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Abstract

Background: Anthrax meningitis is the main neurological complication of systemic infection with Bacillus anthracis
approaching 100% mortality. The presence of bacilli in brain autopsies indicates that vegetative bacteria are able to breach
the blood-brain barrier (BBB). The BBB represents not only a physical barrier but has been shown to play an active role in
initiating a specific innate immune response that recruits neutrophils to the site of infection. Currently, the basic pathogenic
mechanisms by which B. anthracis penetrates the BBB and causes anthrax meningitis are poorly understood.

Methodology/Principal Findings: Using an in vitro BBB model, we show for the first time that B. anthracis efficiently invades
human brain microvascular endothelial cells (hBMEC), the single cell layer that comprises the BBB. Furthermore,
transcriptional profiling of hBMEC during infection with B. anthracis revealed downregulation of 270 (87%) genes,
specifically key neutrophil chemoattractants IL-8, CXCL1 (Groa) and CXCL2 (Grob), thereby strongly contrasting hBMEC
responses observed with other meningeal pathogens. Further studies using specific anthrax toxin-mutants, quantitative RT-
PCR, ELISA and in vivo assays indicated that anthrax toxins actively suppress chemokine production and neutrophil
recruitment during infection, allowing unrestricted proliferation and dissemination of the bacteria. Finally, mice challenged
with B. anthracis Sterne, but not the toxin-deficient strain, developed meningitis.

Conclusions/Significance: These results suggest a significant role for anthrax toxins in thwarting the BBB innate defense
response promoting penetration of bacteria into the central nervous system. Furthermore, establishment of a mouse model
for anthrax meningitis will aid in our understanding of disease pathogenesis and development of more effective treatment
strategies.
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Introduction

Bacillus anthracis is a Gram-positive spore-forming bacterium that

causes anthrax in humans and animals [1]. The recent threat of B.

anthracis as a potential bioterrorism agent has sparked renewed

interest into disease pathogenesis and treatment strategies.

Infection occurs upon entry of bacterial spores through the skin,

gastrointestinal mucosa or the lung [2]. Spores, initially taken up

by resident macrophages [3] and dendritic cells [4], germinate to

vegetative bacteria during phagocyte migration to the regional

lymph nodes. Vegetative bacteria are then released from the

phagocytes, enter the bloodstream [2] and proliferate in long

chains at preferred sites like the brain, allowing entry into the

central nervous system (CNS) and development of anthrax

meningitis. The incidence of anthrax meningitis after cutaneous

infection is approximately 5% [5], however in an outbreak of

inhalational anthrax, approximately 50% of patients displayed

signs of hemorrhagic meningitis [6]. Additionally, experimental

studies of inhalational anthrax in monkeys demonstrated menin-

gitis in 77% of cases examined [7]. In general, anthrax meningitis

is associated with a fulminant and rapidly progressive deteriorating

course approaching 100% mortality despite intensive antibiotic

therapy [5].

The major virulence factors of B. anthracis are encoded on two

native plasmids, pXO1 and pXO2 [2]. The pXO1 plasmid

contains the toxin-gene complex comprised of protective antigen

(PA), lethal factor (LF) and edema factor (EF) [1,2]. These three

toxin components combine to form two binary toxins, lethal toxin

(LT), a zinc metalloprotease that cleaves mitogen activated protein

kinases [8], and edema toxin (ET), an adenylate cyclase that

increases intracellular cyclic AMP concentrations [9]. The pXO2

plasmid encodes genes involved in the production of the

polyglutamyl capsule [1,2]. Fully virulent strains of B. anthracis

contain both plasmids, whereas the unencapsulated Sterne strain
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(pXO1+, pXO22) is used for vaccination purposes [10]. In

addition, the Sterne strain has been widely used in both in vitro and in

vivo studies of anthrax infection as it causes lethal disease similar to

the encapsulated B. anthracis strain in mice [11]. Currently however,

no small animal model of anthrax meningitis exists that could

facilitate our understanding of disease pathogenesis and the

contribution of specific virulence factors to penetration of the CNS.

Several studies have demonstrated the presence of numerous

Gram-positive bacilli in the cerebrospinal fluid and brain [5,6],

suggesting that B. anthracis is capable of breaching the blood-brain

barrier (BBB). The human BBB, which is comprised principally of

a single layer of specialized brain microvascular endothelial cells

(BMEC), serves as a critical barrier to protect the CNS against

microbial invasion. In addition to providing barrier function, the

BBB has also been shown to play an active role in initiating a

specific innate immune response promoting neutrophil recruit-

ment [12], the clinical and diagnostic hallmark of acute bacterial

meningitis. This response is thought to be effective in clearing

bacteria from the cerebral microvasculature in the majority of

BBB encounters with bacteria. We hypothesize that penetration of

the BBB by B. anthracis likely involves bacterial invasion and

transcytosis across brain endothelium, direct damage by bacterial

toxins and/or activation of host inflammatory pathways that

compromise BBB integrity. A comprehensive study of the BBB

response to B. anthracis infection could therefore aid in our

understanding of disease pathogenesis.

In this study, we examine for the first time the interaction of B.

anthracis with the human BBB using a well established hBMEC

model [13], specific pXO1 and isogenic toxin mutants and a

newly-developed mouse model for anthrax meningitis. Our study

demonstrates that B. anthracis penetrates brain endothelium

directly and that anthrax toxins contribute to this process.

Additionally, anthrax toxins suppress the BBB neutrophil

recruitment response promoting unchecked bacterial replication

within the CNS and establishment of meningitis in a newly

developed model of hematogeneous anthrax meningitis.

Results

B. anthracis invades brain microvascular endothelial cells
Analysis of cerebral spinal fluid and brains from patients with

anthrax meningitis show the presence of numerous Gram-positive

bacilli [5,6], indicating that B. anthracis is able breach the BBB. We

hypothesized that B. anthracis, like other meningeal pathogens

[14,15], is able to invade human BMEC (hBMEC), a single-cell

layer that comprises the BBB. We therefore examined B. anthracis

Sterne interactions with hBMEC using transmission electron

microscopy (TEM). After a 1 hour infection period, bacteria were

observed in close association with the cell membrane (Fig. 1A) and

in close proximity to cell surface microvillus projections (Fig. 1B).

After further exposure numerous bacteria were found either

entering hBMEC or in membrane-bound intracellular vacuoles

(Fig. 1C–F).

To quantify the number of adherent and invasive organisms, we

optimized our previously established quantitative hBMEC adher-

ence and invasion assays [12,16] for B. anthracis. HBMEC were

grown to confluency and infected with increasing concentrations

(multiplicities of infection, MOI) of B. anthracis Sterne (MOI 1

represents approximately 16105 CFU); data are expressed as the

recovered total cell-associated or intracellular colony forming units

(CFU). The number of adherent bacteria steadily increased with

increasing MOI (Fig. 2A) and ranged from 25–40% of the initial

Figure 1. Transmission electron microscopy (EM) of hBMEC cells after infection with vegetative B. anthracis Sterne. (A, B) Transmission
EM showing adherent B. anthracis Sterne to the cell membrane or in close proximity to microvillus projections of hBMEC. (C, D) Vegetative B.
anthracis Sterne in the process of invading hBMEC or (E, F) inside membrane bound vesicles. Scale bar: 1 mm
doi:10.1371/journal.pone.0002964.g001
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inoculum. Correspondingly, more intracellular organisms were

recovered after infection with a higher MOI and longer incubation

time (Fig. 2B), representing between 2–10% of the initial

inoculum.

As the brain endothelium cells are responsible for maintaining

biochemical homeostasis within the central nervous system (CNS),

entry of molecules into the CNS is a strictly regulated process

[17,18]. However, to further demonstrate that the interaction of B.

anthracis Sterne is not just due to random uptake, we incubated

hBMEC with two related non-pathogenic Bacillus species, B.

thuringensis and B. subtilis. Both of these strains were unable to

invade hBMEC (Fig. 2C), demonstrating that the invasive ability

is specific to B. anthracis Sterne.

The EM studies suggested that B. anthracis Sterne alters the host

cytoskeleton to initiate its own uptake (Fig. 1). To confirm this

observation experimentally, invasion experiments were performed

in the presence of cytochalasin D, a potent inhibitor of cytoskeletal

rearrangements. This inhibitor has been shown previously to

effectively block invasion of hBMEC by other bacterial pathogens

[16]. As shown in Fig. 2D, addition of cytochalasin D resulted in

a dose-dependent inhibition of B. anthracis Sterne invasion into

hBMEC. Together these results suggest that B. anthracis Sterne

modulates the host cytoskeleton to induce it own uptake.

Expression profile of hBMEC following B. anthracis Sterne
infection
Understanding changes in gene expression that occur in

response to B. anthracis infection will facilitate further analysis of

anthrax meningitis pathogenesis. We performed microarray

analysis to assess the overall response of hBMEC to infection

with B. anthracis Sterne. After 6 hours of infection, 304 genes

exhibited a more than two-fold change in transcript abundance

(Table S1A, Fig 3C). Figure 3A depicts the mean differences in

total gene expression in Sterne-infected hBMEC cells compared to

uninfected cells; down- and upregulated genes in response to B.

anthracis Sterne are represented by blue and red dots, respectively.

Interestingly, the majority of affected genes (270 out-of 304, 87%)

were downregulated in response to B. anthracis Sterne infection

compared to the uninfected control (Fig 3A, C). However,

transcription was not globally impaired as 34 genes showed a more

than two fold increased expression upon infection with B. anthracis

Sterne (Fig. 3A, C, Table S1A).

Figure 2. Interaction of B. anthracis Sterne with hBMEC. B. anthracis Sterne (A) adheres to and (B) invades hBMEC. Data are expressed as the
recovered total cell-associated or intracellular colony forming units (CFU). MOI of 0.1, 1, 5, 10 is approximately 16104, 16105, 56105, and 16106 CFU
respectively (C) Invasion of hBMEC by B. anthracis Sterne (B.a.) and closely-related B. thuringensis (B.t.) and B. subtilis (B.s.). (D) Concentration-
dependent inhibition of B. anthracis hBMEC invasion by cytochalasin D, a potent inhibitor of actin cytoskeleton rearrangements. All experiments were
repeated at least three times in triplicate, data from a representative experiment are shown. The error bars indicate 95% confidence intervals of the
mean of three wells.
doi:10.1371/journal.pone.0002964.g002
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Differential gene expression profile induced by B.
anthracis lacking the pXO1 plasmid
Anthrax toxins are considered to be the major virulence factors

in B. anthracis infection. We therefore assessed the contribution of

the pXO1 plasmid, encoding anthrax toxins, to the hBMEC

transcriptional response. In parallel microarray studies, the B.

anthracis Sterne DpXO1 strain affected 121 hBMEC genes by more

than two-fold after 6 hours of infection compared to the

uninfected control (Fig. 3C, Table S1B). In contrast to infection

with the Sterne bacteria, only 38 out of 121 (31%) genes were

downregulated upon infection with DpXO1 bacteria (Fig. 3B, C).
The microarray data also show that mRNA levels for various

housekeeping genes like b-actin and GAPDH were similar for

samples infected with Sterne or the DpXO1 mutant (data not

shown). To visualize how the down- and upregulated genes of

Sterne-infected cells (colored blue and red, respectively, Fig. 3A)

were affected in DpXO1-infected cells, the same genes were

followed in the MA plot of DpXO1-infected hBMEC cells

compared to media control (Fig. 3B); 90% of genes were

differentially affected in response to bacteria that lacked pXO1

(Fig. 3B). Also 40 additional genes were more than two fold

induced in the absence of the pXO1 plasmid. Overall, this

indicates that the hBMEC transcriptional response is strongly

influenced by the presence of the pXO1 plasmid, whereas only

10% of the genes are regulated in a pXO1-independent manner

(Fig. 3A–C).

Since gene expression was strongly influenced by the pXO1

plasmid, we next sought to identify the most differentially regulated

genes in response to infection with Bacillus Sterne or DpXO1 mutant

strains. Figure 3D displays mean differences in gene expression

comparingDpXO1 versus B. anthracis Sterne infected hBMEC; more

than two fold differentially down- and upregulated genes are colored

blue and red, respectively. The identity of these genes and their

expression in hBMEC compared tomedia are displayed inFigure 4.

Analysis of differentially expressed genes by gene ontology (GO) of

molecular function indicated significant overrepresentation of genes

involved with transcription (p=1.3610212), growth (p=7.961026),

RNA binding (p=1.761025), protein kinase inhibition

Figure 3. MA plots and Venn-diagram comparing the transcriptional response in hBMEC upon infection with B. anthracis Sterne or
DpXO1 bacteria. MA plot showing the transcriptional profile of hBMEC upon infection with (A) B. anthracis Sterne vs. media control or (B) DpXO1
mutant bacteria vs. media control. Red and blue dots indicate genes that were more than two fold upregulated or downregulated, respectively upon
infection with Sterne bacteria. These same genes retain their color in panel B. (C) Venn diagram depicting the number of up- or downregulated that
were unique or overlapping in hBMEC upon infection with B. anthracis Sterne or DpXO1 mutant bacteria. (D) MA plot comparing gene expression of
DpXO1/B.a.Sterne; red and blue dots indicate genes that were more than two fold differentially induced or suppressed, respectively.
doi:10.1371/journal.pone.0002964.g003
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(p=2.861025), and cytokine activity (p=6.761025). Of particular

interest however, was the observation that some of the most strongly

differentially affected genes were potent neutrophil chemoattractants

IL-8 (CXCL8), CXCL1 (Groa) and CXCL2 (Grob), since we have

previously shown that neutrophil recruitment is a major part of the

innate host defense response against bacterial infection [12]. This

was supported byGO analysis showing significant downregulation of

genes with chemokine activity (p=8.161024) and correspondingly

genes involved in induction of positive chemotaxis (p=4.261025)

and leukocyte activation (p=9.161024). These microarray data

suggest that factors on the pXO1 plasmid may interfere with the

BBB innate immune defense, specifically neutrophil recruitment.

Confirmation of microarray expression data: quantitative
RT-PCR and ELISA
To confirm our microarray results we used quantitative RT-

PCR to analyze the relative transcript abundance in hBMEC of

the following genes involved in the host immune response: IL-6,

IL-8, CXCL1, CXCL2, and CCL20. Figure 5A depicts the

relative fold change in hBMEC transcript levels upon infection

with B. anthracis Sterne or DpXO1 mutant bacteria compared to

the uninfected control. As was observed in our microarray studies,

the transcript levels of IL-8, CXCL1 and CXCL2 were

significantly downregulated in cells infected with B. anthracis

Sterne compared to uninfected control or hBMEC infected with

the DpXO1 strain (Fig. 5A). In contrast, IL-6 and CCL20

transcripts were not downregulated in response to Sterne infection.

This response was not significantly different upon infection with

DpXO1 mutant bacteria, indicating that gene regulation for these

genes is independent of the presence of the plasmid.

Effects on gene transcription are not always paralleled by changes

in protein expression [19]. Therefore, we analyzed hBMEC

supernatants for the presence of IL-6, IL-8, CXCL1, CXCL2, and

CCL20 protein 6 hours after B. anthracis Sterne infection. Induction

of chemokines IL-8, CXCL1 and CXCL2 was markedly reduced

when cells were infected with the Sterne bacteria compared to

uninfected controls (Fig. 5B). In contrast, IL-6 and CCL20 protein

levels were unaffected and induced, respectively. Infection of

hBMEC with the DpXO1 strain restored secretion of IL-8 and

CXCL1 to levels secreted by uninfected cells, while IL-6, CXCL2,

and CCL20 protein expression levels did not differ in the absence of

the pXO1 plasmid compared to B. anthracis Sterne-infected hBMEC,

suggesting that additional chromosomal factors may influence

protein expression (Fig. 5B). Overall, these independent experi-

ments generally confirmed our observations from the microarray

experiment and suggest a role for pXO1-encoded factors in the

downregulation of neutrophil chemokines in hBMEC.

Anthrax toxins inhibit expression of IL-8 and suppress
neutrophil recruitment in vivo
To establish whether anthrax toxins were responsible for the

downregulation of IL-8, the most potent and strongly affected

neutrophil chemokine, we utilized isogenic mutants that specifi-

Figure 4. Heatmap identifying genes with 2.2 fold differential
expression levels in hBMEC upon infection with B. anthracis
Sterne vs. DpXO1 mutant strain. Each column represents a
biological replicate microarray experiment upon infection with B.
anthracis Sterne (BA) or DpXO1 bacteria (pXO1). Red and Blue coloring
indicates induced or downregulated gene expression levels, respec-
tively, of infected hBMEC vs. media control. Expression clustering was
performed based on pairwise similarity, as described in Material and
Methods.
doi:10.1371/journal.pone.0002964.g004
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Figure 5. mRNA and protein expression of IL-6, IL-8, CXCL1, CXCL2 and CCL20 in hBMEC upon infection with B. anthracis Sterne
(B.a.) or DpXO1 mutant bacteria. (A) mRNA expression levels of IL-6, IL-8, CXCL1, CXCL2 and CCL20 in hBMEC upon infection with B. anthracis
Sterne (B.a.) or DpXO1 using quantitative RT-PCR. Fold change was determined as described in Material and Methods. Data represent mean and
standard deviation of three independent experiments performed in triplicate. (B) Protein expression of IL-6, IL-8, CXCL1, CXCL2 and CCL20 in hBMEC
supernatants 6 h post infection with B. anthracis Sterne (B.a.) or DpXO1 bacteria using ELISA. Experiments were performed three times in triplicate.
Bars represent mean and standard deviation of one representative experiment. * p,0.05, ** p,0.005, *** p,0.001.
doi:10.1371/journal.pone.0002964.g005
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cally lacked LF (DLF), EF (DEF) or both anthrax toxins (DLF/EF).

Infection of hBMEC with the DLF/EF bacterial strain resulted in

a significant induction of IL-8 gene transcription (Fig. 6A) and

restoration of IL-8 protein secretion (Fig. 6B) compared to B.

anthracis Sterne infected cells. The presence of either LF or EF was

still sufficient to suppress IL-8 transcript and protein expression

(Fig. 6A, B), suggesting that both toxins are involved in

downregulation of this neutrophil chemokine.

As the anthrax toxins decreased neutrophil chemokine transcrip-

tion and expression, we hypothesized that neutrophil recruitment

might be suppressed after infection with B. anthracis Sterne compared

to the DLF/EF mutant strain. To examine the effects of anthrax

toxins on neutrophil chemotaxis in vivo, we analyzed neutrophil

recruitment to the site of infection using two independent assays.

First, neutrophil recruitment was assessed upon subcutaneous

injection of B. anthracis Sterne or the DLF/EF mutant strain into

the right or left flank of mice, respectively, After 4 hours, mice were

euthanized and the site of subcutaneous injection was excised,

homogenized and analyzed for the neutrophil enzyme myeloperox-

idase (MPO), which serves as an effective indicator of neutrophil

infiltration [20]. MPO levels and therefore accumulating neutrophils

were significantly lower upon infection with B. anthracis Sterne

compared to the DLF/EF mutant strain (Fig. 6C). Using a second

independent measurement, we quantified the amount of neutrophils

entering the peritoneal cavity upon i.p. injection of B. anthracis Sterne

or DLF/EF mutant bacteria. PBS and a 3% thioglycolate solution

were included as negative and positive controls, respectively. After

4 hours, cells were extracted from the peritoneal cavity and the

amount of accumulated neutrophils was quantified by flow

cytometry. Although neutrophils were recruited upon infection by

B. anthracis Sterne compared to the PBS control, neutrophil

accumulation was significantly reduced compared to the toxin-

deficient isogenic mutant (Fig. 6D). In general, neutrophil

accumulation by the DLF/EF mutant was comparable to the

positive 3% thioglycolate control (Fig. 6D). Overall, these results

suggest that B. anthracis anthrax toxins interfere with transcription

and secretion of neutrophil chemokines, as well as neutrophil

recruitment during active infection.

Anthrax meningitis mouse model
Our data suggest that B. anthracis is capable of penetrating the

BBB. In addition, anthrax toxins suppress the brain endothelial

Figure 6. Anthrax toxins impair IL8 expression and neutrophil chemotaxis (A) IL-8 mRNA expression levels upon infection with B.
anthracis Sterne (B.a.), DpXO1, DLF, DEF or DLF/EF mutant bacteria using quantitative RT-PCR. Data represent mean and standard
deviation of three independent experiments performed in triplicate. (B) Protein expression of IL-8 in hBMEC supernatants 6 h post infection with B.
anthracis Sterne, DpXO1, DLF, DEF or DLF/EF mutant bacteria using ELISA. Experiments were performed three times in triplicate. Bars represent mean
and standard deviation of one representative experiment. Neutrophil recruitment in vivo was assessed by measuring (C) myeloperoxidase (MPO)
activity in skin homogenates 4 h post infection or by (D) quantification of Gr-1+ cells upon peritoneal injection with B. anthracis Sterne (B.a.), toxin-
deficient bacteria (DLF/EF), PBS or thioglycolate positive control (TG). Bars indicate mean levels of neutrophil recruitment. ** p,0.005; *** p,0.001.
doi:10.1371/journal.pone.0002964.g006
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host response which could promote unrestricted proliferation and

further dissemination of B. anthracis in the CNS. To test the

contribution of anthrax toxins to the pathogenesis of CNS

infection, we developed a mouse model of anthrax meningitis.

Mice were injected intravenously with B. anthracis Sterne or DLF/

EF bacteria (n = 12 per group). Mice were euthanized when they

became moribund with severely labored breathing (between days

two and twelve for B. anthracis Sterne-infected mice) after which

brain and blood were collected. All of the DLF/EF-infected mice

and approximately 10% of the Sterne-infected mice survived until

the experimental endpoint of three weeks (Fig. 7A). Five out-of

eight Sterne-infected mice (63%) had high bacterial counts in the

brain (Fig. 7B), while no bacteria were recovered from the brains

of DLF/EF-infected mice (Fig. 7B). Microscopic examination of

brain tissue from mice infected with the Sterne strain showed

thickening of the meninges, an influx of inflammatory cells and

substantial hemorrhaging (Fig. 7D–F). In addition, Gram stain

revealed the presence of numerous bacilli in both the meninges

and the parenchyma (Fig. 7G, H). The brains of mice that were

infected with the DLF/EF strain did not show any signs of

infection over the course of the experiment and exhibited normal

brain architecture (Fig. 7C).

The absence of clinical symptoms in DLF/EF-infected mice

could partially be due to reduced virulence of this strain in vivo

[21]. Therefore, we performed additional in vitro experiments to

assess whether anthrax toxins contribute directly to the penetra-

tion of brain endothelium. Compared to the parent strain, the

toxin deficient strain exhibited a 70–80% reduction in hBMEC

invasion (Fig. 7I) and was less able to penetrate hBMEC

monolayers in a transmigration assay (Fig. 7J). Together these

data indicate that B. anthracis Sterne is indeed capable of crossing

the BBB in vivo, establishing the classic signs of meningitis and

meningoencephalitis, and that the expression of anthrax toxins

may directly contribute to this process.

Discussion

Infection with B. anthracis resulting in systemic disease is associated

with high morality characterized by septicemia, toxemia, and

meningitis [6,22–24]. The presence of bacilli in brain autopsies

indicates that vegetative bacteria are able to disseminate from the

bloodstream to the CNS, however, the basic pathogenic mechanisms

by which B. anthracis penetrates the BBB have not been described.

Using electron microscopy and an established in vitro model of the

BBB, we demonstrate here for the first time that B. anthracis is capable

of invading hBMEC, the single cell layer that comprises the BBB.

Our observations extend recent studies reporting invasion of B.

anthracis into non-phagocytic fibroblasts and epithelial cell lines [25].

Furthermore, our results suggest that uptake of B. anthracis Sterne in

hBMEC is specific and requires actin cytoskeleton rearrangements.

Interestingly, a very recent report identified a pXO1-encoded

adhesin, BslA important for adherence to keratinocytes and lung

epithelial cells [26]. Studies to identify and characterize additional

factors involved in hBMEC adherence and invasion, including the

BslA adhesin, are in progress.

We have used microarray analysis to examine the acute

response of brain endothelium to infection with vegetative B.

anthracis Sterne. We have shown previously that the BBB plays an

active role in initiating a very specific innate immune response to

bacterial infection by inducing gene expression of factors

promoting neutrophil recruitment [12]. Most strikingly, B. anthracis

infection reduced steady-state expression of 270 genes by more

than two-fold corresponding to 87% of all affected gene

transcripts. This contrasts typical host cellular responses to

microbial pathogens where the number of host genes induced by

infection is significantly higher than the number of down-regulated

genes [12,27]. The majority of downregulated genes were related

to transcription, signal transduction, stress, host immune response,

and proliferation. As anthrax toxins are the major secreted B.

anthracis virulence factors, we also analyzed the gene expression

profile of hBMEC upon infection with a strain lacking the pXO1

plasmid, DpXO1, which encodes both anthrax toxins. Ninety

percent of affected genes upon B. anthracis Sterne infection were

differentially affected upon infection with DpXO1 bacteria, and in

total only 31% of genes in DpXO1-infected cells were downreg-

ulated. Additionally, approximately 10% of genes were regulated

independently of pXO1, suggesting possible involvement of B.

anthracis chromosomal factors to host response. Overall, these

results suggest a major role for plasmid encoded factors and toxins

in regulating the brain endothelial host response.

Of particular interest was the unambiguous effect on the

expression levels of genes belonging to the CXC chemokine family,

particularly the neutrophil chemotactic factors IL-8, CXCL1 and

CXCL2 in response B. anthracis Sterne infection. Notably the

expression levels of other major pro-inflammatory mediators such as

TNFa and IL-1 were not affected by B. anthracis Sterne or DpXO1

infection. Neutrophil recruitment is thought to be part of the very

first line of CNS defense against bacterial infection [12] as many

Gram-positive and Gram-negative meningeal pathogens induce

expression of these genes in hBMEC [12,28], van Sorge et al.

unpublished data). Active impairment of neutrophil recruitment

could therefore benefit survival and proliferation of B. anthracis, as

both spores and vegetative bacteria are efficiently killed by human

neutrophils [29]. Our results clearly demonstrate that the suppres-

sion of CXCL1 and IL-8 expression is pXO1- and toxin-dependent,

respectively. These data complement observations in recent studies

where systemic infection with the encapsulated strain impaired

production of cytokines in a toxin-dependent manner [30] and

purified LT reduced IL-8 production by the destabilization of IL-8

mRNA in HUVEC in vitro [31].

We hypothesized that altered chemokine expression would result

in impaired neutrophil recruitment upon active infection with B.

anthracis Sterne. Using two independent in vivo assays, we

demonstrated that neutrophil chemotaxis was indeed reduced to

the site of infection with the Sterne strain as compared to infection

with the DLF/EF mutant. Similar observations were recently

published in a systemic infection model using encapsulated WT B.

anthracis (pXO1+, pXO2+); host neutrophil recruitment in spleen and

liver was significantly increased in the absence anthrax toxins

compared to infection with the parent strain [32]. In addition,

purified LT has been shown to directly impair neutrophil motility

[33,34]. Toxin-mediated subversion of the innate immune system,

specifically targeting neutrophils, may therefore contribute to

unchecked bacterial replication and amore fulminent disease course.

Establishment of an anthrax meningitis model is critical to

better understand disease pathogenesis. The current rabbit and

rhesus monkey models of inhalation anthrax [7,35] both report

signs of meningitis in a subgroup of animals, however, a mouse

model would be preferable due to availability, lower costs and

well-characterized genetic systems. We found that intravenous

injection of immunocompetent outbred CD-1 mice with B.

anthracis Sterne resulted in penetration of bacilli into the CNS.

Microscopic analysis of brain sections confirmed the development

of meningitis, showing inflammatory cell infiltration, hemorrhag-

ing, thrombosis, edema and areas full of bacilli. While we did

observe neutrophil infiltration in the brains of B. anthracis Sterne

infected mice at the time of death, we speculate that an initial

reduction or delay in host neutrophilic response may promote
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acute unrestricted bacterial proliferation and further CNS

dissemination ultimately responsible for the rapidly progressive

deteriorating course associated with anthrax meningitis. These

observations reflect autopsy findings in patients [5] validating the

utility of this newly developed mouse model of hematogenous

anthrax meningitis. Finally, development of anthrax meningitis

requires expression of anthrax toxins as no signs of disease

developed in mice infected with the DLF/EF mutant strain.

Figure 7. Mouse model of anthrax meningitis. (A) Kaplan-Meier survival curve of mice upon infection with B. anthracis Sterne (filled squares) or
DLF/EF (open circles) bacteria. Groups of CD-1 mice (n = 12 per group) were injected intravenously with 2–36104 CFU of bacteria and survival was
monitored at least twice a day over a three-week period. (B) Bacterial counts in brain at time of death of mice infected with B. anthracis Sterne (B.a.)
or D LF/EF. Bar represents median bacterial number in the group of mice. Histopathology of (C–F) H&E- or (G, H) Gram-stained brain tissues of
representative individual mice. (C) Sample from a mouse infected with DLF/EF bacteria showing normal brain architecture and no inflammation.
Samples from mice infected with B. anthracis Sterne showing (D, E) meningeal thickening and cellular infiltration and (F) hemorrhaging. (G, H) Gram
stain of a mouse infected with B. anthracis Sterne showing high levels of bacilli in the parenchyma. (I) Invasion and (J) transmigration of hBMEC by B.
anthracis Sterne (B.a.) or DLF/EF bacteria. * p,0.05; ** p,0.005; *** p,0.001.
doi:10.1371/journal.pone.0002964.g007
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Additional in vitro studies suggested that this could be due to a

direct contribution of the toxins to penetration of brain

endothelium; however, we cannot exclude the possibility that the

lack of clinical symptoms observed during infection with the toxin-

deficient mutant may partially reflect a generalized reduction in

virulence.

In summary, our studies provide the first evidence that B. anthracis

is capable of invading the human BBB. We have also demonstrated

that diverse functional classes of genes, including chemokines

involved in neutrophil recruitment and signaling, were downregu-

lated in brain endothelium upon B. anthracis infection suggesting that

the pathogen actively suppresses the BBB innate immune response.

This signaling appears to be mediated largely by the bacterial

pXO1-encoded toxins. Our in vivo studies indicate that the anthrax

toxins contribute to impaired neutrophil recruitment and the

development of anthrax meningitis. Additional studies aimed at

further understanding the mechanisms governing the pathogenesis

of anthrax meningitis should aid in the development of preventative

therapies for this serious CNS infection.

Materials and Methods

Bacterial strains and endothelial cell culture
Bacillus anthracis Sterne (pXO1+, pXO22) and mutant deriva-

tives were grown in Brain-Heart infusion broth (BHI; Sigma) as

shaking cultures under aerobic conditions at 37uC. B. anthracis

Sterne was cured of the pXO1 plasmid by passage at 43uC.

Specific LF, EF and LF/EF deletion mutants were generously

provided by Scott Stibitz (Center for Biologics Evaluation and

Research, Bethesda, Maryland) and described previously [36]. For

log-phase cultures of B. anthracis, fresh BHI was inoculated with the

overnight culture at a 1:20 dilution and grown to OD600=0.4

(16107 CFU/ml). Growth kinetics of all strains was similar under

the experimental conditions used in our assays.

The human brain microvascular endothelial cell line hBMEC,

obtained from Kwang Sik Kim (Johns Hopkins University,

Baltimore, Maryland, USA), were originally isolated as previously

described [13,37], and maintain the morphologic and functional

characteristics of primary brain endothelium [13,15]. HBMEC

were cultured using RPMI 1640 (Gibco), supplemented with 10%

fetal calf serum (FBS; Gibco), 10% Nuserum (BD Biosciences, San

Jose, California, USA), and modified Eagle’s medium nonessential

amino acids (Gibco) without addition of antibiotics. All experi-

ments used cells at passage 8–14.

HBMEC infection and transmigration assays
For hBMEC invasion assays, cells were seeded in collagen-

coated 24 well tissue culture plates until they reached 90–100%

confluency. B. anthracis cultures were grown to log-phase as

described above. Log-phase bacteria were pelleted, washed in PBS

and resuspended in RPMI 1640 10% FBS to the appropriate

concentration. HBMEC monolayers, washed twice with PBS

before the addition of bacterial cultures, were infected with

different multiplicity of infection (MOI; MOI of 1 is approximately

16105 CFU) in a final volume of 500 ml of RPMI 10% FBS. Plates

were centrifuged at 8006 g for 5 min to synchronize the infection,

and subsequently incubated at 37uC with 5% CO2. After 2–4 h,

monolayers were washed three times with PBS before the addition

of 1 ml of RPMI 10% FBS containing 50 mg of gentamicin for

15 min to kill extracellular bacteria. Control experiments

confirmed that B. anthracis was killed by this concentration of

gentamicin within 15 minutes (data not shown). The monolayers

were washed three times with PBS before the addition of 0.1 ml of

0.25% trypsin/EDTA solution (5 min 37uC) followed by 0.4 ml of

0.025% Triton X-100 to liberate intracellular bacteria. The

number of invasive bacteria was quantified by plating serial

dilutions of the lysate on THB or BHI agar plates. To assess the

effect of host cytoskeleton on B. anthracis invasion, hBMEC cells

were incubated for 30 min with the indicated concentration of

cytochalasin D (Sigma) before addition of bacteria. To assess the

level of surface-adherent (total cell-associated) bacteria, bacteria

were quantified from hBMEC monolayers prior to addition of

extracellular antibiotics after 45 min of incubation as described

above only washing six times with PBS prior to bacterial

enumeration. All cellular adherence and invasion assays were

performed at least in triplicate and repeated at least three times.

For transmigration assays, polar hBMEC monolayers were

established on collagen-coated Transwell plates, 3 mm pore size

(Transwell-COL; Corning-Costar Corp., MA, USA) as described

previously [16]. Monolayers were incubated with 26105 CFU of

log-phase grown bacteria. After 4 hours, the number of bacteria in

the lower chamber was quantified by serial dilution plating on

THA plates. The experiment was performed at least three times in

triplicate.

Transmission electron microscopy
Infection experiments were performed similar to the adherence

assay described above with B. anthracis Sterne for 1 hour or

4 hours. After washing, samples were immersed in modified

Karnovsky’s fixative (1.5% glutaraldehyde, 3% paraformaldehyde

and 5% sucrose in 0.1 M cacodylate buffer, pH 7.4) for at least

8 hours, post fixed in 1% osmium tetroxide in 0.1 M cacodylate

buffer for 1 hour and stained en loc in 1% uranyl acetate for

1 hour. Samples were dehydrated in ethanol, embedded in epoxy

resin, sectioned at 60 to 70 nm, and picked up on carbon-coated

formvar grids. Grids were stained with uranyl acetate and lead

nitrate, viewed using a JEOL 1200EX II (JEOL, Peabody, MA) or

Philips CM-10 (FEI, Hilsboro, OR) transmission electron

microscope and photographed using a Gatan digital camera

(Gatan, Peabody, CA).

Microarray analysis
Microarray experiments were performed using Sentrix Human-

8 Expression BeadChips, which analyzed 25,440 transcripts

(Illumina, San Diego, CA) according to manufacturer’s instruc-

tions. In brief, a 250 ng aliquote of total RNA, isolated as

described above, from each sample was amplified to cDNA,

transcribed to cRNA and biotin labelled using Ambion’s

TotalPrep kit (Austin, TX), according to the instructions. cRNA

concentrations were checked with the Agilent Bioanalyzer, and

cRNA quality was controlled by BioRad’s Experion Automated

Electrophoresis System and RNA Std Sens Analysis Kit (BioRad

Laboratories, Hercules, CA). Each sample cRNA (750 ng) was

hybridized to Illumina’s Sentrix Human-8 Expression BeadChip

arrays at 58uC overnight (18 h, shaking) following the Illumina

Whole-Genome Gene Expression Protocol for BeadStation.

Hybridized biotinylated cRNA was detected with 1 mg/ml

streptavidin-Cy3 (Amersham Biosciences, Piscataway, NJ). Bead-

Chips were scanned with Illumina BeadArray Reader. Data was

analyzed using a statistical algorithm developed for high-density

oligonucleotide arrays [38].

RNA isolation, cDNA preparation and qPCR
HBMEC monolayers were infected with B. anthracis Sterne, or

isogenic mutants (DpXO1, DLF, DEF, or DLF/EF) for 6 hour.

Total RNA was extracted using the RNeasy kit (Qiagen, Valencia,

CA) according to the manufacturer’s instruction, and 1 mg of RNA

reverse transcribed to cDNA (Superscript First-strand synthesis kit,
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Invitrogen). Quantitative PCR (qPCR) was performed using the

following primer sets: IL-6 forward primer 59- GGA GAC TTG

CCT GGT GAA AA -39 and IL-6 reverse primer 59- CAG GGG

TGG TTA TTG CAT CT -39, IL-8 forward primer 59- AGC

TCT GTG TGA AGG TGC AG - 39 and IL-8 reverse primer 59-

AAT TTC TGT GTT GGC GCA GT - 39, CXCL1 forward

primer 59 - CTC TTC CGC TCC TCT CAC AG - 39, and

CXCL1 reverse primer 59 - GGG GAC TTC ACG TTC ACA

CT -3, CXCL2 forward primer 59- CTC AAG AAT GGG CAG

AAA GC -39, and CXCL2 reverse primer 59- AAA CAC ATT

AGG CGC AAT CC -39, CCL20 forward primer 59- GCG CAA

ATC CAA AAC AGA CT -39 and CCL20 reverse primer 59-

CAA GTC CAG TGA GGC ACA AA -39, and GAPDH forward

primer 59- GAA GGT GAA GGT CGG AGT CAA CG -39 and

GAPDH reverse primer59- TCC TGG AAG ATG GTG ATG

GGA T -39. PCR reaction mixtures contained primers at a

concentration 10 mM and PCR mix (SYBR GreenER qPCR

Supermix for iCycler, Invitrogen) in a volume of 25 ml. qPCR

cycling was as follows for all genes: 50uC for 2 min, 95uC for

7 min, followed by 40 cycles of 95uC for 150 and 61uC for 1 min.

Melting curve analysis was performed according to the manufac-

turer’s instructions; PCR primer efficiencies were as follows: 1.92

for IL-6, 1.8 for IL-8, 1.83 for CXCL1, 1.99 for CXCL2, 1.94 for

CCL20 and 1.88 for GAPDH. Calculation of relative gene

expression included adjustments for PCR efficiencies and using the

following equation: Relative gene expression = target gene effi-

ciency6(CT control - CT sample)/1.886(CT control - CT sample).

Chemokine secretion in hBMEC supernatants
HBMEC supernatants were collected after infection with B.

anthracis Sterne, DpXO1, DLF, DEF, or DLF/EF deletion mutants

after 6 hours. Concentrations of IL-8 (R&D systems, Minneapolis,

MN, USA), CXCL1 (R&D systems), CXCL2 (BioSupplyUK) and

CCL20 (R&D systems) were measured using enzyme-linked

immunosorbent assays (ELISA) according to the manufacturer’s

instructions. IL-6 and IL-8 concentrations were measured using

the cytometric bead array system according to the manufacturer’s

instructions (BD Biosciences, Human inflammation kit).

Mouse infection studies
All animal experiments were approved by the Committee on the

Use and Care of Animals, and performed using accepted veterinary

standards. For the meningitis model, bacteria were grown to early

log phase, washed in PBS and resuspended to an optical density of

0.4 in PBS. Vegetative bacteria were diluted in PBS to 2–36105

CFU/ml and 0.1 ml was injected intravenously into 8 weeks old out

bred immunocompetent female CD-1 mice (Charles River Labora-

tories, Wilmington, MA, USA). Mice were monitored for signs of

infection at least twice a day for up to three weeks and euthanized

when they became moribund. Blood and brain were collected and

plated to determine bacterial counts. Half of the brain was stored in

10% formalin for further histology analysis performed at the UCSD

Histopathology Core Facility (N. Varki, Director).

To determine neutrophil recruitment in vivo, B. anthracis Sterne and

DLF/EFmutant bacteria were grown to early log phase, washed and

resuspended in PBS to and OD600=0.4. Eight week old CD-1

female mice were injected with 16106 CFU of B. anthracis Sterne on

the right shaved flank and with 16106 CFU of DLF/EF mutant

bacteria on the left shaved flank in a volume of 0.1 ml. After 4 hours,

mice were euthanized and the site of subcutaneous injection was

excised for further analysis of myeloperoxidase activity (see below).

Neutrophil recruitment was also assessed using an intraperitoneal

infection model. Eight week old CD-1 female mice were injected i.p.

with 26106 CFU in 200 ml PBS. PBS alone and a 3% thioglycolate

solution were used as negative and positive control for neutrophil

recruitment, respectively. After 4 hours, cells were harvested from

the peritoneal cavity in PBS 0.2% BSA. One-hundred ml of cell

suspension was directly stained with FITC-labeled rat anti-mouse

Gr-1 monoclonal antibody or the appropriate isotype control (both

BD Pharmingen) for 30 min at 4uC and analyzed by flow cytometry.

The flow cytometer was set to count events during a fixed time (60 s)

thus permitting quantification of the absolute number of recovered

Gr-1 positive cells in each mouse [39]. A quality check was

performed on the flow cytometer (Dual Laser FACSCalibur Flow

Cytometer) before use to assure a constant flow rate.

Myeloperoxidase assay
Skin samples of mice were homogenized in 500 ml 0.05%

hexadecyltrimethylammonium bromide (HTAB in 0.05 M phos-

phate buffer, pH 6; Sigma) solution. Homogenates were centri-

fuged for at 18,0006 g for 30 min at 4uC. Supernatants were

transferred to a clean microcentrifuge tube and stored at 280uC

until further analysis. Next, 10 mg of o-dianisidine dihydrochloride

(DCC; Sigma) was added to 60 ml of freshly-prepared HTAB

solution to yield DCC solution. In addition, activated substrate

was prepared by adding one ml of 0.05% hydrogen peroxide

solution for every 99 ml of DCC solution. Finally, the reaction was

started by adding 90 ul of DCC solution in HTAB solution and

100 ml of activated solution to 10 ml of skin supernatants 96 well

flat-bottom plates. The absorbance was read every minute for

10 minutes at 450 nm using a spectrophotometer. All samples

were analyzed in triplicate. For quantification purposes, a

calibration curve of horseradish peroxidase (Calbiochem) ranging

from 100 mU/ml to 3.13 mU/ml was run in parallel with the

samples in triplicate with every experiment.

Statistical analysis
Graphpad Prism version 4.03 was used for statistical analysis.

Differences in adherence/invasion, mRNA expression, chemokine

secretion in hBMEC supernatants were evaluated with a one-way

ANOVA followed by Tukey’s post hoc test. Differences in

neutrophil recruitment were determined using a paired t-test for

the MPO assay and an unpaired t-test for the intraperitoneal

infection model. Kaplan-Meier survival plots were evaluated with

the log-rank test. Statistical significance was accepted at p,0.05.

Supporting Information

Table S1 A. Genes affected in hBMEC .2 fold by infection

with B. anthracis Sterne B. Genes affected in hBMEC .2 fold by

infection with pXO1 deficient mutant

Found at: doi:10.1371/journal.pone.0002964.s001 (0.07 MB

XLS)
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