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Abstract

Anthropogenic effects on wildlife are typically assessed at the local level, but it is often difficult to extrapolate to larger
spatial extents. Macro-level occupancy studies are one way to assess impacts of multiple disturbance factors that might vary
over different geographic extents. Here we assess anthropogenic effects on occupancy and distribution for several mammal
species within the Appalachian Trail (AT), a forest corridor that extends across a broad section of the eastern United States.
Utilizing camera traps and a large volunteer network of citizen scientists, we were able to sample 447 sites along a 1024 km
section of the AT to assess the effects of available habitat, hunting, recreation, and roads on eight mammal species.
Occupancy modeling revealed the importance of available forest to all species except opossums (Didelphis virginiana) and
coyotes (Canis latrans). Hunting on adjoining lands was the second strongest predictor of occupancy for three mammal
species, negatively influencing black bears (Ursus americanus) and bobcats (Lynx rufus), while positively influencing raccoons
(Procyon lotor). Modeling also indicated an avoidance of high trail use areas by bears and proclivity towards high use areas
by red fox (Vulpes vulpes). Roads had the lowest predictive power on species occupancy within the corridor and were only
significant for deer. The occupancy models stress the importance of compounding direct and indirect anthropogenic
influences operating at the regional level. Scientists and managers should consider these human impacts and their potential
combined influence on wildlife persistence when assessing optimal habitat or considering management actions.

Citation: Erb PL, McShea WJ, Guralnick RP (2012) Anthropogenic Influences on Macro-Level Mammal Occupancy in the Appalachian Trail Corridor. PLoS ONE 7(8):
e42574. doi:10.1371/journal.pone.0042574

Editor: Brock Fenton, University of Western Ontario, Canada

Received March 26, 2012; Accepted July 9, 2012; Published August 6, 2012

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for
any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Funding: Funding was provided by the Smithsonian Institution (www.si.edu), the University of Colorado Museum of Natural History (cumuseum.colorado.edu),
the Department of Ecology and Evolutionary Biology at CU-Boulder (ebio.colorado.edu) and the Appalachian Trail Conservancy (www.appalachiantrail.org). The
funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Peter.Erb@colorado.edu

Introduction

As the distribution of species shift due to recent global and local

environmental changes (e.g., [1]), there is a need to determine

which factors shape those distributions and at what spatial extent

those factors are operating. Among the most important factors

influencing animal species distributions are human activities. Such

anthropogenic activities can have species-specific positive or

negative effects on site occupancy and ultimately distributions.

Some of these factors, such as the amount of available habitat and

hunting, have a direct influence on distributions. For example,

species responses to forest loss can vary depending on species-

specific habitat use; forest loss often leads to decreased distribution

of forest specialists [2] and increased distribution for edge habitat

species [3]. Both legal and illegal harvest of wildlife can directly

impact wildlife numbers and ultimately species’ distributions [4],

[5]. In addition to these direct effects, humans can impact wildlife

in more subtle and diffuse ways, such as mammals avoiding high-

use roads [6] and trails [7]. While the impact of any one of these

factors may not be detectable at the local level, when assessed

region-wide, sampling may capture sufficient variation in these

multiple factors, facilitating the detection of measurable and

compounding effects on a species’ occurrence [8].

To study anthropogenic effects on mammal occurrence at a

landscape level, we chose to focus on the Appalachian forest

ecosystem [9] and, in particular, the Appalachian Trail (AT)

corridor, which extends across a broad latitude of the eastern

United States. The assessment of land use effects on wildlife has

been identified as a significant research priority in the region [10].

Environmental variation between samples, and across land-

scapes, creates a major challenge to studying anthropogenic

influences on species distributions [11], [12]. Utilizing the AT as a

‘‘mega-transect’’, we were able to limit habitat variation between

samples. The AT corridor forms a continuous habitat corridor

comprised of mature, oak-dominant forest, allowing us to study

anthropogenic effects while minimizing the confounding influence

of heterogeneous habitat types. Because the AT passes through

multiple land ownerships with diverse policies toward human

activity, we are able to sample a broad range of human impacts.

Although individual entities along the AT have attempted to

monitor wildlife communities [13], [14], larger surveys that cross

administrative boundaries have not been conducted.

Beyond the habitat-based limitations of most macro-level

studies, logistical and financial challenges also often hinder

researchers’ ability to achieve sufficient sample sizes. Such studies

require large amounts of labor and technological equity, resources

that typically limit studies to smaller extents than the science would
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dictate. Financial, technical and human resource constraints can

be met through the use of a citizen-run camera trapping

methodology. Citizen science methods have been highly successful

in understanding ecological processes occurring at broad geo-

graphic extents [15]. Camera trapping is a common survey

method with the capability of producing large amounts of data on

the distribution and abundance of multiple mammal species [16].

Recent developments in digital camera trapping technology have

improved scientific reliability, while reducing costs and simplifying

setup protocols. The relatively minimal labor requirements, ease of

use, and quality of data makes for an effective tool in macro-level

monitoring efforts [17] and citizen science-based projects.

Volunteer participation in camera trapping projects decreases

costs and answers the challenge of large spatial extent, multiple

species monitoring [18]. The established volunteer network used

to maintain the AT corridor provided the unique opportunity to

develop a citizen science wildlife monitoring project to investigate

occupancy drivers through the region.

Utilizing local volunteers in this macro-level spatial study of

mammal occupancy, we address the question: Do localized human

activities have predictive power across the broader landscape for

determining occupancy of mammals within the Appalachian Trail

corridor? In answering this question, we hope to identify region-

wide threats to mammal persistence.

Methods

Study Area
This study took place along a section of the Appalachian

National Scenic Trail (AT), a protected 300 m corridor that

stretches 3625 km from Maine to Georgia and is administered by

the National Park Service. Though the AT corridor itself is mostly

forested, it is surrounded by a mosaic of agricultural, residential,

and industrial development [19]. Roughly 3–4 million people per

year use the AT for recreation [20]. While hunting is not allowed

in the corridor itself, adjacent lands vary in their permission of

public hunting.

We focused efforts along a 1024 km section of the AT from

Pennsylvania to North Carolina (Figure 1). Data were collected

over three survey years. In 2007 and 2008, the study was

conducted from April to November on a 756 km segment of the

AT in Maryland and Virginia. During 2009, the 2007–2008 study

area was expanded to include areas to the north (Pennsylvania)

and south (North Carolina, Tennessee) for an additional 268 km.

This subsection represents the Appalachian-Blue Ridge forest

ecosystem [9]. The forest within the study area consists primarily

of Northeastern Interior, Southern and Central Appalachian Oak

Forests (72%), Southern and Central Appalachian Cove Forest

(18%), and other mixed hardwood forest types (,10%) [21].

Survey Design and Sampling Protocol
The Appalachian Trail study area was divided into 2 km

segments, and sample points (UTM coordinates) were randomly

selected within each segment. Selected points were separated by

$1 km and placed 50–500 meters from the trail. Land ownership

of each segment was determined and permissions were obtained

from the 8 public agencies involved along this segment of trail. We

excluded 76 of 512 segments (15%) following consultation with

NPS staff based on difficulty of access across private lands or

presence of sensitive plant species.

Trail clubs responsible for each section of trail were identified

and, through our partners at the Appalachian Trail Conservancy

(ATC), club members were recruited to form survey teams. Two

Virginia Naturalist Clubs and one local chapter of the Sierra Club

also participated in volunteer recruitment. Volunteers (61 in 2007;

62 in 2008; 25 in 2009) participated in training sessions prior to

each field season. They were instructed on camera placement,

maintenance, file management, and sampling protocol. Teams

Figure 1. Map of study area and distribution of survey sites
along the Appalachian Trail. The 2006 National Land Cover Data is
used to indicate forest (green), agricultural (yellow), and urban (red/
gray) land use.
doi:10.1371/journal.pone.0042574.g001

Anthropogenic Influences on Mammal Occupancy

PLoS ONE | www.plosone.org 2 August 2012 | Volume 7 | Issue 8 | e42574



were assigned multiple sample points and given enough cameras to

complete their assignment over a 7-month (April 1– October 30)

period. Cameras were left at each location for an average of

30 days. Each team was free to organize placement and

movement of cameras, but remained in periodic contact with

the authors and ATC staff for assistance.

Infra-red, remote-trip camera units (Cuddeback Digital; Non-

Typical, Inc., Park Falls, WI, USA and Bushnell Trail Scout

Digital; Bushnell Corp., Overland Park, KS, USA) were used to

record presence/absence of mammal species at each sample point.

Volunteer teams were given UTM coordinates and instructed to

place the camera ,100 m from that location and .50 m from the

trail. Cameras were set on trees at knee height (,0.5 m), oriented

parallel with the slope, and the viewing area was cleared of

obstructions. One ml of scent lure (either MagnaGland or Pro’s

Choice; Montgomery Fur, Ogden, Utah, USA) was used 1 meter

in front of the camera to slow animal movement and compensate

for slow camera trigger times. Digital flash cards and batteries

were switched at the end of each sampling session and cameras

were moved to the next survey site. Volunteers recorded location

(UTM), dates, scent and lure type. When possible, cameras were

checked and lure was reapplied mid-month. A National Park

Service website was created for volunteers to enter data and,

through the website, digital pictures on the flash cards were

uploaded to an ftp server. All volunteers recorded a picture each

time they setup or checked the camera to ensure its continued

operation. If the camera failed to trigger, the last recorded picture

was considered the last operational day [22].

Data Compilation and Management
[LOOSESR]All uploaded photos were reviewed and subjec-

tively graded (0–3) for quality based on orientation of camera.

Sites with improper placements (restricted field of view, camera

pointed too high or too low), camera malfunctions, insufficient

survey time (,15 days), or incomplete data collected by volunteers

were discarded. Species were identified and presence/absence

data was recorded for each day in a detection history matrix

following the approach of MacKenzie et al. [23].

We extracted from our GIS coverage environmental covariates

that may be important for determining occupancy and detection

probabilities. These covariates are listed in Table 1. Deciduous

forest data was extracted from the 2006 National Land Cover

Data (NLCD) for 500 m, 1 km, 3 km, 5 km, and 10 km radius

buffer distances around each sample site using ArcGIS (version

9.3; Environmental Systems Research Institute (ESRI), Inc.,

Redlands, CA, USA). These distances were chosen after taking

into account the geographic extent of the project, the variation in

the home ranges between different species, and the grain of the

satellite data. Hunting classifications were determined for each

ownership type of adjoining land and amended to GIS ownership

data provided by the National Park Service. The hunting status of

land was known for public lands (81%) and was assumed to be

hunted if private land. A landowner survey performed by one the

authors along a segment of the AT in Virginia found 87% of

private lands to be hunted. Hunting classification of adjacent land

was then extracted to sample point data as hunting or non-

hunting. Recreational trail use was quantified as a binary

classification: high or low use. High trail use areas were identified

as areas within 1 km from trailheads, in national and state parks,

and further refined based on interviews of ATC members and

personal observation. GIS road data was acquired from Census

2007 TIGER/Line county data sets and distances were calculated

from each sample location to nearest road.

Data Modeling and Analysis
The modeling program PRESENCE was used to estimate

occupancy (psi) and detection (p) probabilities for each species of

interest (v. 2.2) [24], [25]. PRESENCE uses a logistic regression

framework to estimate the probability a site is occupied by a given

species. Recognizing species are not guaranteed to be detected

even when present, PRESENCE uses repeated surveys and

potential detection covariates to estimate the probability that a

species will be detected [23]. Models are then evaluated using

maximum likelihood methods.

A detection history for each site was created using the results

from the repeated site surveys over the course of the three years

given the aims of this study. Due to the nature of camera trapping

data and the immense amount of data received, the detection

history was consolidated prior to analysis to increase the statistical

power of the models [22], [26], [27]. Consolidating into 5-day

segments was determined as an appropriate length of time

providing a balance between over-compressing and under-

compressing for statistical power, while paring the dataset to a

manageable size for computational purposes. Eight species were

detected with sufficient frequency for convergence in PRESENCE

and models for those species are considered in more detail below.

For these 8 mammal species, we conducted a separate investiga-

tion of spatial autocorrelation of site occupancy using Moran’s I,

where values range from 1 (a complete clustering of detections) to

21 (a negative autocorrelation). This analysis was conducted using

the Moran’s I tool in the Spatial Statistics toolbox in ArcGIS

(version 9.3; Environmental Systems Research Institute (ESRI),

Inc., Redlands, CA, USA).

PRESENCE was then used to estimate the influence of the four

sampling covariates (percent forest, presence of hunting, trail use,

and distance to road) on site occupancy for each species. Multi-

season modeling was used to account for colonization or extinction

occurring between the sampling seasons. While utilizing this type

of modeling allowed for the incorporation of colonization and

extinction parameters in our models, we did not attempt to predict

these parameters using covariates. The goal of this study is to

determine the best predictors of site occupancy, not inter-season

dynamics. Due to the strong correlation between the different

scales of forest cover, each percent forest covariate was investi-

gated independently in separate models. PRESENCE was also

used to determine the effect of the 5 detection covariates on

detection probabilities for each species (Table 1). To limit the

number of a priori models examined, we used a two-step model

building method based on the Cormack-Jolly-Seber data type

[28]. In this approach, the first step is to hold a general occupancy

model (that includes all occupancy [psi] covariates) constant and

investigate all combinations of detection (p) covariates. In the

second step, the resulting top model for detection probability (p) is

held constant while all combinations for occupancy (psi) are

investigated [29], [30], [31]. All models were ranked using Akaike

Information Criterion [32] and models whose DAIC,2 were

considered as equivalent top models. Model weights for each

covariate were summed for all models to compare their relative

importance for each species [33]. Covariates with summed model

weights .0.5 are considered the most statistically important [34].

Results

A sampling effort of 18 807 camera days was conducted across

447 sites. Nineteen meso and large mammal species were detected

and identified, along with 5 small mammal taxa, individuals from

which we were unable to confidently identify to species (Table 2).

For the eight species that were detected with sufficient frequency

Anthropogenic Influences on Mammal Occupancy
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for convergence in PRESENCE, there was no significant spatial

autocorrelation (Moran’s I ranging from 0.41 to 20.03) between

detections for each of the species [35]. Z-scores were found to be

between 21.96 and 1.96, indicating that the data was not

significantly autocorrelated within a 95% confidence level.

Given lack of spatial autocorrelation, we determined top models

for each species and summed model weights for each covariate

with results listed in Tables 3 and 4, respectively. Forest cover was

a significantly important feature for 6 of 8 mammal species but the

scale of impact differed between species. Bobcats (Lynx rufus)

showed a strong positive relationship and red fox (Vulpes vulpes),

raccoons (Procyon lotor), and gray fox (Urocyon cinereoargenteusa strong

negative association with the amount of deciduous forest within

a 10 km radius of each site. Black bears (Ursus americanus) and

white-tailed deer (Odocoileus virginianus) demonstrated a positive

relationship with the amount of deciduous forest within 5 km.

Forest cover was not an important predictor for opossums

(Didelphis virginiana) or coyotes (Canis latrans) occupancy.

The presence of hunting on adjoining lands was the second

most common factor selected by the models. Black bear and

bobcat were negatively influenced by the presence of hunting in

adjoining lands. The occupancy estimate of only one meso-

predator, the raccoon, was positively affected by hunting in these

adjoining areas.

The third strongest predictor for mammal occupancy was the

amount of recreational trail use surrounding each sample point.

Occupancy for bears was negatively influenced by high trail use.

Red fox was the only species positively influenced by high trail use.

The influence of roads was represented in the top models for most

species, but was only a heavily weighted variable for deer

occupancy models. Deer occurrence demonstrated a negative

correlation with distance to road.

Detection probabilities for all species were affected by all the

detection covariates. The summer season (June–Sept.) had the

strongest positive influence on detection for bears, raccoon, and

deer. Red and gray fox both showed a negative relationship with

the summer season, with higher detection probabilities during the

non-summer season. Lure type showed a positive effect on all

species, with Pro’s Choice lure increasing detections for all species

but red fox and opossum. The reapplication of lure during the

mid-month check significantly increased detection probabilities for

bears, bobcats, and white-tailed deer, but decreased detection

probabilities for gray fox. Camera type had an influence on all

species except for coyote and red fox, with Cuddeback brand

cameras having a positive association with detection. Setup quality

was consistently the top variable for most species and its impact

was relative to the body size. For smaller mammals (coyote, gray

fox, red fox, raccoon, opossum) cameras set too high had a negative

influence on detection probabilities, while for larger animals (bears,

deer) lower set cameras had a negative impact. Bobcat detections

were not significantly influenced by camera setup.

Discussion

Using the AT as a mega-transect, we were able to model the

relationship between species occupancy and multiple anthropo-

Table 1. Covariates used to model occupancy and detection probabilities.

Abbreviation Name Description

Occupancy covariates:

Dec500 m Amount Deciduous Forest (500 m) Numeric

Dec1 km Amount Deciduous Forest (1 km) Numeric

Dec3 km Amount Deciduous Forest (3 km) Numeric

Dec5 km Amount Deciduous Forest (5 km) Numeric

Dec10 km Amount Deciduous Forest (10 km) Numeric

Road Distance to Road Numeric

Hunting Hunting Categorical (Yes, No)

TrailUse Trail Use Categorical (High, Med/Low)

Detection covariates:

Season Summer Season Categorical (June–Sept.)

CamType Camera model Categorical (Cuddeback, Bushnell)

Lure Lure type Categorical (MagnaGland, Pro’s Choice)

ReAp Reapplication of lure Categorical (Yes, No)

Setup Setup quality Categorical (High, Low, Good)

Abbreviation, full name and description of data type are provided. Abbreviations serve as a reference for the species-specific model lists in Table 3.
doi:10.1371/journal.pone.0042574.t001

Table 2. Detection rates for 8 most common species
detected in this study.

Common Name Species Detection Rate

White-tailed Deer Odocoileus virginianus 0.826

Raccoon Procyon lotor 0.405

American Black Bear Ursus americanus 0.394

Virginia Opossum Didelphis virginiana 0.166

Coyote Canis latrans 0.120

Bobcat Lynx rufus 0.098

Red fox Vulpes vulpes 0.078

Gray fox Urocyon cinereoargenteus 0.034

Detection rates were calculated as the proportion of camera locations at which
each species was detected ((total sites occupied)/(total sites)).
doi:10.1371/journal.pone.0042574.t002
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Table 3. Top logistic models for predicting the occupancy of eight mammal species within the Appalachian Trail corridor in 2007–
2009.

Bear Model

p(Lure, ReAp, Setup, Season, CamType) AIC DAIC AIC wgt No.Par. (22LL) est. psi est. p

psi(Dec5 km, Hunting, TrailUse) 2241.00 0 0.725 12 2217.00 0.4703 0.19

psi(Dec5 km, Road, Hunting, TrailUse) 2242.96 1.96 0.272 13 2216.96 0.4697 0.19

Bobcat Model

p(Lure) AIC DAIC AIC wgt No.Par. (22LL) est. psi est. p

psi(Dec10 km, Hunting) 568.46 0 0.2295 7 568.46 0.3207 .04

psi(Dec10 km) 568.70 0.24 0.2035 6 568.70 0.3168 .04

psi(Dec10 km, Hunting, TrailUse) 569.29 0.83 0.1515 8 569.29 0.3183 .04

psi(Dec10 km, Hunting, Road) 570.41 1.95 0.0865 8 570.41 0.3273 .04

Coyote Model

p(Setup) AIC DAIC AIC wgt No.Par. (22LL) est. psi est. p

psi(1) – – – – – – –

White-tailed Deer Model

p(Season, Lure, Setup) AIC DAIC AIC wgt No.Par. (22LL) est. psi est. p

psi(Dec5 km, Road) 4728.15 0 0.284 9 4710.15 0.8487 0.44

psi(Dec5 km, Hunting, Road) 4729.69 1.54 0.131 10 4709.69 0.8445 0.44

psi(Dec5 km, Road, TrailUse) 4730.15 2.00 0.104 10 4710.15 0.8484 0.44

Gray Fox Model

p(Lure, ReAp, CamType) AIC DAIC AIC wgt No.Par. (22LL) est. psi est. p

psi(Dec10 km) 273.71 0 0.3409 8 273.71 0.0280 0.23

psi(Dec10 km, Hunting, TrailUse) 274.64 0.93 0.2141 10 274.64 0.0261 0.23

psi(Dec10 km, Road) 275.38 1.67 0.1479 9 275.38 0.0266 0.23

psi(Dec10 km, Hunting) 275.68 1.97 0.1273 9 275.68 0.0278 0.23

Red Fox Model

p(Setup) AIC DAIC AIC wgt No.Par. (22LL) est. psi est. p

psi(Dec10 km, TrailUse) 432.43 0 0.3111 7 418.43 0.2443 0.05

psi(Dec10 km, Hunting, TrailUse) 433.82 1.39 0.1553 8 417.82 0.2403 0.05

psi(Dec10 km) 434.03 1.60 0.1398 6 422.02 0.2288 0.05

psi(Dec10 km, Road, TrailUse) 434.43 2.00 0.1145 8 418.43 0.2439 0.05

Raccoon Model

p(Season, Setup, Lure) AIC DAIC AIC wgt No.Par. (22LL) est. psi est. p

psi(Dec10 km, Hunting) 2161.97 0 0.2240 9 2143.97 0.4731 0.19

psi(Dec10 km, TrailUse) 2162.68 0.71 0.1570 9 2144.68 0.4534 0.19

psi(Dec10 km, TrailUse, Hunting) 2163.12 1.15 0.1260 10 2143.12 0.4677 0.19

psi(Dec10 km) 2163.66 1.69 0.0962 8 2147.66 0.4527 0.19

psi(Dec10 km, Road, Hunting) 2163.86 1.89 0.0870 10 2143.86 0.4732 0.19
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genic influences. Macro-level distribution studies have primarily

focused on factors visible through readily available remote data

(i.e. satellite) and have shown strong relationships between such

factors and species distributions [36], [37], [38]. Our occupancy

models point to more subtle anthropogenic effects occurring at

varying extents, some not visible by remote sensing technology.

Available Forest
While much of the upland Appalachian oak forest has experi-

enced significant expansion in the past 100 years, there has been

significant habitat loss at lower elevations. Nearly 83 percent of the

oak forest in this region has been altered, and large patches of intact

habitat are limited primarily to upland public lands [9], [10]. Since

the AT generally follows the ridgelines through the region,

variability in our measure of forest cover is primarily assessing loss

of forest at lower elevations. Forests within the AT corridor have

probably improved through public management, but our results

indicate the status of forest outside the corridor impacts the

distribution of our focal mammals. Numerous studies have shown

the importance of the amount of available habitat to species

occurrence (e.g., [39], [40]) and our results supported these findings.

The amount of oak forest was the most significant predictor of

occupancy for six out of the eight species.

Our results also demonstrate the impact of forest loss is species-

specific. Forest loss negatively affected the occurrence of larger

carnivores such as bears and bobcats, while positively affecting

many meso-carnivores such as fox, and raccoon. Two species,

opossum and coyote, were not drastically impacted by change in

forest cover. Not only did our results show variable response to

forest cover, but also in the spatial scale at which species

responded to forest loss, a trend demonstrated in other studies

(e.g., [41]). All our focal species responded most strongly to

available forest at larger (5 or 10 km) rather than smaller scales

(500 m–3 km). Such variation in scale response often depends on

species traits such as body size and size of home range [42], but

such possible mechanistic explanations were not investigated in

this study.

Hunting
Hunting has a direct effect on wildlife populations and their

distributions. Wildlife management of game species is based on the

premise that populations can be regulated by public hunting (e.g.,

[43]). Our research extends this paradigm to include impacts on

adjacent non-hunted areas. Hunting is a popular form of

recreation through the Appalachian region and is closely regulated

by state wildlife programs. The presence of hunting adjacent to the

AT was the second strongest predictor for species occupancy

within the corridor. While all species studied are considered game

species through the majority of the AT corridor, only three out of

eight were significantly influenced by hunting. One game species,

bear, and one furbearer species, bobcat, were negatively impacted

by hunting. Only the raccoon was positively influenced by the

presence of hunting. The difference in occupancy rates in hunting

versus non-hunting areas was highly significant (p,0.001) for all

three species (t-tests assuming unequal variances were run for each

species; Figure 2). A positive relationship between hunting and

raccoon occurrence is in agreement with the meso-carnivore

release hypothesis: as predation pressures decrease due to the

decline in predator occurrence, smaller carnivore species, such as

raccoons, may experience increases in population and an overall

increase in occurrence [44], [45], [46].

Trail Use
Trail use is highly variable along the AT, with heavy trail use

generally occurring on sections of trail that are in close proximity

to large population centers, provide easy access, and/or occur in

Table 4. The summed model weight and direction of
influence for each occupancy covariate in Table 1.

Species Model occupancy covariates

% Forest
Distance
to Road Hunting Trail use

Black bear 0.99 (+)* 0.27 (2) 1 (2)* 0.99(2)*

Bobcat 0.92 (+)* 0.29 (+) 0.58 (2)* 0.35(2)

Coyote – – – –

Red fox 1 (2)* 0.32 (2) 0.34(+) 0.64 (+)*

Gray fox 0.97 (2)* 0.30 (+) 0.49 (2) 0.31 (2)

Raccoon 0.85 (2)* 0.29 (+) 0.59(+)* 0.47 (2)

Opossum 0.20 (+) 0.30 (2) 0.44(+) 0.35(+)

White-tailed Deer 0.79 (+)* 0.71 (2)* 0.40 (2) 0.30 (2)

Summed model weights are calculated as the sum of Akaike model weights for
all models including the covariate of interest.
Asterisks indicate weights .0.5.
doi:10.1371/journal.pone.0042574.t004

Opossum Model

p(Setup, Lure) AIC DAIC AIC wgt No.Par. (22LL) est. psi est. p

psi(Hunting, TrailUse) 1065.06 0 0.1214 8 1049.06 0.1213 0.32

psi(Hunting, Road) 1065.96 0.90 0.0774 8 1049.96 0.1149 0.32

psi(Hunting) 1066.33 1.27 0.0643 7 1052.33 0.1153 0.32

psi(Hunting, TrailUse, Road) 1066.49 1.43 0.0594 9 1048.49 0.1195 0.32

psi(Road) 1066.63 1.57 0.0554 7 1052.63 0.1091 0.32

psi(TrailUse) 1066.90 1.84 0.0484 7 1052.90 0.1110 0.32

psi(Dec5km, Hunting, TrailUse) 1067.02 1.96 0.0456 9 1049.02 0.1207 0.32

The models are composed of both occupancy (psi) and detection (p) covariates. We list all models with a delta Akaike Information Criterion (DAIC),2.00. Twice the
likelihood (22LL), number of parameters (No.par.), estimated occupancy (est. psi), and estimated detection probability (est. p) is presented for each model.
doi:10.1371/journal.pone.0042574.t003
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popular state and national parks [10]. With growing human

populations adjacent to many stretches of the AT, understanding

the effects of recreational use on wildlife is important. Work by

Miller et al. [47] has shown the negative influence of trail use on a

number of species. Deer and bobcats have repeatedly shown

avoidance and flight behavior within short distances of heavily

used trails [48], [49]. Many nocturnal species are likely to be

unaffected by recreational activity, while some diurnal species such

as bobcats have demonstrated temporal displacement by becom-

ing active only after recreational activity has subsided [48]. Species

that are not affected by high levels of human activity may be

habituated to humans; documentation of habituated wildlife and

co-existence with humans has occurred in many urban and high-

use areas [49], [50]. In our study, the level of trail use was a strong

predictor for two out of eight species. Our results indicated an

avoidance of high-use areas by bears, and a proclivity toward high-

use areas by red fox. The difference in occupancy rates in high-use

versus low-use areas was highly significant (p,0.001) for both

bears and red fox (t-tests assuming unequal variances were run for

each species; Figure 3). Trail avoidance by black bears is consistent

with the findings of Kasworm and Manley [51], however the

reason for increased red fox occupancy in high-use areas is

unclear. This may be an artifact of adjacent land use, rather than a

direct response to trail use. High trail use areas are often adjacent

to urban and residential lands, which have been found to be

commonly used by red fox [52], [53]. Red fox success in human-

Figure 2. Mean and standard error of estimated occupancy in hunting vs. non-hunting areas for the 3 species for which hunting
was present in the top models and received .0.5 Akaike weight. Asterisks represent level of significance based on two sample t-test
assuming unequal variance (*** = p,0.001).
doi:10.1371/journal.pone.0042574.g002

Figure 3. Mean and standard error of estimated occupancy in low vs. high trail use areas for the 2 species for which trail use was
present in the top models and received .0.5 Akaike weight. Asterisks represent level of significance based on two sample t-test assuming
unequal variance (*** = p,0.001).
doi:10.1371/journal.pone.0042574.g003
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dominated landscapes has been attributed to their omnivorous

diet, which includes a proclivity towards human foods [54]. Such a

response to human attractants could be responsible for increased

occurrence of red foxes in high recreation use areas.

Roads
The ecological effects of roads have been well documented.

Roads can have both negative and positive effects on species

occurrence and may lead to increasing habitat fragmentation,

mortality, behavioral modification, and resource availability [55].

In our study, roads only predicted occupancy for deer (Figure 4).

Deer attraction to roads was not surprising due to the resulting

habitat modification and benefits received from increased forage

[56]. Despite the effect seen in deer and the importance of roads in

other studies, we did not have strong evidence that roads in our

study area influenced occupancy for most species. This may be

due to the dominant effects of habitat availability, hunting, and

trail use, or due to highly regulated traffic speeds within the AT

corridor compared to other studies.

Management Implications and Conclusions
Our findings show that localized human activities strongly affect

mammal occupancy across broad landscapes. Such findings

provide an important bridge between occupancy studies at smaller

spatial extents [57], and landscape level distributional modeling

studies [12]. Developing further methodologies in order to

incorporate both broad-scale survey and human activity data into

dynamic species distribution modeling is a rapidly emerging area

of research [58], [59], [60].

Our results also indicate that the compounding effects that

anthropogenic factors have on wildlife cannot be ignored. While

models including only roads, trail use, or hunting were never

among the top model set for any species, these covariates were

often represented in top multivariate models and did contribute to

predictive power of overall occupancy. For example, a model

representing hunting alone did not predict bobcat occupancy well

(DAIC = 4.40), however, when considered in concert with forest

cover, hunting was a meaningful predictor for this species (Akaike

weight = 0.23). Minor contributions to occupancy may not appear

important when assessed individually, but can exert meaningful

influence when considered cumulatively [8], [61]. Land managers

should recognize these important cumulative effects in manage-

ment of wildlife populations.

The citizen science-based camera trapping protocol employed

in this study proved highly successful for generating macro-level

occupancy and local environmental data of particularly high

quantity and quality. The methodology employed in this study

opens up new and burgeoning possibilities for asking large scale

wildlife questions that otherwise may prove impossible to answer

due to logistical constraints. Our success in using this methodology

not only shows the promise of such approaches for continued

monitoring within the AT corridor, but for other broader extent

occupancy studies around the world. Employing numerous

volunteers probably affected detection probabilities for most

species due to variation in camera setup quality and ability to

reapply lures mid-survey, but the development of software to

successfully account for these effects on detections (i.e. PRES-

ENCE) greatly enhances the potential of both citizen science and

camera trapping methodologies in macro-level studies.

A final and essential point is that the results of this study

contribute to management of the Appalachian Trail corridor. The

Appalachian Trail is the single most important corridor across the

eastern United States. If it is to serve as a corridor between public

lands for important wildlife, we must understand the attributes of

an effective corridor and how to measure and monitor these

attributes. While movement and connectivity were not assessed,

occupancy modeling was able to identify influences on wildlife

persistence within the corridor. As suggested in our results,

protecting current forest habitat and encouraging continued

reforestation and land acquisition would be extremely beneficial

to a number of mammal species. For certain target species,

hunting should be monitored closely and regulations should be

adaptable in areas where occupancy might otherwise be low due to

the effects of recreation and/or roads. Managers of these wildlife

species should consider these factors on adjoining lands when

setting management teams and actions along the AT.

Figure 4. Estimated occupancy as a function of distance from road for white-tailed deer, the 2 species for which distance from road
was present in the top models and received .0.5 Akaike weight.
doi:10.1371/journal.pone.0042574.g004
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