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Received: 30 May 2010 / Accepted: 9 September 2010 / Published online: 12 November 2010

� Springer Science+Business Media B.V. 2010

Abstract Haploids are plants with a gametophytic chro-

mosome number and doubled haploids are haploids that

have undergone chromosome duplication. The production

of haploids and doubled haploids (DHs) through gametic

embryogenesis allows a single-step development of com-

plete homozygous lines from heterozygous parents, short-

ening the time required to produce homozygous plants in

comparison with the conventional breeding methods that

employ several generations of selfing. The production of

haploids and DHs provides a particularly attractive bio-

technological tool, and the development of haploidy tech-

nology and protocols to produce homozygous plants has

had a significant impact on agricultural systems. Nowa-

days, these biotechnologies represent an integral part of the

breeding programmes of many agronomically important

crops. There are several available methods to obtain hap-

loids and DHs, of which in vitro anther or isolated

microspore culture are the most effective and widely used.

This review article deals with the current status of

knowledge on the production of haploids and DHs through

pollen embryogenesis and, in particular, anther culture.
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Introduction

Haploid plants are sporophytes carrying the gametic

chromosome number (n instead of 2n). When spontaneous

or induced chromosome duplication of a haploid occurs,

the resulting plant is called doubled haploid (DH). In

comparison, dihaploid plants (2n = 2x) are haploid plants

obtained from an autotetraploid (4x) (Kasha and

Maluszynsky 2003). Haploids occur spontaneously at a

low frequency, or they can be induced by several meth-

ods, such as modified pollination methods in vivo (wide

hybridization, chromosome elimination, pollination with

irradiated pollen, etc.) and by in vitro culture of immature

gametophytes. Gametic embryogenesis is one the different

routes of embryogenesis present in the plant kingdom,

and it consists in the capacity of male (microspore or

immature pollen grain) or female (gynogenesis) gameto-

phytes to irreversibly switch from their gametophytic

pathway of development towards a sporophytic one.

Differently from somatic embryogenesis, which provides

the clonal propagation of the genotype (unless the so-

maclonal variation), gametic embryogenesis results in

haploid plants (unless spontaneous or induced chromo-

some duplication occurs), because such plants are derived

from the regeneration of gametes, products of meiotic

segregation.

Microspore or pollen embryogenesis (also referred to as

androgenesis) is regarded as one of the most striking

examples of cellular totipotency (Reynolds 1997), but also

as a form of atavism. It is an important survival adaptation

mechanism in the plant kingdom that is expressed only

under certain circumstances and as a consequence of an

environmental stress (Bonet et al. 1998). In comparison to

conventional breeding methods, gametic embryogenesis

makes the production of homozygous lines feasible and

shortens the time required to produce such lines, allowing

the single-step development of completely homozygous

lines from the heterozygous parents. Conventional methods

performed to achieve homozygosity consist of carrying out
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several backcrosses; as such, they are time-consuming and

labour-intensive procedures (Morrison and Evans 1987).

The production of haploids through gametic embryo-

genesis for breeding purposes has been studied by many

research groups since the 1970s. There are many published

reviews on the production of haploids and DHs, including

those of Andersen (2005), Dunwell (2010), Germanà

(1997, 2006, 2007, 2009), Jain et al. (1996–1997), Kasha

(1974), Magoon and Khanna (1963), Maluszynski et al.

(2003a, b), Palmer et al. (2005), Seguı̀-Simarro and Nuez

(2008a), Seguı́-Simarro (2010), Smykal (2000), Touraev

et al. (2009), Zhang et al. (1990) and Xu et al. (2007). The

DH techniques have been well established in a range of

economically important crop species, including major

cereals and cabbages (Wedzony et al. 2009). Gynogenesis

is the least favoured technique at the present time because

of its low efficiency, but it has been applied to species that

do not respond to more efficient methods (Forster et al.

2007). The ability to obtain haploids and DHs is one of the

most important applications of pollen biotechnology in

plant breeding and genetics, involving the manipulation

and reprogramming of pollen development and function

(Testillano et al. 2000). Regeneration from male gametes

has been reported in more than 200 species belonging to

the Solanaceae, Cruciferae and Gramineae families

(Dunwell 1986; Hu and Yang 1986), while many legumes

and woody plants are rather recalcitrant (Sangwan-Norreel

et al. 1986; Bajaj 1990; Raghavan 1990; Wenzel et al.

1995; Germanà 2006, 2009).

Embryogenesis in pollen is normally induced through

anther or isolated microspore culture. Anther culture is

often the method of choice for DH production in many

crops because the simplicity of the approach allows large-

scale anther culture establishment and application to a wide

range of genotypes (Sopory and Munshi 1996). The tech-

nique of isolated microspore culture, performed by

removing somatic anther tissue, requires better equipment

and more skills compared to anther culture, although the

former provides the better method for investigating cellu-

lar, physiological, biochemical and molecular processes

involved in pollen embryogenesis (Nitsch 1977; Reinert

and Bajaj 1977). Pelletier and Ilami (1972) introduced the

concept of ‘‘Wall Factor’’, according to which the somatic

tissues of the anther play an important role in the induction

of sporophytic divisions in pollen, with the diffusion of

nutrients through the anther walls often considered to be

one of the factors affecting microspore embryogenesis. A

number of studies on the role of the anther wall in pollen

embryogenesis have shown that it not only acts as a barrier

to nutrient flow but that it also provides both beneficial and

inhibitory substances (Heberle-Bors 1985, 1989). Pulido

et al. (2005), using both culture systems (anther and iso-

lated microspore culture) to induce microspore

embryogenesis in barley, showed that the initial phases of

both processes are similar. These researchers as well

demonstrated that the anther wall also served as a filter by

preventing excessive concentrations of Fe around the mi-

crospores within the anther, even when the concentrations

present in the culture medium were high. This protective

role of the cell wall against toxic elements such as Cd, Zn

and Ni was also shown by Krämer et al. (2000) and Kupper

et al. (2000).

This review deals with the main aspects of H and DH

production through in vitro anther culture.

Brief history of anther culture for haploid

and DH production

The first natural sporophytic haploid was observed in 1921

by Bergner in a weed species Datura stramonium L. and

reported by Blakeslee et al. (1922). The importance of

haploids in plant breeding and genetic research was

immediately recognized. The number of spontaneous

haploids detected has steadily grown, and in 1974 Kasha

recorded the occurrence of over 100 angiosperm species. A

list of selected examples of occasional haploids in a range

of species has been reported by Dunwell (2010). The fre-

quency of spontaneous haploids is, however, too low for

practical application in breeding. About 40 years after the

identification of the first natural haploid, Guha and

Maheshwari (1964) discovered that it was possible, by in

vitro culture of immature anthers of the Solanaceous spe-

cies Datura innoxia, to change the normal gametophytic

development of microspores into a sporophytic one and

that embryos and plants with a haploid chromosome

number would then be produced. This discovery paved the

way to further and extensive research on anther culture that

was particularly successfully in the Solanaceae, Brassica-

ceae and Gramineae. However, not all of the angiosperm

crops of interest efficiently respond to embryogenesis

induction, and although barley (Hordeum vulgare L.),

rapeseed (Brassica napus L.), tobacco (Nicotiana spp.) and

wheat (Triticum aestivum L.) are considered to be model

species to study microspore embryogenesis due to their

high regeneration efficiency (Forster et al. 2007), other

scientifically or economically interesting species, such as

Arabidopsis, many woody plants or members of legume

family, still remain recalcitrant to this type of in vitro

morphogenesis (Sangwan-Norreel et al. 1986; Bajaj 1990;

Raghavan 1990; Wenzel et al. 1995; Germanà 2006, 2009).

Gamete embryogenesis is a particularly indispensable tool

for obtaining homozygosity in woody plants, which are

characterized by a high genome heterozygosity, a long

generation cycle with a long juvenile period, a large size

and, often, self-incompatibility, and for which it is not
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possible to obtain haploidization through conventional

methods, i.e., several generations of selfing (Germanà

2006, 2009).

The great interest in haploids was apparent with the

organization of the First International Symposium ‘Hap-

loids in Higher Plants’, which took place at Guelph (Can-

ada) in 1974 (Kasha 1974). In the early 1970s, cv. Maris

Haplona of rapeseed (Brassica napus) was the first DH

crop plant released (Thompson 1972), followed by cv.

cultivar Mingo in barley (Hordeum vulgare) in 1980 (Ho

and Jones 1980). Since then, a great deal of research has

been carried out with the aim of establishing efficient

techniques for haploid and DH production with an

increasing number of genotypes. For a long time, many

postulations regarding pollen embryogenesis protocols

have been based on practical experience. However, recent

scientific and technological innovations, a greater under-

standing of underlying control mechanisms and an expan-

sion of end-user applications have induced a resurgence of

interest in haploids in higher plants (Forster et al. 2007).

This interest is shown by the establishment of the COST

851 programme, a European Union-funded research net-

work entitled ‘Gametic cells and molecular breeding for

crop improvement’, that ran from 2001 to 2006.

To date, almost 300 new superior varieties belonging to

several families of the plant kingdom (particularly annual

crops) have been produced. A variety of methods were

used to obtain these DHs, such as chromosome elimination

subsequent to wide hybridization, the ‘‘bulbosum’’ method

by Kasha and Kao (1970), pollination with irradiated pol-

len, selection of twin seedlings, in vivo or in vitro polli-

nation with pollen from a triploid plant, gynogenesis and

pollen embryogenesis through in vitro anther or isolated

microspore culture (Forster and Thomas 2005). The web-

site http://www.scri.sari.ac.uk/assoc/COST851/Default.htm

provides a list of haploid-derived varieties, mostly aspar-

agus, barley, Brassica, eggplant, melon, pepper, rapeseed,

rice, swede, tobacco, triticale and wheat. The application of

intellectual property (IP) protection and the patenting sys-

tem of haploid plants (where patents also include anther

and microspore culture techniques) has been reviewed by

Dunwell (2009), and the strong commercial interest in

methods for the production and exploitation of haploid

plants is exemplified by the extensive number of granted

patents and patent applications from the USA and

elsewhere, also reported by Dunwell (2009, 2010).

General approach to anther culture for haploid

and DH production

The exploitation of haploid and DHs as a powerful

breeding tool requires the availability of reliable tissue

culture protocols that can overcome several methodology

problems, such as low frequencies of embryo induction,

albinism, plant regeneration, plant survival and the geno-

type- and season-dependent response, in order to improve

the regeneration efficiency in a wider range of genotypes.

Maluszynski et al. (2003a) published a detailed manual that

describes 44 protocols for DH production, related to at least

33 plant species. Although different species, as well as

different cultivars within a species, show very diverse

requirements and there is no single standard condition or

protocol for inducing pollen-derived plant formation, it is

possible provide common guidelines for anther culture, as

summarized in Fig. 1.

Numerous endogenous and exogenous factors affect the

embryogenic response of anthers in culture (Atanassov

et al. 1995; Datta 2005; Smykal 2000; Wang et al. 2000).

Genotype, physiological state and conditions of growth of

donor plants, stage of pollen development, pretreatment of

flower buds or anthers and in vitro culture medium and

conditions, together with their interactions, are all factors

that greatly affect the response of anthers to in vitro

culture.

Fig. 1 Diagram describing common guidelines of the anther culture

method
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Genotype

Among the endogenous factors, the genotype plays a major

role, as recognized by most of the researchers working on

pollen embryogenesis. It has been repeatedly reported that

different cultivars within a species exhibit diverse responses

in anther culture. For example, of 21 cultivars of Triticum

aestivum, haploid tissue could be obtained from anthers of

only ten cultivars, while in rice, japonica subspecies have

been found to be more productive than indica subspecies

(Bajaj 1990). Also, research carried out simultaneously on

anthers of a large number of Citrus genotypes (4 cultivars of

clementine, 2 of mandarin, 4 of sweet orange, 4 of sour

orange, 5 of lemon, 4 of grapefruit) using the same culture

conditions and pretreatments and 11 different media,

obtained haploid calli production in one cultivar of clem-

entine and in one cultivar of lemon (Germanà 2007).

The formation of microspores competent to undergo

embryogenesis (‘‘E-grains’’, Sunderland 1978 or ‘‘P-grains’’,

Heberle-Bors 1982) is controlled by an interaction between

cytoplasmic and nuclear genes and modified by the envi-

ronment (Heberle-Bors 1985). Studies carried out on

Solanum tuberosum showed that the ability to undergo

microspore embryogenesis is a heritable recessive trait

controlled by more than one gene and that the genes are

recessive (Chupeau et al. 1998; Rudolf et al. 1999; Smykal

2000). Foroughi-Wehr et al. (1982) distinguished four

independently and differently inherited traits, namely,

‘‘callus induction’’, ‘‘callus stabilization’’, ‘‘plantlet regen-

eration’’ and ‘‘albino versus green plantlet formation’’.

Petolino and Thompson (1987) demonstrated that breeding

for improved responsiveness in maize is possible. The

percentage of anthers producing microspore embryos and

the number of regenerants produced per anther appear to be

determined independently (Dunwell 2010).

Pollen development stage

The pollen development stage is a complex factor that

strongly affects the success of anther culture. The devel-

opmental window of embryogenic competence differs

depending on the species tested but, generally, the period

of sensitivity to inductive treatments is around the first

pollen mitosis—that is, between the vacuolate microspore

(Fig. 2a) to early, mid-bicellular pollen (Touraev et al.

2001)—probably due to the transcriptional status that at

that time is still proliferative and not yet fully differentiated

(Malik et al. 2007). After the pollen grains begin to accu-

mulate storage reserves, they usually lose their embryogenic

capacity and follow the gametophytic developmental

pathway (Heberle-Bors 1989; Raghavan 1990). In Brassica

napus, Telmer et al. (1992) reported that the best stages for

induction are around the first pollen mitosis, from late-

uninucleate to early-bicellular pollen grains, but Binarovà

et al. (1997), applying an additional short and a more

severe heat stress (41�C), were able to obtain the division

of already formed vegetative cells. In Nicotiana tabacum,

pollen grains at the bicellular stage are the best responding

when starvation is used as pretreatment; when a heat shock

is applied instead, younger uninucleate microspores can be

employed (Touraev et al. 1996a, b). Sopory and Munshi

(1996) reported that microspore stage would appear to

affect the ploidy level of the plant produced in anther

culture because, in their study, plantlets obtained from

pollen at the uninucleate stage were found to be mostly

haploids, whereas plants with higher chromosome numbers

were produced by anthers at the later stages.

The stage of pollen development is usually tested in one

anther per floral bud size by the acetic-carmine method

(Sharma and Sharma 1972). The anthers are collected from

flower buds at different stages of development and squa-

shed in acetocarmine staining solution (1% acetocarmine in

45% acetic acid) for observation under an optical micro-

scope to determine the stage of pollen development. DAPI

(40, 6-diamidino-2-phenylindole dihydrochloride) fluores-

cent staining has also been used. However, different

developmental stages and, consequently, a non-uniform

starting pollen population have been observed within a

single anther as well as between different anthers of the

same flower (Hidaka et al. 1979, 1981; Chen 1985; Vasil

1967; Shull and Menzel 1977).

Physiological state and growth conditions

of donor plants

The physiological conditions of the donor plants, which

affect the number of P-grains (Heberle-Bors 1985), the

endogenous levels of hormones and the nutritional status of

the tissues of the anther (Sunderland and Dunwell 1977) all

determine the success of the technique. The in vivo and/or

in vitro formation of embryogenic pollen grains or

P-grains, characterized by thinner exine structure, weak

staining with acetocarmine, presence of a vacuole and

absence of starch grains, seems to be connected with a

nitrogen starvation phenomenon (Heberle-Bors 1983, 1985,

1989). Significant seasonal variations in anther response

have been observed in many genotypes. Vasil (1980)

observed that anthers removed from field-grown plants gave

a better response than those picked from greenhouse-grown

plants. In addition, anthers from the first flush of flowers in

the season were found to be more responsive (Sunderland

1971). In tobacco, the effect of preculture environment was

investigated first by Dunwell (1981), who showed that both

photoperiod and light intensity affected the yield of

micropore embryos and plantlets. The frequency of P-grains

is also increased by conditions (short days, low
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Fig. 2 a Vacuolated microspore of apricot (Prunus armeniaca L.) cv.

Ninfa at the time of anther culture establishment (section stained with

toluidine blue; photo taken at the laboratory of MC Risueño, C.S.I.S.

Spain). b Embryogenic pollen-derived friable calli and embryos in

different stages developing inside of Citrus clementina Hort. ex Tan.

cv. Monreal anther, after 4 months of culture. c Direct microspore

embryogenesis in Citrus anthers after 3 months of culture. d Symmet-

rical division of nucleus in an olive (Olea europaea L.) microspore

after 3 weeks of anther culture. e Heart-shaped pollen-derived embryo

of C. clementina cv. Nules. f Microspore-derived plantlet of clemen-

tine obtained from embryo germination
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temperatures) that are unfavourable for plant growth

(Heberle-Bors and Reinert 1981; Heberle-Bors 1989). The

influence on the culture response of the temperature under

which the donor plants are grown has been demonstrated by

studies on barley (Foroughi-Wehr and Mix 1976), oilseed

rape (Keller and Stringham 1978; Dunwell and Cornish

1985), turnip (Keller et al. 1983) and wheat (Lazar et al.

1984), despite the optimal growth conditions appearing to

vary between species. The nitrogen status of plants also

greatly affects the yield of microspore embryos (Sunderland

1978; Tsay 1981), with ‘‘nitrogen-starved’’ plants providing

better results than those supplied with fertilizer.

Although the physiological state of the donor plant can

dramatically affect the response of the anthers to the in

vitro culture, this parameter has been investigated only in

herbaceous plants due to the difficulties involved with

determining it in woody plants. In fact, the growth condi-

tions and physiological status of donor plants can not be

standardized in the anther culture of perennial plants cul-

tivated in open-air and affected by climatic (temperature,

photoperiod and light intensity), cultural (pruning, irriga-

tion, fertilization, etc.) and pedological conditions (espe-

cially during flower induction and differentiation). This can

explain why the response to the culture of woody plant

anthers is very season dependent even when the same

protocols are applied (Germanà 2009).

Pretreatment

It has been observed in many genotypes that physical or

chemical pre-culture treatments applied to excised flower

buds, whole inflorescences or excised anthers before cul-

ture act as a trigger for inducing the sporophytic pathway,

thereby preventing the development of fertile pollen

(gametophytic pathway). Pretreatments such as chilling,

high temperature, high humidity, water stress, anaerobic

treatment, centrifugation, sucrose and nitrogen starvation,

ethanol, c-irradiation, microtubuli disruptive agents,

electrostimulation, high medium pH, heavy metal treat-

ment are particularly popular approaches in anther and in

microspore culture, as recently reviewed by Shariatpanahi

et al. (2006), who classified them into three categories:

widely used, neglected and novel.

Temperature shock is considered to be the most effective

treatment to induce pollen embryogenesis development.

The optimum temperature and duration of pretreatment

vary with the genotype. For example, among three cultivars

(Tower, Willi and Duplo) of spring rape (Brassica napus

ssp. oleifera), Dunwell et al. (1983) found that the highest

yield (equivalent to 1.1 embryo per cultured anther) was

obtained from anthers of the cv. Duplo after a 3-day treat-

ment at 35�C, while the yields from the other cultivars were

much lower and relatively unaffected by the 35�C

treatment. Cold pretreatment (4�C for 2–3 weeks) is

employed routinely in the anther culture of many crops, and

its effect is also genotype-dependent (Osolnik et al. 1993;

Powell 1988). In Brassica species, a short, high temperature

treatment (30–35�C) before further culture at 25�C is

required to efficiently switch the developmental pathway.

Nutrient starvation, especially for sugars and nitrogen, has

been routinely used to induce pollen embryogenesis in

tobacco (Kyo and Harada 1986). Touraev et al. (1996b,

1997) showed that it was possible to replace the starvation

pretreatment by a heat shock treatment. Chemical and

physical mutagens (e.g., gamma rays) applied to plants or to

the seeds from which M1 plants were obtained resulted in

an increase in the androgenic response, as reported by

Aldemita and Zapata (1991) in recalcitrant rice varieties, by

Vagera et al. (2004) in barley and by Kopecky and Vagera

(2005) in Solanum nigrum. In addition to being used to

induce chromosome doubling, colchicine has also been

used to induce microspore division and to promote gametic

embryogenesis in several species, including sugar beet

(Levan 1945), sorghum (Sanders and Franzke 1962; Si-

mantel and Ross 1964), maize (Hu et al. 1991), Brassica

(Mollers et al. 1994), wheat (Barnabas et al. 1991) and rice

(Alemano and Guiderdoni 1994). However, the stimulating

effect of mutagenic treatment on anther culture efficiency in

recalcitrant genotypes is also highly genotype and dose

dependent. Centrifugation and exposure to reduced atmo-

spheric pressure or water stress are other pretreatments used

prior to anther culture (Sopory and Munshi 1996).

Although the mechanism of just how stress affects

pollen differentiation has not yet been firmly established, it

seems to act by altering the polarity of the division at the

first haploid mitosis involving reorganization of the cyto-

skeleton (Nitsch and Norreel 1973; Reynolds 1997),

delaying and modifying pollen mitosis (two equal-size

vegetative-type nuclei instead of one vegetative and one

generative), blocking starch production or dissolving

microtubules (Nitsch 1977) or maintaining viability of the

cultured P-grains (Heberle-Bors 1985).

Surface sterilization, anther excision

Before anther excision, it is necessary to remove surface

contaminants (bacteria and fungi) through sterilization.

Many sterilization protocols have been used to obtain

contaminant-free anthers, and most of these can be found

in Doubled haploid production in crop plants: a manual,

edited by Maluszynski et al. (2003a, b).

In general, after pretreatment, the floral buds are surface

sterilized by immersion in 70% (v/v) ethyl alcohol for few

minutes, followed by immersion in a sodium hypochlorite

solution (about 1.5% active chlorine in water) containing a

few drops of Tween 20 for 10–15 min and then by three

288 Plant Cell Tiss Organ Cult (2011) 104:283–300

123



5-min washes with sterile distilled water. In the last step,

anthers are excised aseptically from the filaments and

placed onto the medium. An exception are barley spikes,

which are sterilized only by being sprayed with 70% eth-

anol (Cistué et al. 2003) or by immersion for 5 min in

ethanol 70%, followed by rinsing in sterile distilled water

(Jacquard et al. 2003).

Injures to anthers during excision should be avoided in

order to prevent somatic callus production from anther-

wall tissues (Reinert and Bajaj 1977). When the anther

sizes are minute, such as in Asparagus, Brassica, Trifolium

and Olea, their extraction can be performed under a ste-

reoscopic microscope (Bhojwani and Razdan 1983; Cistué

et al. 2003; Germanà et al., unpublished).

Medium composition

A pivotal role in the induction of microspore embryogen-

esis is played by the culture medium composition. The

diverse genotypes show very different basal medium

requirements to induce pollen-derived plant formation. The

nutritional requirements of the excised anthers are much

simpler than those of isolated microspores (Reinert and

Bajaj 1977; Bajaj 1990).

The most commonly used basal media for anther culture

are N6 medium (Chu 1978), (modified) MS medium

(Murashige and Skoog 1962), Nitsch and Nitsch (1969)

medium and B5 medium (Gamborg et al. 1968), but there

are many others. Generally, half-strength MS salt mixtures

are suggested for the Solanaceae, and N6 medium for the

cereals (Chu 1978).

A carbohydrate source is essential for embryo production

in anther culture because of their osmotic and nutritional

effects (Powell 1990). The influence of carbohydrate con-

centration is probably related to osmotic pressure regulation

during the induction phase (Sunderland and Dunwell 1977;

Sangwan and Sangwan-Norreel 1990) as later on in the

culture period, high concentrations of the carbon source

seem to be deleterious (Keller et al. 1975). Sucrose is the

major translocated carbohydrate in plant tissue (Powell

1990), and it is the most common carbon source used in

anther culture, normally at levels of 2–4% (Reinert and

Bajaj 1977). High sucrose levels (6–17%) are required in

those species (e.g., Gramineae, Cruciferae) in which mature

pollen is shed in the tricellular condition (Dunwell and

Thurling 1985), whereas for those in which mature pollen is

bicellular (e.g., Solanaceae) lower levels, such as 2–5%, are

usually beneficial (Dunwell 2010). Sucrose is heat labile,

and autoclaved media contain a mixture of sucrose, D-glu-

cose and D-fructose (Powell, 1990). Maltose has success-

fully been used to replace sucrose in barley anther culture,

usually at a concentration of 62 g/l in the induction medium

and at half this amount in the regeneration medium

(Wedzony et al. 2009). Maltose has also been added to

anther culture medium of wheat, triticale, rye and rice at

concentrations ranging from 60 to 90 g/l (Wedzony et al.

2009). Fructose and glucose have both been shown to be

inhibitory to pollen embryogenesis in Petunia anther cul-

ture (Raquin 1983). Lactose at 18 g/l and galactose at 9 g/l

are regularly used in clementine anther culture (Germanà

2003). Sucrose was found to be the best carbon source, in

comparison to glucose, in the anther culture of two clem-

entine and two mandarin cultivars (Germanà et al. 1994),

while glucose rather than sucrose has proved to be stimu-

latory in rye (Wenzel et al. 1977). Glycerol in combination

with sucrose was found to stimulate callus production in

clementine (Germanà et al. 2000a).

The effects of plant growth regulators have been widely

investigated in anther culture. Although a few model spe-

cies (e.g., most members of the Solanaceae) do not require

the addition of an auxin to the induction medium, and

induction does occur on simple media, the presence of

growth regulators (auxins, cytokinins or a combination) is

crucial for microspore-derived embryo production in the

majority of plant species, particularly the recalcitrant ones

(Maheshwari et al. 1982). The type and the concentration

of auxins seem to determine the pathway of microspore

development (Ball et al. 1993), with 2,4-dichlorophe-

noxyacetic acid (2,4-D) inducing callus formation (Fig. 2b)

and indole-3-acetic acid (IAA) and a-naphthaleneacetic

acid (NAA) promoting direct embryogenesis (Fig. 2c)

(Armstrong et al. 1987; Liang et al. 1987). Giberellins and

abscissic acid have been occasionally added to the media.

The addition of activated charcoal (0.5–2 g/l) to the

medium increases the efficiency of microspore embryo-

genesis in several species (Bajaj 1990). Bajaj et al. (1977)

obtained an increase in responsive tobacco anthers, from 41

to 91%, by supplemented the basal medium with 2%

charcoal. It would appear that the charcoal acted by

removing inhibitory substances from the medium and,

presumably, from the anther wall and by regulating the

level of endogenous and exogenous growth regulators

(Reinert and Bajaj 1977; Vasil 1980; Heberle-Bors 1985).

The addition of anti-oxidants and activated charcoal is

often useful with some genotypes as it reduces the tissue

browning caused by the phenols.

The supplement of other substances, such as glutamine,

casein, proline, biotin, inositol, coconut water, silver nitrate

(ethylene antagonist) and polyvinylpyrolidone, has been

reported (Reinert and Bajaj 1977; Powell 1990; Achar

2002). Moreover, the addition of exogenous aliphatic

polyamines (PAs) to the culture medium has been found to

increase the number of pollen-derived embryos in potato

(Tiainen 1992), in some Indian wheat cultivars

(Rajyalakshmi et al. 1995), in cucumber (Ashok Kumar

et al. 2004) and in clementine (Chiancone et al. 2006). PAs,
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such as putrescine, cadaverine, spermidine and spermine,

are low-molecular mass polycations, present in all living

organisms; they are classified as growth regulators and

involved in in vitro organogenesis and embryogenesis

(Bagni and Tassoni 2001; Kumar et al. 1997). In anther

culture, amino acids, related to the degeneration of wall

tissues, were observed to improve the induction rates.

In the anther culture of many cereal species, a beneficial

effect of co-cultivation with ovary tissues has been found

(Broughton 2008), due to stimulatory role of arabinoga-

lactans (Letarte et al. 2006).

pH is another factor which can influence the gametic

embryogenic process (Stuart et al. 1987). In anther culture,

the pH of the media is in the acid range and usually

adjusted to 5.7–5.8 before autoclaving.

Anther culture media are generally solidified by adding

agar, but the beneficial effect of other solidifying agents,

such as starch (potato, wheat, corn or barley starch), gelrite,

agarose and ficoll, has been reported. Liquid, semisolid and

two-phase systems in which anthers are floated on liquid

medium overlying an agar-solidified medium have been

tested with different results (Dunwell 2010).

‘‘Shed microspore’’ culture is a simple modification of

anther culture in which anthers are stimulated to dehisce

and to release their microspores, usually into a liquid

medium of high osmolarity. The method has been found to

be successful in several species, including barley (Ziauddin

et al. 1990), wheat (Touraev et al. 1996b, 1997), tobacco

(Dunwell 1985) and pepper (Supena et al. 2006).

Culture conditions

Anther cultures are usually incubated at 24–27�C and

exposed to light at an intensity of about 2,000 lux for 14 h

per 24-h day (Reinert and Bajaj 1977), but other culture

conditions have been reported. For example, Vasil (1973)

reports using alternating periods of light (12–18 h;

5,000–10,000 lux/m2) at 28�C and darkness (12–6 h) at

22�C. However, optimal conditions need to be determined

for each individual system (Bhojwani and Razdan 1983).

Light is an environmental signal that regulates pollen

morphogenesis in vitro (Reynolds and Crawford 1997).

With respect to the effect of light quality on anther culture,

the embryogenic induction of microspores is inhibited by

high-intensity white light, whereas darkness or low-inten-

sity white light are less inhibitory (Nitsch 1981; Wenzel

and Foroughi-Wehr 1984; Bjørnstad et al. 1989). The

incubation of anthers continuously in the dark has, on

occasion, been found to be essential. An alternating light

and dark period has also been shown to be beneficial after

the induction period in several species: Hyoscyamus niger

(Corduan 1975), Datura innoxia (Sopory and Maheshwari

1976), Nicotiana tabacum (Sunderland 1971) and Citrus

clementina Hort. ex Tan. (Germanà et al. 2005b).

The composition of the atmosphere in the culture vessel

has not been the focus of much attention, although exper-

iments on tobacco have indicated its importance (Dunwell

1979). The density of the culture (i.e. number of anthers

plated per volume of culture vessel or per unit volume of

medium) and the manner of explant placement on the

medium have been also found to be critical in anther cul-

ture (Sopory and Munshi 1996). Earlier studies did exam-

ine the influence of anther orientation in tobacco

(Sunderland and Dunwell 1972; Misoo et al. 1981), Datura

innoxia (Sopory and Maheshwari 1976), rice (Yangn and

Zhou 1979) and barley (Shannon et al. 1985).

Morphogenic development, reprogramming of gene

expression and plant recovery

After the pretreatment and during the culture period, the

microspores can follow different routes, namely, to arrest

their development and/or to die, to become a mature pollen

grain, to divide forming a multicellular callus-like structure

or to turn into a microspore-derived embryo (MDE) (Hosp

et al. 2007; Seguı̀-Simarro and Nuez 2008a). Several

changes, ranging from morphology to gene expression,

distinguish microspores after induction and during

embryogenic development. The acquisition of embryo-

genic potential by stress is accompanied by the stress-

related cellular response, the repression of gametophytic

development, the acquisition of a totipotent status and the

dedifferentiation of the cells with cytoplasmic and nuclear

rearrangements. Morphological and biochemical changes

involve enlargement, cytoplasm dedifferentiation and

clearing, the presence of a large central vacuole and a pH

shift toward alkalinization (Huang 1996; Hoekstra et al.

1992; Maraschin et al. 2003; Touraev et al. 2001). The

large central vacuole is subsequently divided into frag-

ments, interspersed by radially oriented cytoplasmic

strands, resulting in a structure denoted as ‘‘star-like’’ in

which cytoskeleton rearrangements are involved (Barnabas

et al. 1991; Zaki and Dickinson 1995; Zhao et al. 1996;

Gervais et al. 2000; Obert and Barnabás 2004). After

induction, the microspores are also characterized by an

altered synthesis and an accumulation of RNA and pro-

teins, and it seems that the genes involved in this repro-

gramming are stress related and/or associated with zygotic

embryogenesis (Seguı̀-Simarro and Nuez 2008a).

The next phase is characterized by cell divisions with

the formation of multicellular structures (MCSs) inside the

exine wall. Cytological and ultrastructural observations

have shown that the formation of MCSs from star-like

microspores involves different developmental pathways

that are defined by the symmetry of the first division and
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the fate of the daughter cells (Maraschin et al. 2005a).

According to Raghavan (1997), there are different routes of

pollen-derived embryo formation:

1. Repeated division of the vegetative cell (‘‘A’’ path-

way). Nuclear division without cytokinesis can pro-

duce a multinuclear pro-embryo. Callus rather than

embryo can be obtained.

2. Division of generative cell or both generative and

vegetative cells (‘‘E’’ pathway). Cell fusion can result

in non-haploid chromosome numbers (Sunderland

1974).

3. Symmetrical division of microspores (‘‘B’’ pathway)

(Fig. 2d), a major pathway of embryo formation when

microspores are collected prior to the first pollen

mitosis (Smykal 2000).

The predominance of one pathway over the others seems

to be dependent upon different factors, such as the devel-

opmental stage and the type of stress applied as pretreat-

ment (Zaki and Dickinson 1995; Rihova and Tupy 1999;

Kasha et al. 2001).

In the following phase, the embryo-like structures (ELS)

are released out of the exine wall, with the rupture point at

the generative domain, located on the side opposite the

pollen germ pore (Seguı̀-Simarro and Nuez 2008a). Peri-

clinal divisions of the cells that surround the ELS subse-

quently occur, leading to epidermis differentiation (Telmer

et al. 1995; Yeung et al. 1996), and thereafter the ELS

proceed through the heart- (Fig. 2e) and torpedo-shape

stages in similar way to zygotic embryos (Hause et al. 1994).

Even when calli and embryos have been obtained, their

conversion into plantlets (Fig. 2f) is not a foregone con-

clusion. There have been many reports of low regeneration

rates even with a high induction rate (Wedzony et al.

2009). Therefore, further studies are required to raise the

overall efficiency of the available protocols. In general,

plant regeneration is mostly preceded by callusing, which

increases the chances of gametoclonal variation. Often,

depending on the genotype, duplication of the haploid

genome is observed, more frequently during the first divi-

sions of the embryogenic microspore and above all through

a nuclear fusion mechanism (Gonzalez-Melendi et al.

2005; Shim et al. 2006; reviewed in Kasha 2005; Seguı̀-

Simarro and Nuez 2008a).

The switch from the gametophytic to the embryogenic

pathway is also characterized by an extensive remodeling of

gene expression, with an upregulation of genes involved in

primary metabolism and the biosynthesis of lipids, carbo-

hydrates and protein (Seguı̀-Simarro and Nuez 2008a). In

global terms, most of the genes differentially expressed can

be ascribed to three main categories: (1) cellular response to

the stress with the synthesis of heat-shock proteins (HSPs);

(2) suppression of the gametophytic programme

(cytoplasmic cleaning) (programme to return to an undif-

ferentiated status, downregulation of genes involved in

starch biosynthesis and accumulation); (3) expression of the

embryogenic programme (symmetric division, randomly

oriented divisions within the exine coat, polarity estab-

lishment, exine rupture, protoderm formation) (Maraschin

et al. 2005a). Renewed DNA synthesis during the division

of pollen cells and a decrease in RNA content during star-

vation are characteristic features of pollen embryogenesis

(Bhojwani et al. 1973). Although the role of most of the

markers during androgenesis remains to be determined,

some marker genes, such as BABY BOOM (BBM), have

been isolated during rapeseed pollen embryogenesis, rep-

resenting the first identified androgenic-related genes

(Boutilier et al. 2002; Maraschin et al. 2005a). Mitogen-

activated protein kinase (MAPK) cascades seem to be

involved in the process. In barley pollen embryogenesis,

programmed cell death (PCD) takes place during the tran-

sition from multi-cellular structures to globular barley

embryos at the late stages of microspore embryo develop-

ment (Maraschin et al. 2005a, b).

Characterization of regenerants: ploidy analysis

Chromosome numbers from root-tip cells of regenerated

embryos and plantlets have been counted using conven-

tional cytological techniques. Ploidy level can be more

easily assessed by flow cytometry analysis (Bohanec

2003). Ploidy level can also be estimated by indirect

methods, such as those based on chloroplast counts in

stomatal guard cells and plastid dimensions (Lee and Hecht

1975; Qin and Rotino 1995; Yuan et al. 2009).

Not only haploids or DHs have been obtained by in vitro

anther culture. Non-haploid (diploid, triploid, tetraploid,

pentaploid, hexaploid) embryos and plantlets have been

obtained from anther culture of various genotypes

(D’Amato 1977; Dunwell 2010). Triploids regenerated

from anther culture have been reported in Datura innoxia

(Sunderland 1974), Petunia hybrida (Raquin and Pilet

1972) and several fruit species (Germanà 2006, 2009).

Non-haploids may arise from: (1) somatic tissue of anther

walls, (2) the fusion of nuclei, (3) endomitosis within the

pollen grain, (4) irregular microspores formed by meiotic

irregularities (D’Amato 1977; Sunderland and Dunwell

1977; Narayanaswamy and George 1982; Sangwan-Nor-

reel 1983). In some cases, the origin of non-haploids seems

to derive from an incomplete cell-wall formation between

the vegetative and generative nuclei (Dunwell and Sun-

derland, 1974a, b, 1975, 1976a, b, c). The dynamics and

mechanisms of diploidization at early stages of micro-

spore-derived embryogenesis have been studied in barley

by Gonzalez-Melendi et al. (2005) and reviewed in Seguı̀-

Simarro and Nuez (2008b). Duplication of the haploid
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genome of pollen-derived individuals has been thought to

occur through three mechanisms, namely, endoreduplica-

tion, nuclear fusion and c-mitosis (mitosis that takes place

after treatment with colchicine), whereas triploids originate

from a process of endoreduplication occurring during the

early divisions of the microspores in culture (Sunderland

1974). It has been suggested that a spindle fusion mecha-

nism operates in the very frequent production of triploid

plants in Petunia hybrida and Datura innoxia: the en-

doreduplicated generative nucleus (n diplochromosomes)

and the vegetative nucleus (n chromosomes) divide on a

common spindle, giving origin to two triploid daughter

nuclei. The formation of a hexaploid plant in D. innoxia

(Sunderland 1974) and of triploid–hexaploid mosaics in P.

hybrida (Raquin and Pilet 1972) was considered to be a

failure of the spindle mechanism or chromosome doubling.

The diploid or polyploid plants originating in this way are

completely homozygous.

Because of the spontaneous chromosome doubling that

occurs in the haploid calli and embryos, ploidy level

analysis cannot always identify pollen-derived plants. In

fact, diploid plants can be homozygous DHs or heterozy-

gous somatic diploids produced by the anther-wall tissue.

In fact, anther culture can be also used to obtain somatic

embryos and plant clonal propagation in many genotypes

(Germanà 2003, 2005).

Characterization of regenerants: detection

of homozygosity

Isozyme analyses, random amplified polymorphic DNA

(RAPD) markers and microsatellites can be utilized to

assess homozygosis and to confirm the gametic origin of

calluses and plantlets (Germanà 2006). Isozyme techniques

allow androgenetic and somatic tissue to be distinguished

when the enzyme is heterozygotic in the diploid condition

of the donor plant and the regenerants show a lack of an

allele. Isozyme analyses have been employed to confirm

the gametic origin of calluses and plantlets in pear (Bouvier

et al. 2002), apple (Höfer and Grafe 2000) and citrus

(Germanà et al. 1991, 1994, 2000a, b; Deng et al. 1992;

Germanà and Reforgiato 1997), confirming the achieve-

ment of true homozygous regenerants. Microsatellites have

been also employed to characterize regenerants obtained

from citrus anther culture (Germanà and Chiancone 2003;

Germanà et al. 2005a, b) and to assess homozygosity in

pear (Bouvier et al. 2002) and apple (Kenis and Keulemans

2000; Höfer et al. 2002). The single multi-allelic self-

incompatibility gene has been used in apple by Verdoodt

et al. (1998) to discriminate homozygous from heterozy-

gous individuals obtained by anther culture as well as by

parthenogenesis in situ.

Chromosome doubling in the case of haploidy

Chromosome doubling can occur spontaneously during in

vitro anther culture, and the genotype, developmental stage

of the microspores, type of pretreatment and pathway of

development affect the percentage of doubling (Castillo

et al. 2009). As examples of spontaneous doubling, average

percentages of 70–90% have been reported in barley,

25–70% in bread wheat, 50–60% in rice, 50–90% in rye

(Maluszynski et al. 2003a, b) and 20% in maize (Martin and

Widholm 1996). For those species with low doubling per-

centages, an efficient chromosome doubling protocol is

required to convert sterile haploids regenerated from the in

vitro cultured anthers into fertile, homozygous doubled

haploid plants. Colchicine is the most widely anti-microtu-

bule agent used in vivo and in vitro (Castillo et al. 2009), but

other doubling agents have also been used, such as oryzalin

and trifluralin. For example, oryzalin DNA duplication

coupled with high embryo survival was the most efficient

approach to chromosome doubling of haploid embryos in

Quercus suber (Pintos et al. 2007). The success of the

chosen protocol depends on the compromise between tox-

icity and genome doubling efficiency, which can vary

according to the genotypes (80% barley, 60–70% bread

wheat, 40–70% durum wheat, 50–80% triticale, 40% rice,

40% maize; Castillo et al. 2009; Maluszynski et al. 2003a, b.

Progress in anther culture for the production

of haploids and DHs

After several decades of DH research in plants, a lot of

species have been studied, but haploid plants have not been

obtained for all of them (Guha and Maheshwari 1964;

Maluszynski et al. 2003a, b). Where this approach has been

successful, the resulting DHs were used in plant breeding

programmes to produce homozygous genotypes (Jain et al.

1996–1997; Maluszynski et al. 2003a, b).

Mainly, progress in technology has been achieved by

empirical, time and cost consuming testing of protocols

(particularly media, stress and environmental conditions)

and, although this continuous range of improvements, there

is still no method that can be universally recommended

with a new species of interest (Dunwell 2010). However, in

the most frequently studied crops (barley, wheat, triticale,

maize, rice, and rapeseed) improved protocols of anther

culture are now available (Wedzony et al. 2009). Signifi-

cant advances have also been achieved in vegetable, fruit,

ornamental, woody and medicinal species, though in many

of them the response remains low, with legume species

being particular recalcitrant (Wedzony et al. 2009). Despite

that, the improvement in the haploidization protocol

through the study on factors affecting microspore
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embryogenesis (particularly, starvation and stress tech-

niques), resulted in the increase of induction and regener-

ation rate of double haploids through anther culture, even

also in legumes as recently reported in chickpea (Cicer

arietinum L.) (Grewal et al. 2009) and in pasture lupin

(Lupinus L.) (Skrzypek et al. 2008). An improvement to

overcome albinism (occurrence chlorophyll deficient

plants), that is a major problem in monocot anther culture

(Wedzony et al. 2009), has been obtained adding CuSO4 to

the pretreatment ‘‘starvation’’ mannitol medium in barley

(Wojnarowiez et al. 2002; Cistué et al. 2003) and supple-

menting ficoll to ‘‘starvation’’ mannitol medium at 4�C in

winter triticale (Immonen and Robinson 2000).

Lists of recent advances in anther culture are reported by

Dunwell (2010), Wedzony et al. (2009), Pratap et al. (2009),

Srivastava and Chaturvedi (2008) and Touraev et al. (2009).

Application of haploids and DHs in plant breeding,

genetics and functional genomics

Breeders have long recognized the advantages of DH

technologies based on the knowledge that several theoret-

ical and practical aspects of plant biology and genetics can

take advantage of haploidy technology (Forster and Tho-

mas 2005). For crop improvement purposes, DH lines are

developed mainly to achieve homozygosity in diploid or

allopolyploid species, saving several generations in a

breeding programme and producing new homozygous

cultivars or parental lines for F1 hybrids (Veilleux 1994).

More than 280 varieties have been produced with the

use of various DH methods in several crops (http://www.

scri.sari.ac.uk/assoc/COST851/COSThome.htm), with the

majority of the protocols referred to as anther culture. For

example, in Europe, it has been estimated that 50% of the

currently available barley (Hordeum vulgare) cultivars

have been produced via a DH system, while in Canada, in

2007, three of the five most widely grown cultivars in all

grades of the Canada Western Red Spring (CWRS) wheat

class were DH cultivars (Dunwell 2010).

In vegetable crops, one of the main uses of DHs is as

parents for F1 hybrid seed production. Due to inbreeding

depression, these lines often cannot be used directly but only

as parental inbred lines for the production of hybrid varieties

via crosses between selected homozygous males and

females. The F1 plants often exhibit so-called hybrid vigour

(heterosis) (Maluszynski et al. 2001; Hochholdinger and

Hoecker 2007), consisting in a dramatic increase in yield

compared with their parents. DHs provide a unique system

to attempt the ‘‘fixing’’ of hybrid performance in homozy-

gous lines and to avoid the step of hybrid seed production.

There is currently a large interest in applying DH

technology to high-value crops, such as medicinal and

aromatic plants (Ferrie 2009), or to species suffering from

inbreeding depression, such as rye (Secale cereale)

(Immonen and Anttila 1996) and forage grasses (Festuca

and Lolium; Nitzche 1970) in which it is difficult to pro-

duce fertile homozygous lines by self pollination.

Homozygous DHs also provide new opportunities for

genetic studies and plant breeding in woody plants. In tree

species, generally characterized by a long reproductive

cycle, a high degree of heterozygosity, large size and,

sometimes, self-incompatibility, it is not possible to obtain

homozygous breeding lines through conventional methods

involving several generations of selfing (Germanà 2006,

2009). Moreover, the size reduction of haploid and homo-

zygous plants compared with diploid and heterozygous ones

may be of horticultural interest in terms of, for example,

ornamental plants or dwarfing rootstocks for fruit crops.

Another opportunity to use haploids in crop improve-

ment is also the ‘‘gametoclonal variation’’, consisting of

differences in morphological and biochemical characteris-

tics as well in chromosome number and structures that are

observed among plants regenerated from cultured gametic

cells (Evans et al. 1984; Morrison and Evans 1987). Dif-

ferent sources of variation can explain gametoclonal vari-

ation, such as new genetic variation induced by the cell

culture procedures, new variation resulting from segrega-

tion and independent assortment, new variation induced by

the chromosome doubling procedure and new variation

induced at diploid level, resulting in heterozygosity

(Morrison and Evans 1987; Huang 1996).

Triploid plants derived via anther culture may have

great commercial potential in crops, where the consumers

desire the seedlessness of fruits. Triploids regenerated from

anther culture have been reported in apple (Höfer 1994;

Höfer et al. 2002), Pyrus pyrifolia Nakai (Kadota and

Niimi 2004), Carica papaya L. and Citrus clementina Hort.

ex Tan. (Germanà et al. 2005a; Germanà 2007, 2009). The

ploidy analysis of 94 regenerants from clementine anther

culture by flow cytometry showed that about 82% of the

regenerants were tri-haploids, rather than haploids or DHs

as expected (Germanà et al. 2005a).

In addition to increasing the efficiency of crop breeding

programmes, haploids and DHs have been useful in such

research areas as mutation studies, gene mapping and

genomics and as targets for transformation. They provide

excellent material to obtain reliable information on the

location of major genes and quantitative trait loci (QTLs)

for economically important traits (Khush and Virmani

1996), and several genome sequencing programmes are

using a haploid genome because of its simplified assembly,

such as those involving many perennial plants (e.g., peach,

coffee, pear, apple and citrus) (Dunwell 2010).

In vitro selection during microspore embryogenesis can

particularly function as an efficient and early screening
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procedure for desired mutant traits, thereby saving time and

space. For example, in rapeseed, not only mutants for

herbicide, disease resistance and salt tolerance have been

selected, but also mutants for seed quality traits (Turner

and Facciotti 1990; Wong and Swanson 1991; Huang 1992;

Rahman et al.1995; Kott 1998).

In transformation protocols, uni-cellular microspores as

well as cells or haploid embryos at all stages of microspore

embryogenesis and regeneration have been used as recip-

ients for gene delivery, with the aim of directly obtaining

DH plants that are homozygous for the transgene. Micro-

injection, electroporation, particle bombardment and

Agrobacterium tumefaciens-mediated transformation are

transformation techniques already tested (Touraev et al.

2001). Primarily in cereals, where Kasha et al. (2001)

observed that the doubling of the chromosome number

occurs by nuclear fusion after the first nuclear division, it is

important that gene incorporation is prior to this stage to

obtain DHs homozygous for the transgene.

Doubled haploidy combined with marker-assisted

selection provides a short cut in backcross conversion, a

plant breeding method for improving an elite line defective

in a particular trait (Toojinda et al. 1998).

DHs play also a vital role in genomics, in integrating

genetic and physical maps, thereby providing precision in

targeting candidate genes (Kunzel et al. 2000; Wang et al.

2001). Moreover, DHs have been a key feature in estab-

lishing chromosome maps in a range of species, notably

barley, rice rapeseed and wheat (Forster and Thomas 2005).

By targeting the mutation treatment at single gametic

cells and then inducing embryogenesis and DH plant pro-

duction, it is possible to create directly a population of

homozygous mutant lines (Szarejko and Forster 2006),

avoiding chimeras or heterozygosity and enabling the

expression and identification of both recessive and domi-

nant traits in the haploid cells, tissues and plants. Appli-

cation of doubled haploidy to gametes of M1 plants (plants

originating from mutagenized seeds) has been successfully

used in barley, rice and wheat, increasing the efficiency of

selection for desired traits in a mutated DH population

(Forster et al. 2007). The uni-nucleate microspore is

therefore an ideal target for mutagenic treatment, and

treatments occur shortly after microspore isolation or after

pretreatment before the first nuclear division. As well as in

transformation, the timing is critical, as treatment after the

first division will generate chimeric and heterozygous

plants; this is particularly relevant for cereals such as

barley, where spontaneous doubling occurs shortly after the

first divisions in culture (Chen et al. 1984; Kasha et al.

2001). Microspores, but also haploid cells, tissues, organs

and explants, have been used as targets for mutagenic

treatments in protocols involving the application of both

chemical and physical mutagens. Through the chemical

mutagenesis of anther and microspores cultures, Castillo

et al. (2001) and Lee and Lee (2002) produced develop-

mental mutants in Hordeum vulgare and Oryza sativa,

respectively. In rice, Chen et al. (2001) obtained improved

DH lines applying gamma rays to anthers in culture. DH

protocols are particularly effective when they are combined

with genetic markers to select for desired genotypes (e.g.,

Tuvesson et al. 2006; Werner et al. 2007).

DH systems are particularly interesting in terms of

inducing and fixing mutations, especially when induced

mutations are recessive and detected in the second or third

(M2 and M3) generation after the mutagenic treatment.

About 30% of mutant cultivars have been developed

through cross-breeding programmes in which mutants or

mutant varieties served as a source of desirable alleles. The

mutant traits commonly exploited are earliness, dwarfness,

lodging resistance, biotic and abiotic stresses resistance,

higher yield and better quality, and these have led to new

cultivars. Doubled haploidy continues to be important in

basic and applied genetic studies and has an important role

in the development and exploitation of structured mutant

populations for forward and reverse genetics (Szarejko and

Forster 2007). The reverse genetics strategy, called TILL-

ING (Targeting Induced Local Lesions In Genomes;

McCallum et al. 2000; Perry et al. 2003), provides an

alternative method of linking genes to phenotypes, inducing

a high frequency of mutations by chemical mutagen appli-

cation combined with the high throughput screening method

for single nucleotide polymorphisms (SNPs) in the targeted

sequence. To avoid the detection of false positives owing to

inherent variation in the starting material, it is much better if

the mutant populations derive from a homozygous line.

Conclusions and future perspectives

The great potential of employing haploidy, doubled hap-

loidy and gametic embryogenesis in breeding is clearly

evident. Haploids can improve the efficiency and the speed

of the usually cumbersome, time-consuming, laborious and

sometimes rather inefficient conventional breeding meth-

ods. Although the application of pollen embryogenesis is

widespread and many species respond very well to anther

culture, many others of interest are still recalcitrant, and the

cellular, biochemical and molecular bases for the transfor-

mation of microspores into pollen embryoids are still poorly

understood. For these reasons, it is urgent to develop new

genotype-independent methods through the study and

improvement of existing protocols and by obtaining a

deeper understanding and control of the microspore

embryogenesis process, particularly of the two main

developmental switches: the induction of microspore cell

division and their commitment to the embryogenic
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pathway. In recent years, studies on the molecular basis of

microspore embryogenesis have profited from the devel-

opment of advanced genomic, transcriptomic, proteomic

and imaging tools, and these tools will likely (and hope-

fully) result in the identification of many interesting genes

involved in microspore reprogramming and embryogenesis

in the near future. This should pave the way to a better

understanding of these processes and to more efficient

protocols, enabling the effective deployment of gametic

embryogenesis and haploid technology in the improvement

of all plant species. However, the recent increasing number

of reports on gametic embryogenesis and haploid and DH

production is evidence of the great interest in this useful

breeding tool and fascinating research field, and we can

expect its future applications in many other important crops.
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