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ABSTRACT 

Barataria Bay, Louisiana is a dynamic estuary with ongoing disturbances that is in need 

of restoration. Development and validation of a lower Barataria Bay index of biotic integrity 

(IBI) for the summer season was the focus of my research. This IBI was created using 2005 data 

and evaluated with 2006 and 2007 data to demonstrate the feasibility of this approach in coastal 

Louisiana. The IBI successfully distinguished sites with differing levels of degradation using 

nine fish metrics. While pursuing this effort, two serendipitous events occurred when an oil spill 

then a hurricane impacted the study area. This gave me opportunities to examine pulse 

perturbations in the area. I showed immediate effects from the 2005 oil spill using a before-after-

control-impact (BACI) analysis and found that fish abundances were significantly different days 

after the spill. I examined the recovery path of the nekton community after Hurricane Katrina 

and found that by the spring the year following the storm there were differences in species 

composition from pre-Katrina compositions. However, by two years post-Katrina species 

compositions and environmental variables measurements were similar to pre-storm conditions. I 

examined the transformation from Spartina- to black mangrove- dominated marsh edge (a long-

term or press perturbation) and its effects on the nekton community. Nekton abundances were 

higher in the black mangrove and transition (mixed Spartina and black mangrove) vegetation 

dominated marsh-edge habitat type than the Spartina dominated marsh-edge. However, a 

fisheries species, Farfantepenaeus aztecus (brown shrimp), was more associated with Spartina 

than mangrove. By creating loop models of the study area’s marsh-edge community, I explored 

three other press perturbations along with black mangrove encroachment. These other 

perturbations were freshwater diversions, shrimping pressure, and wetland loss. Models 

predicted that mangroves encroachment decreased grass shrimp, freshwater diversions increased 

the water column predators, shrimping decreased wading birds and algae, and wetland loss had a 
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negative effect on algae. Variations to the model showed some differences among the 

community responses. This dissertation illustrates how resilient the fauna is in Barataria Bay, 

which along with the proper assessment techniques, makes this area a strong candidate for 

restoration and management efforts.
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CHAPTER I 

BACKGROUND: ASSESSING PERTURBATIONS IN BARATARIA BAY 

 

INTRODUCTION 

Southeastern Louisiana is a dynamic and productive area with approximately 40% of the 

United States’ coastal wetlands (Boesch et al. 1994). Unfortunately these wetlands are 

decreasing in area at an alarming rate, with an estimated 1,704 km2 of wetland lost in the past 30 

years (Barras et al. 2004). This loss is devastating because Louisiana coastal wetlands have 

significant ecological and socioeconomic value. Coastal wetlands provide essential habitat for 

commercial and recreational fisheries and migratory waterfowl, protect populated southern cities 

and ports from storm surges, and support significant oil and gas production (Boesch et al. 1994). 

Louisiana makes a substantial contribution to the country’s energy supply with the offshore oil 

ports handling approximately 13% of the oil for the entire country (Revette 2007). The outer 

continental shelf combined with inshore production ranks the state as number one in crude oil 

and number two in natural gas production (Crouch 2007). In 1999, ports of Louisiana created 

$422.97 million in revenue with approximately 345 million metric tons of waterborne commerce 

(Ryan 2001). Along with industrial commerce, fisheries are profitable businesses for coastal 

Louisiana. The Gulf of Mexico has the second highest annual commercial fisheries landings in 

the United States, with Louisiana contributing over 400, 000  metric tons to the Gulf harvests in 

2006 (NMFS 2006). The dominant fisheries species in Louisiana are Callinectes sapidus (blue 

crab), Litopenaeus setiferus (white shrimp), Farfantepenaeus aztecus (brown shrimp), and 

Crassostrea virginicus (American oyster), with Brevoortia patronus (gulf menhaden) 

contributing significantly to the nation’s fisheries for oil and fish meal (Perry and McIlwain 

1986, Chesney et al. 2000, Shervette et al. 2004, NMFS 2006). Growth of these industries  
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spurred by increasing human demands for food and energy are growing and expanding the 

multiple stresses in Louisiana’s coastal areas, including altered water quality, habitat disturbance 

and alteration, modifications in flow regime, and nutrient loading.  

These stressors threaten the current structure of the flora and fauna of northern Gulf of 

Mexico coastal environments. There have been increases in the rate of tropical storm landfalls 

and their destructiveness in recent decades (Emanuel 2005). Warming trends are also causing 

northern movement of some species and a decline in others (Oviatt 2004). Local consequences of 

these changes were evident after the 2005 and 2008 hurricane seasons, when four major storms 

hit the Mississippi, Louisiana, and Texas coast lines and caused massive wetland and 

infrastructure destruction and loss of life. Warming trends have also caused a decrease in freeze 

events that are fostering Avicennia germinans (black mangrove) expansion noticeably along their 

historic northern limit on the Chandeleurs Islands in southeastern Louisiana (Mendelssohn and 

McKee 2000). These environmental modifications will affect the large number of species that 

utilize coastal wetlands during their early life history stages or for some throughout their lives. 

Most perturbations that alter environmental factors not only affect particular species, life 

history stages, or populations, but also groups of populations and entire communities occurring 

in the same area (Crowder 1990). I used a community ecology approach to address questions 

about the southern portions of Barataria Bay in southeastern Louisiana. This methodology can be 

difficult as it is important to consider the idea of scale. Changes seen at a site may not be as 

evident across larger scales in the study area or uniform over the entire Bay. Based on 

quantitative samples of the marsh-edge nekton community, I explored how the community 

responded to anthropogenic and natural disturbances.  
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Figure 1.1. Map of Louisiana and the Barataria Basin outlined in black and the study area 
outlined in white. 
 

 

MATERIAL AND METHODS 

Study Area 

Barataria Basin is an inactive deltaic region that lies west of the current mouth of the 

Mississippi River (Fig 1.1). River input combined with a humid, subtropical climate and other 

biological and physical gradients have created a specialized and productive system (Bahr and 

Hebrard 1976, Conner and Day 1987). Approximately 55% of the wetlands that interact with the 

Gulf of Mexico are included in Barataria Basin (Turner 2003). This estuary is approximately 110 

Mississippi River 

Barataria Basin 

N ↑  

LSU Atlas 
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km long and 50 km wide and is characterized by a large salinity gradient. Historically, this 

system was divided along the salinity gradient into swamp forest, fresh marsh, brackish marsh, 

saline marsh, and offshore habitats (Bahr and Hebrard 1976), with plant species diversity 

decreasing with increasing salinity from north to south. The marsh was historically dominated by 

Spartina and still is but with increasing biomass of black mangroves. Areas of high perturbation 

have other vegetation such as Batis maritima (saltwort), Iva frutescence (marsh elder), or 

Phragmites australis (common reed).  

The southern portion of Barataria Bay has 145,000 ha of salt marsh (Conner and Day 

1987), which results from the closure of the Lafourche-Mississippi River connection and an 

enhanced levee system that has cut off freshwater input to the Basin (Conner and Day 1987). 

Today, the main source of fresh water for the Basin is a mean precipitation of 1.6 m yr-1. 

Precipitation, tidal flux, and winds influence Barataria Bay’s variable salinity, which ranges 

seasonally and spatially from 6 to 22 psu (Baumann 1987, Childers et al. 1990, Baltz et al. 1993). 

The substrate is mainly fine sediment that was deposited by the Mississippi River. Barataria Bay 

is a microtidal system with a semidiurnal mean tidal range of 0.32 m. The southern portion of the 

Bay is highly turbid (>10 NTU) and shallow, with depth rarely exceeding 2 m except in the 

Barataria Waterway and channels (Baltz et al. 1993, Allen and Baltz 1997). Although this is a 

typical northern Gulf of Mexico estuary, it has seen an accelerating increase of human and 

natural disturbances in recent years. Because of perturbation and the obvious economic 

importance of Louisiana’s coastal marshes, efforts to study and monitor the Basin have 

increased. 

Field and Laboratory Methods 

Because I wanted to successfully estimate densities and population abundances in a 

shallow estuary, I used a drop sampler (Zimmerman et al. 1984, Baltz et al. 1993, Baltz et al. 
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1998, Rozas and Minello 1997). This study was targeting the small species and younger life-

history stages of larger species found along the marsh edge. Drop sampling is quantitative with 

high recovery efficiency for these size classes in the marsh (Rozas and Minello 1997, Steele et 

al. 2006). My drop sampler was a 1.18 m2 fiber glass cylinder with an aluminum skirt as 

modified from the Zimmerman et al. (1984) design (Baltz et al. 1993, 1998). It extended 

approximately 2 m from the bow of a 5.2 m Boston Whaler. The sampler was attached to a 2.4 m 

tall mast that was connected to a 3.7 m boom (Fig 1.2). A pin through a swivel attached the 

sampler to a winch on the boom. After quietly maneuvering the boat towards the marsh-edge, I 

deployed the sampler by pulling the release pin, which caused the sampler to drop into the water 

and the aluminum skirt to cut into the soft substrate. After the sampler was seated, I noted time 

of day and marked the longitude and latitude coordinates of the site with a global positioning 

system (GPS) unit. Sampling occurred at random times during the day to ensure all water levels 

were represented throughout the study area. This sampler enclosed the water column nekton 

community, and I pumped the water from the sampler with a Teel Trash Pump and filtered it 

through a 333 µm mesh plankton net to collect all free swimming fishes and macroinvertebrates. 

Collected invertebrates were fixed with 10% formalin and fishes were placed in an ice bath on 

the boat. In the laboratory, fishes were fixed with 10% formalin and all nekton were indentified, 

counted, and preserved with 70% ethanol. All fishes were measure to standard length (SL) and 

sex and carapace width (CW) were recorded for all crabs. Because altered water and habitat 

quality affect nekton community composition and abundances, I measured the following 

variables at each site (place where the sampler was dropped): salinity (psu), temperature (°C), 

and dissolved oxygen (mg l-1) with a YSI 85 water quality meter. Mean water velocity (cm s-1) 

was measured with a Marsh-McBirney Model 2000 Flow-Mate, turbidity (NTU) was analyzed in 
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Figure 1.2. Drop sampler near the marsh edge with mast and boom set-up on the Boston Whaler. 
 

the lab with a Hach 2100N, and pore-water toxicity analyzed from sediment cores with a 

Microtox® Model M500. Mean depth (m) (maximum + minimum depth/2), distance to marsh 

edge from the sampler (m), dominant and subdominant marsh edge vegetation, and dominant and 

subdominant substrate type were measured outside of the sampler. Samples were collected in the 

southern portion of Barataria Bay near Grand Isle (Fig 1.1), Louisiana from March to August in 

the years 2005, 2006, and 2007.  

SUMMARY 

My primary goal was to characterize the response of marsh-edge nekton to different 

levels of degradation and create a biological assessment tool to identify the level of degradation 

of the lower Barataria Bay marsh. While conducting sampling for the aforementioned objective, 

there were some serendipitous anthropogenic and natural disturbances on the study area. There 

has also been a long-term perturbation (a press perturbations sensu Bender et al. 1984) in study 

area with increases in temperature over the past decade. I was able to test hypotheses about an oil 

spill, hurricane, and a shift in marsh-edge dominant vegetation affect on the lower Barataria Bay 

Boom 

Mast 

Sampler 
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nekton abundances and compositions. I analyzed all data with a MANOVA to ensure there were 

no interactions among the variables year, season, habitat, and degradation level. The overall 

MANOVA was significant (F44, 603 = 1.64, P = 0.007) and had significant interactions for season 

and habitat (F3, 603 = 3.74, P = 0.011), and season, habitat, and degradation level (F3, 603 = 3.32, P 

= 0.020). These interactions were taken into account in further analyses and seasons were treated 

as separate data sets for all analyses. While there are seasonal variations in species compositions 

and abundances within years in estuaries, patterns of a given season across years are predictable 

in estuaries (Loneragan 1989).  

To assess ecosystem health and to monitor restoration efforts, researchers often use an 

index of biotic integrity (IBI). Chapter 2 developed and validated a Lower Barataria Bay IBI for 

the months June, July, and August. This preliminary IBI was created with 2005 data and tested 

with 2006 and 2007 data to demonstrate the feasibility of the approach in coastal Louisiana. The 

IBI evaluated levels of degradation among sites by combining nine fish metrics created from fish 

abundance, composition, and life history attributes. The IBI successfully distinguished sites with 

low, moderate, and high degradation. IBIs can be used by resource managers with varying 

expertise to monitor the effectiveness of restoration projects or asses areas for future restoration 

efforts.  

After a month into sampling, an oil spill accord near the upper portion of the study area. 

In Chapter 3, I examined the immediate effects from an oil spill in the study area in spring 2005. 

I had the unique opportunity to use a before-after-control-impact (BACI) analysis and showed 

that fishes were displaced days after the spill, but long-term examination of area recovery was 

thwarted by Hurricanes Cindy and Katrina. Chapter 4 focused on the resilience of the nekton 

community after category 1 and category 3 hurricanes made landfall near the study area in 2005. 

I examined the recovery path of the nekton community after the two storm events, and found that 
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although there were community differences a year after the storm nekton abundance and 

community structure were similar to pre-storm conditions within two years.  

Although Chapters 3 and 4 are specific examples of human and natural perturbations, 

Chapter 5 focuses on the transformation of marsh from a Spartina dominated to black mangrove 

dominated system, and possible effects of this transition on the nekton community. Although 

Spartina still dominates, there are many mixed stands and other areas where black mangrove 

dominates. I used samples and environment data collected along those two marsh-edge 

vegetation types and a transitional marsh-edge habitat type (both Spartina and mangrove as co-

dominant vegetation). I found there was a trend of mangroves occurring with steeper marsh-edge 

slopes than Spartina and that nekton abundances were higher in mangrove dominated than 

Spartina dominated marsh-edge habitat type. An important fisheries species Farfantepenaeus 

aztecus (brown shrimp) that were more closely associated with Spartina than black mangrove 

and this relationship needs to be explored in more detail given the expected changes in habitat 

structure.  

The last chapter of my study concentrated on modeling the biotic and abiotic 

relationships in the marsh edge habitat. Chapter 5 is a qualitative (Loop) model of the Barataria 

Bay marsh-edge community, and it modeled possible shifts in trophic dynamics from alterations 

such as black mangrove encroachment, increased freshwater diversion, shrimping pressure, and 

wetland loss. The model has nodes for carnivorous wading birds, water column predators, 

penaeid shrimp, benthic fishes, small crabs, and grass shrimp as the biological variables. Habitat 

was represented in the model with nodes for turbidity, fine sediment, algae, Spartina, and black 

mangrove. These three models predicted that mangrove encroachment would decrease grass 

shrimp; freshwater diversion would increase water column predators; shrimp pressure would 

decrease wading birds and algae; and wetland loss would have a negative effect on algae. This 
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qualitative model can be a useful tool to pinpoint relationships within the community that would 

be of interest to resource managers and users, especially with regard to the long list of ongoing 

changes occurring in Barataria Bay. Barataria Bay is a dynamic estuary that has experienced 

high levels of historical, present, and probably future disturbances, and is desperately in need of 

restoration. Each of these Chapters examined a different aspect of the perturbations that 

historically and currently affect the Barataria Bay. Importantly, my dissertation illustrates how 

resilient fauna in the Bay is, which makes this area a good candidate for restoration and 

management efforts.  
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CHAPTER II 

CREATING AN ESTUARINE INDEX OF BIOTIC INTEGRITY (IBI) FOR LOWER 

BARATARIA BAY, LOUISIANA 

 

INTRODUCTION 

Southeastern Louisiana coastal waters have been experiencing increasing human 

influences for decades, and these include Native American fishing and the arrival of Europeans 

(Jackson et al. 2001, Jumonville 2002). Major impacts from humans in the system are levee 

building and canal dredging, oil and gas exploration, water control through impoundment, 

diversions, commercial and recreational fisheries, introduction of non-indigenous species, and 

pollution (Chesney et al. 2000). Louisiana’s coastal parishes housed over 47% of the total 

Louisiana population, according to census estimates in 2006 (U.S. Census Bureau 2007). People 

have developed the barrier islands that protected the decreasing wetlands of Louisiana. The coast 

also provides the state with economically important industries, including shipping, petro-

chemical, and fisheries.  Companies have dredged areas which increases erosion and creates 

spoil bank edge marshes in the historically monospecific Spartina alterniflora (Spartina) marsh.  

The Mississippi River is the world’s busiest waterway and the Port of New Orleans has 

been the center of international trade since 1718 (PORTNO 2009). This has led to levee building 

and dredging efforts such as the Mississippi River Gulf Outlet. These levees have decreased 

freshwater, sediment, and nutrient input into the wetlands (Lane and Day 1999). Since its 

inception in the early 1900s the petrochemical industry has been in Louisiana and continues to 

expand (Revette 2007, LDED 2009). Approximately 66,498 km of pipelines distribute natural 

gas and crude oil in, around, and out of Louisiana (LDED 2009). Boat traffic needed to support 

and monitor these pipelines and ancillary equipment further erode fragile wetlands. There are 

also numerous platforms and pumps dotting the inshore region of coastal bays. These inshore oil 
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and gas infrastructures have exposed wetlands to oil and gas spills and leaks (DOT 2005). The 

petrochemical business influences the same coastal areas as the fishing industry. 

Recreational and commercial fisheries in Louisiana are some of the most profitable in the 

country (Jackson et al. 2001). In 2006, commercial fisheries landings exceeded 407, 900 metric 

tons and there were approximately 1.2 million recreational anglers (NMFS 2006). Commercial 

trawl fisheries have dredged and changed the biota of large portions of the coastal systems 

including wetlands in pursuits of white and brown shrimp (Litopenaeus setiferus and 

Farfantepenaeus aztecus). These fisheries also produce high rates of bycatch mortality of the 

estuarine dependent species found on Louisiana’s coasts (Rogers et al. 1997). With these 

anthropogenic influences compounding the effects of sea-level rise and erosion it is necessary to 

develop a method of easy assessment of marsh-edge health. One way to assess human effects on 

a system is to measure biological changes along a known gradient of human influences. 

Biological assessments of ecosystem health using the multimetric index of biotic integrity 

(IBI) is effective in documenting changing responses to changes in habitat quality (Karr and Chu 

1997, Gibson et al. 2000). The index IBI utilizes biological attributes, which are measureable 

components of biological systems, to show differences resulting from human caused alterations 

to water quality, flow regime, energy resources, or biological interactions (Karr and Chu 1997). 

The most useful metrics are biological attributes that are easy to interpret, change with increasing 

human influences, are sensitive to a range of biological stressors, and can be used to discriminate 

between human induced and natural stresses of a system (Karr and Chu 1997). Examples of the 

latter are difficult to identify for Barataria Bay, as it has a long history of anthropogenic and 

natural disturbances (i.e. industry and tropical storms). Examples of measurable degrees of 

human influences are types of disturbances (fisheries or industry), proximity to human 

occupancy, or type of marsh-edge vegetation (Spartina to spoil bank vegetation). Multiple 
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attributes should be tested to validate its merit for the index. As many indexes have been created 

for freshwater systems (Karr 1981, Miller et al. 1988, Oberdorff and Hughes 1992, Karr and Chu 

1997), few have addressed dynamic estuarine systems (Thompson and Fitzhugh 1986, Engle et 

al. 1994, Deegan et al. 1997, Engle and Summers 1999, Hughes et al. 2002). Most estuarine IBI 

researchers concentrated on fish community attributes in constructing their multimetric indexes, 

because fishes respond more predictably to abiotic changes to habitat quality (Thompson and 

Fitzhugh 1986, Miller et al. 1988, Karr 1991, Oberdorff and Hughes 1992, Deegan et al. 1997, 

Karr and Chu 1997, Simon and Lyons 1995, Hughes et al. 2002). Also, state and federal agencies 

use fish community criteria for standards in freshwater ecosystem health (Simon and Lyons 

1995, Gibson et al. 2000). Fishes are preferred because they have more literature than other 

macrofauna written about them, are present throughout aquatic habitats, are easier to identify 

than small invertebrates, range across multiple trophic levels in the same area, are long-lived, 

and have high levels of public awareness (Karr 1981, Whitfield and Elliott 2002).  

My objective was to identify metrics to diagnose the condition of locations that have 

suffered various levels of degradation in a complex estuarine system that has experienced a long 

history of anthropogenic influence. To do so, I used an iterative process. I first had to detect 

response metrics from testing, evaluate the metric defined health of sites against previous 

expectations, and interpret these values in terms of an assessment of the entire area (Karr and 

Chu 1997). The metrics used can show differences with a range from apparently healthy area 

with many stress intolerant species in multiple trophic levels to degraded areas with few stress 

tolerant fish species (Karr 1981). The classification criteria for IBIs are both species richness and 

ecological factors (Karr 1981). Species richness criteria such as diversity are useful tools to 

assess system health, but can overlook important rank order shifts in complex ecosystems like 

estuaries. Using species composition metrics with trophic levels or life history categories and 
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abundance helps to classify the habitat quality of a system (Oberdorff and Hughes 1992, Deegan 

et al. 1997, Engle and Summers 1999). I sampled different attributes of the system to identify 

their ability to respond across differing levels of degradation (Karr and Chu 1997). Once 

appropriate metrics were identified they were scored from 5 (less degraded) to 3 (moderately 

degraded) and then 1 (highly degraded) (Deegan et al. 1997, Karr and Chu 1997, Engle and 

Summers 1999). These metric scores are summed to create the index value for each site sampled 

(Simon and Lyons 1995, Deegan et al. 1997, Karr and Chu 1997). Statistical analyses such as 

ANOVA and discriminant analyses were then used to detect significant differences among index 

values for sites in differing states of degradation (Deegan et al. 1997, Engle and Summers 1999). 

Because these indexes are multimetric, they are sensitive to the changes to a system from 

increased anthropogenic influences (Karr and Chu 1997). In this study, I used two seasons of 

data from 2005 to develop and test fish metrics in an effort to create a lower Barataria Bay IBI. I 

used data from 2006 and 2007 to validate the model. 

MATERIALS AND METHODS 

Study Area 

The study area consisted of marsh-edge habitats surrounding three island groups in the 

lower portion of Barataria Waterway Bay (Fig 2.1). This area was chosen to reflect uniform 

water quality measurements (water temperature (˚C), salinity (psu), and dissolved oxygen (mg l-

1)), depth (cm), and mean water velocity (cm s-1) to minimize these influences on the fish 

composition of the samples. Based on my assessment of the accumulative influence of human 

activity, one of three ordinal levels of degradation were assigned to each sampling location 

within the sampling area. Less degraded locations had sloping marsh edge, were dominated by 

Spartina and/or Avicenna germinans (mangrove) vegetation and had silt and organic matter as 

primary substrate (Fig 2.2.a). These less degraded locations were generally harder to reach and 
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somewhat protected. Moderately degraded locations have more boat and wave action or were 

areas of past human influences that had been decreased in recent time. While the marsh-edge 

vegetation is similar between less and moderately degraded locations, moderately degraded 

location has shell and silt as its dominant substrate (Fig 2.2.b). Highly degraded locations have 

weedy spoil bank vegetation such as Myrica cerifera (wax myrtle) and Iva frustescens (marsh 

elder) or Phragmites australis (common reed), a steep and often eroded marsh-edge slope with 

shell or sand substrate (Fig 2.2.c). These sites were also deeper and were harder to sample along 

the marsh edge. Most of the highly degraded locations had trash along the marsh edge such as 

tires, rebar, and cement. At each of the locations, we took three independent samples to fully 

characterize the marsh edge of that degradation level replicate (Fig 2.1).  

Field and Laboratory Methods 

Monthly from March to August I randomly deployed the drop sampler at three 

independent sites within each of the four replicate locations for the three differing levels of 

degradation (n = 216). At each site after the sampler was seated, GPS coordinates, time of day, 

marsh edge vegetation, and dominant substrate were recorded. I also measured mean water 

velocity, mean depth, and water quality before evacuating the trap and collecting all fishes that 

were fixed in formalin and preserved in alcohol. At the laboratory turbidity and porewater 

toxicity were analyzed from water and sediment samples collected outside the trap. I identified 

and counted the collected fishes and divided fish taxa into life history categories of estuarine 

resident or spawner, the trophic category of top carnivore, and spatial category of benthic life-

history (Table 2.1). Species were also divided into compositional groups such as the orders 

Perciformes (perch-like fish) and Plueronectiformes (flatfish) and the families Sciaenidae 

(drums) and Gobiidae  (gobies) as intolerant taxa. The order Clupeiformes (anchovy and 

menhaden) represented tolerant taxa (Table 2.1). Species richness (number of species in a 
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sample), diversity (Shannon-Weiner diversity index H’), and total abundances were calculated 

for each sample. All categories were examined for potential use as metrics for development of 

the IBI. 

 
 
 

 
 

Figure 2.1. Map of study area with sampling locations of the three levels of degradation boxed 
with L = less degradation, M = moderate degradation, H = high degradation and representatives 
of sampling sites within each where L sites are (○), M sites are (□), and H sites are (ø).
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Figure 2.2. Examples of the marsh-edge appearance for a) less degraded location, b) moderately 
degraded location, and c) highly degraded location. 
 
 
Table 2.1. List of fish taxa, common name, and order with superscript representing the metrics a) 
estuarine resident, b) estuarine spawner, c) top carnivore, and d) benthic life-history. 
 

Species/Family Common Name Order 

Anchoa hepsetus striped anchovy Clupeiformes 

Anchoa mitchilli
a,b

 bay anchovy Clupeiformes 

Ariopsis felis
b,d

 hardhead catfish Siluriformes 

Bairdiella chrysoura
d
 silver perch Perciformes 

Bathygobius soporator
b,d

 frillfin goby Perciformes 

Brevoortia patronus gulf menhaden Clupeiformes 

Chaetodipterus faber Atlantic spadefish Perciformes 

Citharichthys spilopterus
c,d

 bay whiff Plueronectiformes 

Ctenogobius boleosoma
a,b,d

 darter goby Perciformes 

Cynoscion arenarius
b,c,d

 sand trout Perciformes 

Cynoscion nebulosus
b,c,d

 spotted trout Perciformes 

Dasyatis americana
c,d

 stingray Myliobatiformes 

Elops saurus ladyfish Elopiformes 

Gerridaeb mojarra Perciformes 

Gobiesox strumosus
b,d

 skilletfish Perciformes 

Gobiidaea,b,d goby Perciformes 

Gobiosoma bosc
a,b,d

 naked goby Perciformes 

Gobiosoma robustum
a,b,d

 code goby Perciformes 

Hypleurochilus geminatus
b,d

 crested blenny Perciformes 

Lagodon rhomboides
a,b,c,d

 pinfish Perciformes 

Leiostomus xanthurus
c,d

 spot Perciformes 

Lutjanus griseus
c
 grey snapper Perciformes 

b) a) c) 
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Membras martinica
a,b

 rough silverside Atheriniformes 

Menidia beryllina
a,b

 inland silverside Atheriniformes 

Menticirrhus americanus
c,d

 southern kingfish Perciformes 

Microphis brachyurus
b,d

 pipefish Gasterosteiformes 

Micropogonias undulatus
d
 Atlantic croaker Perciformes 

Mugil cephalus
d
 striped mullet Mugiliformes 

Mugil curema white mullet Mugiliformes 

Myrophis punctatus
d
 speckled worm eel Anguiliformes 

Neoconger mucronatus
d
 ridged eel Anguiliformes 

Opsanus beta
a,b,d

 gulf toadfish Batrachoidoformes 

Paralichthys lethostigma
c,d

 southern flounders Plueronectiformes 

Pogonias cromis
c,d

 black drum Perciformes 

Pomacanthidaed angelfish Perciformes 

Sciaenidae drum Perciformes 

Sciaenops ocellatus
c,d

 red drum Perciformes 

Sphoeroides parvus
d
 least puffer Tetradontiformes 

Strongylura marina Atlantic needlefish Beloniformes 

Syacium papillosum
c,d

 dusky flounder Plueronectiformes 

Symphurus plagiusa
d
 blackcheek tonguefish Plueronectiformes 

Syngnathus louisianae
b,d

 chain pipefish Gasterosteiformes 

Syngnathus scovelli
b,d

 gulf pipefish Gasterosteiformes 

Synodus foetens inshore lizardfish Aulopiformes 
 
 

Statistical Methods 

My IBI was developed with data collected in 2005 and tested with data collected in 2006 

and 2007 using ANOVA and discriminant analysis in SAS (2004). Environmental data were 

tested with ANOVAs to determine if there were differences among sites in the sample area. This 

was done to avoid possible differences in fish data among degradation locations were not relicts 

from time of day or other natural environmental changes. To increase the probability of 

differences detected by the analyses to be artificially caused and not by natural variations, the 

best time to run an IBI is during a stable time period in the estuary. I tested samples for 
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differences between months of the spring and summer seasons with ANOVAs to determine 

which season had no significant temporal differences among fishes.  

All life history, trophic, spatial, and taxonomical categories were treated as proportional 

metrics (number in category/total abundance*100%) for each sample. Total abundance data were 

log (X + 1) transformed for normality (SAS 2004). For metric development ANOVAs, the main 

effect factors were the pre-assigned degradation levels less degraded (L), moderately degraded 

(M), and highly degraded (H).  The individual metrics were the dependent variables. Tukey’s 

post hoc pairwise comparisons were used to test differences among degradation levels and α = 

0.05 was used for significance. 

 Metrics that were sensitive to changes in habitat quality received index scores based on 

the highest metric measurements representing best habitat quality. These metrics were divided 

into thirds and scored based on Karr and Chu (1997). Proportional metrics in the range of 100 to 

66.67% representing highest quality and a metric score of 5, 66.66 to 33.33% representing 

moderate habitat quality with a metric score of 3, and 33.32 to 0% representing the lowest habitat 

quality with a metric score of 1. Because Clupeiformes contains anchovy and menhaden, which 

are considered tolerant taxa this metric received scores based on the opposite of the intolerant 

taxa metric scores. The summation of these metric scores created the sample’s index score, and 

analyses yielded a refinement of site assignments. Metrics were re-analyzed with ANOVAs to 

detect their sensitivity to the site level degradation assignments.  

A discriminant analysis estimated the classification efficiency of the newly assigned 

groups with the multiple metrics (Deegan et al. 1997, Engle and Summers 1999). This analysis 

describes algebraically the relationship among individuals in a site and makes the differences in 

those relationships evident. Populations are then separated into groups based on the observed 

characteristics (SAS 2004). These derived groupings are compared to the a priori group 
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assignments and error rates are calculated. This analysis utilized many metrics for group 

verification. These methods were repeated on the 2006 and 2007 data to validate the metrics 

chosen and verify classifications were appropriate. It is important to use all metrics as one will 

not show the clear separation among degradation levels especially in a dynamic system like the 

estuary. This is evident in graphs of the multimetric scores and graphs of the specific metrics 

such as total abundance or diversity alone. Segregation of metrics among groups is visually 

evident with multidimensional scaling (MDS). This visually depicts the relationships among sites 

in three-dimensional space. MDS dimensions are tested for significant differences with 

MANOVAs to determine clusters created are significant. There is also a goodness of fit test that 

produces a stress level. This is the inverse of an r2 where a stress level below 0.2 indicates the 

MDS is a good representation of these data. 

RESULTS 

Selection of Metrics and Index Scores 

Environmental variables did not significantly differ among degradation levels, so 

biological changes observed are not from small environmental variable shifts in the study area. 

Microtox analysis did not determine enough toxic samples to use in analyses. The ANOVAs run 

on month data found June, July, and August had no significant differences for each metric 

among these months, while March, April, and May showed significant differences for each 

metric. Spring samples had higher variation possibly from weather changes and immigration of 

species into the estuary. Therefore only summer data were used in the rest of the analyses.  

From the metrics tested, percent top carnivore, percent Plueronectiformes, and percent 

Sciaenidae showed no significant differences among pre-assigned groups or the re-assigned 

index groups (Table 2.2). Estuarine resident, estuarine spawner and percent Clupeiformes did not 

have a significant difference among pre-assigned groups, but showed significant differences 
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within the new index groupings (Table 2.2). I used the nine remaining metrics for the 

multimetric analyses and used these for 2006 and 2007 IBI development and validation. The use 

of multiple metrics instead of total abundance or diversity is to show clear separation of sites in 

different degradation levels (Fig 2.3). 

Discriminate analysis for original grouping of the metrics in the 2005 samples had a high total 

error rate of 0.42 and had multiple misclassifications for each group (Table 2.3). Site index 

scores ranged from 45 with all metrics scoring for low degradation (5) to 9 with all metrics 

scoring for high degradation (1). I re-assigned an index group label of L for sites with summed 

metric scores between 45-34, an index group label of M for sites with summed metric scores 

between 33-22, and an index group label of H for sites with summed metric scores between 21-9. 

With the re-assignment of degradation levels based on summed index scores the number of 

highly degraded sites increased from 36 to 58 while the number of low degraded sites decreased 

from 36 to 19 (Table 2.3). The discriminant analysis on the index score groupings came out with 

a 0.065 error rate and most classifications were correctly distributed across groups (Table 2.3). 

The difference between the separation of sites based on old and new degradation level 

assignments is illustrated with significant MDS graphics. The original group assignments had no 

significant clusters in three-dimensional space, while the new group assignments based on the 

multiple metric scores have significant clusters (Fig 2.4.a,b).  

Validation of Metrics and Index Scores 

Metrics were significantly different across degradation levels for both 2006 and 2007 

data (Table 2.4) and discriminant analyses had error rates less than 0.070 with most 

classifications correct for 2006 and 2007 index scores (Table 2.5). The sites that were highly and 

moderately degraded were higher in number while low degradation sites were less numerous for 

these years than the original site degradation assignments. 
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Table 2.2. ANOVA results for all metrics for the original group assignments and new group 
assignments with * indicating significant p-values (P < 0.05). 
 

Original Grouping F-value Pr > F 

Estuarine Resident 0.79 0.457 

Estuarine Spawner 2.82 0.064 

Top Carnivore 1.30 0.277 

Benthic  2.99 0.054* 

Perciformes 5.07 0.008* 

Plueronectiformes 0.74 0.480 

Clupeiformes 0.35 0.708 

Sciaenidae 0.85 0.429 

Gobiidae 4.75 0.011* 

Species Richness 4.03 0.021* 

Diversity 4.17 0.018* 

Total Abundance 6.74 0.002* 

New assignment F-value Pr > F 

Estuarine Resident 6.24 0.003* 

Estuarine Spawner 49.92 <0.001* 

Top Carnivore 0.18 0.832 

Benthic  67.51 <0.001* 

Perciformes 184.57 <0.001* 

Plueronectiformes 1.70 0.188 

Clupeiformes 3.82 0.025* 

Sciaenidae 0.74 0.481 

Gobiidae 127.20 <0.001* 

Species Richness 21.96 <0.001* 

Diversity 23.15 <0.001* 

Total Abundance 10.30 <0.001* 
 
  



  24 

 
Table 2.3. Discriminant analysis results for the original group assignments and the new group 
assignments with misclassifications of samples in each group, total samples included in 
groupings, and error rates of classifications. 
 

  Low Moderate High Totals 

Low 30 2 4 36 

Moderate 13 21 2 36 

High 20 4 12 36 

Error Rates 0.417 0.167 0.667 0.417 

  Low Moderate High Totals 

Low 19 0 0 19 

Moderate 1 29 1 31 

High 0 5 53 58 

Error Rates 0.000 0.065 0.086 0.065 
 
 
 
Table 2.4. Significant ANOVA results of metrics for the validation data sets from 2006 and 
2007. 
 

2006 F-value Pr > F 

Estuarine Resident 23.20 <0.001 

Estuarine Spawner 78.57 <0.001 

Benthic  82.58 <0.001 

Perciformes 119.20 <0.001 

Clupeiformes 3.43 0.033 

Gobiidae 83.31 <0.001 

Species Richness 32.68 <0.001 

Diversity 34.85 <0.001 

Total Abundance 38.17 <0.001 

2007 F-value Pr > F 

Estuarine Resident 8.13 <0.001 

Estuarine Spawner 37.57 <0.001 

Benthic  90.34 <0.001 

Perciformes 89.08 <0.001 

Clupeiformes 3.51 0.033 

Gobiidae 108.66 <0.001 

Species Richness 49.16 <0.001 

Diversity 36.71 <0.001 

Total Abundance 22.09 <0.001 
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Table 2.5. Discriminant analysis results for the validation data sets 2006 and 2007 with 
misclassifications of samples in each group, total samples included in groupings, and error rates. 
 

2006 Low Moderate High Totals 

Low 21 1 0 22 

Moderate 6 39 0 45 

High 0 0 41 41 

Error Rates 0.046 0.133 0.000 0.065 

2007 Low Moderate High Totals 

Low 14 0 0 14 

Moderate 1 41 0 42 

High 0 3 49 52 

Error Rates 0.000 0.024 0.058 0.037 
 

 

 

a)     b)  

c)  
 
 
Figure 2.3. Graphs of the different levels of degradation with a) diversity (H’), b) total 
abundances, and c) multimetric site scores. 
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a)  

b)  
 
Figure 2.4. Three-dimensional MDS graphics of the sites with less degraded sites (white circles), 
moderately degraded sites (grey squares), and highly degraded sites (black circles) for a) the 
original degradation assignments and b) the new degradation assignments. Stress is 0.07 for both 
MDS graphs indicating they represent the data. 
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Figure 2.5. Map of study area with sampling locations of the three levels of degradation boxed 
with M = moderate degradation and H = high degradation. There were no L=less degraded 
locations. All locations with * were a change from degradation level and the white box indicates 
the location that was re-assigned as highly degraded from less degraded. 
 
 

The locations were re-assigned degradation levels based on summation of scores for each site, 

and there was an increase in moderately degraded locations and no less degraded locations in the 

study area (Fig 2.5). Most less degraded locations were moderately degraded according to the 

IBI scores. One less degraded location was considered highly degraded with IBI scores. 
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DISCUSSION 

 Monitoring the fish community for habitat quality changes is a better alternative to more 

in-depth and costly physiochemical evaluation of estuaries. While toxicity and chemical 

pollutant sampling is useful it is expensive and hard to execute. Other monitoring programs also 

rely on diversity indexes or presence absence of indicator species, but these methods often 

overlook the biological integrity of complex ecosystems like estuaries (Miller et al. 1988, Engle 

et al. 1994). IBI concepts are multimetric and based on community or assemblage data. These 

indexes can be applied to different fish fauna in a wide variety of habitats ranging from European 

freshwater streams to northern Gulf of Mexico estuaries (Oberdorff and Hughes 1992, Engle et 

al. 1994, Engle and Summers 1999). These methods can also be used to determine if restoration 

actions taken result in improvements to degraded areas (Karr 1991, Oberdorff and Hughes 1992). 

The IBI approach is easily re-evaluated and metrics re-tested and validated especially when large 

scale disturbances such as oil spills and hurricanes or significant changes in flow or water 

temperature due to climate change are observed (Karr 1991, Engle and Summers 1999). 

 My IBI combined metrics from different fish community attributes used to determine 

how the community and numbers changed with changes to levels of degradation.  While each 

individual metric did not show an effect of human influences, combined as a multimetric 

analysis they show site specific changes across differing levels of human caused stresses (Fig 

2.3). The summer months were more stable and were good candidates for development of the IBI 

and this is a similar finding to that of Deegan et al. (1997) in Massachusetts. This was a small-

scale study and applies to the lower Barataria Bay in June, July, and August and it indicates the 

area is moderately or highly degraded with a small amount less degraded sites. Also long-term 

anthropogenic influences are seen in Barataria Bay can cause continual transitions in estuarine 

biota as they do in streams (Horwitz 1978). That is why the index must be frequently re-



  29 

developed and evaluated to keep pace with the shifting baseline syndrome (Pauly 1995). 

Sampling, analyses, and development of IBIs are easily implemented. There were shifts seen in 

the amount of low degradation locations to moderately degraded locations and this suggests that 

in Barataria Bay has a small amount of high quality habitat and this habitat is difficult to visually 

categorize by the physical state of the marsh. The moderately and highly degraded habitats are 

easily evaluated visually based on readily observable marsh-edge characteristics such as marsh-

edge vegetation and degree of active human exploitation. Once developed the IBI can be used by 

people with a variety of backgrounds and expertise to identify degraded habitats or monitor 

recovery and restoration efforts. The use of area specific IBI combined with other monitoring 

data can be used for the different portions of Barataria Bay and coastal Louisiana to help with 

restoration efforts and communication of site health to agencies and the public.  
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CHAPTER III 

SHORT-TERM EFFECTS OF AN OIL SPILL ON MARSH-EDGE FISHES AND 

DECAPOD CRUSTACEANS* 

 

INTRODUCTION 

Louisiana experiences a large amount of oil pollution compared to other states due to the high 

number and volume of oil storage facilities, production platforms, pipelines, and intense tanker 

and barge traffic on its waterways (Scott 2007). The Louisiana Offshore Oil Port handles 

approximately15% of the oil for the United States (OSPR 2003). Louisiana regularly harvests 

sweet crude oil that is relatively non-toxic and is characterized by high alkane concentrations, 

low polarity, and moderate concentrations of polycyclic aromatic hydrocarbons (PAHs) (Jackson 

and Pardue 1999). Sweet crude oil contains many volatile small hydrocarbons that evaporate 

within the first 24 to 48 hours after a spill (Kennish 1992); however, less volatile hydrocarbon 

fractions are sequestered by the more adsorbent silt/clay and organic sediments (Knezovich et al. 

1987, Kennish 1992, Rozas et al. 2000). Though degradation is much slower for petroleum 

hydrocarbons that enter the deeper anaerobic zone, petroleum hydrocarbons reach deeper 

sediments by moving through an oxidized surficial layer where aerobic microbes more rapidly 

degrade them (DeLaune et al. 1990). Oil composition is important in degradation, but the size of 

the spill and environmental conditions at the spill site have a greater influence on how the oil 

will affect that area (Teal and Howarth 1984). While oil spill potential is high in Louisiana, local 

conditions help mitigate impacts. The highly organic sediments support abundant and varied 

microbial populations. The warm oxidized water and surficial sediment facilitate microbial 

activity, increase hydrocarbon degradation, and combine with flushing of estuaries to reduce 

contaminant concentrations (DeLaune et al. 1990). 
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Louisiana also supports 26% of the nation’s commercial fisheries catch and has highly 

successful recreational fisheries dominated by Callinectes sapidus (blue crab), Litopenaeus 

setiferus (white shrimp), Farfantepenaeus aztecus (brown shrimp), Brevoortia patronus (gulf 

menhaden), and Crassostrea virginica (oysters) (Perry and McIlwain 1986, OSPR 2003). These 

high catches are due to the extensive area of Louisiana wetlands and estuaries. Louisiana 

fisheries overlap broadly in space and time with oil production and transportation that increases 

the potential for negative interactions between these economically important industries. 

Organisms are affected by oil mainly through filtration/ingestion, penetration, and smothering 

(Suni et al. 2007). Animal densities in salt marshes are reduced by short-term toxicities such as 

those found with small-scale oil spills (Rozas et al. 2000). Also different species and life history 

stages react differently to the toxic stress with less mobile benthic fishes and invertebrates 

suffering increased mortality. Compared to highly mobile pelagic fishes, benthic organisms are 

more sensitive to environmental disturbance as they are often sedentary, use contaminated food 

sources, and cycle nutrients and contaminants locally (Rozas et al. 2000, Chapman and Wang 

2001). Benthic communities are often used by scientists to monitor effects of marine pollution 

(Gray et al. 1990); however, animals that are found in stressed environments which may be 

regularly exposed to oil contamination are likely less sensitive than animals found in more 

pristine environments (Rozas et al. 2000). Our interest in undertaking this study was to develop a 

better understanding of nekton responses to small scale oil spills in coastal Louisiana such as 

Barataria Bay a shallow, well-mixed estuary with strong flushing and oxidation of the sediments, 

and a long history of petroleum contamination (DeLaune et al. 1990, Jackson and Pardue 1999, 

OSPR 2003, Scott 2007).  

A regularly scheduled sampling event was interrupted on 19 April 2005, by an oil spill of 

approximately 95.39 m3 (600 barrels) of crude oil (Department of Transportation 2005, National 
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Response Center 2005) at the northern range of our study area in Barataria Bay, Louisiana. By 

1700 hours on 21 April, most of the floating oil was sequestered by containment booms and 

removed by skimmers and absorbent pads. This quick clean-up response, and a south-southeast 

wind with a mean velocity of 3.9 m s-1, gusting up to 8.2 m s-1  (NOAA station 8761724) 

confined the spill effects to the vicinity of Mendicant Island and northward (Fig 3.1). A diurnal 

tide of small amplitude, 0.24 m, was dominated by the southerly wind and did not disperse the 

spill to the south. On 22 April when we were able to resume sampling, it was apparent that the 

effects were generally contained in the northern part of our study area. The spill presented an 

opportunity to evaluate short-term effects of a confined spill on the abundance of fishes and 

decapods crustaceans in the marsh-edge nekton community. We sampled around both islands 

before and after the spill and applied a Before-After-Control-Impact (BACI) analysis (Smith et 

al. 1993, Smith 2002). We also used nonparametric analyses to explore any larger community 

structure effects from this oil spill event. 

MATERIALS AND METHODS 

Study Area 

The study area is dominated by Spartina alterniflora along the marsh edges (0 to < 3 m 

from emergent vegetation) on portions of two larger islands (Mendicant and Beauregard) in the 

lower Barataria Bay Waterway in southeastern Louisiana (Fig 3.1). This micro-tidal estuary is 

shallow (mean depth is 1.50 m) and highly turbid (> 10 NTU) with seasonal salinities typically 

ranging from 6 to 22. Sediments vary and include organic matter, clay, silt, sand, and shell (Baltz 

et al. 1998, Birdsong 2004). This well-mixed estuary rarely stratifies because of its shallow 

depth, diurnal tides, and regular storm/wind events that govern water movement (Inoue et al. 

2008). Barataria Pass is the deepest portion of the Basin (50 m) and is deeply scoured by tidal 

movement between the bay and the Gulf of Mexico (Krumbein and Aberdeen 1937).  
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Figure 3.1. Map of the study area in Barataria Bay Waterway in southeastern Louisiana with the 
impacted Mendicant Island (upper box), and the control Beauregard Island (lower box), and the 
oil spill origin () at 29° 19’ 24.94” N, 89° 59’ 19.05” W. 

 

Dominant fish species are Anchoa mitchilli (bay anchovy), Micropogonias undulatus (Atlantic 

croaker), Ctenogobius boleosoma (darter goby), and Gobiosoma bosc (naked goby). Decapod 

crustaceans using the estuary are Litopenaeus setiferus, Farfantepenaeus aztecus, Palaemonetes 

spp. (grass shrimp), Callinectes sapidus, and Clibanarius vittatus (hermit crab) (Chesney et al. 

2000, Jones et al. 2002).  

Field and Laboratory Methods 

In three monthly sampling events 18-19 March, 9-22 April, and 7-18 May 2005, we 

deployed a 1.18 m2 cylindrical fiberglass drop sampler at independent but closely juxtaposed 

sites (n = 108) in the study area. Due to the timing of the oil spill we collected 60 samples before 



 36 

and 48 samples after the event. We randomized sampling order to ensure the same site was not 

repeatedly sampled at the same time of day each month. At a site we recorded GPS coordinates, 

time of day, and environmental variable measurements. Water quality data (salinity, dissolved 

oxygen (mg l-1), and temperature (ºC)) were collected using a YSI 85 meter, and water samples 

were collected to measure turbidity (NTU). Outside the sampler we collected sediment cores for 

pore-water contamination analysis, characterized sediment type, and measured mid-water 

column velocity (cm s-1) with a Marsh-McBirney Model 2000 Flow-Mate. We also measured the 

distance to marsh edge (m), and we measured maximum and minimum depths in the drop 

sampler to estimate mean depth (m). We then used a trash pump to remove water from the 

sampler and filtered that water through a 333 μm mesh plankton net to ensure all fishes and 

decapod crustaceans were collected. Any remaining animals (e.g. epibenthic fauna) were 

removed by hand nets and fixed in 10% formalin. In the laboratory, we identified nekton to the 

lowest possible taxon and counted them. Following identification all animals were preserved in 

70% ethyl alcohol. We used the sediment cores to screen for porewater toxicity on a Microtox® 

Model M500 analyzer, and the water column samples were analyzed for turbidity with a Hach 

2100N laboratory meter.  

Statistical Methods 

A BACI study requires sampling prior to an event to ensure temporal control, knowledge 

of time and place of the event, and a control to isolate spatial effects (Green 1979, Osenberg and 

Schmitt 1994). It is also important for impact and control strata to be sampled simultaneously 

during before and after periods of a specific event (Stewart-Oaten et al. 1986, Smith et al. 1993). 

Sampling protocol for spring 2005 in Barataria Bay Waterway met these requirements. Hurlbert 

(1984) argued that impact experiments and analyses constitute pseudoreplication because of non-

randomization of the impact and control sampling strata; however, when the impact is handled as 
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a separate treatment that the researcher cannot control it can be justifiably considered random 

(Smith 2002). With the BACI analysis there is one before-event period, and one after-event 

period sampling of both impact and control strata. In two-way analysis of variance (ANOVA) 

evidence of a significant event effect requires a significant temporal-spatial interaction term 

(Stewart-Oaten et al. 1986, Underwood 1994). All analyses were conducted with the MIXED 

procedure in Statistical Analysis System package (SAS 2004). After examining the data (n = 

108) for normality we pooled three closely juxtaposed sites into 36 locations and estimated mean 

water quality variables for each location (n = 36). We set α to 0.1 for all analyses because the 

event was an isolated incident, this experiment could not be replicated or enhanced, there was a 

small sample size, and we attempted to detect environmental impacts in a short amount of time 

(Underwood 1994, Anderson and Talley 1995). The March 18-19 and April 9-10 samples served 

as before-spill samples (n = 20), and the April22 and May 7, 16-18 samples served as after-spill 

samples (n = 16) (Table 3.1). We used the southern Beauregard Island locations as the control (n 

= 18) and the northern Mendicant Island locations as the impact (n = 18) treatment samples (Fig 

3.1).  

 
 
Table 3.1. Rank orders of taxa based on the number of individuals collected. Mean abundances 
(abundance/sample size) of each taxa, total individuals, fishes, and decapod crustaceans for 
overall (before + after), before, after, control, and impact samples. 
 

Species/Genus Rank Overall  Before After Control Impact 

Palaemonetes pugio 1 116.61 83.05 33.56 57.72 64.39 

Clibanarius vittatus 2 29.81 11.00 18.81 13.06 15.89 

Callinectes sapidus 3 14.21 9.15 5.06 5.78 8.89 

Ctenogobius boleosoma 4 12.21 10.15 2.06 6.28 6.83 

Gobiesox strumosus 5 9.20 2.45 6.75 2.67 6.06 

Callinectes similis 6 7.16 0.10 7.06 3.89 2.50 

Xanthidae 7 6.10 1.60 4.50 2.89 2.89 

Micropogonias undulatus 8 4.16 3.35 0.81 2.06 2.39 

Mysidopsis spp. 9 3.56 0.00 3.56 2.67 0.50 
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Gobiosoma bosc 10 2.48 1.60 0.88 0.72 1.83 

Farfantepenaeus aztecus 11 2.70 0.45 2.25 0.28 2.22 

Anchoa hepsetus 12 1.95 1.95 0.00 0.00 2.17 

Anchoa mitchilli 13 1.28 0.90 0.38 0.17 1.17 

Menippe adina 14 1.33 0.45 0.88 0.83 0.44 

Hypleurochilus geminatus 15.50 0.93 0.30 0.63 0.33 0.56 

Symphurus plagiusa 15.50 0.88 0.50 0.38 0.06 0.83 

Panopeus simpsoni 17 0.66 0.35 0.31 0.39 0.28 

Myrophis punctatus 18 0.48 0.10 0.38 0.11 0.33 

Citharichthys spilopterus 19.50 0.40 0.15 0.25 0.06 0.33 

Rhithropanopeus harrisii 19.50 0.44 0.00 0.44 0.00 0.39 

Eurypanopeus depressus 21 0.30 0.30 0.00 0.17 0.17 

Syngnathus louisianae 22 0.19 0.00 0.19 0.06 0.11 

Synodus foetens 23.33 0.16 0.10 0.06 0.06 0.11 

Alpheus spp. 23.33 0.18 0.05 0.13 0.00 0.17 

Mugil curema 23.33 0.18 0.05 0.13 0.06 0.11 

Brevoortia patronus 26 0.10 0.10 0.00 0.11 0.00 

Persephona mediterranea 27.17 0.05 0.05 0.00 0.00 0.06 

Syacium papillosum 27.17 0.05 0.05 0.00 0.00 0.06 

Gobiidae 27.17 0.06 0.00 0.06 0.00 0.06 

Menidia beryllina 27.17 0.06 0.00 0.06 0.00 0.06 

Menticirrhus americanus 27.17 0.06 0.00 0.06 0.00 0.06 

Penaeid 27.17 0.06 0.00 0.06 0.06 0.00 

Total Individuals  218.11 128.30 89.81 124.00 98.39 

Total Fishes  34.75 21.75 13.00 18.17 17.56 

Total Decapods  183.29 106.60 76.69 105.89 80.72 

Sample Size   36 20 16 18 18 
 

Nine separate BACI analyses were run on the total number of individuals (e.g., fishes and 

decapod crustaceans), the total number of fishes, the total number of decapod crustaceans, and 

individually on six sensitive species. Treatments were temporal (before and after) and spatial 

(control and impact) as main effects, and their interactions were tested as the event effects.  

The use of nonparametric analyses has increased, to avoid problems with assumptions 

that occur in most ecological community data (Smith et al. 1993). Because of the dynamic nature 

of estuarine faunal communities, community structure generally shows a more complete picture 

of the effect and distribution of a pollutant than number of individuals or species data alone 
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(Gray et al. 1990). We used the Plymouth Routines In Multivariate Ecological Research 

(PRIMER) package on the pooled data set (n = 36) to relate the impact of the oil spill to changes 

in species composition at the community level (Clarke and Warwick 2001). The 

multidimensional scaling analysis (MDS), analysis of similarity (ANOSIM), BIOENV, and 

similarity percentages with species composition (SIMPER) procedures were run using Bray-

Curtis similarity matrix after square-root transforming the species data. By down weighing the 

abundant species, this transformation allows similarities to depend on both abundant and rare 

species (Clarke and Warwick 2001). An MDS is a graphical representation of biological 

relationships among samples. Closely juxtaposed samples in three-dimensional graphical space 

have more similar species compositions, while samples farther from each other have more 

dissimilar compositions (Clarke and Warwick 2001). The ANOSIM tests whether samples differ 

between treatments and produces a statistic (R), which ranges -1 to 1 and reflects observed 

differences between treatments contrasted to differences within treatments. A strongly positive R 

approaching 1 indicates samples within a treatment are more similar than samples between 

treatments. An R of 0 indicates no difference between treatments. And, a strongly negative R 

approaching -1 indicates samples between treatments are more similar than samples within the 

same treatments. When the null hypothesis fails to be rejected and there is no effect between 

treatments the redistribution of sample treatment labels would make no difference to the R 

statistic therefore the test would not be significant (Clarke and Warwick 2001). The BIOENV 

procedure calculates the correlation coefficient between two similarity matrices (species and 

environment) and identifies the environmental variables that explain the community patterns in 

the species matrix (Clarke and Warwick 2001). The SIMPER test shows which species 

contribute to the multivariate patterns detected; species mean abundances are compared and the 

contribution of species to the Bray-Curtis measures of similarity and dissimilarity are examined 
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(Ehrich and Stransky 1999). These tests indicate how the nekton community structure and 

specific taxa responded to the oil spill.  

RESULTS 

Parametric Analyses 

We quantitatively characterized species composition and environmental conditions at 36 

locations covering 127.44 m2 of marsh-edge habitat. Twenty-seven species and five higher taxa 

comprised the 4001 individuals collected. Decapod crustaceans dominated the collection with 

3358 individuals, whereas there were only 643 fishes. The BACI analyses of the total number of 

individuals, total number of fishes, and total number of decapod crustaceans showed no 

significant differences for the main effects (P > 0.10). There were significant interactions 

(BA*CI) (P < 0.09) for the total number of individuals (F1,32 = 3.09, P < 0.09) and total number 

of fishes (F1,32 = 3.06, P < 0.09), indicating specific event effects on abundances. Before- and 

control-treatment samples yielded consistently greater abundances of total number of 

individuals, total number of fishes, and total number of decapod crustaceans than the after- and 

impact-treatment samples (Table 3.1). The interaction term abundances show before-control 

abundances were consistently higher than after-impact abundances. Because six species 

(Palaemonetes pugio, Clibanarius vittatus, Ctenogobius boleosoma, Callinectes sapidus, 

Callinectes similis, and Gobiesox strumosus (skilletfish)) dominated and drove similarities 

within treatments, we ran separate species-level BACI analyses on each.  Significant interactions 

(F1,32 = 2.90 and F1,32 = 3.81, P ≤ 0.10) indicated potential spill effects for only two species, P.  

pugio and C. boleosoma. Tests on the other four species were not significant for interactions or 

main effects (P > 0.10). There was some temporal and spatial variation with seven environmental 

variables (salinity, dissolved oxygen, temperature, turbidity, mean water velocity, distance to 

marsh edge, and mean depth) tested with BACI analyses. Distance to marsh edge had the only 
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significant interaction, (F1,32 = 7.37, P = 0.01) (Table 3.2).   Microtox analysis on the porewater 

from sediments was generally non-toxic with only five of 108 samples indicating some 

contamination. These five samples were spread fairly evenly among all treatments (before = 3, 

after = 2; control = 3, impact = 2), so trends could not be detected.  

 
Table 3.2. Mean environmental data with standard error for the BACI analysis with * signifying 
a significant (P < 0.1) interaction, † signifying a significant (P < 0.1) temporal, and ‡ spatial 
effect, respectively. 
  

Treatments Temporal     Spatial   

  Before After  Control Impact 

Salinity 17.3 ± 1.63 18.4 ± 0.23  18.0 ± 01.19 17.8 ± 1.15 

Dissolved Oxygen (mg l-1) 7.4 ± 0.29† 8.8 ± 0.58†  8.8 ± 0.51‡ 7.4 ± 0.40‡ 

Temperature (°C) 19.6 ± 0.75† 27.1 ± 0.42†  22.9 ± 0.62 23.8 ± 0.60 

Turbidity (NTU) 27.3 ± 3.60 27.3 ± 2.23  23.8 ± 2.51 30.8 ± 3.50 

Mean Water Velocity (cm s-1) 7.9 ± 0.67† 5.0 ± 1.02†  6.7 ± 1.01 6.3 ± 0.67 

Distance to Marsh Edge (m)* 2.5 ± 0.28 2.3 ± 0.24  2.0 ± 0.23‡ 2.8 ± 0.28‡ 

Mean Depth (m) 0.4 ± 0.01 0.4 ± 0.03   0.4 ± 0.03 0.4 ± 0.02 
 

 

Nonparametric Analyses 

The three-dimensional MDS plots of community data showed separation between 

groupings of before (March and April) and after (April and May) samples with the before 

samples (circles) generally clumping together and away from the after samples (triangles) (Fig 

3.2). There were no separate groupings of control and impact samples as the control samples 

(black shapes) intermingled with the impact samples (white shapes) (Fig 3.2).  

Also this analysis did not show any intermingling of main effects for a visual 

representation of an interaction among treatments. This agrees with the ANOSIM as it revealed a 

small but significant (P = 0.001) effect on overall community structure from the temporal 

treatment producing a global R test statistic of 0.25, yet there was no significant R statistic for the  
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Figure 3.2. Three-dimensional MDS graphics of the sample species data for the temporal (before 
○● and after ∆▼) and spatial (control ●▼ and impact ○∆) treatments. The stress value for the 
graph is 0.13 indicating this is a good three-dimensional representation of these data (Clarke and 
Warwick 2001). 
 

spatial treatments. The environmental variables did not explain much of the community data. 

While dissolved oxygen had the highest correlation coefficient (ps = 0.12), it and the other 

environmental variables did not significantly explain the variation in the community data (P = 

0.55 global BEST permutation test). The SIMPER result of mean similarity within before 

samples was produced by the mean abundances of Palaemonetes pugio, Clibanarius vittatus, and 

Callinectes sapidus (79%), and after mean sample similarity was largely due to P. pugio, C. 

vittatus, and Callinectes similis (49%). The temporal dissimilarity between treatments was due 
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partly to the after treatment appearance and high abundance of C. similis (10%). For the spatial 

treatments approximately three-fourths of the mean similarity within control samples (77%) and 

within impact samples (73%) were due to the same three species. The mean dissimilarity found 

between control and impact treatments was due in part to the abundance of Ctenogobius 

boleosoma (8%).  

DISCUSSION 

The BACI analyses showed immediate effects from the oil spill on the total number of 

individuals (fishes and decapod crustaceans), total number of fishes, Ctenogobius boleosoma, 

and Palaemonetes pugio. This suggests that many of the less abundant fishes and a few more 

mobile decapod crustaceans reacted to the oil spill, while many of the more sessile and benthic 

decapod crustaceans remained in place after the event (Gray et al. 1990, Rozas et al. 2000). 

Ctenogobius boleosoma was primarily responsible for the dissimilarity between the spatial 

(control and impact) treatments and was significantly (P = 0.06) affected by the oil spill event. 

While C. boleosoma is a dominant fish species in lower Barataria Bay, it showed a spill effect 

and has not shown an ability to acclimate or adapt to petroleum hydrocarbons in sediments 

(Klerks et al. 1997, Rozas et al. 2000, Klerks 2002). Ctenogobius boleosoma was the most 

abundant fish species and its count data drove the significant (P < 0.09) interaction for total 

number of fishes seen in the original BACI analysis. Overall the most abundant species in the 

community was P. pugio, and it also had a significant (P = 0.10) interaction in the single species 

BACI. Nevertheless, the P. pugio’s influence on the decapod crustacean BACI analysis was 

overwhelmed by the many other abundant decapod crustaceans in the community. Callinectes 

similis was most sensitive to the temporal treatment. Its response may have been driven by a 

significant increase in temperature (P < 0.001) which may be the signal for the lesser blue crab to 

enter the estuary (Das and Stickle 1994). Callinectes similis will recruit to marsh sites from open 
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water areas in late spring to early fall based on temperature and salinity changes (Gibson 1991, 

Hsueh et al. 1993). Salinity is a primary influence on C. similis distribution, but salinity was not 

significantly different for this study and it was well within the optimal salinity (15-20) range for 

the species (Gibson 1991). After deleting C. similis data, a re-analysis did not affect our 

conclusions as total number of individuals (F1, 32 = 3.30, P = 0.08) and total number of decapod 

crustaceans (F1, 32 = 2.49, P = 0.12) did not change appreciably. While there were temporal 

differences detected in four of the six species BACI analyses, these possible seasonal shifts 

reinforce the necessity of finding a significant interaction term to identify a spill event effect 

(Stewart-Oaten et al. 1986, Underwood 1994). 

The nonparametric analyses on species composition results showed small but significant 

differences between temporal treatments, but not between spatial treatments. Although the total 

number of individuals decreased due to the oil spill event (i.e. BACI), the species composition 

remained relatively constant. The Barataria Basin has a long history of anthropogenic influences 

and the community structure of the fauna now common to the area could be less sensitive to 

pollutants by acclimation or adaptation over time (Klerks et al. 1997). Population numbers are 

more variable while community structure is more stable therefore community structure is more 

powerful for showing environmental perturbation (Gray et al. 1990, Osenberg et al. 1994); 

however, to detect clear difference between treatments, these nonparametric analyses require a 

larger sample size than we had.  

The environmental variables (salinity, dissolved oxygen, temperature, turbidity, mean 

water velocity, distance to marsh edge, and mean depth) were not expected to change 

significantly in the short-term with an isolated oil spill event as they are physical variables not 

chemical. Nevertheless distance to marsh edge had a significant event effect, but the mean 

difference was only 0.8 m and probably not important biologically. Blue crabs move more than a 
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meter in one minute (Das and Stickle 1994), grass shrimp have an escape response greater than 

0.4 m (Goddard and Forward 1991), and larger shrimp have response mean velocities on the 

order of 1 m s-1 (Daniel and Meyhöfer 1989). This assessment was also corroborated by the 

BIOENV procedure results in that the environmental variables did not significantly explain 

differences in biological data.  

An opportunity for longer-term testing of the spill effects was precluded by an active 

hurricane season with Hurricane Cindy in July, Hurricane Katrina in August, and Hurricane Rita 

in September. These storms may have decreased the level of water column toxicity and surficial 

substrate contamination in the study area by widely dispersing or burying the remaining oil 

constituents deep in the sediments, much as natural accretion would in a building marsh (Jackson 

and Pardue 1999, Turner et al. 2006). Nevertheless, no long-term effects were detected when we 

examined data from the same locations in 2006 (Roth, unpublished data). Many simultaneous 

perturbations occurring in this dynamic estuary making it difficult to identify individual causal 

factors that might be responsible for differences in abundances or species composition, but this 

short-lived oil spill allowed us to test effects from a specific perturbation on biological and 

environmental data. Notably the spill event did have a detectable short-term and localized effect 

only on numbers of individuals and fishes, and the existing community structure seems to be 

robust.  
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CHAPTER IV 

HURRICANE KATRINA: EFFECTS ON AND RATE OF RECOVERY OF A MARSH-

EDGE NEKTON COMMUNITY  

 

INTRODUCTION 

Tropical storms are intermediate disturbances that flush coastal systems from year to 

year, and therefore have large influences on water quality and nekton communities in northern 

Gulf of Mexico wetlands (Hagy et al. 2006). The frequency of tropical storms making landfall in 

the southeastern portion of the United States has increased since 1996 and this trend is 

hypothesized to continue for years to come (Goldenburg et al. 2001, Emanuel 2005, Webster et 

al. 2005, Greening et al. 2006). While hurricanes can change the physiochemical characteristics 

of wetlands, these disturbances are relatively short-term in natural systems (Tilmant and Curry 

1994, Paerl et al. 2006, Stevens et al. 2006). Areas of high anthropogenic influences are more 

susceptible to increased destruction from the storms, because they are already in an altered state 

of existence (Mallin and Corbert 2006). This is evident in the still struggling portions of the 

Florida panhandle from Ivan in 2004 and coastal Mississippi, Louisiana, and Texas from the 

2005 Hurricane season.  

Hurricane Katrina ravaged the Louisiana and Mississippi coasts in late August 2005. 

Louisiana’s wetlands are fragile and some of the most economically important areas in Gulf of 

Mexico for the fisheries and petro-chemical industries (OSPR 2003). Hurricanes can erode 

marshes, move sediments and vegetation, change salinities, nutrient input, circulation, and cause 

mortality and displacement of local flora and fauna (Conner et al. 1989, Mallin et al. 1999, 

Greenwood et al. 2006). Vegetation such as mangroves and submerged aquatic vegetation may 

remain affected for up to a year after storm passage (Milbrandt et al. 2006, Maiaro 2007). Short-

term storm effects on the estuarine fauna can be damaging, but populations are hypothesized to 

return to normal population numbers with the passage of time (Knott and Martore 1991, Tilmant 
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and Curry 1994, Greenwood et al. 2006). Because of the profitable fisheries industry in 

southeastern Louisiana, there is a need to understand relationships of the nekton assemblages of 

fishes and macroinvertebrates to their environment. To understand the possible resilience of 

community structure following storms in a Louisiana estuary, I used three years of data and 

quantified changes in species composition before and one and two years after Hurricanes Cindy 

and Katrina. 

MATERIALS AND METHODS 

Study Area 

Nekton were sampled near two islands (Beauregard Island and Mendicant Island) and an 

uninhabited portion of eastern Grand Isle, in lower Barataria Bay of southeastern Louisiana (Fig 

4.1). While the sample locations are not inhabited by humans, they are constantly perturbed by 

boat traffic from commercial and recreational fisheries and industries. The study area is shallow 

with extensive marsh edge habitat dominated by Spartina alterniflora (smooth cordgrass) and 

Avicennia germanins (black mangrove) is on Barataria Bay Waterway and near Barataria Pass, 

which connects the basin to the Gulf of Mexico. The study area is subjected to periodic storm 

events that bring in sea water from the Gulf and flush the estuary a few times a year.  

There were several storm events in 2005 including Hurricane Cindy in July and Hurricane 

Katrina in August. Hurricane Cindy reduced in intensity and made land fall as a tropical storm 

on 6 July 2005 west of Grand Isle with 31.3 m s-1 sustained winds and a storm surge of 1.2 to1.8 

m (Stewart 2006) (Fig 4.2). Hurricane Katrina made land fall as a category 3 hurricane on the 

Saffir-Simpson scale on 29 August 2005 east of Grand Isle in Plaquemines Parish with sustained 

winds of 56.6 m s-1 and a storm surge ranging 7.3 to 8.5 m (Knabb et al. 2006) (Fig 4.2). Both of 

these storms physically moved portions of the marsh and deposited human debris on the existing 
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marsh. Because Hurricane Katrina was the stronger storm 2006 and 2007 data are hereby 

referred to as one year post- and two years post-Katrina. 

 

 

 
 
Figure 4.1. Map of Louisiana with study area boxed and enlarged to show Mendicant Island, 
Beauregard Island, and Grand Isle. Images from LSU Atlas. 
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Figure 4.2. The paths of Tropical Storm Cindy (dash line) and Hurricane Katrina (white line) 
with the study area in Barataria Bay in the white box. Image from Google Earth. 
 

 
Field and Laboratory Methods 

In twelve locations, three sites were randomly sampled monthly from March through 

August (n = 216) for each of three years: 2005 (pre-Katrina), 2006 (1 year post-Katrina), and 

2007 (2 years post-Katrina) and a total of 648 samples. I deployed a 1.18m2 cylindrical drop 

sampler in close proximity to the salt marsh with the purpose to quantitatively characterize the 

small nekton community of the marsh-edge. This sampling encompassed 764.6 m2 of the 

Spartina dominated marsh edge habitat. At each site I recorded GPS coordinates, time of day, 

distance to marsh edge, dominant substrate type, and marsh edge vegetation type. Once the 

sampler was securely seated, I measured the water quality variables with a YSI 85 meter. Mean 
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water depth (m) was recorded and mean water velocity (cm s-1) was measured. I also collected 

50 ml of water from inside the sampler to analyze turbidity (NTU), and 50 ml of sediment was 

collected just outside the sampler to test for pore water toxicity in the laboratory. I evacuated 

water from the sampler and collected all remaining nekton with nets. In the laboratory I 

indentified all individuals to lowest possible taxon and counted them. Turbidity and pore-water 

toxicity were analyzed with Hach 2100N and Microtox® Model M500, respectively.  

Statistical Methods 

I related impacts from the Hurricanes to changes in species composition at the 

community level with nonparametric analyses in PRIMER (Clarke and Warwick 2001) with 

three procedures. To control for temporal differences, spring and summer data were analyzed 

separately. I made pairwise post-hoc comparisons among years (2005, pre-Katrina; 2006, one 

year post-Katrina; 2007, two years post-Katrina) with analysis of similarity (ANOSIM), 

evaluated differences among samples graphically with multidimensional scaling (MDS), and 

determined which species contributed to the multivariate patterns indicated with the similarity 

percent procedure (SIMPER) (Clarke and Warwick 2001). These analyses and procedures were 

run on Bray-Curtis similarity matrices after root transforming species data. ANOSIM tests 

whether samples differ between treatments and produces a global R statistic. After a significant 

(P < 0.05) global R indicates differences among all groups, post-hoc pairwise comparisons 

indicate differences between each group. The R statistic ranges from -1 to 1 and reflects the 

sample differences among treatments versus the sample differences within treatments. A 

significant R of 0 indicates no differences in samples among all treatment groups. As R 

approaches 1 samples show differences among treatments, and as R approaches -1 samples are 

more similar to samples in other treatment groups than to those in their own treatment group. 

MDS plots are graphical depictions of the biological relationship among samples. Closely 
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juxtaposed clusters of samples plotted in three-dimensional space are the representation of 

samples with similar species composition. A stress value is generated as a test of goodness of fit, 

and if the stress value is less than 0.2 the graphic is a good representation of data. The SIMPER 

tests which species contribute to the multivariate patterns detected within the samples. Species 

mean abundances are compared and their contributions to similarity and dissimilarity 

measurements and are examined (Ehrich and Stransky 1999).   

The ten most abundant taxa (cumulatively > 85% of total abundance) were identified as strong 

contributors to the dissimilarity among years in the SIMPER procedure. Therefore, I ran 

ANOVAs in SAS (2004) on the log (X+1) transformed total numbers of individuals for those 

taxa to determine if there were significant differences among pre- and post-Katrina years for the 

number of individuals in each taxa. Tukey’s post-hoc pairwise analyses were performed on these 

data. PRIMER MDS analyses were followed with parametric MANOVAs to determine if 

clusters created were significantly different.  

RESULTS 

Spring 

A total of 13,897 individuals in 54 species were collected for March, April, and May in 

324 samples. One year post-Katrina (2006) had 5,892 individuals and this was 

higher than pre-Katrina (2005) and two years post-Katrina (2007) with 3,944 and 4,061 

individuals, respectively.  These data all showed significant changes in community composition 

of samples pre- and post- Katrina. The ANOSIM was significant (P < 0.001) for total species, 

fish species, and decapod crustacean composition, and environmental variables. For the pre-

Katrina (2005) and one year post-Katrina (2006) the largest separations were for the fish species 

composition data with R statistics of 0.23 (Table 4.1). The largest year difference (R = 0.25) was 

between pre-Katrina (2005) and one year post-Katrina (2006) for environmental data (Table 4.1).  
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Table 4.1. Spring ANOSIM pairwise comparison results for all species, fishes, and decapod 
composition and environmental variables between 2005 (pre-Katrina) and 2006 (one year post-
Katrina), and 2005 (pre-Katrina) and 2007 (two years post-Katrina). These were all significant 
(P < 0.001). 
 

Variables Years R-statistic 

Overall Species Composition 1 year post-Katrina 0.15 

  2 years post-Katrina 0.10 

Fish Species Composition 1 year post-Katrina 0.23 

  2 years post-Katrina 0.09 

Decapod Species Composition 1 year post-Katrina 0.13 

  2 years post-Katrina 0.10 

Environmental Variables 1 year post-Katrina 0.25 

  2 years post-Katrina 0.07 
 

The three-dimensional MDS analysis on all species data has pre-Katrina (2005) samples 

clumped closer and somewhat removed from both groups of post-Katrina (2006/2007) samples 

(Fig 4.3). This same trend of pre-Katrina (2005) samples separating from other samples was 

evident in the fish species, decapod crustacean species and environmental variable data (Fig 4.3). 

All MDS plots had significant (P <0.0001) MANOVAs for dimensions indicating significant 

clustering of year groupings. Stress values were less than 0.2 indicating the MDS plots were 

good representations of these data.  

The ten most abundant species were Palaemonetes spp., Brevoortia patronus, 

Clibanarius vittatus, Callinectes similis, C.  sapidus, Micropogonias undulatus, Ctenogobius 

boleosoma, Farfantepenaeus aztecus, Gobiesox strumosus, and Pagurus longicarpus (Table 4.2). 

These ten species alone contributed to 95% of the overall abundance measured in spring. From 

the SIMPER procedure, the largest dissimilarity among samples (72 %) was between pre-Katrina 

(2005) and one year post-Katrina (2006), and the abundant species with xanthids contributed to 

84 % of this dissimilarity. Dissimilarity of two year post-Katrina (2007) and the other years was 

each 70% with the same species contributing.
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a)  

 

                        

   b)  

 
Figure 4.3. Three-dimensional MDS of spring samples with stress values. Samples of pre-
Katrina (2005) (●), one year post-Katrina (2006) (□), and two years post-Katrina (2007) (▲) 
samples for a) all species, b) fishes, c) decapod crustaceans, and d) environmental variables. 
Tight clusters of samples are encircled in black. 
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The ANOVAs on these abundant species from the SIMPER results showed pre-Katrina (2005) 

means were significantly (P < 0.05) higher than post-Katrina for Palaemonetes spp., C. 

boleosoma, and G. strumosus (Table 4.2). Means were significantly higher one year post-Katrina 

(2006) than pre- Katrina for B. patronus, C. similis, F. aztecus, and P. longicarpus (Table 4.2). 

Farfantepenaeus aztecus and P. longicarpus had significantly higher abundances one year post-

Katrina but decreased two years post- Katrina (2007) (Table 4.2). Gobiesox strumosus were not 

collected in one year post-Katrina samples, but the species reappeared in smaller abundances 

than pre-Katrina two years post-Katrina (Table 4.2). Mean water temperature and velocity, and 

turbidity were significantly higher post-Katrina than pre-Katrina (Table 4.2). Mean water depth 

and dissolved oxygen significantly decreased one year post-Katrina, but returned to pre- Katrina 

levels two years post- Katrina (Table 4.2).  

Summer 

I collected a total of 9,984 individuals in 57 taxa from the 324 samples in June, July, and 

August with equal efforts across years and months. Again one year post-Katrina (2006) had the 

greatest number of individuals collected with 4,468. Pre-Katrina (2005) had 2,572 and two years 

post-Katrina (2007) had 2,944 individuals collected in their samples. According to ANOSIM 

results, summer analyses were less differentiated among year groupings than spring data. All 

ANOSIM results were significant (P < 0.001), and the largest separation among year groupings 

was with the fish data and it showed a difference between pre-Katrina (2005) and one year post-

Katrina (2006) samples with pairwise R statistics of 0.13 (Table 4.3). 

The lack of separation among years is evident with the MDS plots (Fig 4.4). While 

MANOVA results for all MDS dimensions were significantly different (P < 0.001) and stresses 

were less than 0.2, these samples did not cluster into separate groups among the different years.  
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Table 4.2. The means and ±2 standard error for the ten most abundant spring species and the continuous environmental variables with 
a, b, and c indicating significant differences (P < 0.05) from the post hoc Tukey’s analyses. 
 

Taxa Common Name 2005   2006   2007 

Palaemonetes spp. grass shrimp 2.22±0.14a  1.38±0.14b  1.62±0.14b 

Brevoortia patronus gulf menhaden 0.01±0.01a  0.47±0.12b  0.21±0.06c 

Clibanarius vittatus thin striped hermit crab 1.17±0.10  1.23±0.10  1.04±0.10 

Callinectes sapidus blue crab 0.88±0.08a  0.78±0.08a  1.21±0.10b 

C. similis lesser blue crab 0.41±0.07a  1.23±0.09b  1.35±0.12b 

Micropogonias undulatus Atlantic croaker 0.21±0.06  0.02±0.07  0.24±0.05 

Ctenogobius boleosoma darter goby 0.62±0.08a  0.36±0.05b  0.58±0.07a,b 

Farfantepenaeus aztecus brown shrimp 0.20±0.04a  0.39±0.07b  0.23±0.05a,b 

Gobiesox strumosus skilletfish 0.53±0.07a  0.00±0.00b  0.21±0.05c 

Pagurus longicarpus long wrist hermit crab 0.00±0.00a   0.41±0.07b   0.18±0.05c 

Environmental Variables  2005  2006  2006 

Mean depth (m)  40.95±1.12a  34.04±1.31b  41.00±1.46a 

Temperature (°C)  22.96±0.44a  24.37±0.19b  24.71±0.26c 

Salinity (psu)  17.54±0.50a  24.85±0.23b  16.26±0.18c 

Dissolved Oxygen (mg l-1)  8.09±0.21a  7.10±0.12b  8.28±0.19a 

Mean water velocity (cm s-1)  2.37±0.16a  6.80±0.42b  4.45±0.58c 

Turbidity (NTU)  27.53±1.65a  55.14±4.45b  43.61±4.24b 

Distance to marsh edge (m)   1.9±0.13a   1.9±0.22a   1.12±0.11b 
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Table 4.3. Summer ANOSIM pairwise comparison results for all species, fishes, and decapod 
composition and environmental variables between 2005 (pre-Katrina) and 2006 (one year post-
Katrina), and 2005 (pre-Katrina) and 2007 (two years post-Katrina). These were all significant 
(P < 0.001). 
 

Variables Years R-statistic 

Overall Taxa Composition 1 year post-Katrina 0.07 

  2 years post-Katrina 0.04 

Fish Taxa Composition 1 year post-Katrina 0.13 

  2 years post-Katrina 0.02 

Decapod Taxa Composition 1 year post-Katrina 0.04 

  2 years post-Katrina 0.04 

Environmental Variables 1 year post-Katrina 0.02 

  2 years post-Katrina 0.07 
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a)                          

 

    b)  

 
 
Figure 4.4. Three-dimensional MDS of summer samples with stress values. Samples of pre-
Katrina (2005) (●), one year post-Katrina (2006) (□), and two years post-Katrina (2007) (▲) 
samples for a) all species, b) fishes, c) decapod crustaceans, and d) environmental variables. 
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Only the fish taxa samples showed a slight clustering and separation of one year post-Katrina 

(2006) samples from the other samples (Fig 4.4.b).  

The dissimilarities between pre-Katrina (2005) and one and two years post-Katrina were 

nearly the same, 75 and 76% respectively. The ten most abundant taxa plus penaeid shrimp 

contributed to 79% of the dissimilarity found between pre- and post- Katrina samples. 

Palaemonetes spp., C. vittatus, C.  sapidus, xanthid, Anchoa mitchilli, C. boleosoma, C. similis, 

G. strumosus, Panopeus simpsoni, and Gobiidae abundances were 88% of the total of individuals 

collected in the summer samples. Because the SIMPER procedure showed these species to drive 

the multivariate patterns, I ran separate ANOVAs on them.  

The ANOVA results indicated the greatest difference was between pre-Katrina (2005) and one 

year post-Katrina (2006). There were significant (P < 0.05) increases in the mean abundances for 

Palaemonetes spp., C. vittatus, C. sapidus, xanthids, C. boleosoma, P. simpsoni, and Gobiidae 

(Table 4.4). Anchoa mitchilli and G. strumosus significantly decreased in mean abundances one 

year post-Katrina (Table 4.4). With the exception of Palaemonetes spp., all taxa returned to pre-

Katrina abundances two years after the passage of the storm (Table 4.4). Palaemonetes spp. 

remained at significantly higher levels post-Katrina. Summer was characteristically a more stable 

period in the estuary as for environmental variables. Mean salinity had a steady significant 

increase for each year after the storm (Table 4.4). Mean water temperature significantly 

decreased while mean turbidity significantly increased two years post-Katrina (Table 4.4). Other 

environmental variables did not change significantly between pre- and post- Katrina. 

DISCUSSION 

Spring showed the strongest differences between pre- and post-Katrina years for the fish 

species composition and environmental variables. It seems these mobile species were more 
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Table 4.4. The means and ±2 standard error for the ten most abundant summer species and the continuous environmental variables 
with a, b, and c indicating significant differences (P < 0.05) from the post hoc Tukey’s analyses. 
  

Taxa Common Name 2005   2006   2007 

Palaemonetes spp. grass shrimp 0.78±0.11a  1.40±0.16b  1.15±0.14b 

Clibanarius vittatus thin striped hermit crab 1.25±0.11a  1.64±0.10b  1.03±0.09a 

Callinectes sapidus blue crab 0.59±0.07a  0.96±0.09b  0.81±0.07ab 

Xanthids mud crab 0.45±0.09a  0.80±0.10b  0.30±0.06a 

Anchoa mitchilli bay anchovy 0.45±0.09a  0.16±0.05b  0.28±0.06ab 

Ctenogobius boleosoma darter goby 0.29±0.05a  0.57±0.08b  0.38±0.06ab 

C. similis lesser blue crab 0.38±0.05  0.46±0.07  0.44±0.07 

Gobiesox strumosus skilletfish 0.45±0.08a  0.03±0.01b  0.26±0.51a 

Panopeus simpsoni oystershell mud crab 0.17±0.05a  0.37±0.06b  0.17±0.04a 

Gobiidae goby 0.01±0.01a   0.35±0.07b   0.00±0.00a 

Environmental Variables  2005  2006  2007 

Mean depth (m)  43.24±1.32  42.46±1.53  42.18±1.36 

Temperature (°C)  31.59±0.18a  30.98±0.19ab  30.41±0.21b 

Salinity (psu)  20.46±0.32a  22.32±0.16b  23.72±0.38c 

Dissolved Oxygen (mg l-1)  7.21±0.25  6.09±0.14  9.89±2.83 

Mean water velocity (cm s-1)  3.09±0.27  3.96±0.51  3.66±0.23 

Turbidity (NTU)  36.07±2.81a  32.26±2.19a  50.57±3.51b 

Distance to marsh edge (m)   3.24±0.19a   3.97±0.19b   3.24±0.19ab 
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readily re-distributed and re-assembled once environmental conditions returned to pre-Katrina 

conditions. Brevoortia  patronus and C. similis had a large increase and Pagurus longicarpus 

first appeared post-Katrina, so these species may have been associated with the significant 

increase in salinity one year post-Katrina. This is a case of species responding to environmental 

cues that were altered by this disturbance. Also, fishing pressure was considerably less in 2006 

with a loss of $1.1 billion in landing for Louisiana, and many of the abundant species are 

important fisheries species (Brevoortia patronus, Callinectes sapidus, Farfantepenaeus aztecus) 

(Buck 2005). Gobiesox strumosus was not present in either spring or summer samples one year 

post-Katrina (2006), but re-appeared two years post-Katrina (2007). This species is estuarine 

dependent and utilizes hard substrates (oyster shells) that were buried by sediment or removed 

and redistributed by the storm surge. Gobiesox strumosus’ return two years post-Katrina may be 

from the increase, re-aggregation, or exposure of suitable habitat in this system.  

The spring season is a naturally dynamic one in the estuary with passages of northern 

fronts and species entering into the estuary from the bays and the Gulf of Mexico. Differences 

caused by Katrina were more dramatic during this variable season. Though the stronger tropical 

storm events tend, in recent years, to occur in late summer and early fall with Ivan on 16 

September 2004, Katrina on 29 August 2005, Rita on 24 September 2005 (whose effects were 

included in post-Katrina data), Gustav on 1 September 2008, and Ike on 13 September 2008. 

Summer was a more stable period during my sampling efforts. These storms were all after the 

last sampling trip for my summer season, so any immediate effects from Hurricanes were not 

tested. 

Coastal plants and animals have developed with tropical storms as episodic events 

(Conner et al. 1989, Tilmant and Curry 1994), but individual basins can be without hurricane 

activity for decades. Because there is no congruent long-term data for this area, it is hard to 



 66 

surmise long-term effects from these current hurricane data (Switzer et al. 2006). Drastic 

changes such as marsh developing into open water will change nekton abundance and 

composition (Boesch and Turner 1984), but more subtle changes as those associated with 

Hurricane Katrina are harder to decipher especially across areas like our well mixed estuary. 

Hurricanes are short duration (pulse) perturbations (Bender et al. 1984) and their effects on 

natural areas are temporary with vegetation regenerating to normal levels within a year 

(Chabreck and Palmisano 1973, Valiela et al. 1996). This area is more open to the Gulf of 

Mexico than leveed areas like the Mississippi River Gulf Outlet and the Mississippi River, where 

Gulf water movement is facilitated to fresher regions in these channeled areas (Stokstad 2005). 

Hurricanes cause immediate morality and it was unfortunate we could not sample just after 

Hurricane Katrina but it was logistically impossible. There is also evidence of dispersal of fauna 

from marine to fresher areas in other wetlands (Valiela et al. 1996, Paerl et al. 2006), but in this 

highly saline area and the increased salinities measured after the storms this was not an issue for 

lower Barataria Bay. This study area and its fauna had long-term responses similar to other 

natural wetlands to storm events (Greenwood et al. 2006, Paperno et al. 2006, Switzer et al. 

2006), but with continued anthropogenic alterations its resilience to natural perturbations may 

decrease. 
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CHAPTER V 

NEKTON ABUNDANCES IN SPARTINA, BLACK MANGROVE, AND 

TRANSITIONAL (BOTH SPECIES) MARSH-EDGE HABITAT TYPES 

 

INTRODUCTION 

Climate changes are expected to modify many aspects of Louisiana’s coastal systems. 

Increased air and water temperatures have lead to population shifts in the poleward distribution 

of tropical species such as mangroves (Snedaker 1995). The decade between 1995 to 2006 ranks 

as the warmest on record, and this warming trend combined with human activity is decreasing 

wetland area around the world (IPCC 2007). Sea-level rise, a major contributor to wetland loss, 

increases with rising temperatures, and globally total sea-level has risen approximately 3.1 mm 

per year from 1993 to 2003 (IPCC 2007). Coastal Louisiana has experienced a 0.3 to 1.5 cm yr-1 

rate of relative sea-level rise (subsidence plus sea-level rise), and a cumulative wetland loss of 

approximately 4,921 km2 in the last century (USGS 2005). These numbers are particularly 

alarming for Louisiana where coastal marsh-edge habitat types are extremely productive and 

important to commercial and recreational fisheries. Coastal habitat types have been historically 

dominated by thick stands of Spartina alterniflora Loisel (smooth cordgrass, Spartina). 

However, with the current trend of increasing temperatures in southern Louisiana that has 

decreased the freeze events that historically resulted in black mangrove diebacks. The dominant 

Spartina alterniflora now grows in co-dominant stands with black mangrove (Scavia et al. 

2002).  

Spartina alterniflora of North America is a stiff perennial grass that is capable of 

growing in high saline marshes (Godfrey and Wooten 1979). Depending on salinity and tidal 

action, which can decrease species richness in marshes when salinity is increased, Spartina is 

usually found in nearly monospecific stands. This saltmarsh grass is a food source for consumers 

found in the saltmarsh habitat such as the abundant Palaemonetes spp. (grass shrimp) (Mitsch 



 70 

and Gosselink 2000). Salt marshes are beneficial habitats because they serve as a food source 

and refuge for estuarine-dependent organisms (Teal 1962, Zimmerman et al. 1990), and are 

productive nursery habitats for resident and transient estuarine species (Minello and Webb 1997, 

Minello et al. 2003). Coastal salt marshes facilitate growth and recruitment of marine fauna by 

providing food through detritus, and refuge (Boesch and Turner 1984, Hettler 1989, Minello and 

Webb 1997). Spartina marsh-edge habitat supports high densities of nekton and this relationship 

has been quantitatively tested (Zimmerman and Minello 1984, Baltz et al. 1993). Due to 

increased vegetative habitat suitability (as a refuge) as compared to open water, many species 

and different life history stages utilize vegetated habitat, be it emergent marsh vegetation or 

seagrass, in greater densities than open water areas (Zimmerman and Minello 1984, Baltz et al. 

1993). Spartina marshes also facilitate the accumulation of organic matter and sediment thereby 

increasing accretion of the marsh surface, but even this accretion is unable to keep up with 

current marsh loss rates (Perry 2007). Spartina is the dominant coastal vegetated habitat for 

numerous species in the southern portion of Barataria Bay.  

Avicennia germinans Loisel (black mangrove, referred to as mangrove in analyses and 

results) is a woody species that can grow to 15 m in the tropics. It is established in the Caribbean 

Islands and in North America in Florida and Texas (Mitsch and Gosselink 2000). Mangroves 

inhabiting fringes of estuaries and tidal channels in thick stands (Mendelssohn and McKee 2000) 

and Spartina-dominated salt marshes serve the nekton community by providing food and refuge 

in a similar capacity (Sheriden and Hays 2003). As with all mangroves, black mangrove is 

sensitive to low temperatures and is not found in more temperate climates. However, black 

mangrove has a lower temperature tolerance and more low temperature resistant populations than 

other mangrove species found in the tropics (Lugo and Patterson-Zucca 1977). Black mangrove 

reaches its northern limit between 29° and 30° N in southeastern Louisiana’s Chandeleur Islands  
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and marshes (Woodroffe and Grindrod 1991, Mendelssohn and McKee 2000). Large diebacks of 

black mangrove that occurred in the tropics in 1961-62 and 1962-63 due to freezes of -3 to -11°C 

suggest that mangroves do not establish where there is a 5% decrease from 20°C for the mean 

low air temperature or three to four nights of frost a year (Lugo and Patterson-Zucca 1977, 

Woodroffe and Grindrod 1991). Some question remains as to whether local nekton use of 

mangroves is universally high. Some qualitative studies indicate the regular utilization of 

mangrove habitat by juvenile decapod crustaceans and fishes, but many studies did not 

quantitatively compare mangrove habitat use to other fringing habitat types (Laegdsgaard and 

Johnson 1995, Sheriden and Hays 2003). Most mangrove comparisons have been between non-

vegetated and/or seagrass habitat types, but not emergent marsh-edge grasses (Thayer et al. 1987, 

Chong et al. 1990, Laegdsgaard and Johnson 1995). Mangroves are severely affected by 

hurricanes and typically achieve larger sizes in areas of protected waters (Cronk and Fennessy 

2001) such as those found in Louisiana’s wetlands.  

Southeastern Louisiana coastal estuaries are dominated by Spartina, but due to the recent 

decrease in freezing events, small strands of  mangroves that occurred since the 1700s have 

become more widely established and appear to be increasing in dominance creating a 

marsh/mangrove ecotone (Peterson and Turner 1994, Caudill 2005). When Spartina and 

mangrove co-occur, mangroves often shade Spartina shoots. Both species generally thrive in 

areas with wave-protection, low relief topography, and fine sediments. However, mangroves can 

be found in sand when there are adequate amounts of organic matter in the sediment 

(Mendelssohn and McKee 2000). While they currently appear to be keeping pace with sea-level 

rise, increased sea-level rise may lead to degradation to open water, as A. germinans is more 

susceptible to this than other mangrove species (Ellison and Stoddart 1991, Field 1995). Because  
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many of the estuarine-dependent species in southeastern Louisiana are important commercial and 

recreational fisheries, concern about the encroachment of mangroves and a possible habitat shift 

from Spartina marsh to mangrove stand salt marshes are high. Perry (2007) examined changes in 

elevation, organic matter, and carbon assimilation with changes in the physiochemical 

composition of the wetlands as they transform from Spartina to mangrove dominated. Others 

studies observed density and community differences of nekton among Spartina, black mangrove, 

and transition (Spartina and black mangrove) edge habitat type (Caudill 2005). Mangroves, due 

to their thicker stems, should facilitate accretion at a similar rate to Spartina marshes, and in 

Louisiana there was no difference between the two rates (Perry 2007). Regardless of the cause, 

Louisiana’s wetlands are decreasing and open water areas are increasing.  

Because of their importance, salt marsh and nekton interactions have been extensively 

studied (Boesch and Tuner 1984, Baltz et al. 1993, Rozas and Reed 1993, Peterson and Turner 

1994, Zimmerman et al. 1990, Minello and Rozas 2002, Birdsong 2004). These studies 

concentrated on specific marsh edge vegetation or different bottom sediment types. There have 

been few studies comparing Spartina and mangrove edge, and the ones that exist were relatively 

short-term studies only lasting 10 to 13 months (Caudill 2005, Perry 2007). This study was 

longer term in spring and summer seasons in lower Barataria Bay, Louisiana, collected small 

fishes and decapod crustaceans, and used densities of selected species and total individuals along 

with the fish and decapod crustacean community structure to test whether patterns differed 

among Spartina dominated, black mangrove dominated, or transitional habitat type. I also 

compared the physiochemical properties of the water column and bottom substrate type to the 

potential causal relationships among vegetation and nekton species.  
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MATERIALS AND METHODS 

Study Area 

In the study area of southern Barataria Bay, Spartina and mangrove habitats are 

interspersed; therefore, I was able to sample the separate habitat types during the same sampling 

events (Fig 5.1). This is a microtidal estuary where silt is the dominant sediment and most wave 

action occurs from climatic events not tidal surges. Dominant nekton species are Anchoa 

mitchilli (bay anchovy), Ctenogobius boleosoma (darter goby), Gobiesox strumosus (skilletfish) 

along with some important fisheries species such as Micropogonias undulatus (Atlantic croaker) 

and Brevoortia patronus (gulf menhaden). Macroinvertebrates using the estuary include 

Clibanarius vittatus (hermit crab) and Palaemonetes spp. (grass shrimp) and the commercially 

important Callinectes sapidus (blue crab) and Farfantepenaeus aztecus (brown shrimp) (Chesney 

et al. 2000, Jones et al. 2002). I sampled near and around Mendicant and Beauregard Islands just 

north of the mouth of Barataria Waterway (Fig 5.1).  

Field and Laboratory Methods 

Because estuarine fauna are highly seasonal in abundance and community structure (Day 

et al. 1989, Rundle et al. 1998), I sampled seasonally in 2005, 2006, and 2007 for spring (March, 

April, May) and summer (June, July, August) periods. I sampled quantitatively by deploying a 

cylindrical 1.18 m2 drop sampler at sites in Spartina (spring n = 111; summer n = 124), 

mangrove (spring n = 56; summer n = 42), and transitional (spring n = 56; summer n = 54) 

habitat types. At each site I recorded longitude and latitude with GPS, distance to marsh edge 

(m), and dominant substrate type and measured mean water depth (m), mean current velocity 

(cm s-1) temperature (˚C), salinity (psu), and dissolved oxygen (mg l-1). I collected 50 ml of 

water to measure turbidity (NTU) and 50 ml sediment cores for Microtox® analysis back at the 

laboratory. A trash pump removed the water from the sampler and it was filtered through 333µm 
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mesh plankton net. A sample was complete once sampler was well seated, pumped of water, and 

swept with nets to ensure removal of all macrofauna. I preserved, identified, measured, counted, 

and ran statistical analyses on all nekton.   

 

 

 

Figure 5.1. Map of study area that includes Mendicant and Beauregard Islands with examples of 
Spartina marsh sites (○), mangrove marsh sites (●), and transitional marsh sites (□). 
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Statistical Methods 

Spring and summer seasons were analyzed separately with SAS (2004) software. I first 

used the MIXED procedure ANOVA to discern differences among marsh habitat types and 

normalized total number of individuals, total number of decapod crustaceans, and total number 

of fishes along with species richness, Shannon-Weiner diversity, and physiochemical variables. 

To ensure results were not from changes in year or month, I analyzed habitat type (Spartina, 

black mangrove, and transition), year, and months as main effects for a three-way ANOVA. 

Main effects differences were tested post hoc with Tukey’s pairwise comparisons to detect 

differences among habitat types (Spartina, mangrove, transition). A canonical discriminant 

analysis was used to facilitate visual interpretation of the differences identified in the ANOVAs. 

Canonical discriminant analysis calculates the linear combination of quantitative variables (taxa 

or environmental parameters) that have the highest multiple correlations with the pre-assigned 

factor (Spartina, mangrove, and transition) to provide the maximum separation among those 

groups. While singular variables may not show differences among groups, linear combinations 

may do so (SAS 2004). It also provides MANOVAs to test if there are significant canonical 

correlations and separation among groups. This procedure is preferable to discriminate analysis 

when there are multiple correlated variables in the data set (SAS 2004).  

Lastly, I used factor analyses to understand which environmental variables (distance to 

marsh edge, mean water depth, mean water velocity, water quality variables, turbidity, and 

dominant substrate) contributed to differences seen between Spartina, mangrove, and transitional 

habitat types.  The analysis generated factor scores for each sample. Mean un-rotated factor 

scores for each habitat type and the ten most abundant species were calculated and used to plot 

habitat types and species in three-dimensional environmental space. Balloons were used to 

represent ±2 standard errors radii around group centroids.  
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RESULTS 

Spring 

I sampled 130.98 m2 of Spartina and 66.08 m2 each of mangrove and transition habitat 

type and collected 10,348 total individuals. The ten dominant species that accounted for 94% of 

the nekton community were Palaemonetes spp., Brevoortia patronus, Clibanarius vittatus, C. 

similis, Callinectes sapidus, Micropogonias undulatus, Ctenogobius boleosoma, 

Farfantepenaeus aztecus, Gobiesox strumosus, and Pagurus longicarpus (Table 5.1).  

 
Table 5.1. Ten most abundant spring species, common names, and their total number and percent 
of the total abundance. 
 

Taxa Common Names Total Number Percent 

Palaemonetes spp. grass shrimp 4084 39.5% 

Brevoortia patronus gulf menhaden 1588 15.3% 

Clibanarius vittatus thin striped hermit crab 1270 12.3% 

Callinectes similis lesser blue crab 857 8.3% 

C. sapidus blue crab 612 5.9% 

Micropogonias undulatus Atlantic croaker 483 4.7% 

Ctenogobius boleosoma darter goby 300 2.9 % 

Farfantepenaeus aztecus brown shrimp 211 2.0% 

Gobiesox strumosus skilletfish 189 1.8% 

Pagurus longicarpus longwristed hermit crab 102 1.0% 

 
 

All significant results for habitat type main effects did not have significant interactions (P 

> 0.05). Total three-way ANOVAS of number of fishes, species richness, and diversity were not 

significant for main effects. The ANOVAs for total number of individuals and total number of 

decapod crustaceans were significantly different (F2, 196 = 4.45, P= 0.013 and F2, 196 = 5.23, P = 

0.006) for mangrove, Spartina, and transitional habitat types. From the Tukey’s post hoc 

analyses, the total number individuals was significantly higher in transitional (P = 0.022) than in 

Spartina habitat types. Also the number of decapod crustaceans was higher in mangrove (P = 
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0.021) and transitional (P = 0.039) than in Spartina habitat types. Analysis of the separate 

environmental variables showed a significant increase in mean water velocity for transitional 

(F2,196 = 3.7, P = 0.027) than Spartina marsh edge. The Canonical discriminant analyses showed 

significant difference between habitat classifications for total number of individuals (F104, 334 =  

1.32, P = 0.034, Fig 5.2.a), decapods crustaceans (F36,402 = 1.94, P = 0.001, Fig 5.2.b), and the 

ten dominant species (F20,418 = 2.28, P = 0.001, Fig 5.2.c).  

The factor analysis identified four orthogonal axes with eigenvalues greater than one that 

together explained 68.2% of the total variation in the system. Factor 1 explained 23.3% of 

variation with large positive loadings for temperature, salinity and mean water velocity. Factor 2 

explained 18.6% of variation with positive loading for distance to marsh edge and turbidity and a 

negative loading for temperature. Factor 3 explained 14.6% of variation with a positive loading 

of mean water depth. Factor 4 explained 11.7% of variation with a positive loading of dominant 

substrate (Table 5.2). Habitat types fell out separately across Factor 2 with the Spartina samples 

having higher temperature, lower turbidity and sampled closer to the marsh edge, mangrove 

samples having lower temperature, higher turbidity, and sampled farther from the marsh edge, 

and the transition samples falling between them (Fig 5.3.a). Callinectes similis and F. aztecus 

were associated with Spartina habitat within environmental space. Callinectes sapidus, C. 

vittatus, C. boleosoma G. strumosus M. undulatus, and Palaemonetes spp. were associated with 

transitional habitat; while Brevoortia patronus and P. longicarpus were associated with 

mangrove habitat environmental parameters (Fig 5.3.b).  

Summer 

In the summer samples included 151.04 m2 of Spartina, 49.56 m2 of mangrove, and 63.72 

m2 of transitional habitat types with a total abundance of 7,480 individuals. Ten dominant taxa  
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comprised 87% of the individuals and were Palaemonetes spp., C. vittatus, xanthids, C. sapidus, 

G. strumosus, Anchoa mitchilli, C. boleosoma, C. similis, P. simpsoni, and Alpheus sp. (Table 

5.3).  

 

 

a)  

 
 
Figure 5.2. Graphical representation of spring canonical coefficients with a) total number of 
individuals, b) total number of decapod crustaceans, c) the ten abundant species; Spartina (○), 
mangrove (●), and transition (□).
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b)  

c)  
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Table 5.2. Factor scores for the spring environmental variables with the highest scores in bold. 
 

Variables Factor 1 Factor 2 Factor 3 Factor 4 

Salinity 0.74 0.20 0.05 0.33 

Mean Water Velocity 0.63 0.06 -0.37 -0.05 

Temperature 0.54 -0.60 0.14 0.11 

Turbidity 0.23 0.61 0.17 -0.43 

Distance to Marsh Edge -0.44 0.56 0.25 0.10 

Mean Depth -0.24 -0.45 0.71 0.09 

Dominant Substrate -0.43 0.07 -0.46 0.62 

Dissolved Oxygen -0.35 -0.44 -0.46 -0.47 

Eigenvalue 1.87 1.49 1.17 0.94 

% Variance Explained 23.3 18.6 14.6 11.7 

Cumulative % Variance Explained 23.3 41.9 56.5 68.2 
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a)  
 

b)  
 
Figure 5.3. Plot of spring a) habitat types and b) ten most abundant species with Ps: 
Palaemonetes spp., Bp: B. patronus, Cv: C. vittatus, C. sim: C. similis, C. sap: C. sapidus, Mu: 
M. undulatus, Cb: C. boleosoma, Fa: F. aztecus, Gs:  G. strumosus, Pl: P. longicarpus in three-
dimensional environmental space. Habitat centroids are the factor means with balloon radii 
representing ± 2 standard error. 
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Table 5.3. Ten most abundant summer taxa, common names, and their total number and percent 
of the total abundance. 
 

Taxa Common Name Total Number Percent 

Palaemonetes spp. grass shrimp 2747 36.7% 

Clibanarius vittatus thin striped hermit crab 1456 19.5% 

xanthid crab mud crab 610 8.2% 

Callinectes sapidus blue crab 423 5.7% 

Gobiesox strumosus skilletfish 298 4.0% 

Anchoa mitchilli bay anchovy 274 3.7% 

Ctenogobius boleosoma darter goby 273 3.7% 

C. similis lesser blue crab 190 2.5% 

Panopeus simpsoni oystershell mud crab 153 2% 

Alpheus sp. snapping shrimp 96 1.3% 

 

Variables with significant ANOVA results did not have significant interactions (P > 

0.05). The ANOVAs for total number of individuals (F2,193 = 4.88, P = 0.009), total number of 

decapod crustaceans (F2,193 = 3.41, P = 0.035), total number of fishes (F2,193 = 4.14, P = 0.017), 

species richness (F2,193 = 4.95, P = 0.008), diversity (F2,193 = 4.30, P = 0.015) and were 

significantly different across all habitat types. Means of all biological variables were 

significantly higher in mangrove (P < 0.05) than in Spartina habitat types. The ANOVA 

conducted on the environmental variables for summer showed no significant difference among 

habitat types. The canonical discriminant analysis showed a significant differences among 

habitat classifications for total number of individuals (F112,324 = 1.39, P = 0.015, Fig 5.4.a), total 

number of fishes (F76,360 = 1.32, P = 0.050, Fig 5.4.b), and environmental variables (F14,422 = 

1.98, P = 0.018, Fig. 5.4.c).  

Factor analysis depicted four orthogonal axes with eigenvalues greater than or equal to 

one and explained 62.5% of the variation. Factor 1 explained 17.4% of variation with large 

negative loadings for DO and temperature. Factor 2 explained 16.8% of variation with a positive 

loading for mean water depth and a negative loading for turbidity. Factor 3 explained 15.2% of 
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variation with a positive loading of dominant substrate and a negative loading for mean water 

velocity. Factor 4 explained 13.1% of variation with a positive loading for distance to marsh 

edge (Table 5.4). Habitat types separated the most across the Factors 1 and 3 where Spartina 

samples had higher temperature, DO, mean water velocity, finer sediments, and we were able to 

sample closer to the marsh edge. Mangrove samples had lower temperatures, DO, mean water 

velocity, turbidity, higher mean water depth, coarser dominant substrate, and we sampled farther 

to the marsh edge. The transition samples were intermediate (Fig 5.5.a). Alpheus sp., A. mitchilli, 

and P. simpsoni were more closely associated with Spartina habitat in environmental space. 

Callinectes similis, G. strumosus, Palaemonetes spp., and xanthid crabs were associated with 

Spartina and transition habitats, while C. sapidus, C. vittatus, and C. boleosoma associated with 

transitional and mangrove habitat types (Fig 5.5.b).     

  a)  

Figure 5.4. Graphical representation of summer canonical coefficients for a) total number of 
individuals, b) total number of fishes, c) environmental variables; Spartina (○),mangrove (●), 
and  transition (□).
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b)  

c)  
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Table 5.4. Factor scores for the summer environmental variables with the highest scores in bold. 
 

Variables Factor 1 Factor 2 Factor 3 Factor 4 

Temperature -0.62 0.22 -0.25 -0.37 

Dissolved Oxygen -0.52 0.38 0.07 -0.11 

Mean Depth 0.41 0.63 -0.20 0.32 

Turbidity 0.23 -0.62 0.09 -0.32 

Dominant Substrate 0.07 0.22 0.81 0.20 

Mean Water Velocity 0.35 0.13 -0.59 0.22 

Distance to Marsh Edge -0.34 -0.27 0.13 0.69 

Salinity 0.38 0.48 0.30 -0.36 

Eigenvalue 1.39 1.35 1.22 1.05 

% Variance Explained 17.4 16.8 15.2 13.1 

Cumulative % Variance Explained 17.4 34.2 49.4 62.5 
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a)  
 

b)  
 
Figure 5.5. Plot of summer a) habitat types and b) ten most abundant species with Ps: 
Palaemonetes spp., Cv: C. vittatus, Xan: xanthid, C.sap: C. sapidus, Gs: G. strumosus, Am: A. 

mitchilli, Cb: C. boleosoma, C. sim: C. similis, P. sim: P. simpsoni, Al: Alpheus sp. in three-
dimensional environmental space. Habitat centroids are the factor means with balloon radii 
representing ± 2 standard error. 
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DISCUSSION 

Current and hypothesized climate changes that increase temperatures and decrease the 

frequency of freeze events will expand the dominance of mangrove stands in coastal 

southeastern Louisiana. While mangroves are a form of estuarine habitat, they were not 

historically prevalent in North America, nor have they previously expanded at their current rate. 

Louisiana Spartina salt marshes are decreasing with the increased sea-level rise, major storm 

events, and continued anthropogenic perturbations. This increases unvegetated marsh areas for 

the seeds of the black mangrove to germinate and establish thick mangrove stands. While other 

studies have found little change with surface soils and vegetated impacts (Perry 2007), this 

chapter looked at effects on nekton community components that utilize the Spartina marsh edge 

as refuge and habitat.  

Spring data showed the total number of individuals, driven by the abundant decapod 

crustacean community, was higher in mangrove and transitional habitat types than Spartina and 

this was similar to Caudill (2005) findings. There were also trends of Spartina habitats having 

lower turbidity than mangrove habitats. Spartina in dense stands has more numerous stems that 

grow farther from the emergent vegetated edge than mangrove pnuematophores. These Spartina 

stems can slow down water velocity and trap suspended sediments from the water column, 

similar to sea grasses. Mangroves are not in dense stands in Louisiana. The transient and 

economically important species that utilize estuaries as nurseries is F. aztecus (Beck et al. 2001) 

and it was strongly associated with Spartina habitat, in this study. Thus a shift in dominance to 

mangroves may result in declines for this species in this heavily fished area, and the 

enhancement of other species more closely associated with mangroves (Fig 5.3). 

In the summer all biological variables were significantly higher in black mangrove than 

Spartina dominated marsh-edge habitat type. There was a trend of Spartina habitats occurring in 
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higher temperature and turbidity than mangrove, but this is because of the lower mean depth and 

higher mean water velocity along Spartina edge. The more shallow water was warmer and the 

turbulent flowing water re-suspended the fine sediments. Spartina also was associated with finer 

sediments like silt and clay which made this habitat more suited for the resident A. Mitchilli, and 

mangrove habitat was associated with the transient C. sapidus. Mangroves are complex 

structures on the marsh edge and although the stems and pnuematophores are coarser than 

Spartina stems they still act as complex structure for aquatic fauna providing refuge and food 

from the epiphytic algae (Laegdsgaard and Johnson 2001, Caudill 2005). Mangroves occur at 

higher elevations than Spartina in southeastern Louisiana and these were usually on the steeper 

banks of channels and creeks (Perry 2007). Many of the species in the summer were associated 

with the transitional habitat types.  

Nekton utilized marsh edge along all habitats in Barataria Bay as these three vegetated 

habitat types were in close proximity to each other. Mangrove habitats attract juvenile fishes and 

decapod crustaceans like other vegetated habitat in estuaries (Sheridan 1997). While mangrove 

infringement may be a new phenomenon in southeastern Louisiana, even this vegetative marsh 

edge is more beneficial than unvegetated open water habitat (Zimmerman and Minello 1984). 

There still needs to be research on the four components of nursery habitat (Beck et al. 2001) in 

each of the open water, mangrove, Spartina, and transition habitat types to better understand how 

our fisheries species are adapting or utilizing these areas as nurseries in Barataria Bay (Sheriden 

and Hays 2003). Both seasons had high decapod crustacean numbers in mangrove as they seem 

to exploit that marsh edge (Caudill 2005). However, this study showed two fisheries species’ 

response to shifts in dominant habitat type and there is a need for more detailed examination of 

this relationship, and the use of black mangroves as suitable nursery habitat in southeastern 

Louisiana.  
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CHAPTER VI 

ANALYSIS OF A LOUISIANA SALTMARSH-EDGE COMMUNITY FOODWEB: 

SHIFTS IN FAUNAL INTERACTIONS FROM PRESS PERTURBATIONS 

 

INTRODUCTION 

Louisiana coastal marshes accommodate a range of taxa in multiple trophic levels such as 

wading birds (Ciconiiforms), bottlenose dolphin (Tursiops truncatus), red drum (Sciaenops 

ocellatus), gulf menhaden (Brevoortia patronus), bay anchovy (Anchoa mitchilli), southern 

flounder (Paralichthys  lethostigma), blue crab (Callinectes sapidus), oystershell mud crab 

(Panopeus simpsoni), brown shrimp (Farfantepenaeus aztecus), American oyster (Crassostrea 

virginica), and early life history stages of numerous other fishes and macroinvertebrates. Red 

drum, gulf menhaden, blue crab, and brown shrimp are commercially important species and use 

coastal marshes for larval and juvenile life history stages (Nelson 1992). The marsh edge is 

dominated by Spartina alterniflora (smooth cordgrass) and is nursery habitats for many 

estuarine-dependent species (Boesch and Turner 1984). In southeastern Louisiana, the lower 

Barataria Bay estuary is directly connected to the Gulf of Mexico, and is in a constant state of 

change from multiple long-term anthropogenic perturbations (press perturbations sensu Bender 

et al. 1984). Examples of these disturbances are oil industry presence (Roth and Baltz 2009), 

wetland loss (Evers et al. 1992), and active and planned freshwater diversions to combat wetland 

loss (Lane and Day1999), mangrove encroachment from a decreased frequency of freeze events 

due to climate change (Mendelssohn and McKee 2000), and a long history of shrimping and 

fishing activities (Shervette et al. 2004). These influences are pressures for change in 

relationships between and among abiotic and biotic ecosystem variables and can result in shifts 

within the food web. To understand the effects of these presses on the trophic web of Barataria 

Bay and to pinpoint areas of needed research, I utilized qualitative loop modeling. This approach 

allowed me to examine the upper trophic levels of the marsh-edge habitat of the bay and look at 
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interactions among floral, faunal, and specific abiotic environmental variables. I also used the 

models to predict the directions of change in community food-web constituents from increased 

biomass of black mangrove, freshwater input by diversions, increased shrimping pressure, and 

wetland loss. 

MATERIALS AND METHODS 

Study Area 

Barataria Bay in southeastern Louisiana is shallow, and in the spring and summer it has 

high salinity, dissolved oxygen, and turbidity. The substrate is dominated by fine sediments, 

including silt and clay with high organic matter. The lower Bay (Fig 6.1) includes the same 

species associated with most Louisiana coastal wetlands and estuaries, and is strongly influenced 

by petroleum and fishing industries. I used natural history literature sources, my own 

observations, and faunal databases to create several loop models characteristic of non-degraded 

saltmarsh edge communities for this study.  

Loop Model 

For more detailed methods and formulas of my general loop model refer to Dambacher 

(2001). Ecological loop models are qualitative signed diagraphs that graphically represent direct 

interactions between major biological and abiotic variables in a system. These direct interactions 

define a community’s structure based on connections between major components and the 

transmission of effects directly and indirectly from one component to another through changes of 

interaction signs between variables within the model. The signs of direct interactions are positive 

(represented by an arrow) if x1 increases from the influence of x2 and negative (represented by a 

circle) if x1 decreases from the influence of x2 (Fig 6.2. a,b,c) (Lane and Levins 1977). There are 

also self-dampening negative feedback loops that account for natural interactions outside the 

scope of a model (Fig 6.2.a) (Lane and Levins 1977). A feedback loop is a directional pathway  



 94 

 

 
 
Figure 6.1. Map of the study area in Barataria Bay in Southeastern Louisiana where data were 
collected and observations made a) Mendicant Island and b) Beauregard Island. 
 

 
  

Figure 6.2. Loop model interactions a) negative self damping loop, b) positive interaction of x2 
on x1, and c) negative interaction of x2 on x1  
 
 

running from one node through others and back to the node of origin without repeating any 

portion of that pathway. Feedback loops are positive if the sign is unchanged and negative if the 

sign changes (Dambacher 2001). Direct interactions including predator-prey (+/-), interference 

competition (-/-), mutualism (+/+), commensalism (+/0), and amensalism (-/0) relationships can 

 x1 x2 

x1 x2 

 
b)

c) 

a) 
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all be represented in the diagraph. Once the diagraph is completed, a community interaction 

matrix of 1, -1, and 0’s (where 0 indicates no direct interaction) is created based on direct 

interactions between variables. This matrix shows the direct effects of all variables on each other 

in the model (Dambacher et al. 2003). From the community interaction matrix, the adjoint matrix 

is calculated. The adjoint matrix represents the net number of positive or negative feedback loops 

acting on any variable in the model, where any change in a column variable exerts a positive or 

negative influence on each row variable in the column. There are several diagnostic tools 

available to assess the stability of a given model. Feedback at each level is used to predict the 

overall stability of the model. System stability depends on three criteria: 1) overall feedback 

must be negative, 2) the net feedback at all levels must be negative, and 3) the net negative 

feedback at lower levels must be stronger than feedback at higher levels (Dambacher et al. 

2003). The adjoint matrix is used to predict net changes to constituents in the system when one 

or more other variables or nodes are altered (Dambacher and Ramon-Jiliberto 2007). To assess 

perturbations to the system, I employed presses on the adjoint matrix to simulate disturbances to 

system equilibrium.  

Presses are persistent disturbances in near-equilibrium systems to one or more variables 

and can affect other variables through direct or indirect interactions (Bender et al. 1984). Presses 

can be a positive or negative and are evaluated via the adjoint matrix as the effects of positive or 

negative changes to one or more column variables on all row variables. Negative presses are 

generated by reversing the sign at all nodes in a column. For example, a positive press on 

nutrients and a negative press on salinity could simulate a freshwater diversion to a system, and 

if the fresh water is turbid it would be included in the press. The combined effects of two or more 

presses of column variables on row variables are expressed through the algebraic summation of 
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row variables of the corresponding columns in the adjoint matrix (e.g. ∑ of + nutrients, - salinity, 

and + turbidity).  

Individual loop models cannot be manipulated in the manner that quantitative models can 

by changing interaction rates between nodes, but rather direct interactions between nodes must 

be made or broken to examine similar models. Thus several similar alternative models can be 

compared by modifying the direct links between nodes or variables to evaluate their affects on 

the outcome of particular presses. These manipulations allow one to test whether the basic model 

is the best representation of the study system and whether the conclusions are general across an 

array of similar models (Lane and Levins 1977). Four presses were assessed with each of these 

models in an effort to uncover a general and realistic model for Barataria Bay marsh-edge food 

webs. All models were stable systems that did not collapse with changes to the interactions or 

links. 

Initial Model Variables and Interactions 

My initial model (Fig 6.3) is a representation of the primary food sources and macrofauna 

on the marsh edge. Top level carnivores are represented by piscivorous wading birds (WB) such 

as Herons, Egrets, and Ibises that prey upon nekton at the shallow marsh edge and their prey 

consist of anchovies, small sciaenids, tonguefishes, eels, shrimps, and crabs (Wambach and 

Emslie 2003). High nekton density and vulnerability are necessary for successful predation by 

wading birds (Gawlik 2002). They leave an area if prey densities, or interactions with the 

environment change prey availability (Gawlik 2002). Water column predatory fauna (P) such as 

sciaenids and larger blue and stone crabs (Fig 6.3) use the marsh edge as a nursery ground until 

they are well into the juvenile life history stage, then they move into the open bay or up the 

estuary (Currin et al. 1984). These species are opportunistic feeders and prey upon the smaller 

life history stages of many of the fishes and macroinvertebrates in the area. Larger sciaenids such 
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as drum and Atlantic croaker feed on juvenile transient fishes, resident fish like bay anchovy, 

blue and mud crabs, and shrimp (Stickney et al. 1975, Scharf and Schlight 2000, Simonsen 

2007). Larger blue and stone crabs prey on most of the large macrofauna in the estuary including 

clams, fishes, and other crabs (Gibson 1988, Hines et al. 1990).  

Brown and white penaeid shrimp (PS) in southeastern Louisiana’s estuaries support 

important fisheries (Fig 6.3) (Chesney et al. 2000, Shervette et al. 2004). Juvenile shrimp utilize 

the marsh edge as nursery grounds (Minello and Zimmerman 1985). The Spartina vegetated 

edge has been shown to decrease predation of brown shrimp by species like Atlantic croaker 

(Minello et al. 1987). Penaeid shrimp consume detritus and small caridean shrimp. The node for 

benthic fishes (BF) represents a guild of small and juvenile stages of many flatfishes, gobies, and 

eels that live on or in the sediment (Fig 6.3). Larger flatfishes eat young-of-year sciaenids and 

other benthic fauna (Rice et al. 1993). Gobies and small flatfishes prey on zooplankton and 

meiofauna that live on stems of Spartina (Carle and Hastings 1982, Fitzhugh and Fleeger 1985, 

Switzer 2003). The remaining faunal nodes are macroinvertebrates. 

Numerous small crabs (SC), represented by lesser blue crab, mud crabs, and earlier life 

history stages of the large crabs (Fig 6.3), are smaller animals, and molt frequently making them 

vulnerable to many predators. These crabs eat detritus and benthic algae (Currin et al. 1995). 

Mud crabs are can be prevented from accessing essential resources (food and refuge) by the large 

stone crabs in the estuary (Brown et al. 2005). Grass shrimp (GS) are small but highly abundant 

animals at the marsh edge (Fig 6.3), and interact with vegetation as they eat meiofauna 

associated with Spartina stems and consume the epiphytic and benthic algae in the system 

(Gregg and Fleeger 1998). They also feed on live Spartina stems and detritus (Welsh 1975). 

Two additional nodes represent environmental variables in the estuary. Turbidity (NTU) 

(Fig 6.3) is a measure of the amount of suspended particles in the water column. Turbidity 
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affects predation by epibenthic and visual predators (like many in this loop model), because it 

modifies visibility and their effectiveness to capture prey (Cyrus and Blaber 1992, Chesney et al. 

2000). Higher abundances of marsh-edge fishes are associated with turbidity above 10 NTU and 

water depth great than 30 cm, where the bottom is not visible and prey are less visible to their 

predators (Baltz et al. 1993). The study area had a mean turbidity of 41 NTU and the bottom was 

rarely visible except at the water’s edge. The dominant fine-grained sediment (FS) found in 

much of coastal Louisiana (Fig 6.3) is from 0.06 mm to 0.004 mm on the Udden-Wentworth 

Grade scale, and of the type historically deposited by the Mississippi River. This sediment is the 

last to fall out of suspension, it is good burrowing substrate and can easily be resuspended by 

burrowers, storm events, or trawling. 

The last three nodes are primary producers found on the marsh edge. Spartina 

alterniflora (Sa) (smooth cordgrass) is the dominant saltmarsh vegetation in Louisiana (Fig 6.3 

and 6.4.a,c). It is an important form of structure that is utilized as refuge by small estuarine 

nekton, and it is the primary producer of detritus (Welsh 1975, Currin et al. 1995, Gregg and 

Fleeger 1998). Spartina is a major primary product in the marsh and is associated with higher 

densities of nekton than open water habitat (Minello and Zimmerman 1985, Baltz et al. 1993, 

Mitsch and Gosselink 2000). Epiphytic and benthic algae (A) found in the Bay (Fig 6.3) grow on 

either plants (epiphytic) or substrate (benthic) and are another primary food source for many 

species in the estuary (Sullivan and Moncreiff 1990, Currin et al. 1995). Because of the high 

turbidity in lower Barataria Bay, light is often unable to penetrate to the sediment and affects the 

amount of algae grown on substrates. Avicennia germinans (black mangrove) (Ag) is the 

dominant mangrove species in higher latitudes and lower temperatures (Fig 6.3 and 6.4.b,c) 

(Woodroffe 1982). It lives in monospecific and mixed stands and performs the same functions as 

other wetland plants (Mendelssohn and McKee 2000, Sheriden and Hays 2003). Due to a 
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decreasing frequency and intensity of freeze events, black mangrove has been expanding in 

southeastern Louisiana marshes creating a Spartina-mangrove ecotone at many points on the 

marsh edge (Fig 6.4.c) (Peterson and Turner 1994, Caudill 2005), and becoming the dominant 

vegetative species in some marshes.  

New Model Variants 

 The initial model had predator-prey interactions for most trophic levels (Fig 6.3). There 

were two direct one-way negative interactions of turbidity (NTU) on wading birds (WB) and on 

algae (A), because in turbidity reduces the bird’s ability to detect prey and algal photosynthesis is 

reduced. Most of the other environmental variables had direct positive interactions on the faunal 

nodes. To explore the generality of the models, I examined two basic variations on the initial 

model (Levins 1966) the first by reversing s direct link, and the second by adding a direct two-

way faunal interaction.  

 
Figure 6.3. Initial loop model of direct interactions between primary producers and consumers of 
higher trophic levels and environmental variables at the Barataria Bay marsh edge. Individual 
nodes are described in the text in more detail: A = algae, FS = fine sediment, GS = grass shrimp, 
SC = small crabs, P = water column predators, BF = benthic fishes, PS = penaeid shrimp, Sa = 
Spartina, Ag = black mangrove, WB = wading birds, and NTU = turbidity. 
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a)   b)  
 

c)  
 
Figure 6.4. Photos of a) Spartina alterniflora marsh edge, b) Avicennia germinans marsh edge, 
and c) the ecotone in the study area. 
 
 

Several benthic fishes (BF), like gobies and eels, can evade predators by burrowing into the 

sediment, while other species like blackcheek tonguefish have dark or cryptic coloration to blend 

into the background. For these fishes, turbidity is not an important refuge characteristic but may 

hinder their ability to locate and capture prey (Walsh et al. 1999). This relationship was 

represented by a change to the initial model from that reversed positive direct interaction 

between benthic fishes and turbidity to a negative in the second model (Fig 6.5). The third model 

(Fig 6.6) differed from the initial model, by the addition predator-prey interaction between 

penaeid shrimp and grass shrimp. Penaeid shrimp (PS) will prey upon the early life history stages 

of grass shrimp (GS) (Minello and Zimmerman 1983). There were no environmental alterations 

in this model. 
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Figure 6.5. Modified loop model of direct interactions between primary producers and 
consumers of higher trophic levels and environmental variables at the Barataria Bay marsh edge. 
Individual nodes are described in the text. The changed link is represented by a dashed (---) line 
and the changed interaction sign is boxed. Justification for the change is in the text.  

 

 
Figure 6.6. Modified loop model of direct interactions between primary producers and 
consumers of higher trophic levels and environmental variables at the Barataria Bay marsh edge. 
Individual nodes are described in the text. The changed link is represented by a dashed (---) line. 
Justification for the change is in the text.  
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Presses 
After a community interaction matrix is developed based on direct interactions and 

determined to be stable, effects from sustained alterations (presses) to one or more variable(s) on 

the other nodes in the model can be examined through the adjoint matrix. Presses can be from a 

single node on the rest of the variables like the black mangrove influences on Spartina and 

nekton, or a combined press of multiple nodes to simulate an events’ influence on the model. I 

explored a marsh-edge vegetation shift and three anthropogenic actions with four different 

combination presses to determine how the marsh-edge community may respond. These were a 

shift from Spartina to black mangrove dominated marsh edge, freshwater diversion, shrimping 

pressure, and wetland loss. Each of these presses was used to predict changes in the food web 

interactions of the Barataria Bay marsh-edge community with different anthropogenic 

disturbances. 

First, an influence of the warming trend associated with climate change is the decrease of 

freeze events and consequential increase in abundance of black mangrove (Caudill 2005 and 

Perry 2007). The increased black mangrove biomass decreases biomass of the dominant Spartina 

and will affect the marsh-edge faunal community (Chapter 5). I simulated this marsh vegetation 

alteration by summing a negative press on the Spartina (Sa) and a positive press on the black 

mangrove (Ag). I then compared the response of the other variables to this combination of 

presses. 

Secondly, several freshwater diversion projects have been developed in southern 

Louisiana in an effort to input fresh water, suspended sediments and nutrients into the coastal 

system to offset subsidence and sea level rise to save wetlands (Scavia et al. 2002). These 

diversions are intended to recreate the flooding events from the Mississippi River that 

historically deposited nutrient rich sediments and helped with accretion to keep the marsh 
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accretion rates ahead of sea level rise (Lane and Day 1999). Most of the nekton in lower 

Barataria Bay are marine species, and there is concern that a shift in the water regime will affect 

food-web interactions (Drinkwater and Frank 1994). I pressed environmental and habitat 

variables to see how faunal populations would change. Positive presses on turbidity (NTU), fine 

sediment (FS), Spartina (Sa), algae (A), and black mangrove (Ag) simulated a freshwater 

diversion on the lower Barataria Bay saltmarsh edge habitat.  

Thirdly, shrimping has been an important industry in Louisiana for decades (Chesney et 

al. 2000). In 2006 the industry in Louisiana landed 61.19 metric tons of shrimp valued over $110 

million (Isaacs and Lavergne 2007). Shrimp trawling efforts have been a long-term activity on 

the coasts, and shrimping has caused changes to the sea floor such as the reduction of large 

bivalves and other macrobenthic organisms (Dayton et al. 1995, Chesney et al. 2000). Even with 

the increased regulations and use of bycatch reduction devices (BRDs), there is still a large 

biomass of non-target bycatch associated with shrimp trawling (Rogers et al. 1997, Chesney et 

al. 2000). The bycatch is usually larger fishes and blue crabs that are occupying the same parts of 

the bay as penaeid shrimp (Shervette et al. 2004). The influences of shrimping and bycatch were 

modeled by negative presses on penaeid shrimp (PS) and water column predators (P). The 

shrimp fisheries use bottom trawls to collect shrimp and other demersal organisms. These trawls 

make contact with bay substrates resuspending fine sediments and significantly increasing 

turbidity, so a positive press on turbidity was included in the assessment of shrimping.  

Finally, from 1945-1985, 60% of Louisiana’s wetlands were converted to open water 

(Evers et al. 1992) by various forms of land loss. Over a 20 year period (1995-2015) Barataria 

Bay is projected to lose 28% of its marsh (LaCoast 2008). Figure 6.7 shows the shift of three 

small islands from marsh to open water in seven years. Wetland loss is a major concern for 

coastal Louisiana as we have 41% of the continental wetlands in United States (Turner and 
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Gosselink 1975). Climate change increases sea level rise by expanding oceans and melting ice 

caps (IPCC 2001). Wetlands cannot keep up or adapt to increases in sea level due to 

anthropogenic influences (Scavia et al. 2002). To understand the implications of marsh 

conversion to open water for the marsh-edge food web, I modeled a positive press on fine 

sediment and turbidity as they would increase with less vegetation to secure sediment or slow the 

water to allow sediment to settle. I also applied negative presses on the marsh-edge vegetation, 

Spartina and black mangrove.  

 
 

a)                b)  
 

Figure 6.7. Map of Beauregard Island a) 1998 and b) 2005. The three islands in boxes show the 
increased wetland loss over the years. 
 
 
RESULTS 

 I used the initial models and its two variations, to examine four basic presses simulating 

long-term perturbations on the marsh-edge community. All models met system stability criteria 

with overall feedback being negative for all levels, and the negative feedback was strongest at 

lower levels. The most notable response from presses on individual variables in the initial model 

were from a press on fine sediments (FS) and black mangrove (Ag) (Table 6.1). A press on fine 

sediment increased water column predators (P) and turbidity (NTU), but decreased grass shrimp 

(GS). A press on black mangroves resulted in strong negative response by grass shrimp with a  
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positive response from turbidity. A press on Spartina (Sa) had a strong positive response from 

grass shrimp. Penaeid shrimp (PS) and small crabs showed no response from the other nekton 

variables. In the second model, the direct positive interaction of turbidity on benthic fishes was 

reversed to negative. Fine sediments and black mangrove resulted in the most notable responses 

when they were individually pressed (Table 6.2). Benthic fishes (BF) responded negatively to the 

positive press on fine sediment. Faunal variables had more effects on the environmental variables 

in this model than the initial model. In the third model, the revision was adding a predator-prey 

link between grass shrimp and penaeid shrimp, and turbidity and algae responded to every other 

variable in this model. All responses in this model were generally weaker than those in both 

other models. All three models indicated the same directional changes for presses on individual 

variables with primary exceptions being the negative response of benthic fishes in the second 

model and the responses of turbidity and algae in the third model. 

Using each model’s adjoint matrix, the community responses to four simulated events 

(i.e., combinations presses) were compared. A negative press on Spartina combined with a 

positive press on black mangrove simulated the encroachment of black mangroves in the 

Spartina dominated marsh-edge. Combined presses showed similar responses of the variables as 

the single press of black mangrove for all models (Table 6.1, 6.2, 6.3, 6.4.a). There was a change 

in the response sign between model one and model two from a positive to a negative for penaeid 

shrimp (Table 6.4.a). 

Freshwater diversions were simulated by simultaneous positive presses on turbidity and 

fine sediment (from the increased sediment deposition of the diverted river waters) and on the 

vegetation variables (from the freshwater and nutrient input of the river waters). Combined 

presses predicting the effects of freshwater diversion showed an increase in water column 

predators and small crabs, but a decrease for grass shrimp in all three models (Table 6.4.b). In 
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model two there was a positive response by penaeid shrimp, and a negative response by benthic 

fishes (Table 6.4.b). Model three showed decreases in wading birds and penaeid shrimp (Table 

6.4.b). There were two strong changes in sign responses between the initial and other models. 

I represented shrimping pressure in the Bay negative presses on water column predators 

and penaeid shrimp and a positive press on turbidity. Shrimping had a positive influence on 

small crabs and a negative influence for wading birds and algae in all models (Table 6.4.c). 

Model two showed a negative response of benthic fishes to shrimping pressure (Table 6.4.c). 

Model two also showed responses from the vegetation variables, Spartina and black mangrove, 

while the other models had no responses for these variables (Table 6.4.c). Model three produced 

a positive response by benthic fishes (Table 6.4.c). There were some differences among models 

realized with shrimping simulations, but the finding of wading birds, water column predators, 

benthic fishes, small crabs, grass shrimp, turbidity, fine sediment, and algae were general across 

all models. 

Wetland loss was simulated by the combined negative presses on the Spartina and black 

mangrove variables and a positive press on turbidity. Wetland loss resulted in a negative 

response of algae for all three models (Table 6.4.d). Model two also had positive responses from 

water column predators, penaeid shrimp, and small crabs (Table 6.4.d). Models three differed 

from models one and two in that it showed positive responses by benthic fish and grass shrimp 

(Table 6.4.d). All models had different responses to the combined wetland loss press. 

DISCUSSION 

Qualitative loop modeling is an effective method for gaining insight into factors that 

influence marsh-edge communities, and is generally useful for exploring management scenarios 

and discovering the unintended consequences of perturbations (Dambacher et al. 2003,  
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Table 6.1. The adjoint matrix for the initial model (Fig 6.3) with variables listed. These values are the sum of all feedback loops that 
influence each node in the model. Presses from one or more column variables are examined by their effect on row variables.   
 
 

Variables   WB P PS BF SC GS NTU FS Sa A Ag 

Wading Birds (WB)  18 5 11 -2 11 -7 -3 -5 24 10 -35 

Water Column Predator (P)  -6 24 0 -3 0 6 12 42 3 15 30 

Penaeid Shrimp (PS)  -3 1 22 -7 -11 -8 6 -1 -15 2 26 

Benthic Fishes (BF)  3 -12 0 18 0 -3 -6 12 15 9 -15 

Small Crabs (SC)  -3 1 -11 -7 22 -8 6 32 -15 2 26 

Grass Shrimp (GS)  9 -3 0 -12 0 24 -18 -63 45 -6 -78 

Turbidity (NTU)  6 9 0 3 0 -6 21 57 -3 18 36 

Fine Sediment (FS)  0 0 0 0 0 0 0 33 0 0 0 

Spartina alterniflora (Sa)  0 0 0 0 0 0 0 0 33 0 -33 

Algae (A)  6 9 0 3 0 -6 -12 -9 30 18 -30 

Avicennia germinans (Ag)   0 0 0 0 0 0 0 33 0 0 33 
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Table 6.2. The adjoint matrix for the second model (Fig 6.5) with variables listed. These values are the sum of all feedback loops that 
influence each node in the model. Presses from one or more column variables are examined by their effect on row variables.   
 
 

Variables   WB P PS BF SC GS NTU FS Sa A Ag 

Wading Birds (WB)  28 0 16 -2 26 -12 6 18 32 10 -44 

Water Column Predator (P)  -14 29 -8 1 16 6 26 107 -16 24 80 

Penaeid Shrimp (PS)  -2 0 32 -4 -6 -24 12 36 6 20 28 

Benthic Fishes (BF)  -4 -29 6 21 -12 10 -34 -73 12 -18 -60 

Small Crabs (SC)  -6 0 -20 -12 40 -14 36 108 -40 2 84 

Grass Shrimp (GS)  22 0 -4 -14 8 32 -16 -48 50 12 -76 

Turbidity (NTU)  4 0 -6 8 12 -10 34 102 -12 18 60 

Fine Sediment (FS)  0 0 0 0 0 0 0 58 0 0 0 

Spartina alterniflora (Sa)  0 0 0 0 0 0 0 0 58 0 -58 

Algae (A)  4 0 -6 8 12 -10 -24 -14 46 18 -56 

Avicennia germinans (Ag)   0 0 0 -0 0 0 0 58 0 0 58 
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Table 6.3. The adjoint matrix for the third model (Fig 6.6) with variables listed. These values are the sum of all feedback loops that 
influence each node in the model. Presses from one or more column variables are examined by their effect on row variables.   
 
 

Variables   WB P PS BF SC GS NTU FS Sa A Ag 

Wading Birds (WB)  26 5 13 -7 14 1 -11 -31 48 10 -75 

Water Column Predator (P)  -8 30 -4 -1 2 6 16 60 1 19 42 

Penaeid Shrimp (PS)  3 -1 22 -15 -11 8 -6 -43 15 -2 -26 

Benthic Fishes (BF)  4 -15 2 21 -1 -3 -8 11 20 11 -21 

Small Crabs (SC)  -6 2 -3 -11 22 -16 12 45 -30 4 52 

Grass Shrimp (GS)  9 -3 -16 -4 8 24 -18 -47 45 -6 -78 

Turbidity (NTU)  8 11 4 1 -2 -6 25 63 -1 22 40 

Fine Sediment (FS)  0 0 0 0 0 0 0 41 0 0 0 

Spartina alterniflora (Sa)  0 0 0 0 0 0 0 0 41 0 -41 

Algae (A)  8 11 4 1 -2 -6 -16 -19 40 22 -42 

Avicennia germinans (Ag)   0 0 0 0 0 0 0 41 0 0 41 



Table 6.4 (Continued) 110 

Table 6.4. Combined press results for each model as calculated from the adjoint matrices of each 
model a) black mangrove encroachment with - Sa and + Ag, b) freshwater diversion with + NTU, 
FS, Sa, and Ag, c) shrimping pressure with – P and PS and + NTU, and d) wetland loss with – Sa 
and Ag and + NTU. Pressed variables are in bold and are not used for response results. 
 
a) 

Mangrove Encroachment Model 1 Model 2 Model 3 

Wading Birds (WB) -59 -76 -123 

Water Column Predator (P) 27 96 41 

Penaeid Shrimp (PS) 41 22 -41 

Benthic Fishes (BF) -30 -72 -41 

Small Crabs (SC) 41 124 82 

Grass Shrimp (GS) -123 -126 -123 

Turbidity (NTU) 39 72 41 

Fine Sediment (FS) 0 0 0 

Spartina alterniflora (Sa) -66 -116 -82 

Algae (A) -60 -102 -82 

Avicennia germinans (Ag) 33 58 41 

 
b)  

Freshwater Diversion Model 1 Model 2 Model 3 

Wading Birds (WB) -9 -185 -59 

Water Column Predator (P) 102 67 137 

Penaeid Shrimp (PS) 18 170 -62 

Benthic Fishes (BF) 15 -135 13 

Small Crabs (SC) 51 5 83 

Grass Shrimp (GS) -120 -213 -104 

Turbidity (NTU) 129 55 149 

Fine Sediment (FS) 33 -22 41 

Spartina alterniflora (Sa) 0 -143 0 

Algae (A) -3 -138 -15 

Avicennia germinans (Ag) 66 94 82 
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c) 

Shrimping Pressure Model 1 Model 2 Model 3 

Wading Birds (WB) -19 -70 -29 

Water Column Predator (P) -12 64 -18 

Penaeid Shrimp (PS) -17 100 15 

Benthic Fishes (BF) 6 -82 21 

Small Crabs (SC) 16 4 11 

Grass Shrimp (GS) -15 -102 1 

Turbidity (NTU) 12 66 10 

Fine Sediment (FS) 0 0 0 

Spartina alterniflora (Sa) 0 -66 0 

Algae (A) -21 -54 -31 

Avicennia germinans (Ag) 0 54 0 
 
d)  

Wetland Loss Model 1 Model 2 Model 3 

Wading Birds (WB) 8 -17 16 

Water Column Predator (P) -21 19 -27 

Penaeid Shrimp (PS) -5 18 5 

Benthic Fishes (BF) -6 -13 9 

Small Crabs (SC) -5 7 -10 

Grass Shrimp (GS) -141 -21 15 

Turbidity (NTU) 54 11 -14 

Fine Sediment (FS) 0 0 0 

Spartina alterniflora (Sa) 0 -11 0 

Algae (A) -12 -4 -14 

Avicennia germinans (Ag) -33 26 -42 

 
 
 

Dambacher and Ramos-Jiliberto 2007). Using these models, researchers can unravel direct and 

indirect interactions among biotic and abiotic variables to formulate hypotheses, design 

experiments, or identify specific data needs. Models clarify important and interesting 

relationships among environmental and faunal variables such as turbidity’s influences on the 

nekton community. The strongest influences in Louisiana marsh-edge systems were related to 

environmental and floral variables on faunal variables (Tables 6.1, 6.2, 6.3). This illustrates how 
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these estuarine-dependent species are tied to their environments and dominant vegetation and 

how changes to the environment result in direct or indirect effects on the fauna. The 

environmental variable with the most influence on other variables was turbidity. It was also 

involved in combination presses to simulate freshwater diversion, shrimping pressure, and 

wetland loss demonstrating the significant role it plays in the Barataria Basin system. 

Nevertheless, it has been unappreciated in Louisiana and no long-term records appear to exist 

across the northern Gulf of Mexico (Turner 2001). Positive presses on turbidity caused positive 

responses of the nekton as that have been corroborated in nature (Cyrus and Blaber 1992). This 

strong influence was expressed across all of the models and warrants a closer examination of the 

hypothesis that high turbidity is a trait of high quality nursery habitat in southeastern Louisiana 

(Chesney et al. 2000). 

The models were a good representation of the food-web dynamics of the marsh-edge 

community of lower Barataria Bay. While the changes in links and connections showed some 

variations in responses to presses, they were most numerous for model two. Model two had the 

most differences in responses for the freshwater diversion and shrimping presses, but was similar 

to the other models for the other presses. The commonalities among the responses of variables to 

the complex presses for all of models indicate that they are general and realistic representations 

of the marsh-edge community in Barataria Bay, Louisiana. The mangrove encroachment press 

showed the greatest agreement in responses among all models. With the exception of a negative 

response of penaeid shrimp in model three, all models showed grass shrimp having a strong 

negative response to increased mangrove and decreased Spartina. Chapter 5 (Fig 5.3.b) indicates 

grass shrimp were less associated with black mangroves. For freshwater diversions the models 

anticipate an increase in water column predators and small crabs and a decrease in grass shrimp. 

Grass shrimp are a considerable food source for many species that showed a positive response to 
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the freshwater diversion (Anderson 1985, Kneib 1987).The shrimp fisheries had a common 

response of increases in small crabs and decreases in wading birds and algae. Wetland loss is 

expected to cause a decline in algae across all models. This press showed the largest disconnect 

of the three models. The next step in making general and realistic predictions is to develop a final 

basic model and explore interesting variations around that model to discover basic truths about 

the system and indentify critical data needs to build good quantitative models. 

The Bay has multiple long-term perturbations, but there were four changes that have been 

ongoing for a while and will continue in the study area. I have examined these individually as 

complex presses of sets of individual variables. It is also apparent that those and many other 

perturbations are occurring simultaneously, and may be additive as positive and/or negative 

effects, or result in synergistic effects. Habitat changes in coastal Louisiana and the northern 

Gulf of Mexico are numerous and the effects of some perturbations may be overlooked while 

other negative effects are attributed solely to a major perturbation without appreciating the 

additive and synergistic nature of multiple insults. Jackson et al. (2001) reveal that fishing is an 

early and long standing influence that is widely unappreciated. It has preceded habitat 

destruction, pollution, the introduction of exotic species and climate change (Jackson et al. 2001, 

Fig 3). Louisiana has had and will continue to endure multiple perturbations in the form of 

fishing, pollution, or sea-level rise (Chesney et al. 2000). These perturbations increase patchiness 

in the wetlands and in turn increase marsh-edge habitat, which is a valuable nursery feature for 

many estuarine-dependent species (Baltz et al. 1993). Because of the increased nursery function, 

nekton densities remain high while other habitat qualities decrease. With these changes it is 

important to consider the shifting baseline syndrome with long-term data (Pauly 1995). The 

environmental conditions we are currently experiencing are the result of multiple interacting 

press perturbations not necessarily the specific result of current resource management. 
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Qualitative modeling of multiple long-term perturbations will help to determine which 

interactions have been important in causing responses and how alternative management options 

will influence systems. 

LITERATURE CITED 
 
Anderson, G.  1985. Species Profile. Life History and Environmental Requirements of  
 Coastal Fishes and Invertebrates (Gulf of Mexico). Grass Shrimp. University of  
 Southern Mississippi. 
 
Baltz, D.M., C. Rakocinski, and J.W. Fleeger. 1993. Microhabitat use by marsh-edge  
 fishes in a Louisiana estuary. Environmental Biology of Fishes 36: 109-126. 
 
Bender, E.A., T.J. Case, and M.E. Gilpin. 1984. Perturbation experiments in community  
 ecology: theory and practice. Ecology 65: 1-13. 
 
Boesch, D.F. and R.E. Turner. 1984. Dependence of fishery species on saltmarshes: the  
 role of food and refuge. Estuaries 7: 460-468. 
 
Brown, K.M., S.F. Keenan, and P.D. Banks. 2005. Dominance hierarchies in Xanthid  
 crabs: roles in resource-holding potential and field distribution. Marine  

 Ecological Progress Series 291: 189-196. 
 
Carle, K.J., and P.A. Hastings. 1982. Selection of meiofaunal prey by the darter goby,  
 Gobionellus boleosoma (Gobiidae). Estuaries 5: 316-318. 
 
Caudill, M.C. 2005. Nekton utilization of black mangrove (Avicennia germinans) and  
 smooth cordgrass (Spartina alterniflora) sites in southwestern Caminada Bay,  
 Louisiana. Masters Thesis. Louisiana State University, Baton Rouge. 71 pp.  
 
Chesney, E.J., D.M. Baltz, and R.G. Thomas. 2000. Louisiana estuarine and coastal 
 fisheries and habitats: perspectives from a fish’s eye view. Ecological  
 Applications 10: 350-366. 
 
Currin, B.M., J.P. Reed, and J.M. Miller. 1984. Growth, production, food consumption,  
 and mortality of juvenile spot and croaker: a comparison of tidal and nontidal  
 nursery areas. Estuaries 7: 451-459. 
 
Currin, B.M., S.Y. Newell, and H.W. Pearl. 1995. The role of standing dead Spartina  

 alterniflora and benthic microalgae in salt marsh food webs: considerations based  
 on multiple stable isotope analysis. Marine Ecological Progress Series 121: 99- 
 116. 
 
Cyrus, D.P. and S.J.M Blaber. 1992. Turbidity and salinity in a tropical northern  

Australian estuary and their influences on fish distribution. Estuarine, Coast and  

Shelf Science 35: 545-563. 



 115 

 
Dambacher, J.M. 2001. Qualitative analysis of the community matrix. Doctor  
 Dissertation. Oregon State University. Corvallis, Oregon. 117 pp. 
 
Dambacher, J.M., H-K, Luh, H.W.Li, and P.A. Rossignol. 2003. Qualitative stability  
 and ambiguity in model ecosystems. The American Naturalist 161: 876-888. 
 
Dambacher, J.M. and R. Ramos-Jiliberto. 2007. Understanding and predicting effects of  
 modified interactions through qualitative analysis of community structure. The  
 Quarterly Review of Biology 82: 227-250. 
 
Dayton, P.K., S.F. Thrush, M. Tundi Agardy, and R.J. Hofman. 1995. Environmental  

effects of marine fishing. Aquatic Conservation: Marine and Freshwater  

Ecosystems 5205-232. 
 
Drinkwater, K.F. and K.T. Frank. 1994. Effects of river regulation and diversion on  
 marine fish and invertebrates. Aquatic Conservation: Freshwater and Marine  

 Ecosystems 4: 135-151. 
 
Evers, D.E., J.G. Gosselink, C.E. Sasser, and J.M. Hill. 1992. Wetland loss dynamics in  
 Barataria basin, Louisiana (USA), 1945-1985. Wetland Ecology and Management  
 2: 103-118. 
 
Fitzhugh, G.R. and J.W. Fleeger. 1985. Goby (Pisces: Gobiidae) interactions with  
 meiofauna and small macrofauna. Bulletin of Marine Science 36: 436-444. 
 
Gawlik, D.E. 2002. The effects of prey availability on the numerical response of wading  
 birds. Ecological Monographs 72: 329-346. 
 
Gibson, W.E. 1988. Habitat selection and abundance of juvenile blue crabs, Callinectes  

 sapidus, and juvenile lesser blue crabs, Callinectes similis, and Barataria Bay,  
 Louisiana. Masters Thesis. Louisiana State University. 124 pp. 
 
Gregg, C.S. and J.W. Fleeger. 1998. Grass shrimp Palaemonetes pugio predation on  
 sediment- and stem-dwelling meiofauna: field and laboratory experiments.  
 Marine Ecological Progress Series 175: 77-86. 
 
Hines, A.H., A.M. Haddon, and L.A. Wiechert. 1990. Guild structure and forging impact  
 of blue crabs and epibenthic fish in a subestuary in Chesapeake Bay. Marine  

 Ecology Progress Series 67: 105-126. 
 
Intergovernmental Panel on Climate Change (IPCC). 2001. Climate Change 2001: The  

 Scientific Basis Climate Change 1995. Cambridge University Press, New York.  
 
Isaacs, J.C. and D.R. Lavergne. 2007. Louisiana Shrimp Marketing Survey Report.  
 Louisiana Department of Wildlife and Fisheries. Office Management and  
 Finance. Socioeconomic Research and Development Section. Baton Rouge,  
 Louisiana. 



 116 

 
Jackson, J.B.C., M.X. Kirby, W.H. Berger, K.A. Bjorndal, L.W. Botsford, B.J. Bourque,  
 R.H. Bradbury, R. Cooke, J. Erlandson, J.A. Estes, T.P. Hughes, S. Kidwell, C.B.  
 Lange, H.S. Leniham, J.M. Pandolfi, C.H. Peterson, R.S. Steneck, M.J. Tegner,  
 and R.R. Warner. 2001. Historical overfishing and the recent collapse of coastal  
 ecosystem. Science 293: 629-638. 
 
Kneib, R.T. 1987. Predation risk and use of intertidal habitats by young fish and shrimp.  
 Ecology 68: 379-386. 
 
LaCoast 2008. www.http//lacoast.gov/landchange/basins/ba/barsum.htm 
 
Lane, P. and R. Levins. 1977. The dynamics of aquatic systems. 2. The effects of nutrient  
 enrichment on model plankton communities. Limnology and Oceanography  
 22: 454-471. 
 
Lane, R.R. and J.W. Day, Jr. 1999. Water quality analysis of a freshwater diversion at  
 Caernarvon, Louisiana. Estuaries 22: 327-336. 
 
Levins, R. 1966. The strategy of model building in population biology. American  

 Scientist 54: 421-431. 
 
Mendelssohn, I.A. and K.L. McKee. 2000. Saltmarshes and mangroves. In North  

 American Vegetation. Barbour, M.G. and W.D. Billings (eds). Cambridge  
 University Press, New York.  
 
Minello, T.J. and R.J. Zimmerman. 1983. Fish predation on juvenile  

brown shrimp Penaeus aztecus Ives: the effect of simulated Spartina structure on 
predation rates. Journal of Experimental marine Biology and Ecology 72: 211-231. 

 
Minello, T.J. and R.J. Zimmerman. 1985. Differential selection for vegetative structure 

 between juvenile brown shrimp (Penaeus aztecus) and white shrimp (Penaeus  

setiferus), and implications in predator-prey relationships. Estuarine, Coastal, and  

Shelf Science 20: 707-716. 
 
Minello, T.J., R.J. Zimmerman., and E.X. Martinez. 1987. Fish predation on juvenile  
 brown shrimp Penaeus aztecus Ives: effects of turbidity and substratum on  
 predation rates. Fisheries Bulletin 85: 59-70. 
 
Mitsch, W.J. and J.G. Gosselink. 2000. Wetlands. 3rd edition. Van Nostrand Reinhold,  
 New York. 
 
Nelson, D.M. (editor). 1992. Distribution and abundance of fishes and invertebrates in  
 Gulf of Mexico estuaries, Volume 1: data summaries. ELMR Rep. No. 10.  
 NOAA/NOS Strategic Environmental Assessment Division, Rockville, MD. 273  
 pp. 
 

http://www.http/lacoast.gov/landchange/basins/ba/barsum.htm


 117 

Pauly, D. 1995. Anecdotes and the shifting baseline syndrome of fishes. Trends in  

 Ecology and Evolution 10: 430. 
 
Perry, C.L. 2007. Ecosystem effects of expanding populations of Avicennia germinans in  
 a southeastern Louisiana Spartina alterniflora saltmarsh. Masters Thesis.  
 Louisiana State University, Baton Rouge. 51 pp.  
 
Peterson, G.W. and R.E. Turner. 1994. The value of salt marsh edge vs interior as a  
 habitat for fish and decapod crustaceans in a Louisiana tidal marsh. Estuaries  
 17(1b): 235-262. 
 
Rice, J.A., L.B. Crowder, and K.A. Rose. 1993. Interactions between size-structured  
 predator and prey populations: experimental test and model comparison.  
 Transactions of the American Fisheries Society 122: 481-491. 
 
Rogers, D.R., B.D. Rogers, J.A. de Silva, V.L. Wright, and J.W. Watson. 1997.  
 Evaluation of shrimp trawls equipped with bycatch reduction devices in inshore  
 waters of Louisiana. Fisheries Research 33: 55-72. 
 
Roth, A.F. and D.M. Baltz. 2009. Short-term effects of an oil spill on marsh-edge  
 fishes and decapod crustaceans. Estuaries and Coasts in press. 
 
Scavia, D., J.C. Field, D.F. Boesch, R.W. Buddmeier, V. Burkett, D.R. Cayan, M.  
 Fogarty, M.A. Harwell, R.W. Howarth, C. Mason, D.J. Reed, T.C. Poyer, A.H.  
 Sallenger, and J.G. Titus. 2002. Climate change impacts on U.S. coastal and  
 marine ecosystems. Estuaries 25: 149-164. 
 
Scharf, F.S. and K.K. Schlight. 2000. Feeding habits of red drum (Sciaenops ocellatus) in  
 Galveston Bay, Texas: seasonal diet variation and predator-prey size  
 relationships. Estuaries 23: 128-139. 
 
Sheridan, P. and C. Hays. 2003. Are mangroves nursery habitat for transient fishes and  
 decapods? Wetlands 23: 449-458. 
 
Shervette, V.R., H.M. Perry, C.F. Rakocinski, and P.M. Biesiot. 2004. Factors  
 influencing refuge occupation by stone crab Menippe adina juveniles in  
 Mississippi Sound. Journal of Crustacean Biology 24: 652-665. 
 
Simonsen, K.A. 2008. The effects of an inshore artificial reef on the community structure  
 and feeding ecology of estuarine fishes in Barataria Bay, Louisiana. Masters 
 Thesis. Louisiana State University, Baton Rouge. 100pp. 
 
Stickney, R.R., G.L. Taylor, and D.B. White. 1975. Food habits of five species of young  
 southeastern United States estuarine Sciaenidae. Chesapeake Science 16: 104- 
 114.  
 



 118 

Sullivan, M.J. and C.A. Moncreiff. 1990. Edaphic algae are an important component of  
 salt marsh food-webs: evidence from multiple stable isotope analyses. Marine  
 Ecological Progress Series 62: 149-159. 
 
Switzer, T.S. 2003. The ecology of two estuarine dependent tonguefishes, the blackcheek  
 tonguefish (Symphurus plagiusa) and the offshore tonguefish (S. civitatium), in  
 coastal Louisiana. Doctor Dissertation. Louisiana State University, Baton Rouge.  
 163 pp. 
 
Turner, R.E. and J.G. Gosselink. 1975. A note on standing crops of Spartina alterniflora  
 in Texas and Florida. Contributions in Marine Science 19: 113-118.  
 
Walsh, H.J., D.S. Peters, and D.P. Cyrus. 1999. Habitat utilization by small flatfishes in a  
 North Carolina estuary. Estuaries 22: 803-813. 
 
Wambach, E.J. and S.D. Emslie. 2003. Seasonal and annual variation in the diet of 

breeding, known-age royal terns in North Carolina. Wilson Bulletin 115: 448- 
454. 
 

Welsh, B.L. 1975. The role of grass shrimp, Palaemonetes pugio, in a tidal marsh  
 ecosystem. Ecology 56: 513-530. 
 
Woodroffe, C.D. 1982. Litter production and decomposition in the New Zealand  
 mangrove, Avicennia marina var. resisfera. New Zealand Journal of Marine and  
 Freshwater Research 16: 179-188. 

 



 119 

APPENDIX A 

LIST OF ALL NEKTON ABUNDANCES BY YEAR 

 

Species/Genera/Family Common Name 2005 2006 2007 

Alpheus spp. snapping shrimp 23 65 35 

Anchoa spp. anchovy 7 2 0 

Anchoa hepsetus striped anchovy 44 101 7 

Anchoa mitchilli bay anchovy 301 54 123 

Ariopsis felis hardhead catfish 0 1 0 

Bairdiella chrysoura silver perch 1 3 12 

Bathygobius soporator frillfin goby 5 16 1 

Brevoortia patronus gulf menhaden 2 1885 111 

Callinectes sapidus  blue crab 429 583 743 

Callinectes similis  lesser blue crab 196 616 846 

Chaetodipterus faber Atlantic spadefish 0 0 1 

Citharichthys spilopterus bay whiff 12 17 0 

Clibanarius vittatus thin striped hermit crab 1137 1425 799 

Ctenogobius boleosoma darter goby 305 266 270 

Cynoscion arenarius sand trout 0 9 0 

Cynoscion nebulosus spotted trout 2 6 12 

Dasyatis americana stingray 0 0 3 

Elops saurus ladyfish 0 0 1 

Eurypanopeus depressus flatback mud crab 13 6 55 

Farfantepenaeus aztecus brown shrimp 70 187 93 

Gerridae mojarra 2 0 1 

Gobiesox strumosus skilletfish 333 187 129 

Gobiidae goby 2 5 2 

Gobiosoma bosc naked goby 92 24 31 

Gobiosoma robustum code goby 0 0 14 

Hypleurochilus geminatus crested blenny 45 25 40 

Lagodon rhomboides pinfish 0 2 0 

Leiostomus xanthurus spot 0 7 61 

Litopenaeus setiferus white shrimp 14 61 15 

Lutjanus griseus grey snapper 1 4 10 

Majoidae arrow crab 0 59 65 

Membras martinicas rough silverside 0 60 9 

Menidia beryllina inland silverside 1 0 1 

Menippe adina gulf stone crab 44 44 23 

Menticirrhus americanus southern kingfish 1 1 4 

Microphis brachyurous pipefish 0 5 4 

Micropogonias undulatus Atlantic croaker 85 431 62 

Mugil cephalus striped mullet 2 1 99 
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Mugil curema white mullet 4 0 0 

Myrophis punctatus speckled worm eel 15 14 8 

Neoconger mucronatus ridged eel 0 0 1 

Opsanus beta gulf toadfish 1 5 3 

Ovalipes floridanus Florida lady crab 0 2 1 

Pagurus longicarpus longwristed hermit crab 0 142 48 

Palaemonetes spp. grass shrimp 2858 3483 2962 

Panopeus obesus saltmarsh mud crab 2 1 12 

Panopeus simpsoni oystershell mud crab 58 137 85 

Paralichthys lethostigma southern flounder 0 5 16 

Penaeidae penaeid shrimp 7 0 16 

Persephona spp. purse crab 1 0 0 

Pogonias cromis black drum 1 1 1 

Pomacanthidae angelfish 0 0 2 

Rhithropanopeus harrisii estuarine mud crab 8 30 13 

Sciaenidae drum 4 6 7 

Sciaenops ocellatus red drum 0 1 2 

Sphoeroides parvusd least puffer 0 0 3 

Strongylura marina Atlantic needlefish 0 1 0 

Syacium papillosum dusky flounder 1 0 0 

Symphurus plagiusa blackcheek tonguefish 30 39 26 

Syngnathus louisianae chain pipefish 7 2 0 

Syngnathus scovelli gulf pipefish 0 1 0 

Synodus foetens inshore lizardfish 4 9 4 

Xanthidae mud crab 339 392 116 
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