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SUMMARY

In this paper, we describe AntHocNet, an algorithm for routing in mobile ad hoc networks. It is a hybrid
algorithm, which combines reactive path setup with proactive path probing, maintenance and improvement.
The algorithm is based on the nature-inspired ant colony optimisation framework. Paths are learned by
guided Monte Carlo sampling using ant-like agents communicating in a stigmergic way. In an extensive set
of simulation experiments, we compare AntHocNet with AODV, a reference algorithm in the field. We
show that our algorithm can outperform AODVon different evaluation criteria. AntHocNet’s performance
advantage is visible over a broad range of possible network scenarios, and increases for larger, sparser and
more mobile networks. Copyright # 2005 AEIT.

1. INTRODUCTION

Mobile ad hoc networks (MANETs) [1] are networks in

which all nodes are mobile and communicate with each

other via wireless connections. Nodes can join or leave

at any time. There is no fixed infrastructure, all nodes

are equal and there is no centralised control or overview.

There are no designated routers: all nodes can serve as rou-

ters for each other, and data packets are forwarded from

node to node in a multi-hop fashion.

Since a few years research interest in MANETs has been

growing, and especially the design of MANET routing

protocols has received a lot of attention. One of the reasons

is that routing in MANETs is a particularly challenging

task due to the fact that the topology of the network

changes constantly, and paths which were initially efficient

can quickly become inefficient or even infeasible. More-

over, control information flow in the network is very

restricted. This is because the bandwidth of the wireless

medium is limited, and the medium is shared. The access

to the shared channel is controlled by protocols at the med-

ium access control (MAC) layer, such as ANSI/IEEE

802.11 DCF [2] (which is commonly used in MANETs),

which in their turn create extra overhead. It is therefore

important to design algorithms that are adaptive, robust

and self-healing. Moreover, they should work in a loca-

lised way, due to the lack of central control or infrastruc-

ture in the network. Nature’s self-organising systems like

insect societies show precisely these desirable properties.

Making use of a number of relatively simple biological

agents (e.g., ants) a variety of different organised beha-

viours are generated at the system-level from the local

interactions among the agents and with the environment.

The robustness and efficiency of the collective behaviours

of insect societies with respect to variations of environ-

ment conditions is a key aspect of their biological success.

Because of these same properties, they have recently

become a source of inspiration for the design of routing
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algorithms for dynamic networks (as well as for the

solution of several other classes of problems, e.g.

Reference [3]).

In this paper, we describe AntHocNet, a new routing

algorithm for MANETs. AntHocNet’s design is based on

a specific self-organising behaviour of ant colonies, the

shortest paths discovery, and on the related framework

of ant colony optimization (ACO) [4]. It has been observed

that ants in a colony can converge on moving over the

shortest among different paths connecting their nest to a

food source [5, 4]. The main catalyst of this colony-level

shortest path behaviour is the use of a volatile chemical

substance called pheromone: ants moving between the nest

and a food source deposit pheromone, and preferentially

move towards areas of higher pheromone intensity. Shorter

paths can be completed quicker and more frequently by the

ants, and will therefore be marked with higher pheromone

intensity. These paths will then attract more ants, which

will in turn increase the pheromone level, until there is

convergence of the majority of the ants onto the shortest

path. The local intensity of the pheromone field, which

is the overall result of the repeated and concurrent path

sampling experiences of the ants, encodes a spatially dis-

tributed measure of goodness associated with each move.

This form of distributed control based on indirect commu-

nication among agents, which locally modify the environ-

ment and react to these modifications leading to a phase of

global coordination of the agent actions is called

stigmergy [6]. Stigmergic coordination is one of the keys

to obtain self-organised behaviours not only in ant colo-

nies but more generally across social systems, from insects

to humans (e.g. [7, 8]). When stigmergy is at work, sys-

tem’s protocols (interfaces) play a prominent role with

respect to modules (agents) [9]. Protocols are the rules that

prescribe the characteristics of the allowed interfaces and

of the information exchanged between modules, permit-

ting system functions that could not be achieved by iso-

lated modules. A good stigmergic model supplies global

robustness, scalability, evolvability, and allows to fully

exploit the potentialities of the modules and of modularity.

All these ingredients have been reverse-engineered in

the framework of ACO, which exploits the mechanisms

behind the ant colony shortest path behaviour to define a

nature-inspired metaheuristic for combinatorial optimisa-

tion. ACO features multi-agent organisation, stigmergic

communication among the agents, distributed operations,

use of a stochastic decision policy to construct solutions,

stigmergic learning of the parameters of the decision pol-

icy and so on. It has been applied with success to a variety

of combinatorial problems (e.g. travelling salesman, vehi-

cle routing etc., see [4, 3] for overviews), as well as to rout-

ing (e.g. [10–12]). The first ACO routing algorithms were

designed for wired networks (e.g. AntNet [10] for packet-

switched networks and ABC [11] for circuit-switched net-

works). These algorithms exhibit interesting properties

which are also desirable for MANET routing: they work

in a fully distributed way, are highly adaptive, use mobile

agents for active path sampling, are robust to agent fail-

ures, provide multipath routing, and automatically take

care of data load spreading. However, the fact that they

crucially rely on repeated path sampling can cause signifi-

cant overhead if not dealt with carefully. There have

already been some attempts to design ACO routing algo-

rithms for MANETs. Examples are ARA [13] and

PERA [14]. However, these algorithms loose much of

the proactive sampling and exploratory behaviour of the

original ant-based algorithms in their attempt to limit the

overhead caused by the ants.

With AntHocNet we aim to design an algorithm which

works efficiently in MANETs while maintaining the prop-

erties which make ACO routing algorithms so appealing.

While most of the previous algorithms for wired networks

were adopting a proactive scheme by periodically generat-

ing ant-like agents for all possible destinations, AntHoc-

Net follows a hybrid approach: ants are generated

according to both proactive and reactive schemes.

This paper is organised as follows. In Section 2, we

describe related work. Section 3 contains the description

of our algorithm, and in Section 4 we present simulation

results.

2. RELATED LITERATURE

In this section we describe related literature. In

Subsection 2.1, we give an introduction to MANET rout-

ing algorithms, and in Subsection 2.2 we describe the basic

elements of ACO for routing. Then in Subsection 2.3, we

give an overview of existing implementations of ACO

routing for MANETs, and in Subsection 2.4 we

indicate other MANET routing algorithms which contain

ACO routing elements.

2.1. Routing in MANETs

In recent years a large number of MANET routing algo-

rithms have been proposed (see Reference [15] for an over-

view). These algorithms deal with the dynamic aspects of

MANETs in their own way, using reactive or proactive

behaviour, or a combination of both. Reactive behaviour
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means that an algorithm only gathers routing information

in response to an event, usually an event which triggers the

need for new paths, such as the start of a data session or the

failure of an existing paths. Proactive behaviour means

that the algorithm also gathers routing information at other

times, so that it is readily available when needed.

In the MANET literature, the classical distinction is

between purely proactive, purely reactive and hybrid algo-

rithms. In purely proactive algorithms (e.g. DSDV [16]),

nodes try to maintain paths to all other nodes at all times.

This means that they need to keep track of all topology

changes, which can become difficult if there are a lot of

nodes or if they are very mobile. In purely reactive algo-

rithms (e.g. AODV [17] and DSR [18]), nodes only gather

routing information on demand: when a data session to a

new destination starts, or when a path which is in use fails.

Reactive algorithms are in general more scalable [19]

since they greatly reduce the routing overhead, but they

can suffer from oscillations in performance because they

are never prepared for disruptive events. In practice, many

algorithms are hybrid algorithms (e.g. ZRP [20]), using

both proactive and reactive components in order to try to

combine the best of both worlds.

2.2. ACO routing algorithms

The basic idea behind ACO algorithms for routing [21, 4]

is the acquisition of routing information through the sam-

pling of paths using small control packets, which are called

ants. The ants are generated concurrently and indepen-

dently at the nodes, with the task to test a path from a

source node s to an assigned destination node d. The ant

collects information about the quality of its path (e.g.

end-to-end delay, number of hops, etc.), and uses this on

its way back from d to s to update the routing information

at the intermediate nodes and at s. Ants always sample

complete paths, so that routing information can be updated

in a pure Monte Carlo way, without relying on bootstrap-

ping information from one node to the next [22].

The routing tables contain for each destination a vector

of real-valued entries, one for each known neighbour node.

These entries are a measure of goodness of going over that

neighbour on the way to a certain destination. They are

termed pheromone variables, and are continually updated

according to path quality values calculated by the ants. The

repeated and concurrent generation of path-sampling ants

results in the availability at each node of a bundle of paths,

each with an estimated measure of quality. In turn, the ants

use the routing tables to define which path to their destina-

tion they sample: at each node they stochastically choose a

next hop, giving higher probability to links with higher

pheromone values. In the following, we also call routing

tables pheromone tables.

This process is quite similar to the pheromone laying

and following behaviour of real ant colonies. Like their

natural counterparts, the artificial ants are in practice

autonomous agents, and through the updating and sto-

chastic following of pheromone tables they participate

in a stigmergic communication process. The result is a

collective learning behaviour, in which individual ants

have low complexity and little importance, while the

whole swarm together can collect and maintain up-to-

date routing information.

The pheromone information is used for routing data

packets, more or less in the same way as for routing ants:

packets are routed stochastically, giving higher probability

to links with higher pheromone values. Like this, data for a

same destination are spread over multiple paths (but with

more packets going over the best paths), resulting in load

balancing. For data packets, mechanisms are usually

adopted to avoid low quality paths, while ants are more

explorative, so that also less good paths are occasionally

sampled and maintained. This way path exploration is kept

separate from the use of paths by data. If enough ants are

sent to the different destinations, nodes have up-to-date

information about the best paths and automatically adapt

their data load spreading.

2.3. ACO routing in MANETs

The description of Subsection 2.2 highlights a number of

key ingredients of ACO routing: routing tables are adapted

and maintained via repeated and concurrent Monte Carlo

path sampling; data are stochastically spread over multiple

paths, leading to automatic load balancing; routing and

control decisions are taken locally and the system is robust

to agent failures. Some attempts have been made to incor-

porate these features into a MANET routing algorithm.

Challenges hereby are the high change rate and in particu-

lar the limited bandwidth which conflicts with the contin-

uous generation of ant packets.

Accelerated ants routing [23] uses ant-like agents

which go through the network randomly, without a spe-

cific destination, updating pheromone entries pointing to

their source. In Reference [24], the authors describe a

location-based algorithm which makes use of ant agents

to disseminate routing information; here the ants serve as

an efficient form of flooding. Ant-AODV [25] is a hybrid

algorithm combining ants with the basic AODV beha-

viour: a fixed number of ants keep going around the
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network in a more or less random manner, proactively

updating the AODV routing tables in the nodes they visit

whenever possible. ant-colony-based routing algorithm

(ARA) [13] works in an on-demand way, with ants

setting up multiple paths between source and destination

at the start of a data session. During the data session,

data packets reinforce the paths they follow. Also

probabilistic emergent routing algorithm (PERA) [14]

works in an on-demand way, with ants being broadcast

towards the destination (they do not follow pheromone)

at the start of a data session. Multiple paths are set up,

but only the one with the highest pheromone value

is used by data (the other paths are available for backup).

Also other ACO routing algorithms [26, 27] have been

proposed for MANETs. In general, however, most of

all these algorithms move quite far away from the

original ACO routing ideas trying to obtain the

efficiency needed in MANETs, and many of them

are not very different from single-path on-demand

algorithms.

2.4. Elements of ACO routing in other MANET
routing algorithms

Some of the ingredients of ACO routing appear sepa-

rately in other MANET routing algorithms. Especially

the idea of multipath routing has received a lot of atten-

tion recently, both in order to improve reliability and

end-to-end delay (see Reference [28] for an overview).

The algorithms differ in the way multiple paths are set

up, maintained and used. At path setup time, a number

of paths are selected. Some algorithms allow braided

multiple paths [29], whereas others look for link [30]

or node [31] disjoint paths, or even paths which are out-

side each other’s interference range [32]. Once the paths

are set up, they need to be maintained. Most algorithms

manage the paths in a reactive way: they remove paths

when a link break occurs, and only take action when

no valid path to the destination is left. The idea of proac-

tively probing paths to obtain up-to-date information

about them and to detect failures can be found in few

algorithms [29, 33]. Proactively improving existing

paths is quite rare in MANET routing algorithms,

although one possible approach is presented in

Reference [34] (in the context of single-path routing).

The use of the multiple paths differs strongly among

algorithms. In many of them, only one of the paths is

used for data transport, while the others are only used

in case of a failure in the primary path [35, 36]. Some

algorithms spread data over the multiple paths in a

simple, even way [37], and in a few cases adaptive data

load spreading depending on the estimated quality of

paths, similar to the ACO ideas, is explored [29, 33].

The quality of paths is usually assessed in terms of hop

count or round trip time; combining different metrics is

less common but can be important [38]. Stochastic data

spreading is according to our knowledge unexplored out-

side the area of ACO routing algorithms (although sto-

chastic elements have been used otherwise in MANET

algorithms, for example to improve flooding [39]).

3. AntHocNet

AntHocNet is a hybrid multipath algorithm, designed

along the principles of ACO routing. It consists of both

reactive and proactive components. It does not maintain

paths to all destinations at all times (like the ACO

algorithms for wired networks), but sets up paths when

they are needed at the start of a session. This is done in

a reactive path setup phase, where ant agents called reac-

tive forward ants are launched by the source in order to

find multiple paths to the destination, and backward ants

return to set up the paths. The paths are represented in

pheromone tables indicating their respective quality. After

path setup, data packets are routed stochastically as data-

grams over the different paths using these pheromone

tables. While a data session is going on, the paths are

probed, maintained and improved proactively using

different agents, called proactive forward ants. The

algorithm reacts to link failures with either local path

repair or by warning preceding nodes on the paths. An ear-

lier version of the algorithm described here appeared in

Reference [40].

3.1. Reactive path setup

When a source node s starts a communication session with

a destination node d, and it does not have routing informa-

tion for d available, it broadcasts a reactive forward ant Fs
d.

Due to this initial broadcasting, each neighbour of s

receives a replica of Fs
d. We refer to the set of replicas

which originated from the same original ant as an ant gen-

eration. The task of each ant of the generation is to find a

path connecting s and d. At each node, an ant is either uni-

cast or broadcast, according to whether or not the node has

routing information for d. The routing information of a

node i is represented in its pheromone table T i. The entry

T i
nd 2 R of the table is the pheromone value indicating the

estimated goodness of going from i over neighbour n to
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reach destination d. If pheromone information is available,

the ant chooses its next hop n with probability Pnd:

Pnd ¼
ðT i

ndÞ
bP

j2N i
d
ðT i

jdÞ
b ; b51; ð1Þ

whereN i
d is the set of neighbours of i over which a path to

d is known, and b is a parameter value which can control

the exploratory behaviour of the ants (although in current

experiments b is kept to 1).

If no pheromone is available for d, the ant is broadcast.

Due to this broadcasting, ants can proliferate quickly over

the network, following different paths to the destination

(although ants which have reached a maximum number

of hops, related to the network diameter, are killed). When

a node receives several ants of the same generation, it com-

pares the path travelled by each ant to that of the pre-

viously received ants of this generation: only if its

number of hops and travel time are both within an accep-

tance factor a1 of that of the best ant of the generation, it

will forward the ant. Using this policy, overhead is limited

by removing ants which follow bad paths. However, it does

have as an effect that the ant which arrives first in a node is

let through, while subsequent ants meet with selection cri-

teria set by the best of the ants preceding them, so they

have higher chances of being killed. Duplicate ants which

result from a broadcast of the best ant just before it reaches

the destination are close in performance to the best ant and

have higher chances of being accepted. The result is a set

of ‘kite-shaped’ paths, as shown by the solid line arrows in

Figure 1. In order to obtain a mesh of sufficiently disjoint

multiple paths, which provides much better protection in

case of link failures, we also consider in the selection pol-

icy the first hop taken by the ant. If this first hop is different

from those taken by previously accepted ants, we apply a

higher (less restrictive) acceptance factor a2 (in the experi-

ments a2 was set to 2 as opposed to a1 ¼ 0:9). A similar

strategy is used in Reference [30]. The result is a uniformly

spread set of paths, as shown by the combination of solid

and dashed line arrows in Figure 1.

Each forward ant keeps a list P of the nodes ½1; . . . ; n�
it has visited. Upon arrival at the destination d, it is con-

verted into a backward ant, which travels back to the

source retracing P (if this is not possible because the

next hop is not there, for instance due to node move-

ments, the backward ant is discarded). The backward

ant incrementally computes an estimate T̂TP of the time

it would take a data packet to travel over P towards the

destination, which is used to update routing tables. T̂TP is

the sum of local estimates T̂Ti
iþ1 in each node i 2 P of the

time to reach the next hop iþ 1:

T̂TP ¼
Xn�1

i¼1

T̂Ti
iþ1: ð2Þ

T̂Ti
iþ1 is defined as the product of the estimate of the average

time to send one packet, T̂Ti
mac, times the current number of

packets in queue (plus one) at the MAC layer, Qi
mac:

T̂Ti
iþ1 ¼ ðQi

mac þ 1ÞT̂Ti
mac; ð3Þ

T̂Ti
mac is calculated as running average of time elapsed

between the arrival of a packet at the MAC layer and the

end of a successful transmission. So if timac is the time it

took to send a packet from node i, then node i updates

its estimate as:

T̂Ti
mac ¼ aT̂Ti

mac þ ð1� aÞtimac; ð4Þ

with a 2 ½0; 1�. Since T̂Ti
mac is calculated at the MAC layer it

includes channel access activities, so it accounts for local

congestion of the shared medium. Forward ants calculate a

similar time estimate T̂TP , which is used for filtering the

ants, as mentioned before.

At each node i 2 P, the backward ant sets up a path

towards the destination d, creating or updating the phero-

mone table entry T i
nd in T i. The pheromone value in T i

nd

represents a running average of the inverse of the cost, in

terms of both estimated time and number of hops, to travel

to d through n. If T̂Ti
d is the travelling time estimated by the

ant, and h is the number of hops, the value � id used to

update the running average is defined as:

� id ¼
 
T̂Ti
d þ hThop

2

!�1

; ð5Þ

where Thop is a parameter (set to 3� 10�3 s) representing

the time to take one hop in unloaded conditions. Defining

� id like this is a way to avoid large oscillations in the time

estimates gathered by the ants (e.g. due to local burstsFigure 1. Example of ‘kite-shaped’ and meshed multiple paths.
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of traffic) and to take into account both end-to-end delay

and number of hops. The value of T i
nd is updated as

follows:

T i
nd ¼ gT i

nd þ ð1� gÞ� id; g 2 ½0; 1�: ð6Þ

g and a (Equation 4) were both set to 0:7 in the experi-

ments.

If the path setup process is successful, a number of good

paths between source and destination are made available.

If, on the other hand, no backward ant has come back to the

source after a certain amount of time (in the experiments

set to 1 s), data are temporarily buffered and the whole

process is restarted. This is repeated for a maximum

number of times (set to 3), after which the buffered data

are discarded.

3.2. Stochastic data routing

Nodes in AntHocNet forward data stochastically. When a

node has multiple next hops for the destination d of the

data, it randomly selects one of them with probability

Pnd. Pnd is calculated in the same way as for reactive for-

ward ants (Equation 1), but with a higher b exponent (set

to 2), in order to be more greedy with respect to the better

paths. According to this strategy, we do not have to choose

a priori how many paths to use: their number is selected

automatically in function of their quality.

The probabilistic routing strategy leads to data

load spreading according to the estimated quality of the

paths. If the estimates are kept up-to-date (which is done

using the proactive ants described in Subsection 3.3), this

leads to automatic load balancing. When a path is clearly

worse than others, it will be avoided, and its congestion

will be relieved. Other paths will get more traffic, leading

to higher congestion, which will make their end-to-end

delay increase. By continuously adapting the data traffic,

the nodes try to spread the data load evenly over the

network.

3.3. Proactive path probing, maintenance
and exploration

While a data session is running, the source node sends out

proactive forward ants according to the data sending rate

(one ant every n data packets, where n was 5 in the experi-

ments). They are normally unicast, choosing the next hop

according to the pheromone values using the same formula

as reactive forward ants (Equation 1), but also have a small

probability at each node of being broadcast (this probabil-

ity was set to 0.1 in the experiments). This way they serve

two purposes. If a forward ant reaches the destination

without a single broadcast it probes an existing path. It

gathers up-to-date quality estimates of this path, and the

backward ant updates the pheromone values of intermedi-

ate nodes, just like reactive backward ants do. If, on the

other hand, the ant got broadcast at any point, it leaves

the currently known paths and explores new ones.

After a broadcast, the ant arrives in all neighbours of the

broadcasting node. It is possible that in these neighbours it

does not find pheromone for its destination, so that it needs

to be broadcast again. The ant will then quickly proliferate

and flood the network, like reactive forward ants do. To

avoid this, we limit the number of broadcasts to nb (set

to 2 in the tests). If the proactive ant does not find routing

information within nb hops, it is killed. The effect of this is

that the search for new paths is concentrated around the

current paths, so that we are looking for path improve-

ments and variations.

To guide the forward ants better, we use hello messages.

These are short messages (in our case containing just the

sender’s address) broadcast every thello seconds by the

nodes (e.g. thello ¼ 1 sec). If a node receives a hello from

a new node n, it adds n in its routing table. After that it

expects a hello from n every thello seconds. After missing

a certain number of hello’s (allowed- hello-loss ¼ 2 here),

n is removed. Using these messages, nodes have phero-

mone information about their immediate neighbours in

their routing table. So when an ant arrives in a neighbour

of its destination, it can go straight to its goal. Looking

back at the ant colony inspiration of our model, this can

be seen as pheromone diffusion: pheromone deposited on

the ground diffuses and can be detected also by ants further

away. In future work we will extend this concept to give

better guidance to the exploration by proactive ants. Hello

messages also serve another purpose: they allow to detect

broken links. This allows nodes to clean up stale entries

from their routing tables.

3.4. Link failures

Each node tries to maintain an updated view of its immedi-

ate neighbours at any time, in order to detect link failures

quickly, before they can lead to packet losses. The pre-

sence of a neighbour node can be confirmed when a

hello message is received, or after any other successful

interception or exchange of signals. The disappearance

of a neighbour is assumed when such an event has not

taken place for a certain amount of time, defined by

thello � allowed-hello-loss, or when a unicast transmission

to this neighbour fails.
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When a neighbour is assumed to have disappeared, the

node takes a number of actions. First, it removes the neigh-

bour from its neighbour list and all associated entries from

its routing table. Then it broadcasts a link failure notifica-

tion message. This message contains a list of destinations

to which the node lost its best path, and the new best esti-

mated end-to-end delay and number of hops to this desti-

nation (if it still has entries for the destination). All its

neighbours receive the notification and update their pher-

omone using the new estimates. If they in turn lost their

best or their only path to a destination due to the failure,

they also broadcast a notification, until all concerned nodes

are notified.

If the link failure was discovered due to the failed trans-

mission of a data packet, and there is no other path available

for this packet, the node tries to locally repair the path (and

does not include this path in the link failure notification).

The node broadcasts a path repair ant that travels to the

involved destination like a reactive forward ant: it follows

available pheromone when it can and is broadcast otherwise.

One difference is that it has a maximum number of broad-

casts (two in our tests) so that proliferation is limited. The

node waits for some time (empirically set to five times the

estimated delay of the lost path), and if no backward repair

ant is received, it concludes that it was not possible to repair

the path. Packets which were in the meantime buffered for

this destination are discarded, and the node sends a link fail-

ure notification about the lost destination.

Link failure notifications keep routing tables on paths up-

to-date about upstream link failures. However, they can

sometimes get lost and leave dangling links. A data packet

following such a link arrives in a nodewhere no further pher-

omone is available. The node will then discard the data

packet and unicast a warning back to the packet’s previous

hop, which can remove the wrong routing information.

4. SIMULATION EXPERIMENTS

In a range of simulation experiments, we compare

AntHocNet to AODV [17] (with local repair), a state-of-

the-art MANET routing algorithm and de facto standard.

In Subsection 4.1, we describe the simulation environ-

ment, and in Subsection 4.2 we present and analyse the

results.

4.1. Simulation environment

As simulation software we use QualNet [41]. We ran

experiments with two different base settings. In the first

setting, 100 nodes are randomly placed in an area of

3000� 1000m2. Each experiment is run for 900 s. Data

traffic is generated by 20 constant bit rate (CBR) sources

sending one 64-byte packet per second. Each source starts

sending at a random time between 0 and 180 s after the

start of the simulation, and keeps sending until the end.

A two-ray pathloss model is used in the radio propagation

model. The radio range of the nodes is 300m, and the data

rate is 2Mbit/s. At the MAC layer, we use the 802.11b

DCF protocol as is common practice in MANET research.

We did tests with the random waypoint (RWP) mobility

model [18], in which we varied the maximum speed and

the pause time, and with the Gauss–Markov (GM) mobi-

lity model [42], in which we again varied the maximum

speed. The update frequency was set to 2.5, the angle stan-

dard deviation to 0.4 and the speed standard deviation to

0.5. The GM movement scenarios were generated with

the BonnMotion software [43].

For the second setting, we used the same setup as in the

scalability study of AODV performed by Lee, Belding-

Royer and Perkins in Reference [44]. In this paper, the

number of nodes and the size of the simulation area are

varied, while keeping the average node density constant

(�7:5). We did experiments with 100, 500, 1000 and

1500 nodes in square areas with sides of, respectively,

1500, 3500, 5000 and 6000m. In Reference [44], the

experiments go up to 10 000 nodes, but we had to limit

our tests due to computational constraints. Data traffic con-

sists of 20 CBR sources sending four 512-byte packets per

second. Nodes move according to the RWP model, with a

minimum speed of 0m/s, a maximum speed of 10m/s and

a pause time of 30 s. The radio propagation range of the

nodes is 250m, and the data rate is 2Mbit/s. The pathloss

model is a free space model. At the MAC layer, the

802.11b DCF model is used. Each simulation is run for

500 s.

For each of the settings of the parameter values, five dif-

ferent problems were created, by choosing different initial

placements of the nodes and different movement patterns.

The reported results are averaged over five different runs

(three for the scalability tests of 1000 and 1500 nodes

due to computational limitations) on each of these five pro-

blems, to account for stochastic elements both in the algo-

rithms and in the physical and MAC layers.

The choice of the described scenarios is based on results

obtained for an earlier version of AntHocNet, described in

Reference [40]. In that paper, we investigated the beha-

viour of AntHocNet in scenarios based on the influential

comparative study of [19]. The considered base scenario

was very densely packed, with 50 nodes with a 300m radio
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range in an area of 1500� 300m2. In such an environ-

ment, with high interference and short paths (the average

path length is about 2.5 hops), the advantages of maintain-

ing multiple paths, stochastically spreading data, using

local repair etc., might not outweigh their costs. A simple,

reactive approach as AODV is expected to be equally

effective. In our tests the performances of AntHocNet

and AODV were comparable, but when the environment

became more difficult (more mobility, more sparseness,

longer paths), there was an increasing performance gap

in favour of AntHocNet. In this paper, we start from a lar-

ger and sparser network, and investigate the effect of

increasing mobility and size. The study on large networks

is necessary to validate the scalability of our approach. The

combined sets of tests reported here and in Reference [40]

cover a wide range of possible MANET scenarios.

In the following, algorithms are evaluated in terms of

average end-to-end delay per packet and delivery ratio

(the fraction of successfully delivered data packets), which

are two important measures of routing effectiveness. We

also consider delay jitter and routing overhead.Delay jitter

measures packet delay variation. It is calculated as the

average of the difference of interarrival time between sub-

sequently received packets: the session’s jitter is the arith-

metic average of the values ðt3 � t2Þ � ðt2 � t1Þ for all

triplets of subsequently received packets, where t1 is arri-

val time of the first packet and t3 of the last. Routing over-

head measures the algorithm’s efficiency and is calculated

as the total number of control packets sent divided by the

number of data packets delivered successfully.

4.2. Simulation results

We first study the behaviour of AntHocNet and AODV in

increasingly dynamic environments under RWP mobility.

We use the sparse scenario of 100 nodes in

3000� 1000m2. Node mobility is increased by either

increasing the maximum node speed or decreasing the

node pause time (the lower the pause time, the higher

the node mobility). Figures 2–4 show the delivery ratio,

average delay and average jitter of AntHocNet and AODV

under different node speeds. AntHocNet outperforms

AODV clearly for delivery ratio and jitter, and the differ-

ences increase for higher speeds. Performance differences

for average delay are smaller, but again they increase for

higher speeds. Figures 5–7 show the same performance

measures for both algorithms under different node pause

times. AntHocNet again outperforms AODV in terms of

delivery ratio, delay and jitter. The relation between mobi-

lity and performance is more difficult to establish than for

the node speed experiments. Apparently the pause time

influences mobility in a different way than the maximum

node speed. Also, the pause time does not only influence

mobility, but also connectivity: since the network under

investigation is sparse, it is possible at high pause times

that some nodes remain out of reach of the rest of the net-

work for a long time, and no packets can be delivered to

them, resulting in a low delivery ratio. This explains the

dip in delivery ratio and the rise of jitter for both

algorithms.

In order to validate the good results for RWP mobility,

we carried out a similar study with GMmobility, where we

again increased the maximum node speed. We again

use the sparse network scenario of 100 nodes in

3000� 1000m2. Figures 8 and 9 show the delivery ratio

Figure 2. Delivery ratio under various speed values for RWP
mobility.

Figure 3. Average packet delay under various speed values for
RWP mobility.
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Figure 4. Average delay jitter under various speed values for
RWP mobility.

Figure 5. Delivery ratio under various pause times for RWP
mobility.

Figure 6. Average packet delay under various pause times for
RWP mobility.

Figure 7. Average delay jitter under various pause times for
RWP mobility.

Figure 8. Delivery ratio under various speed values for GM
mobility.

Figure 9. Average packet delay under various speed values for
GM mobility.
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and average delay for AntHocNet and AODV. Compared

to the speed experiments under RWP mobility, there are

two differences: delivery ratios are lower and delays are

higher, and the performance differences between AntHoc-

Net and AODV for both measures increase more clearly

for higher speeds.

In order to compare the results for both mobility models

better, we plot the algorithms’ performances under both

mobility models together in the same graph, against the

average link duration. Average link duration has been pro-

posed as a measure for the difficulty of a node mobility

scenario which is more general than the maximum node

speed [45]. The graphs are given in Figures 10 and 11.

The previous observations seem to hold: both algorithms

perform better under RWP mobility for the same average

link duration, while under GM mobility the performance

advantage of AntHocNet over AODV grows stronger as

the mobility increases. Clearly the differences between

the movement patterns generated according to the RWP

model and the GM model go beyond what can be mea-

sured with average link duration. One difference which

might make RWP movement patterns easier to deal with,

is that nodes tend to cluster together in the middle of the

area, resulting in shorter paths (see reference [46]), some-

thing which is not the case for GM patterns. Another dif-

ference between both models is that subsequent node

movements in the GM model are always correlated, while

in the RWP model nodes make sudden, uncorrelated

changes in direction at the pause points. Possibly an adap-

tive learning algorithm like AntHocNet can take more

advantage of these correlations than a purely reactive algo-

rithm like AODV, explaining the increasing difference in

performance.

The good performances shown above come at a cost

though. AntHocNet uses a lot of different kinds of ants

to adapt to the changing environment and be able to pro-

vide a high delivery ratio and low delays. Figures 12 and

13 show that AntHocNet generates substantially more con-

trol overhead than AODV. This is clearly an aspect of the

algorithm which can be improved. In future work we plan

to do this in the first place using the pheromone diffusion

mentioned in Subsection 3.3: this will allow to limit the

blind proliferation of proactive ants so that better results

can be obtained with less ants. A different point worth

mentioning here is the behaviour of nodes at path setup

time: when a source fails to establish a connection to its

Figure 10. Delivery ratio under various speed values for RWP
and GM mobility, plotted against average link duration.

Figure 11. Average packet delay under various speed values for
RWP and GM mobility, plotted against average link duration.

Figure 12. Routing control overhead in number of control pack-
ets per successfully delivered data packet under various speed
values for RWP mobility.
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destination, it retries with short intervals to send reactive

forward ants. This can lead to high overhead in case of

unreachable nodes, which is clearly visible in Figure 13:

for the highest values of the pause time, where some nodes

can be cut off from the other nodes for extended periods of

time, the overhead is very high.

An important question is how the performance changes

as the scale of the problem grows. In order to investigate

this, we ran a set of experiments of increasing size, using

the second setting described in Subsection 4.1. The results

are shown in Figures 14 and 15. We can see that again

AntHocNet outperforms AODV in terms of delivery ratio

and delay, and this difference grows with the scale of the

problem. The mechanisms of multipath routing and local

repair seem to pay off more when paths are longer.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have described AntHocNet, an ACO rout-

ing algorithm for MANETs. It is a hybrid algorithm, com-

bining both proactive and reactive elements: after a

reactive path setup phase, the algorithm probes, maintains

and improves path in a proactive way. AntHocNet is

inspired by the stigmergy-driven shortest paths following

behaviour of ant colonies and the related ACO optimisa-

tion framework. In a series of simulation tests, we show

that AntHocNet has a performance advantage over AODV,

a reference algorithm in this research area. The advantage

exists in terms of packet delivery ratio, average end-to-end

delay and average jitter, and increases for larger, sparser

and more dynamic environments. However, AntHocNet

is less efficient in terms of routing overhead.

To further improve the working of AntHocNet, we con-

sider the behaviour of the proactive ants as a crucial point.

In future work wewant to investigate the use of pheromone

diffusion, which we proposed in Subsection 3.3. The idea

is to include some limited routing information in hello

messages, so that information about existing paths can

spread over the network, propagating from node to node

in hello messages. This routing information would be

too unreliable (due to the slow spreading via subsequent

hello messages) for data packets to use, but could be a

good guideline for proactive ants, making their search

for new and better paths less blind. The extra information

could also be used to regulate the generation rate of proac-

tive ants, which is another important issue to deal with.

The improvement of the proactive ant behaviour is

expected to help reduce the overhead created by the

Figure 13. Routing control overhead in number of control pack-
ets per successfully delivered data packet under various pause
times for RWP mobility.

Figure 14. Delivery ratio under increasing network sizes.

Figure 15. Average packet delay under increasing network sizes.
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algorithm: better guided proactive ants generated in an

intelligent and adaptive way could provide better results

at lower cost. Other reductions of the overhead could be

obtained by improving the generation rate and routing

behaviour of reactive ants.
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