However, because RT is a noisy esti-
mate of difficulty, we tested for and found a 
significant contribution of our earlier model-
based estimate of difficulty (−|RVforage-C|) to 
dACC activity even after removing variance 
accounted for by RT (experiment 1 t14 = 4.0, 
P = 0.0013; experiment 2 t13 = 2.4, P = 0.034). 
Thus, despite the close relationship between 
choice difficulty and RT on this task (as in 
many), we were still able to rule out a simple 
‘time-on-task’ (that is, purely RT-based30,31) 
account of the choice difficulty effects we 
observed in dACC.

Consistent with the inherent relationship 
between foraging value and choice difficulty 
in standard foraging settings (Fig. 1), the 
potential for confounding these two variables 
lurks in any study that attempts to link dACC 
to foraging/non-default valuation. This 
appears to be the case for three prominent 
neuroimaging studies that have been argued 
to support KBMR’s foraging account. Mobbs 
et al.21 had participants perform an analog 
to a dynamic patch-leaving task and showed 
that dACC activity increased as conditions 

favored leaving the patch (more competition and/or less reward for 
current resources) and decreased as conditions favored staying. To the 
extent that participant behavior in this study approximated optimal 
foraging, dACC activity was simultaneously indexing choice difficulty 
(for precisely the reasons described in Fig. 1). Two more studies—
one by Boorman et al.19, the other a more recent study from Kolling  
et al.20—employed tasks that share properties with KBMR’s. In both 
studies, participants made risky choices partly based on explicit values 
manipulated by the experimenter and partly based on an inherent bias 

Figure 3  Experiment 1: choice difficulty accounts for dACC activation in both stages of KBMR’s 
original task. (a) Whole-brain contrast for brain regions tracking KBMR’s estimate of the relative 
value of forage versus engage options in stage 1 (RVforage) (top) and the chosen versus unchosen 
option in stage 2 (bottom). (b) Regions tracking the similarity of option values (−|RVforage|) for the 
same options represented in a. We replicate the finding of significant dACC activity in the  
contrasts shown in a, top, and b, bottom (green arrows), consistent with the foraging value account. 
(c) However, using an estimate of value similarity corrected to align with the behavioral data 
(−|RVforage-C| in stage 1), the same region of dACC is found to be associated with choice difficulty in 
both stage 1 and stage 2 (red arrows). A conjunction of these two contrasts (inset) indicates a large 
degree of overlap in dACC. Statistical maps in a–c are thresholded at voxelwise P < 0.01, extent 
threshold of 200 voxels. Color maps represent t statistics, ranging from 2.6 to 8.0.
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toward the safest (most probable) of the outcomes available. Again, 
their analyses show that dACC activity increases with the value of 
the non-default option (or, conversely, decreases with the value of 
the default). We simulated choices in both of these contexts, with 
approximations to all relevant decision-making parameters (including 
bias), and found that choice difficulty increased under the relevant  
conditions in which these experiments found increasing dACC  
activity (Online Methods; Supplementary Figs. 6 and 7).

Taken together with our neuroimaging findings, these analyses 
make clear the importance of properly estimating choice difficulty 
in studies of reward-based choice. Of course, difficulty is not the only 
domain-general decision parameter that needs to be accounted for 
when attempting to relate dACC activity to valuation in the context of 
decision-making. We describe additional factors that may have con-
tributed to the foraging value findings in KBMR and some subsequent 
work (Supplementary Figs. 7–9). For instance, in KBMR’s data we 
found foraging value to be correlated with the degree of surprise par-
ticipants might have experienced when encountering a given option 
set (on the basis of past experience) and found that this surprise signal 
correlated with activity in a rostral region of dACC in both of our 
experiments (Online Methods; Supplementary Fig. 9), consistent 
with previous context-general accounts2,3,8,32–36. We also highlight 
potential concerns arising from region of interest selection37, as well 
as some fundamental inconsistencies in the predictions made by 
foraging accounts across the relevant publications (Supplementary  
Figs. 7 and 8). All in all, when considered alongside our findings on 
decision difficulty, these additional considerations further undermine 
the theoretical conclusions of the papers in question.

DISCUSSION
KBMR’s foraging account of dACC predicts that the region tracks 
the value of the current non-default option (for example, switching 
to a new patch or performing a different task), irrespective of and 
potentially negating any role the dACC has in tracking choice diffi-
culty. We have provided evidence that refutes this prediction, show-
ing instead that dACC responds to foraging value only to the extent 
that it offers a proxy for choice difficulty. This conclusion resonates 

with two closely related theories of dACC function, which focus 
respectively on conflict monitoring and value comparison. Conflict 
monitoring accounts14,15 predict that dACC should track one’s level 
of indifference in a decision-making task because higher indifference 
trials require the allocation of greater control, and may be aversive for 
the same reason. The value comparator account4 similarly predicts 
greater dACC involvement on more difficult choice trials, but instead 
because this region is assumed to be directly involved in the process 
of comparing the values of one’s options (using an accumulator model 
similar to the one used to model the present data). We do not purport 
to adjudicate between these two accounts with the current data, and 
we note that doing so may in general be difficult, as the two make a 
number of overlapping predictions (see refs. 4,14,38).

Both conflict and value comparator theories share in common the 
assumption that dACC’s role in decision-making and/or cognitive 
control is general rather than specific to a particular decision-making  
context. Our findings therefore argue against a specific role for dACC 
in foraging-like decisions. Rather, to the extent that dACC is respon-
sive to a non-default option, our results are consistent with previous 
theories proposing that this reflects its role in engaging the control 
processes needed to override the (typically more automatic) default 
option. We recently described an integrative theory of dACC func-
tion, which proposed that the dACC is responsible for estimating the 
expected value of control-demanding behaviors (EVC) and select-
ing which to execute2. Like the KBMR theory, this theory predicts 
that dACC activity should track the expected reward for engaging in  
non-default behavior, inasmuch as this can be considered to be control- 
demanding. However, the EVC theory specifies that determining 
the expected value of a controlled behavior also requires estimating 
the demands for control as well as the costs of control itself. Both of 
these quantities should correlate with choice difficulty, whereas the 
value of the outcome (that is, the expected reward) can in principle be 
dissociated from difficulty (as in experiment 2). As we have shown, 
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Figure 5  Experiment 2: choice difficulty but not foraging value accounts 
for dACC activation when a wider range of foraging values is used.  
(a) Average fMRI activity for each of six RVforage quantiles in experiment 1,  
taken from a dACC region of interest around peak coordinates from the 
contrast shown in Figure 3a, top. This plot is provided for visual reference, 
but note that, unlike those in the remaining panels, this analysis is 
circular because it is intentionally biased toward the dACC region that 
is maximally sensitive to RVforage. We therefore omit error bars. (b) Given 
the high correlation between foraging value and choice difficulty in 
experiment 1, the same pattern of activity is observed when dACC activity 
is binned by choice difficulty. (c,d) Results from experiment 2, using 
a wider range of foraging values that orthogonalized this with respect 
to choice difficulty (Fig. 4b). (c) Whole-brain contrasts during stage 1, 
showing that dACC activity exhibits a quadratic but not linear relationship 
to RVforage; plot in bottom panel confirms that, over the fuller range of 
RVforage values used, dACC exhibits the non-monotonic pattern of activity 
predicted by the choice difficulty account (compare Fig. 4a; also see 
Supplementary Figs. 3 and 8). For ease of comparison with contrasts in d,  
the color map for the quadratic contrast is inverted so that negative 
coefficients (suggesting an inverted U-shape) appear in red–yellow.  
(d) A whole-brain contrast for a linear relationship with choice difficulty 
again identifies dACC, plotted in bottom panel; inset shows conjunction 
with the same contrast for stage 2. *Linear contrast in c is shown at a 
liberal voxelwise threshold of P < 0.05, no cluster extent threshold.  
All other statistical maps are shown at voxelwise P < 0.01, extent 
threshold of 200 voxels. Error bars reflect between-subjects s.e.m.
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in the particular case of KBMR’s task, their findings provide evidence 
only for dACC’s role in encoding the demand for or costs of control, 
and not the value of the forage option per se.

The present work also illustrates how a widely used quantitative 
model of decision making can provide an estimate of choice difficulty 
in the presence of strong biases toward one option (or one attribute19), a 
situation that otherwise risks confounding difficulty and value. In such 
cases, there is guaranteed to be a range of values for which the relative 
value of the less favored (that is, non-default) option appears to be posi-
tive and increasing simultaneously with the difficulty of the decision. 
(As discussed in the introduction, optimal behavior in a classic patch-
leaving foraging task represents a particularly clear case of this.) The 
degree to which this range of options dominates in a given study can 
be evaluated qualitatively by comparing relative value and RT distri-
butions (in KBMR’s study these showed a strong positive relationship; 
Fig. 2b). Extracting this information from RTs further requires that 
the subject respond immediately on reaching a decision (non-default 
valuation studies, as with many other neuroimaging studies, typically 
forbid responses within an initial window of approximately 2–4 s;  
refs. 17,19,20). More generally, our findings highlight the risks of esti-
mating choice difficulty in value-based decision tasks on the basis of 
objective value (for example, points) without taking account of behav-
ioral data (that is, choice and RT distributions). Here as well, the use of a 
formal model quantitatively fit to the behavioral data can be helpful.

In summary, our study corroborates the importance of dACC in for-
aging decisions, but not for the reasons reported by KBMR. Rather than 
reflecting the value of the foraging option itself, their findings and ours 
suggest that dACC activity can be most parsimoniously and accurately 
interpreted as reflecting choice difficulty (or a correlate of this, such as 
total evidence accumulated), as has been observed in many other con-
texts. Importantly, in a changing environment, indifference may mark 
the optimal point of transition between default and foraging behavior 
and thus explain its engagement in the context of the task introduced 
by KBMR. These observations should help unite the long-standing 
literature on dACC function with the more recent one that has begun 
to emerge concerning its involvement in foraging decisions.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.

Acknowledgments
The authors are grateful to S. Feng for assistance in data analysis. This work is 
supported by the C.V. Starr Foundation (A.S.), the National Institute of Mental 
Health R01MH098815-01 (M.M.B.) and the John Templeton Foundation. 
The opinions expressed in this publication are those of the authors and do not 
necessarily reflect the views of the John Templeton Foundation.

AUTHOR CONTRIBUTIONS
A.S., J.D.C. and M.M.B. designed the experiments; A.S. and M.A.S. performed the 
experiments; A.S. analyzed the data; and A.S., J.D.C. and M.M.B. wrote the paper. 

COMPETING FINANCIAL INTERESTS
The authors declare no competing financial interests.

Reprints and permissions information is available online at http://www.nature.com/
reprints/index.html.

1.	 Rushworth, M.F.S., Kolling, N., Sallet, J. & Mars, R.B. Valuation and decision-
making in frontal cortex: one or many serial or parallel systems? Curr. Opin. 
Neurobiol. 22, 946–955 (2012).

2.	 Shenhav, A., Botvinick, M.M. & Cohen, J.D. The expected value of control: an integrative 
theory of anterior cingulate cortex function. Neuron 79, 217–240 (2013).

3.	 Alexander, W.H. & Brown, J.W. Medial prefrontal cortex as an action-outcome 
predictor. Nat. Neurosci. 14, 1338–1344 (2011).

4.	 Hare, T.A., Schultz, W., Camerer, C.F., O’Doherty, J.P. & Rangel, A. Transformation 
of stimulus value signals into motor commands during simple choice. Proc. Natl. 
Acad. Sci. USA 108, 18120–18125 (2011).

5.	 Shackman, A.J. et al. The integration of negative affect, pain and cognitive control 
in the cingulate cortex. Nat. Rev. Neurosci. 12, 154–167 (2011).

6.	 Venkatraman, V. & Huettel, S.A. Strategic control in decision-making under 
uncertainty. Eur. J. Neurosci. 35, 1075–1082 (2012).

7.	 Holroyd, C.B. & Yeung, N. Motivation of extended behaviors by anterior cingulate 
cortex. Trends Cogn. Sci. 16, 122–128 (2012).

8.	 Behrens, T.E.J., Woolrich, M.W., Walton, M.E. & Rushworth, M.F.S. Learning the value 
of information in an uncertain world. Nat. Neurosci. 10, 1214–1221 (2007).

9.	 Rushworth, M.F.S., Noonan, MaryAnn P., Boorman, E.D., Walton, M.E. &  
Behrens, T.E. Frontal cortex and reward-guided learning and decision-making. 
Neuron 70, 1054–1069 (2011).

10.	Duncan, J. & Owen, A.M. Common regions of the human frontal lobe recruited by 
diverse cognitive demands. Trends Neurosci. 23, 475–483 (2000).

11.	Paus, T., Koski, L., Caramanos, Z. & Westbury, C. Regional differences in the effects 
of task difficulty and motor output on blood flow response in the human anterior cingulate 
cortex: a review of 107 PET activation studies. Neuroreport 9, R37–R47 (1998).

12.	Pochon, J.-B., Riis, J., Sanfey, A.G., Nystrom, L.E. & Cohen, J.D. Functional imaging 
of decision conflict. J. Neurosci. 28, 3468–3473 (2008).

13.	FitzGerald, T.H.B., Seymour, B. & Dolan, R.J. The role of human orbitofrontal cortex in 
value comparison for incommensurable objects. J. Neurosci. 29, 8388–8395 (2009).

14.	Botvinick, M.M., Braver, T.S., Barch, D.M., Carter, C.S. & Cohen, J.D. Conflict 
monitoring and cognitive control. Psychol. Rev. 108, 624–652 (2001).

15.	Botvinick, M.M. Conflict monitoring and decision making: reconciling two 
perspectives on anterior cingulate function. Cogn. Affect. Behav. Neurosci. 7, 
356–366 (2007).

16.	Shenhav, A. & Buckner, R.L. Neural correlates of dueling affective reactions to win-win 
choices. Proc. Natl. Acad. Sci. USA doi:10.1073/pnas.1405725111 (14 July 2014).

17.	Kolling, N., Behrens, T.E.J., Mars, R.B. & Rushworth, M.F.S. Neural mechanisms 
of foraging. Science 336, 95–98 (2012).

18.	Pearson, J.M., Watson, K.K. & Platt, M.L. Decision making: the neuroethological 
turn. Neuron 82, 950–965 (2014).

19.	Boorman, E.D., Rushworth, M.F. & Behrens, T.E. Ventromedial prefrontal and 
anterior cingulate cortex adopt choice and default reference frames during sequential 
multi-alternative choice. J. Neurosci. 33, 2242–2253 (2013).

20.	Kolling, N., Wittmann, M. & Rushworth, M.F.S. Multiple neural mechanisms of 
decision making and their competition under changing risk pressure. Neuron 81, 
1190–1202 (2014).

21.	Mobbs, D. et al. Foraging under competition: the neural basis of input-matching 
in humans. J. Neurosci. 33, 9866–9872 (2013).

22.	Hayden, B.Y., Pearson, J.M. & Platt, M.L. Neuronal basis of sequential foraging 
decisions in a patchy environment. Nat. Neurosci. 14, 933–939 (2011).

23.	Charnov, E.L. Optimal foraging, the marginal value theorem. Theor. Popul. Biol. 9, 
129–136 (1976).

24.	Stephens, D.W. & Krebs, J.R. Foraging Theory (Princeton Univ. Press, 1986).
25.	Ratcliff, R. A theory of memory retrieval. Psychol. Rev. 85, 59–108 (1978).
26.	Bogacz, R., Brown, E., Moehlis, J., Holmes, P. & Cohen, J.D. The physics of optimal 

decision making: a formal analysis of models of performance in two-alternative 
forced-choice tasks. Psychol. Rev. 113, 700–765 (2006).

27.	Milosavljevic, M., Malmaud, J., Huth, A., Koch, C. & Rangel, A. The Drift Diffusion 
Model can account for the accuracy and reaction time of value-based choices under 
high and low time pressure. Judgm. Decis. Mak. 5, 437–449 (2010).

28.	Krajbich, I., Armel, C. & Rangel, A. Visual fixations and the computation and 
comparison of value in simple choice. Nat. Neurosci. 13, 1292–1298 (2010).

29.	Basten, U., Biele, G., Heekeren, H.R. & Fiebach, C.J. How the brain integrates 
costs and benefits during decision making. Proc. Natl. Acad. Sci. USA 107,  
21767–21772 (2010).

30.	Grinband, J. et al. The dorsal medial frontal cortex is sensitive to time on task, not 
response conflict or error likelihood. Neuroimage 57, 303–311 (2011).

31.	Weissman, D.H. & Carp, J. The congruency effect in the posterior medial frontal 
cortex is more consistent with time on task than with response conflict. PLoS ONE 
8, e62405 (2013).

32.	Wessel, J.R., Danielmeier, C., Morton, J.B. & Ullsperger, M. Surprise and error: 
common neuronal architecture for the processing of errors and novelty. J. Neurosci. 
32, 7528–7537 (2012).

33.	Garrison, J., Erdeniz, B. & Done, J. Prediction error in reinforcement learning: a 
meta-analysis of neuroimaging studies. Neurosci. Biobehav. Rev. 37, 1297–1310 
(2013).

34.	Hayden, B.Y., Heilbronner, S.R., Pearson, J.M. & Platt, M.L. Surprise signals in 
anterior cingulate cortex: neuronal encoding of unsigned reward prediction errors 
driving adjustment in behavior. J. Neurosci. 31, 4178–4187 (2011).

35.	Bryden, D.W., Johnson, E.E., Tobia, S.C., Kashtelyan, V. & Roesch, M.R. Attention for 
learning signals in anterior cingulate cortex. J. Neurosci. 31, 18266–18274 (2011).

36.	Cavanagh, J.F. & Frank, M.J. Frontal theta as a mechanism for cognitive control. 
Trends Cogn. Sci. doi:10.1016/j.tics.2014.04.012 (15 May 2014).

37.	Kriegeskorte, N., Simmons, W.K., Bellgowan, P.S.F. & Baker, C.I. Circular analysis 
in systems neuroscience: the dangers of double dipping. Nat. Neurosci. 12,  
535–540 (2009).

38.	Yeung, N., Botvinick, M.M. & Cohen, J.D. The neural basis of error detection: conflict 
monitoring and the error-related negativity. Psychol. Rev. 111, 931–959 (2004).

np
g

©
 2

01
4 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.

http://www.nature.com/doifinder/10.1038/nn.3771
http://www.nature.com/doifinder/10.1038/nn.3771
http://www.nature.com/doifinder/10.1038/nn.3771
http://www.nature.com/reprints/index.html
http://www.nature.com/reprints/index.html
http://dx.doi.org/10.1073/pnas.1405725111
http://dx.doi.org/10.1016/j.tics.2014.04.012


nature NEUROSCIENCEdoi:10.1038/nn.3771

ONLINE METHODS
Participants. Healthy right-handed individuals were recruited to participate in 
a neuroimaging study involving choices and rewards. 15 individuals completed 
experiment 1 (9 female; Mage = 23.5, SDage = 4.1) and 14 independent individuals 
completed experiment 2 (8 female; Mage = 20.6, SDage = 2.4). Additional par-
ticipants were excluded a priori for excessive head movement (1), incomplete 
sessions (4), misunderstanding instructions as assessed during a structured post-
experiment interview (2) or not meeting KBMR’s criterion of foraging on at least 
eight trials (6). Of the 14 included participants in experiment 2, we excluded 
one of three trial blocks for one participant who reported falling asleep dur-
ing that block. No statistical tests were used to predetermine sample sizes, but 
our sample sizes are within the standard range in the field. Participants pro-
vided informed consent in accordance with policies of the Princeton University  
institutional review board.

Procedure. Experiment 1 followed the procedure described by KBMR17 (Fig. 2a). 
Briefly, participants learned fixed reward values associated with 12 abstract sym-
bols. Participants then performed a decision task that proceeded in two stages. In 
stage 1, the participant chose whether to engage a pair of symbols offered or to 
forage for a better pair from a set of six other symbols also shown. Each time they 
chose to forage, the current engage pair was swapped out for a random pair from 
the forage set. Foraging came with an explicit search cost that was indicated at the 
start of stage 2 by a colored box surrounding the search set, and feedback regard-
ing this cost was provided during the delay period that was also incurred when 
choosing to forage. Search costs were associated with point losses of varying (but 
known) magnitudes and were incurred on 70% of forage choices; the remaining 
forage choices were associated with no point loss. Once the participant chose to 
engage the offered pair (and no longer forage, or not to forage in the first place), 
they proceeded to stage 2. In stage 2, each of the two symbols was independently 
and randomly assigned an explicit probability of success (range: 20–90%) and the 
participant chose which of the two symbol-probability pairs (gambles) they would 
like to play. If the gamble chosen was successful, the participant received the full 
reward value associated with that symbol. Participants were given feedback both 
after each forage choice (regarding whether they incurred the search cost) and 
after making their stage 2 choice (regarding the success of both the chosen and 
unchosen options). Rewards received were tallied by a progress bar shown at 
the bottom of the screen; each time this bar filled to a goal line, the participant 
received $1.00 and the bar restarted.

Jittered Poisson-distributed intertrial intervals (ITIs) were added between 
choosing to forage and receiving feedback regarding whether the search cost was 
incurred on that trial (range, 2–6 s; M = 3.0 s), between foraging feedback (1–2 s 
duration) and the next stage 1 choice set for that trial (range, 2–4.5 s; M = 2.7 s), 
between choosing to engage and being shown the engage probabilities (range,  
3–8 s; M = 4.5 s), between making a stage 2 choice and being given feedback 
(range, 3–8 s; M = 4.5 s), and between stage 2 feedback and beginning stage 1 of 
the next trial (range, 2–4.5 s; M = 2.7 s).

Relative to KBMR’s experiment, our procedure differed only in that partici-
pants in our study were able to submit a response as soon as they were provided 
with the relevant information at a given stage. KBMR, by contrast, included 
a jittered ‘monitor phase’ at the start of each stage that prevented participants 
from responding for 2–4 s at the start of stage 1 and 1–4 s at the start of stage 2,  
resulting in truncated RT distributions that preclude modeling with the drift 
diffusion model (DDM; see “Behavioral analysis” below). To maintain similar 
overall timing, we buffered ITIs immediately after stage 1 and stage 2 responses 
by an additional 2.7 s or 1.8 s (the average length of the respective monitor phases) 
minus the RT on that trial (that is, any extra time that would have been captured 
by the monitor phase during the response period was instead added to the ITI, 
without the participants’ knowledge).

As in the original experiment, Exp 1 included 135 trials, broken up into  
2 blocks, and the 6 forage and 2 engage values presented at the start of each trial 
were drawn at random, without replacement, from a uniform distribution of the 
12 total symbol values. This necessarily resulted in an over-representation of  
trials in which the average forage and engage values were similar, relative to those 
in which forage values were much higher or much lower than engage values. To 
explore the distribution of relative forage values more fully, particularly those 
trials in which the relative value of foraging exceeded the individual’s subjective 
indifference point, Exp 2 made a number of modifications.

First, we used a much wider distribution of potential reward values (69 rather 
than 12). To accomplish this without imposing excess memory load on our par-
ticipants, we used explicit numeric reward values (2–70) during the task rather 
than abstract symbols, and all explicit reward values were scaled down by a fac-
tor of 10 relative to Exp 1 (where the range shown was 20–130 points). These 
scaled-down numeric values mapped onto similar monetary reward values as 
those in Exp 1 (for example, the point value ‘100’ in Exp 1 was associated with 
similar monetary reward as the point value ‘10’ in Exp 2); we therefore applied 
this constant scaling factor to Exp 1 values during modeling to allow more direct 
comparison between the studies. Search costs were also indicated numerically 
rather than with the color of the search box. Furthermore, rather than uniform 
random sampling of forage and engage values on each trial, forage and engage 
values were preselected across trials so as to uniformly sample a range of relative 
forage values. Specifically, for each session we randomly sampled sets of forage 
and engage values until we found ten within each of twenty relative forage value 
ranges (where relative foraging value is defined as the difference between the aver-
age of the initial foraging set and the average of the pair of initial engage options)  
evenly spaced between approximately −29 and 56. This resulted in a total of  
200 trials, performed across 3 task blocks. An asymmetric value range was used  
to account for the strong baseline bias to engage observed in the original task. 
Trial order was randomized and, aside from this initial arrangement of stage 1 
values, all other sampling of values (for example, forage/engage options after 
choosing to forage, probabilities in stage 2) proceeded as in Exp 1.

To slightly shorten and reduce the complexity of the individual trials, Exp 2  
also used deterministic search costs rather than including a possibility that 
the search cost would not be incurred. As a result, the feedback portion of the 
forage delay was removed and the ITI between choosing to forage and receiv-
ing the next forage/engage options was set to a range of 2.3–7 s (M = 3.0). The 
range of search costs used was otherwise the same as in Exp 1 (appropriately 
scaled, as described above). In spite of these differences, behavior was quali-
tatively similar in the two studies (see Supplementary Fig. 1). While average 
stage 1 RTs were faster in Exp 2 (two-sample t27 = −2.3, two-tailed P = 0.030), 
possibly owing to the larger number of trials and/or numeric rather than sym-
bolic reward (reducing the need for episodic memory retrieval), the average 
range of RTs was similar (t27 = 0.71, P = 0.48), as was the pattern of regression 
estimates for relevant decision variables for both task stages. While Exp 2 par-
ticipants also exhibited a smaller overall bias, individual difference analyses 
performed by KBMR (see also ref. 20) indicate that their account predicts that 
these participants should, if anything, encode foraging value more strongly 
(that is, exhibit a stronger readiness to forage) than participants in Exp 1 (see 
legends to Supplementary Figs. 1 and 7).

Stimulus presentation and response acquisition was performed using Matlab 
(MathWorks) with the Psychophysics Toolbox39. Participants responded with 
MR-compatible response keypads.

Image acquisition. Scanning was performed on a Siemens Allegra 3-T MR sys-
tem. Following KBMR, we used the following sequence parameters for volumes  
acquired during task performance: 3-mm3 isotropic voxels, repetition time  
(TR) = 3.0 s, echo time (TE) = 30 ms, flip angle (FA) = 87°, 43 slices, with slice 
orientation tilted 15° relative to the AC/PC plane. At the start of the imaging 
session, a high-resolution structural volume (MPRAGE) was also collected, with 
the following sequence parameters: 2-mm × 1-mm × 1-mm voxels, TR = 2.5 s,  
TE = 4.38 ms, FA = 8°.

Behavioral analysis. Relative value. We first estimated the relative value of the 
options at each stage (stage 1: forage versus engage; stage 2: left versus right). 
These values were used as regressors to identify regions that tracked relative value 
(and/or its absolute value) and, crucially, were also used as proxies for drift rate 
when modeling choices with the DDM (see the following section).

For stage 2, determining relative value simply involved comparing the expected 
values (reward magnitude × probability) of the two options, as in the original 
paper. For stage 1 we used KBMR’s primary measure of relative foraging value, 
which they refer to as search evidence (see their equations S2–S5, reproduced as 
equation (1) below). Determining this quantity involved comparing the average 
value of the engage pair (consisting of reward values R1 and R2, whose exact prob-
abilities P1 and P2, each 55% in expectation, will be revealed in stage 2), weighted 
by the ratio of the two values (to account for a possible preference for easier stage 2  
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choices), to the average over all n possible pairs drawn from the current forage 
set (similarly weighted):

RVforage Offer CurrentOffer= −












=

∑1

1n
V V
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where Voffer = 0.55(w1R1 + w2R2), w p R
R

P
P1

2
1

1
2

= <








  and w2 = 1 − w1.

Note that RVforage omits the explicit cost of foraging on any given trial. In KBMR’s 
study this factor was instead included as a separate regressor in their imaging 
analyses, so we have done the same to remain consistent with their approach. 
However, we note that additional analyses (not shown) confirm that all of our 
findings are robust to including this cost in RVforage, as estimated above. They 
are also robust to replacing the RVforage equation above with one that makes no 
assumptions about offer weighting and simply subtracts the average value of 
engaging and the forage cost from the average value of foraging.

Following the original paper, we also performed a logistic regression to pre-
dict forage choices on the basis of the minimum/maximum of the engage set, 
the search cost and the minimum/mean/maximum of the forage set, including 
an intercept term. This intercept term was significantly biased toward engaging 
in both experiments (Wilcoxon signed-rank test, Exp 1: P = 6.1 × 10−5, Exp 2:  
P = 0.04; Supplementary Fig. 1a), consistent both with the previous results and 
with our finding that these explicit reward values alone fail to fully describe the 
inputs to the decision process. We also used this logistic regression to gener-
ate a more ‘model-free’ estimate of choice difficulty, relative to the DDM (see 
Supplementary Fig. 5c). We did this by generating the log-odds of choosing 
to forage versus engage on each trial on the basis of the choice values (the ones 
entered into the logistic regression) and the best-fit regression weights (includ-
ing the intercept). Choice difficulty was defined as the negative absolute value 
of this log-odds term.

Modeling behavior. To identify individual subjective indifference points (that 
is, the points at which choices were most difficult) at each stage of the task, we 
fit behavioral data (choices and RTs) with the DDM25. The model represents the 
decision process as a particle drifting toward one of two decision boundaries 
(for example, forage versus engage) with a drift rate that determines how much 
faster it moves toward one or the other (before some amount of Gaussian noise is 
additionally inserted into the process). The DDM, and variants thereof, have been 
shown to provide a reasonable approximation for value-based decision processes 
such as those in the foraging task4,26–29, with the value of one option relative to 
another typically being treated as a proxy for drift rate. Notably, this model is at 
the heart of the value comparator account of dACC function4, which suggests 
that dACC activity should reflect the accumulated activity in the DDM over time. 
As KBMR point out when attempting to rule out both accounts, conflict and 
comparator theories both predict that dACC activity should be greatest when 
choices are most difficult. Using the DDM to identify when choices were most 
difficult therefore allows us to respond most directly to KBMR’s presumed lack 
of support for this prediction.

We used relative value at each stage (as defined above) to generate distri-
butions of predicted choice probabilities and RTs, which were then fit to the  
data. We used the five-parameter version of the DDM; of these, we fixed  
the starting point of the decision process (0.0) but allowed the coefficient  
for decision noise, decision threshold, non-decision time and value scaling  
factor (d below) to vary by participant and decision stage. Crucially, we also 
included an offset term (c below) that was added to all relative values within  
a given stage when they were translated into drift rates. The equation for drift 
rate was therefore as follows:

A c d= +( )RV

where the presumed relative value (RV) for a given choice is modified by the offset 
tem (c; this can also be thought of as a latent cost) and the scaling factor (d).

This allowed the distribution of drift rates to shift relative to the assumed 
distribution of relative values. In practical terms, if the assumed relative values 
were missing an additional fixed value (for example, a subjective cost or bonus 
for foraging that was not expressed in the explicit values shown), this term would  
absorb that value by shifting the subjective indifference point accordingly  

(1)(1)

(2)(2)

(see also ref. 40). Like all other free DDM parameters described above, this  
offset term was allowed to vary by participant and trial stage.

We generated predicted choice probabilities and average RTs (threshold-
crossing times) for a given set of parameters based on an analytical solution to the 
DDM (see appendix to ref. 26). We fit the predictions of the DDM to our data to 
identify the participant and trial phase-specific DDM parameters that minimized 
a combination of (a) the negative log likelihood of our choice data and (b) the sum 
of the squared error for our RT data (after log-transforming both the actual and 
expected RTs). We optimized these model fits using a version of the fminsearch 
function in Matlab that implements bounded parameter ranges.

RVforage-C was generated by combining the original values of RVforage with 
the best-fit offset term (c) for that individual and choice stage. Our primary 
measure of choice difficulty was the negative absolute value of these corrected 
values of RVforage (−|RVforage-C|). Note that this measure implicitly assumes that 
the hidden cost estimated by our offset parameter was in a similar value currency 
as the explicit values that went into RVforage. However, we also used the DDM 
to generate an alternative measure of choice difficulty that was agnostic on this 
front (Supplementary Fig. 5b). Similarly to the approach described above for our 
logistic regression analysis, we used the best-fit parameters for each participant to 
determine the predicted likelihood of choosing one option rather than the other 
on each trial (that is, likelihood of choosing to forage rather than engage in stage 1,  
likelihood of choosing the option on the right rather than the left in stage 2).  
We then defined choice difficulty with respect to the absolute distance between 
the predicted choice likelihood and indifference (that is, 50%) for that decision, 
with indifference being considered the point where choices were most difficult.

fMRI analysis. Imaging data were analyzed in SPM8 (Wellcome Department of 
Imaging Neuroscience, Institute of Neurology, London, UK). Functional volumes 
were motion corrected, normalized to a standardized (MNI) template (including 
resampling to 2-mm isotropic voxels), spatially smoothed with a Gaussian kernel 
(5 mm FWHM) and high-pass filtered (0.01 Hz cut-off). Separate regressors were 
included for the stage 1 and stage 2 decision phases, as well as for the feedback 
associated with foraging (only in Exp 1) and with stage 2 choices. These regressors 
were all modeled as stick functions, and the two decision phases were further 
modulated by parametric regressors (as described below).

We ran the following variations on this whole-brain GLM; unless otherwise 
noted, similar regressors were included for both stages of the task (for stage 1, 
we use relative value to refer to the value of forage versus engage; for stage 2,  
we refer to the value of the chosen versus unchosen option):

1. � Parametric regressors for linear effects of relative value (RV)  
(Figs. 3a and 5c).

2. � Parametric regressors for explicit value similarity (−|RVuncorrected|)  
(Fig. 3b).

3. � Parametric regressors for choice difficulty (−|RVcorrected|)  
(Figs. 3c and 5d; see also variants in Supplementary Fig. 5).

4. � Parametric regressors for RV and choice difficulty  
(Supplementary Fig. 4a,b).

5. � Parametric regressors for linear and quadratic factors of RV  
(Fig. 5c, inset).

6. � Parametric regressors for RT and choice difficulty.
7. � Parametric regressors for RV by choice at stage 1 (forage versus engage; 

Supplementary Fig. 8).
8. � Separate event regressors for each of six (Exp 1) or eight (Exp 2) binned 

quantiles of relative value in stage 1 and (in a separate GLM) the same for 
choice difficulty (Fig. 5). Additional bins were used for Exp 2 because of 
the larger number of trials and wider range of relative values tested.

For all GLMs above, stage 2 outcomes and (when appropriate) stage 1 outcomes 
were each modeled with an additional regressor. GLM 8 also included an event 
regressor for the onset of stage 2 decisions, without additional parametric modu-
lators. Also, to test for relative variance captured in a simultaneous regression, the 
default serial orthogonalization procedure in SPM was turned off for parametric 
regressors in GLMs 1–4, and these GLMs also included an additional regressor for 
the explicit forage cost on each trial (see “Behavioral analysis” above). Conversely, 
to provide a strong test against a pure time-on-task account, GLM 6 did imple-
ment serial orthogonalization (that is, tested for an effect of choice difficulty 
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after removing variance accounted for by RT). For display purposes, all whole-
brain t-statistic maps are shown at a voxelwise uncorrected threshold of P < 0.01  
(corresponding to the z > 2.3 criterion used in KBMR’s study).

We used GLMs 1 and 3 for our Bayesian model comparison of choice difficulty 
versus foraging value in Exp 2. Since we were comparing the two accounts for 
dACC’s role in foraging choices specifically, these GLMs were modified only to 
exclude parametric modulators from stage 2. To perform these model compari-
sons, we first used SPM’s Bayesian equivalent of the first-level analyses described 
above41, which produced within-participant log-evidence maps for each GLM. 
These log-evidence maps were aggregated into a formal Bayesian model compari-
son at the group level with a random-effects analysis42 that produced voxel-wise 
estimates of exceedance probability for each of the models being compared. An 
additional Bayesian model comparison related the difficulty and foraging value 
models to a baseline model in which all of the relevant task events were modeled 
with indicator functions (as with all of our GLMs) but no additional parametric 
modulators were included.

For our sliding window analysis of foraging value (Supplementary Fig. 3), we 
used a variant of GLM 1 wherein only a certain subset of trials was modulated 
by the foraging value parameter. This subset was determined by rank-ordering 
trials by foraging value and selecting those that fell within a certain percentile 
range window (for example, 0th–50th percentiles). All foraging trials outside 
this window were modeled with a single indicator variable and no parametric 
modulation. We performed two sets of windowed analyses, one using windows 
of 70% per GLM, the other using windows of 50% per GLM. Consecutive win-
dows were shifted by 10 percentiles, resulting in 86% and 80% overlap between 
consecutive windows in the respective analyses.

Our key analyses (particularly in Exp 2) relied on a region-of-interest (ROI) 
approach. We extracted β estimates from a sphere (9 mm diameter) drawn around 
peak dACC coordinates from the relative foraging value contrast (from GLM 1 
above; Fig. 3a; MNI coordinates [x, y, z] = [4, 32, 42]). While this results in a cir-
cular analysis for Figure 5a (which is shown for visual comparison to the patterns 
of difficulty-related activity in Fig. 5b), we chose these coordinates to provide the 
strongest bias in our Exp 2 analyses of relative value (Fig. 5c and Supplementary 
Figs. 3, 4 and 8) in favor of detecting the same linear pattern of activity as in Exp 1.  
This ROI is used for all other dACC ROI analyses described in the paper, with 
the exception of the forage choice analyses shown in Supplementary Figure 8e 
(right). For this analysis, an ROI was drawn around the peak dACC coordinates 
from Exp 2’s sliding analysis of foraging value (Supplementary Fig. 3b) focusing 
on the 20th–70th percentile window, which showed the strongest linear foraging 
value effect across the two windowed analyses (coordinates: [6, 28, 34]). Unless 
otherwise indicated, statistical inferences for these ROI analyses were performed 
with two-tailed, one-sample t-tests.

Simulating the role of choice difficulty in more recent studies of dACC and 
non-default value. A few studies have attempted to provide supporting evidence 
for dACC’s role in non-default valuation since KBMR’s study was published. In 
particular, Boorman et al. (2013)19 and Kolling et al. (2014)20 engaged partici-
pants in different kinds of risky choice settings and exploited their default risk 
aversion to explore dACC responses to the increasing relative value of a non-
default (riskier) option (see figure legends to Supplementary Figs. 6 and 7).  
We examined the possibility that choice difficulty might account for their  
relevant findings. To this end, we simulated sets of agents to make decisions in 
each of these choice contexts. These simulated decision-makers simply made 
choices based on a set of decision parameters (including decision noise) that were 
passed through a binary logistic (Kolling et al.20) or trinary softmax (Boorman  
et al.19) function, which simultaneously served to provide us with the relative 
probabilities of each of the choices. These choice probabilities were used to esti-
mate choice difficulty, based either on the proximity to indifference (50%) for 
the binary choices or the Shannon’s entropy of the choice probabilities for the tri-
nary choices. Depending on the relevant set of dACC results, we either show the 
average choice difficulty for different conditions (Supplementary Fig. 7d, left) 
or show the β estimates resulting from regressing choice difficulty on a relevant 

decision variable (Supplementary Fig. 6b, bottom, and Supplementary Fig. 7d,  
middle and right).

Decision parameters and trial values were chosen to produce behavioral pat-
terns approximating those reported for a given study (see Supplementary Fig. 6,  
top, and Supplementary Fig. 7b) and in each case included a parameter that 
served to bias choices toward the currently most probable19 or safer20 of the choice 
options. For simplicity, and without loss of generality, we assumed full knowledge 
of the outcome probabilities on each trial of Boorman et al.’s study, which were 
randomly selected on each trial rather than varying gradually over time. We also 
note that the qualitative patterns of results shown in Supplementary Figures 6  
and 7 were robust to variations in decision parameters that provided similar 
qualitative fits to the observed behavior in a given experiment. Collectively, these 
results comport with the intuition (emphasized in the main text) that choosing 
against a bias becomes easier as more reward is offered for the already biased 
option and/or as less reward is offered for the alternative (non-default) option(s). 
In other words, choice difficulty increases alongside foraging/non-default value 
(within a certain range; see Fig. 1). Additional analyses from ref. 20 are discussed 
in the legend to Supplementary Figure 7.

Foraging value prediction errors. KBMR provide additional support for their 
foraging value account by showing that dACC activity increases with foraging 
value both when participants choose to engage and when they choose to forage 
(intuitively, though by no means necessarily, including trials that strongly favored 
foraging; see Fig. 2b). This result did not replicate in our Exp 1 and, in fact, 
showed a robust effect in the opposite direction in Exp 2 (Supplementary Fig. 8).  
It is therefore possible that KBMR’s finding of foraging value signals for both 
types of forage choice was a byproduct of the choice difficulty effect we describe 
in the main text (and/or selection bias; see Supplementary Fig. 8d). However, we 
noted that the skewed distribution of RVforage values in the original experiment  
(Fig. 2b) may have also resulted in a greater proportion of unexpected or sur-
prising (and perhaps therefore more salient) choice sets at the upper end of the 
RVforage spectrum. Assuming such surprise occurred particularly frequently for 
trials on which participants chose to forage, it would have made it difficult to 
disentangle foraging value on those trials from surprise (cf. unsigned prediction 
error) at the infrequent configuration of values that would encourage foraging 
(for related arguments, see ref. 43). This fact is particularly relevant given that 
dACC has been previously associated with prediction errors8,32–35 and interpreted 
in more basic terms unrelated to foraging value, including for the relevance of 
surprise as a signal of control demands2,3,36.

As a coarse measure of the degree to which a given choice set was likely to have 
generated such an unsigned prediction error signal, we simply took the absolute 
difference of each trial’s RVforage from the observed mean RVforage up to that 
point. We found that this was in fact correlated with RVforage in our replication 
study (Exp 1), conditional on the participant’s choice whether or not to forage on 
a given trial. In particular, we saw a strong positive correlation between RVforage 
and RVforage surprise on the trials where subjects chose to forage (Mρ = 0.89,  
t14 = 31.4, P = 2.2 × 10−14). This correlation reversed on trials where subjects chose 
to engage (Mρ = −0.54, t14 = −10.6, P = 4.5 × 10−8). These estimates of foraging 
value prediction error were used to generate the whole-brain analyses shown in 
Supplementary Figure 9.

A Supplementary Methods Checklist is available.
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