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Abstract
Extreme events seriously affect human health and natural environment. In the present study, several
indexes that can describe the severity of compound extreme high temperature and drought/rainy events
(CHTDE/CHTRE) are constructed based on copulas. According to observations, CHTDE and CHTRE have
intensified in most areas of China during 1961–2014. The significant increase trend in the severity of
CHTDE and CHTRE is basically consistent with simulations under historical anthropogenic forcing. This
result proves that changes in CHTDE can be largely attributed to anthropogenic climate change. The
historical greenhouse gas forcing is identified to be the dominant factor that affects the severity of
CHTDE in China, particularly in the Tibetan Plateau and Northwest China. Moreover, the contribution of
anthropogenic forcing to the linear change of the CHTRE severity in China is more than 90%. In addition,
the ozone and land use signals also can be detected on change of CHTDE and CHTRE.

Introduction
In recent years, as the global temperature continues to rise, extreme events such as extreme precipitation,
extreme droughts, extreme high temperature and extreme storms occur frequently, causing devastating
effects and risks to human life and ecological environment in various places1–4. For example, 38.305
million people were affected by the extreme high temperature event in China during the summer of 2022
(https://www.mem.gov.cn/xw/yjglbgzdt/202209/t20220917_422674.shtml). In the summer of 2021,
China experienced many extreme rainfall events, each of which caused a property loss of about US$12
billion5. Furthermore, the Lancet Countdown Regional Centre in Asia reported that hundreds to thousands
of people lost their lives in extreme floods each year in China, and millions to tens of millions of people
cannot have drinking water because of extreme droughts6. In particular, in the context of global warming,
compound extreme weather and climate events, which are multivariate extremes at multiple temporal and
spatial scales that can further exacerbate the risks and effects caused by individual extreme events,
become more frequent. The compound extreme events pose a serious threaten to communities and have
great impacts on crops, grassland ecosystem and vegetation3,7–9. Thus, climate change has become one
of the most severe challenges facing humankind. Attaching great importance to the change on different
types of compound extreme events and doing research on it is the key to prevent and mitigate natural
disasters and ensure the economic development and human happiness. 

Since the Intergovernmental Panel on Climate Change Special Report on Climate Extremes (IPCC SREX)
first explicitly proposed the conception of compound extreme event in 201210, the definition of compound
extreme event has been continuously enriching and expanding3,11. As for compound extreme high
temperature and drought/rainy events (CHTDE and CHTRE), the quantitative identification methods can
be classified into three categories11–13. One category is that the concurrent extremes of different
variables should be greater than or less than their specified extreme thresholds14–16. Another category is
to recognize the compound event based on empirical statistical models of meteorological indicators like
compound drought and heat wave magnitude index7,17–19. The third category is to implement the
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probability statistic indicator based on joint distributions of multiple single event indicators. In this
category, the effects of dependence and interaction between multiple extreme driving factors and
compound extreme events are investigated13,20,21. The Standardized Compound Event Indicator
developed by Standardized Precipitation Index (SPI) and Standardized Temperature Index are good
examples of this category22. However, most of these indicators are obtained based on data at monthly
time scale, whereas the variation at daily time scale is smoothed out. In addition, the interaction between
different time scales and physical meteorological element are not well considered and the extreme degree
of the compound events are not well quantified at present12,23. 

Increasing attention has been paid to CHTDE in recently years. The IPCC AR63 report indicates that the
occurrence probability of CHTDE has been increasing at the global scale since the 1950s, and the
frequency and intensity of CHTDE have increased with high confidence. Wang et al.24 investigated the
spatiotemporal changes of CHTDE over global land using SPI and copula method. They demonstrated
that the significant increase in the probability of CHTDE depends on the enhancement of negative
correlation between temperature and SPI. In China, monthly CHTDE show an obvious increasing trend,
which is evident in both the observations and numerical simulations, especially in Northeast China, where
the occurrence probability of CHTDE has increased by 0.05 per decade25–27. In addition, the continuous
and stable high pressure system anomaly is conducive to the formation of downdrafts and low-level
thermal anomalies, which can effectively reduce cloud cover and increase solar radiation. As a result,
CHTDE are intensified in China and display a daily variation feature9,28,29. However, few studies have
focused on the regional characteristics of CHTDE and reproducibility in the simulations of CHTDE from
the Coupled Model Intercomparison Project Phase 6 (CMIP6) on daily time scale. In addition, compared
with the simulations of CHTDE by CMIP5, the performance and uncertainty range of CHTDE by CMIP6
have not been well understood. 

Except for CHTDE, CHTRE also have important effects on the environment. When intensified extreme
heavy precipitation events occur together with extreme high temperature events more frequently, a higher
frequency of CHTRE can be found in both daytime and nighttime15. In addition, it is almost impossible
for extreme precipitation events and extreme high temperature events to occur consecutively within a
week in China before. However, it has become more likely that a once-in-50-year extreme precipitation
event and an extreme high temperature event occur together within a week in recent decades30. However,
our understanding of CHTRE is very limited, and little attention has been paid to the study of the severity
of CHTRE based on the reliable observations and numerical model outputs at present. 

In order to investigate the extent to which climate change is caused by anthropogenic activities, many
studies on extreme events have been conducted and confirmed that anthropogenic activities, especially
emissions of greenhouse gases, are the main reason for the increase in extreme temperature events,
extreme precipitation events and drought events on both regional and global scales4,31,32. In recent years,
human influence on compound extreme events has gradually attracted more attention. Some studies
have found that anthropogenic activities are likely to influence the occurrence probability of global
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CHTDE25–27,33. Specifically, under the background of global warming, the main driving factor for the
increase of the frequency of CHTDE has changed from meteorological droughts in the 1930s to the
observed warming trend in recent years24,34. However, the understanding of the changes in CHTDE and
CHTRE influenced by anthropogenic activities and natural forcings in different regions of China is still
less than sufficient. 

The present study uses bivariate joint probability distribution method and multi-model results of CMIP6 to
study changes in the severity of CHTDE and CHTRE in different subregions of China. Relative
contributions of external forcings including anthropogenic activities and natural variability to the changes
are also explored. 

Results

Observed changes in CHTDE and CHTRE
In this study, the combined probability of the frequency and duration of simultaneously occurred high
temperature and drought (rainy) events are considered and the severity of the compound event (see
Methods) is quantified. Here, a smaller indexes of CHTDE and CHTRE (CHTDEI/CHTREI) represent a more
violent and severe CHTDE/CHTRE. Therefore, a downward trend of CHTDEI/CHTREI indicates an
increasing trend in the severity of CHTDE/CHTRE, and vice versa. To determine the optimal fitting copulas
for calculating multivariate joint distribution, three criteria are used to compare the performance of
different copulas35. According to the results, the CHTDEI and CHTREI based on the Clayton and Gumbel
are shown in Fig. 1 (see Methods).

Specifically, the observed CHTDEI in Northwest China (NWC), Northeast China (NEC), the Tibetan Plateau
(TP) and coastal region of south China (SC) exhibits a statistically significant (at the 95% confidence
level) decreasing trend of about 0.04 to 0.1 per decade from 1961 to 2014 (Fig. 1a). This means that the
severity of CHTDE is increasing significantly during summer in most areas of China except for eastern
China (EC). In contrast, the CHTREI displays a significant decreasing trend of about 0.02 to 0.1 per
decade in the north of TP and south of NWC (Fig. 1b). The intensified severity of CHTRE in NWC under
the background of increasing warming and humidification deserves more attention36. In addition, there is
a decreasing trend of about 0.02 to 0.06 only in the northern part of NEC. Moreover, the spatial patterns of
observed trends in the severity of CHTDE and CHTRE found in this paper are basically similar to the
results of previous research on the climatology of the frequency of CHTDE and CHTRE18,37, which
indicate that the severity of CHTDE and CHTRE would increase significantly in areas with higher
frequency of CHTDE and CHTRE.

Note that the regional differences in CHTDE and CHTRE are significant and the driving factors in different
regions may be different. Thus, the present study focuses on the CHTDE and CHTRE in five subregions of
China, which are the NWC, TP, NEC, EC and SC regions shown in Fig. 1.



Page 6/22

Model performance
In general, the accuracy of detection and attribution results depends on the performance of a large
number of climate models38. To identify those models that can yield reasonable simulations, the
capabilities of the 12 CMIP6 models for the simulation of climatological spatial pattern and temporal
evolution of temperature and precipitation in China are evaluated based on the Taylor analysis (see
Methods). A good model simulation should have three characteristics, i.e., the standard deviation and
correlation are close to unit and the root mean square error (RMSE) is close to zero 39.

As shown in Fig. 2a and 2b, most models can reproduce the climatological spatial pattern of mean
temperature and total precipitation in the summers of 1961–2014. Comparative analysis indicates that,
although the spatial correlation coefficients between the simulations of the 12 models and observations
are greater than 0.8 and the RMSEs of the model simulations are less than 0.5, the performance of IPSL-
CM6A-LR is relatively poor on the simulation of mean temperature variance since it overestimates the
standard deviation of temperature. For the climatology of total precipitation, the spatial correlation
coefficients between observed precipitation and simulations are around 0.8 and the RMSEs are smaller
than 0.75 for all the 12 models except FGOALS-g3, which shows a relatively poor performance with a
spatial correlation coefficient of 0.53 and a RMSE of 0.77 (Fig. 2b). Looking at differences in total
precipitation between the simulations of CMIP6 models and observations, it can be found that the
deviation mainly comes from obvious overestimation in the TP and underestimation in EC and SC (Fig.
S2).

The deviations of mean temperature and total precipitation in summer is particularly large in the
simulations. The standard deviations of temperature simulated by MIROC6, CNRM-CM6-1 and CanESM5
are quite different from that in the observations (Fig. 2c). For regional mean precipitation in China
(Fig. 2d), the largest correlation coefficient between total precipitation simulated by the models and
observations is smaller than 0.4. The correlation coefficients between observations and simulations of
IPSL-CM6A-LR and FGOALS-g3 are even negative. Besides, precipitation displays a significant annual
variability (Fig. S3), which can hardly be reproduced by climate models40. Note that the multi-model
ensemble mean (MME) even further offsets the interannual variability between model simulations and
leads a smaller standard deviation and a lower signal-to-noise ratio41.

Overall, based on the evaluation of the performance of the 12 models, five models, i.e., MIROC6, CNRM-
CM6-1, CanESM5, IPSL-CM6A-LR and FGOALS-g3, show relatively poor skills and their simulations are
excluded in the study. The MME of the remaining seven models, which are ACCESS-CM2, BCC-CSM2-MR,
CESM2, GFDL-ESM4, HadGEM3-GC31-LL, MRI-ESM2-0 and NorESM2-LM, are used for further analysis.

Detection and attribution
Based on the simulations of the seven CMIP6 models, the linear trends of CHTDEI and CHTREI under
different forcings are obtained (Fig. 3). The result indicates that the observed intensification of CHTDE
and CHTRE severity can be captured by CMIP6 models in most areas of China.
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Specifically for CHTDE, the historical all forcing (hist-ALL) simulation displays a decreasing trend of
CHTDEI that is broader than the observation, such as in EC and SC (Fig. 3a). Moreover, the MME response
to hist-GHG is similar to its response to the hist-ANT, which is obtained by subtracting the hist-NAT
simulation from the hist-ALL simulation. The hist-ANT and hist-GHG simulations exhibit an intensifying
severity of CHTDE (Fig. 3c, 3e). However, the spatial distribution of hist-AER is likely to offset the
decreasing trend of CHTDEI in the TP, EC and SC (Fig. 3b) and thus alleviate the intensification of CHTDE.
Note that the trend under hist-AER is opposite to the observation in NEC, which may be related to aerosol-
radiation and aerosol-cloud interactions and the reduction of aerosol emissions42,43. The MME response
to other historical anthropogenic forcings (hist-OA) including land use and ozone (Fig. 3f) is estimated by
subtracting the response to hist-GHG and hist-NAT from hist-ALL44. The result is similar to hist-NAT in
Fig. 3d and shows an insignificant trend over China.

In general, the external forcings have similar effects on CHTRE and CHTDE. These forcings may increase
the severity of CHTRE under the hist-ALL (Fig. 3g), hist-GHG (Fig. 3i) and hist-ANT (Fig. 3k) all over the
China. Additionally, the result based on the MME of hist-AER shows an increasing trend of CHTREI in the
TP and eastern China and a decreasing trend in NWC, suggesting that aerosols are favorable for the
intensification of the severity of CHTRE in NWC (Fig. 3h).

Furthermore, the observed and simulated trends of regional average CHTDEI and CHTREI based on the
non-overlapping three-year-mean CHTDEI and CHTREI from 1961 to 2014 are calculated and displayed in
Fig. 4. Obviously, the downward trends of CHTDEI and CHTREI are − 0.13 and − 0.07, respectively,
indicating that the severity of observed CHTDE and CHTRE has significantly increased across China.

Under the hist-ALL, hist-GHG and hist-ANT, the trends of regional average CHTDEI is basically consistent
with the observation over entire China (Fig. 4a). For the CHTDEI in NWC, TP and NEC, the observed
downward trend and the simulated downward trend under hist-ALL, hist-GHG and hist-ANT both are
significant at the 95% confidence level, which is in agreement with the linear trend of the spatial pattern.
However, there is an upward trend of CHTDEI under hist-AER, indicating that aerosols reduce the severity
of CHTDE especially in TP, EC and SC. In addition, it is worth noting that there exists a significant upward
trend of severity of CHTDE under hist-OA in China, especially in TP. As for CHTREI (Fig. 4b), under the
influence of hist-ALL, hist-ANT and hist-GHG, the trend of CHTREI is significant and the variation strength
is much larger than the observation in all the subregions of China. Moreover, there are a significant
increasing trend of severity of CHTRE under hist-AER in China, particularly in TP, EC and SC and a
downward trend under hist-OA in TP.

Based on the above observations and external forcings of MME, the optimal fingerprinting method (see
Note S2) is used to quantify the influence of external forcings on observed CHTDEI or CHTREI during
1961–2014. To examine relative contributions of anthropogenic activities and natural forcing and
separate the hist-NAT and hist-ANT signals from each other45, the two-single analysis, which regresses
observed CHTDEI and/or CHTREI onto hist-ANT and hist-NAT simultaneously, is applied for further
analysis. Moreover, the observed CHTDEI and/or CHTREI are regressed onto hist-AER, hist-GHG, hist-OA
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and hist-NAT simultaneously by four-signal analysis to clarify the relative effects of various external
anthropogenic forcings on the changes of CHTDE and CHTRE compared to the effects of natural forcing
signals46,47.

Figure 5a presents the scaling factors obtained by regressing the time series of observed CHTDEI
anomalies onto the MME response to single forcing for the period of 1961–2014. Across China, the
scaling factors for hist-ALL, hist-ANT, hist-GHG, hist-OA and hist-NAT are significantly greater than zero,
suggesting that the effects of both the anthropogenic forcing and natural forcing on CHTDE can be
detected in China. For different subregions, the best estimate of scaling factors in hist-ANT and hist-GHG
are very close to unit, indicating the severity of CHTDE under anthropogenic external forcing especially
under hist-GHG is in good agreement with the observed severity of CHTDE. Specifically, the hist-ANT can
be detected in five subregions in China and the hist-GHG can be detected in most areas of China except
EC. The hist-OA can be detected in TP and SC. Moreover, the scaling factor of hist-AER in TP and SC is
negative, which is consistent with the spatial pattern of hist-AER trend. In addition to anthropogenic
forcing, the scaling factors and 90% uncertainty ranges of hist-NAT in NWC, NEC and SC are greater than
zero, but the uncertainty ranges are much larger than that under other forcings (Fig. 5a). It is worth noting
that the uncertainty range of scaling factor in NWC includes unit, indicating that single-signal hist-NAT is
the crucial factor for the severity of CHTDE in NWC. In conclusion, the impacts of anthropogenic and
natural forcings on the severity of CHTDE in most areas of China, particularly in NWC, NEC and SC, can
be detected. The hist-ANT, especially the hist-GHG, is an important forcing for the change in the severity
of CHTDE in China. In contrast, the hist-AER can reduce the severity of CHTDE in China, and this effect is
most obvious in TP and SC.

As for the scaling factors from two-signal (Fig. 5c) and four-signal analysis (Fig. 5e) of CHTDEI, the
residual consistency test indicates that all the results have reached the 90% confidence level, suggesting
that the null hypothesis of observed CHTDEI is equal to the models, and thus the multi-signal regression
model fits the observed data well. It is clear that the signals of hist-ANT and hist-GHG can be regarded as
main external forcings that lead to changes in the severity of CHTDE in China. Furthermore, the signals of
hist-OA and hist-NAT can also be detected robustly in multiple-signal analysis, which may be different
from previous studies26,27. When focusing on each individual subregion in China, the impact of hist-ANT
can be separated from that of hist-NAT to dominate the severity of CHTDE in most areas of China except
TP. The hist-GHG can be separated from other forcings to dominate the severity of CHTDE in TP and
NWC. Moreover, the hist-NAT can also be separated from anthropogenic forcing in NWC, but the
uncertainty range of scaling factor is very large. In general, the hist-ANT and hist-GHG are the primary
causes for the increasing severity of CHTDE, and they can be separated from other forcings to dominate
the severity of CHTDE in China. In addition, the hist-NAT also has a great effect on the increasing severity
of CHTDE in NWC.

Similarly, Fig. 5b, 5d and 5f show the scaling factors of CHTREI from single-signal, two-signal and four-
signal, respectively. Obviously, hist-ALL can be detected in most areas of China except SC. Across China,
the 90% confidence interval of scaling factor under hist-NAT is greater than zero and includes unit,
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suggesting that the severity of CHTRE can be largely attributed to hist-NAT (Fig. 5b). In addition, the hist-
ANT and hist-GHG can be detected robustly. In terms of different subregions, changes in the severity of
CHTRE in NWC and TP can be attributed to both hist-ANT and hist-NAT. The scaling factor of hist-GHG is
greater than zero in TP and the uncertainty range of scaling factor includes unit in NWC and NEC
(Fig. 5b), which means the hist-GHG can be detected in changes of the severity of CHTRE in TP and the
intensifying CHTRE in NWC and NEC can be further attributed to hist-GHG. In particular, the effects of
hist-OA and hist-AER with a negative scaling factor may offset each other for the change of severity of
CHTRE in TP. Additionally, hist-AER has positive influences on CHTRE in NWC (Fig. 5b), which verifies the
preliminary conclusion obtained from Fig. 3h. However, according to the single-signal case, the detected
signals for hist-ALL, hist-ANT and hist-GHG have overestimated the observed change in CHTRE. Overall,
both hist-ANT and hist-NAT are favorable for the increasing severity of CHTRE in China, particularly in TP
and NWC, where the linear trend of CHTREI changed significantly.

Judging from the multi-signal results, only the hist-NAT can be separated from anthropogenic forcing in
China. Both hist-ANT and hist-GHG can be separated from other forcings to dominate the increasing
severity of CHTRE in NWC. The hist-ANT can dominate the increasing severity of CHTRE in TP. For NEC
and EC, the signal of hist-NAT seems to be more consistent with observed CHTRE but the uncertainty is
large. This may be related to the weak trend and obvious variability of observed CHTRE (Fig. S8).
Although the signals of hist-GHG and hist-ANT on CHTRE can be detected robustly across China, the
long-term changes in the severity of CHTRE are largely attributed to hist-NAT. Additionally, significant
increasing linear trend of severity on CHTRE occurs in TP and NWC, while both hist-ANT and hist-NAT are
the primary causes of CHTRE in mainland China.

According to the original time series of CHTDEI and CHTREI, the long-term trends under hist-ANT and hist-
GHG are basically consistent with that of observations, and the series with hist-NAT are more consistent
with the variability of observations (Fig. S4 and Fig. S5). To reduce the multi-time scale variation on
CHTDEI and CHTREI that may affect detection and attribution and identify the main sources of long-term
trend in the severity of CHTDE and CHTRE, the original time series of CHTDEI and CHTREI are
decomposed into nonlinear trend and interannual-to-decadal variability by Ensemble Empirical Mode
Decomposition (EEMD) method (see Methods).

According to the scaling factors of nonlinear trends of CHTDEI and CHTREI, it can be found that the 90%
confidence interval of CHTDEI trend of hist-GHG and hist-ANT is significantly reduced compared with the
original time series, indicating that the reliability of the results is improved. As expected, the nonlinear
long-term trend of CHTREI with significantly decreasing trend after 1980s indeed is caused by hist-GHG
and hist-ANT in most areas of China, particularly in TP, NEC and SC (Fig. S7). In addition, the hist-OA
signal also can be detected in the long-term trend of CHTDE. For CHTREI, the signals of hist-ALL, hist-ANT
and hist-GHG can only be detected from nonlinear long-term trend of CHTREI in most areas of China
except SC. The scaling factor of hist-AER in China is negative, which suggests the offsetting role of hist-
AER on the decreasing trend of CHTREI (Fig. S9).
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To quantify the changes in the severity of CHTDE and CHTRE attributed to different external forcings,
Fig. 6a shows the attributable linear change of CHTDEI from 1961 to 2014. Across China, the observed
CHTDEI decreased by − 0.24 (–0.32 to − 0.16) during 1961–2014. The attributable change of hist-ANT to
observed CHTDEI is − 0.24 (–0.33 to − 0.15) in China, which probably contributes 100% to the observed
linear change of the severity of CHTDE. The contribution from hist-ANT is greater than 95% in different
subregions. Meanwhile, the observed CHTDEI is estimated to decrease by − 0.19 (–0.32 to − 0.07) for hist-
GHG and − 0.08 (–0.03 to − 0.13) for hist-OA in China. That means the contribution from hist-GHG is 80%
for the linear change of the severity of CHTDE, while 33% of the change is from hist-OA. However, the
attributable change calculated based on negative scaling factor is considered meaningless48. Thus, for
the attributable change of hist-AER in TP and EC with a scaling factor excluded the negative is 0.15 (–
0.01 to 0.38), indicating that hist-AER partially offsets the decline in CHTDEI by about 39%. Moreover, the
reason why the attributable change of hist-NAT is not obvious is that the trend of hist-NAT is weak.

For CHTRE in Fig. 6b, the relative ratio of attributable change of CHTREI under different external forcings
from 1961 to 2014 is basically similar with CHTDEI. The major decreases in CHTREI in TP and NWC are
− 0.20 (–0.25 to − 0.14) and − 0.17 (–0.22 to − 0.12), respectively. The attributable linear changes of hist-
GHG, hist-ANT and hist-ALL all exceed about 90% of the observed change of the CHTRE severity in China.
CHTREI is estimated to decrease by − 0.13 (–0.19 to − 0.06) for hist-ANT, which accounts for 99% of the
increasing severity of CHTRE across China. Specifically, CHTREI decreases by − 0.12 (–0.21 to − 0.04) for
hist-GHG, − 0.02 (–0.04 to − 0.003) for hist-OA and − 0.01 (–0.02 to − 0.004) for hist-NAT, and they
contribute to the increased severity of CHTRE by about 95%, 15%, and 8%, respectively. This illustrates
that anthropogenic climate change is more important than natural climate change for the linear change
of increasing severity of CHTRE across China. However, the linear change of hist-AER plays a role in
reducing the severity of CHTDE, especially in TP and EC.

Discussion
In this paper, the indices that can represent both the occurrence frequency and the duration of CHTDE and
CHTRE and characterize the severity of compound extreme events are established based on copula and
relative threshold counting method. Furthermore, using temperature and precipitation simulated by
CMIP6 models that have decent performance in China, detection and attribution analysis of the severity
of CHTDE and CHTRE in the summers from 1961 to 2014 is carried out. The results indicate that the
severity of CHTDE shows a significant increasing trend in most areas of China except EC. The hist-All,
hist-ANT and hist-GHG can reproduce the observed trend of the CHTDE severity at the 95% confidence
level. In addition, the severity of CHTRE has decreased in China, particularly in NWC, TP and NEC.

Further analysis by quantitative optimal fingerprinting method shows that the change in the CHTDE
severity in China can be largely attributed to hist-ANT and especially hist-GHG. In addition, hist-GHG and
hist-ANT can be separated from other external forcings to dominate the change of CHTDE across China,
which produce more than 80% of the attributable contribution to observed CHTDE. In addition, the long-
term trend of CHTRE under hist-OA can be successfully detected. On the contrary, hist-AER can partially
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offset the increasing trend of the severity of CHTDE due to the greenhouse gases forcing, especially in TP
and SC. In addition to anthropogenic forcings, the signal of hist-NAT can also be detected in China,
especially in NWC and NEC. According to the EEMD decomposition, hist-NAT may be linked to the
interannual-to-decadal variability of the severity of CHTDE in China.

In contrast, the change of the CHTRE severity is generally more influenced by hist-NAT. In China, the
signal of hist-NAT with large uncertainty can be robustly detected in the change of CHTRE, particularly in
TP, NEC and EC. In comparison, the influence of hist-ANT and hist-GHG can be detected robustly within a
smaller uncertainty range across China. As for the NWC and TP, where the severity of CHTRE has an
obvious long-term increasing trend, the trend can be attributed to the effect of hist-ANT. Moreover, the
anthropogenic forcing contribute more than 90% for observed linear change of CHTRE severity.

In conclusion, anthropogenic activities are the primary factor that leads to the increased severity of
CHTDE and CHTRE. However, the present study has some inadequacies. First, the external forcings are
treated as linear superposition rather than nonlinear interaction in terms of attribution methods49.
Second, it is obvious that there are some deviations in CMIP6 data, especially in the data of regional
precipitation [40]. Therefore, it is necessary to adopt other effective methods and accurate regional
climate model data to improve and verify the results. Third, the observed interannual-to-decadal
variability of CHTREI is characterized by a 10-year quasi-periodic oscillation that is similar to CHTREI
forced by hist-NAT, indicating that solar radiation and volcanic activities may influence interannual-to-
decadal variability of the severity of CHTRE. This will be further studied in the future. Finally, the
observations show that the severity of CHTDE and CHTRE in China is increasing, which is reflected by
higher occurrence frequency and longer duration. Further analysis is necessary to explore the physical
mechanisms behind CHTDE and CHTRE and their changes under different scenarios in the future.

Methods

Definitions of CHTDE index (CHTDEI) and CHTRE index
(CHTREI)
To quantify the severity of compound events, CHTDEI and CHTREI are defined as combined probability of
the frequency and duration of simultaneous occurrence of high temperature and drought (rainy) events.
First, the concurrence of daily temperature greater than the 90th percentile and daily total precipitation
greater than the 75th percentile (less than 25th percentile) in the summers (June, July and August) of
1961–2014 is defined as a potential CHTRE (CHTDE).

Second, the frequency (total number of potential CHTDE/CHTRE) and duration (maximum number of
consecutive days in summer when potential CHTDE/CHTRE occurred) in each summer are taken as
random variables X and Y with marginal distributions  and ,
respectively. The empirical Gringorten plotting formula is used to estimate marginal distributions of
frequency and duration (See Text S2).

FX (x) = P(X ≤ x) FY (y) = P(Y ≤ y)
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Finally, based on the frequency and duration of potential CHTDE and CHTRE, the bivariate copula 
 is used to construct the severity index 

 of compound extreme
events. The three widely accepted Archimedean copulas are applied in this study. A smaller PI represents
a smaller joint probability of more frequent (greater than x) and longer duration (greater than y),
indicating that the potential CHTDE (CHTRE) is more severe. Here, the x and y represent the thresholds of
X and Y. For convenience, the PI for CHTDE and CHTRE are called CHTDEI and CHTREI, respectively.

More detailed data and methods are given in the supplementary materials.
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Figure 1

Linear trends of CHTDEI and CHTREI. Observed linear trends of (a) CHTDEI and (b) CHTREI based on
CN05.1 in the summers from 1961 to 2014 (units: decade-1) over China. Dotted area indicates the linear
trend is significant at the 95% confidence level.
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Figure 2

Taylor analysis of mean temperature and total precipitation. Taylor diagram showing the climatological
spatial patterns of (a) mean temperature and (b) total precipitation and temporal evolution of (c) mean
temperature and (d) total precipitation in summer over China. Symbols with different colors and shapes
represent simulations of different models and MME as well as observations.
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Figure 3

Linear trends of CHTDEI and CHTREI under different forcings. Linear trends of (a–f) CHTDEI and (g–l)
CHTREI in response to different forcings (a and h for historical all forcing; b and h for historical
anthropogenic aerosol forcing; c and i for historical greenhouse gases forcing; d and g for historical
natural forcing; e and k for historical anthropogenic forcing; f and l for historical other anthropogenic
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forcing) during the summers from 1961 to 2014 (units: decade-1) over China. Dotted area indicates the
linear trend is significant at the 95% confidence level.

Figure 4

Linear trends of regional average CHTDEI and CHTREI from observations and simulations. Regional
average trends for non-overlapping three-year-mean (a) CHTDEI and (b) CHTREI from observations and
MME under external forcing across China and in different sub-regional of China (units: decade-1). The
asterisks denote the trend is significant at the 95% confidence level.
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Figure 5

Detection and attribution analysis for the severity of CHTDE and CHTRE. Best estimates of the scaling
factors (dots) and their 5–95% uncertainty ranges (error bars) from (a–b) single-signal (hist-ALL, hist-
AER, hist-GHG, hist-NAT, hist-ANT and hist-OA), (c–d) two-signal (hist-NAT and hist-ANT) and (e–f) four-
signal ( hist-AER, hist-GHG, hist-NAT, and hist-OA) analysis for CHTDE and CHTRE in different subregions
and across China. The two dashed lines parallel to the horizontal axis represent zero and unit,
respectively.
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Figure 6

Attributed linear changes of CHTDE and CHTRE during 1961–2014. Estimates of observed linear
changes in (a) CHTDE and (b) CHTRE and the corresponding total attributed linear changes in response
to different external forcings based on the original change. The attributable linear changes are calculated
by the trends for the MME of CHTDEI and CHTREI multiplied by the corresponding scaling factors (5%–
95% margin of scaling factor) and then further multiplied by the periods of CHTDEI and CHTREI time
series. Additionally, the observed changes of CHTDEI and CHTREI are estimated by the trend multiplied by
the corresponding time period. The error bars indicate the 5–95% uncertainty range, while the 90%
uncertainty range is calculated by the total least square method. The scaling factors used to constrain
the attributable changes are derived by single-signal forcing for hist-ALL, two-signal forcing for hist-ANT
and four-signal forcing for hist-AER, hist-GHG, hist-NAT and hist-OA.
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