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Abstract 25 

Compared to individual hot days/nights, compound hot extremes that combine daytime and 26 

nighttime heat are more impactful. However, past and future changes in compound hot extremes as 27 

well as their underlying drivers and societal impacts remain poorly understood. Here we show that 28 

during 1960–2012, significant increases in Northern Hemisphere average frequency (~1.03 days 29 

decade-1) and intensity (~0.28 °C decade-1) of summertime compound hot extremes arise primarily 30 

from summer-mean warming. The forcing of rising greenhouse gases (GHGs) is robustly detected 31 

and largely accounts for observed trends. Observationally-constrained projections suggest an 32 

approximate eightfold increase in hemispheric-average frequency and a threefold growth in 33 

intensity of summertime compound hot extremes by 2100 (relative to 2012), given uncurbed GHG 34 

emissions. Accordingly, end-of-century population exposure to compound hot extremes is projected 35 

to be four to eight times the 2010s level, dependent on demographic and climate scenarios.  36 

 37 

 38 

  39 



 40 

It is well known that hot extremes, during the hottest season in particular, have adverse societal 41 

and environmental impacts1-4. In a warming climate, increasingly frequent and intense hot extremes 42 

have been reported globally with strong evidence pointing to a large contribution from 43 

anthropogenic warming5-8. Severe damage comes from sequential occurrences of hot day and 44 

night within 24 hours, which accumulate and aggravate adverse impacts of daytime and nighttime 45 

heat on various sectors9,10. Some studies considered both diurnal and nocturnal temperatures, for 46 

instance using daily mean temperature as a measurement11,12. However, compared to the 47 

well-understood univariate hot days and nights7,8,13,14, current knowledge about combined 48 

daytime-nighttime hot extremes remains too sparse to inform development of type-specific 49 

adaptation and mitigation strategies. 50 

Combined daytime-nighttime hot extremes might differ from individual hot days/nights not only in 51 

meteorological and climatological aspects15-17, but more importantly in impacts on human and 52 

natural systems18. Specifically, combined events are reportedly more damaging to human health, 53 

as the ensuing nighttime heat deprives humans of their chance to recover from the preceding 54 

daytime heat19,20. Overlooking this compounding effect may lead to serious underestimate of 55 

heat-induced consequences. Hence, it is worthwhile to revisit observation, detection-attribution and 56 

projection of hot extremes based on a bivariate definitional framework, to refine and further 57 

advance our understandings about their past changes and underlying drivers as well as future 58 

impacts and risks21. 59 

To this end, we firstly define three non-overlapping types of summertime hot extremes, i.e. 60 

independent hot days (daytime events, hot day-mild night), independent hot nights (nighttime 61 

events, mild day-hot night), and compound hot extremes (hot day-hot night, see Methods). With 62 

respect to these bivariate-classified hot extremes, we conduct a series of analysis on their historical 63 



changes, mechanism explanations, quantitative detection and attribution, constrained projections 64 

and future population exposure. We find that across the Northern Hemisphere, the rise in 65 

anthropogenic greenhouse gases has driven summertime compound hot extremes increasingly 66 

frequent and intense from 1960 to 2012, with those trend patterns closely linked to regional 67 

nocturnal land-atmosphere coupling strengths. At the end of the 21st century, uncurbed emissions 68 

greenhouse gases would make three-quarters of summer days typical of today’s compound hot 69 

extremes, leading to several-fold growth in population exposure to them. 70 

 71 

Results 72 

Observed changes in compound hot extremes. Summertime compound hot extremes’ 73 

frequency and intensity (see Methods) have exhibited significant increases across most of the 74 

mid-high latitudes during 1960–2012 (Fig. 1). Larger increases in frequency are observed in 75 

southern parts of the United States, Northwest and Southeast Canada, Western and Southern 76 

Europe, Mongolia, and Southeast China; while stronger intensifications occur in the Southwest 77 

United States, Northern and Southeast Canada, and broad swaths of Eurasia. The 78 

HadGHCND22-based spatial-temporal trend patterns are consistent with those based on the 79 

Berkeley Earth Surface Temperature data set23 (Supplementary Fig. 1). This indicates the 80 

robustness of trend estimates against the choice of datasets that differ markedly in homogenization 81 

levels, data sources and pre-processings. The robustness of trend estimates is also underpinned 82 

by their insensitiveness to the choice of periods (Supplementary Fig. 2). 83 

By contrast, trends for independent hot days are weaker, less significant and more 84 

spatially-heterogeneous (Fig. 1c, d). Thus, previous estimates of traditionally-defined hot days’ 85 

trends, which reflect a mixture of changes in compound events and independent hot days, actually 86 

under-represent (over-represent) the greater (smaller) rate (% decade-1) and higher (lower) 87 



significance of frequency/intensity increases in compound hot extremes (independent hot days) 88 

(Supplementary Fig. 3a-d). Independent hot nights have also experienced significant increases in 89 

frequency and intensity across the Northern continents, but with a smaller intensification rate 90 

compared to compound hot extremes (Supplementary Fig. 3). 91 

Observed trend patterns for the frequency of hot extremes are basically captured by the 92 

multi-model ensemble (MME) mean, as evidenced by significant pattern correlations between them 93 

(Supplementary Fig. 4). The reductions in independent hot days in southern Canada and 94 

central-eastern China, however, fail to be reproduced, possibly due to models’ misrepresentation of 95 

key local-scale processes cooling Tmax there (e.g., expansion of irrigation and crop planting in 96 

both regions24,25, and increasing aerosols in central-eastern China26). The simulated trends’ 97 

inaccuracy, particularly in intensity at local to regional scales, may also be linked to considerable 98 

smoothing of internal variability by the multi-model mean27,28. 99 

Statistical and physical mechanisms. Before formal detection and attribution, we explore 100 

respective roles of summer-mean temperature rise (i.e. general warming) and changing 101 

temperature variability in determining changes in summertime compound hot extremes. We do this 102 

by re-computing frequency and intensity trends after removing the general warming signal 103 

(Methods). We find that the summer-mean warming over 1960–2012 largely dictates the past 104 

increases in frequency and intensity of compound hot extremes during that period in both 105 

observations and simulations (Fig. 2). By dissecting the contribution from each parameter (e.g., 106 

location-mean, scale-variability and shape-width of tail) of daily temperature distributions 107 

(Supplementary Note 1 and Supplementary Fig. 5), we confirm that the increase in frequency of 108 

compound hot extremes result primarily from the general warming of boreal summer as expressed 109 

by a positive shift of the location parameter. 110 

Observed trends for compound hot extremes show marked regional differences and greater 111 



magnitudes compared to other types in some areas (Fig. 1 and Supplementary Fig. 3). To explain 112 

this geographical heterogeneity, we examine the dependence of compound hot extremes’ changes 113 

on regional physical processes (Fig. 3). Theoretically, anticyclonic setups facilitate greater adiabatic 114 

heating and more absorbed solar radiation. These conditions bring higher Tmax and also store 115 

more heat near the surface, thus partly offsetting the nighttime radiative cooling and elevating 116 

Tmin17. An increase in anticyclonic conditions should lead to an increase in compound hot 117 

extremes. We calculate trends for both sea level pressures and 500hPa geopotential heights to 118 

approximate unforced and warming-forced circulation changes29. Increasing occurrences of 119 

anticyclonic conditions are found especially pronounced in Europe, southeastern Greenland, 120 

western Asia and northeastern Asia (Supplementary Fig. 6, see synoptic-scale analysis in refs. 30 121 

and 31). So, regions observing stronger increases in anticyclonic conditions generally see larger 122 

increases in frequency of compound hot extremes (compare Supplementary Fig. 6a, b with Fig. 1a), 123 

with this relationship more significant using 500hPa height trends (Fig. 3b, c). After accounting for 124 

strong influences of the general warming on 500hPa height increases, however, the evidence that 125 

increases in compound hot extremes have been dynamically contributed by increasing presence of 126 

anticyclonic conditions seems not as strong as theoretically expected (Fig. 3c).  127 

Drying soil has also been proposed as an important driver for not only daytime hot extremes32,33 but 128 

also extreme hot conditions at night34,35, implying that regions of stronger land-air interactions may 129 

see larger increases in compound hot extremes. We use the correlation between detrended 130 

precipitation and detrended temperatures (Tmax & Tmin) to measure the strength of soil 131 

moisture-air temperature coupling36,37. Negative correlations occur where enhanced sensible heat 132 

fluxes from drier soil bring higher air temperature. Increases in compound hot extremes are larger 133 

in areas with stronger nocturnal land-air interactions (compare Supplementary Fig. 6c with Fig. 1a), 134 

and such a physical linkage is statistically significant (Fig. 3d). By contrast, despite a more uniform 135 



pattern of anti-correlation between Tmax & precipitation (Supplementary Fig. 6d), stronger daytime 136 

land-air interaction alone does not necessarily induce greater increases in compound hot extremes 137 

(Fig. 3e). Stronger nocturnal land-air interactions are co-located with greater increases in 138 

anticyclonic activities in some hotspots for frequency increases (Fig. 3b-d, red and green symbols). 139 

This implies the joint role of these two physical processes in strengthening the coupling between 140 

daytime and nighttime hot extremes (Supplementary Fig. 7), partly explaining greater increases in 141 

compound events than decoupled hot days/nights there. 142 

Considering the well-established causal linkage between the general warming and anthropogenic 143 

emissions of GHGs5, we may qualitatively infer an important role of human-induced global warming 144 

in these observed changes. This is also underpinned by the similarity between the observed trend 145 

pattern driven by the general warming (Fig. 2a, b) and the forced pattern as simulated by the 146 

multi-model mean (Supplementary Fig. 4a, b). Even so, formal detection and attribution analyses 147 

are still needed to quantitatively evaluate contributions of different external forcings (e.g., GHGs, 148 

anthropogenic and volcanic aerosols), which help to pin down the main driver for past changes in 149 

compound hot extremes38-40 and allow calibration of future projections (see projection section 150 

below). Quantitative attributions and reliable projections are desired by policy-makers to devise 151 

strategies to alleviate future impacts and risks from compound hot extremes.  152 

Detection and attribution. The hemispheric-average frequency and intensity of summertime 153 

compound hot extremes have significantly increased by 1.03 days decade-1 (90% confidence 154 

interval (CI): 0.82–1.26 days decade-1) and 0.28 °C decade-1 (90% CI: 0.23–0.33 °C decade-1) 155 

during 1960–2012 (Fig. 4). These increases are qualitatively well reproduced by simulations with all 156 

forcings included.  157 

We use an optimal fingerprinting approach38 (see Methods) to estimate contributions from 158 

anthropogenic (ANT) and natural forcings (NAT) to the observed hemispheric-scale changes in 159 



summertime compound hot extremes. As shown in Fig. 5a, the significant departure of scaling 160 

factors for ANT and NAT from zero signifies the detection of these external forcings. For both 161 

frequency and intensity changes, a best-estimated scaling factor slightly larger than one is required 162 

to amplify simulated responses to ANT forcings to best match observations (Fig. 5a). A three-signal 163 

analysis supports this detection statement and further highlights the dominance of anthropogenic 164 

emissions of GHGs in the detectability of ANT forcings. By contrast, a failure to detect other 165 

anthropogenic forcings (OANT, dominated by anthropogenic aerosols and large-scale land use 166 

changes6) is indicated by the inclusion of zero within the uncertainty range of their scaling factors.  167 

Quantitatively speaking, the human-induced rise in GHG concentration contributes the most to the 168 

past increases in compound hot extremes, in the frequency of 1.18 days decade-1 (5%–95% 169 

uncertainty range (UR): 0.96–1.41 days decade-1) and in the intensity of 0.28°C decade-1 (5%–95% 170 

UR: 0.22–0.34°C decade-1) during 1960–2012 (Fig. 5c). These GHG-forced increases are a little 171 

offset by the cooling effect of OANT forcings, with a best estimate of -0.09 days decade-1 (5%–95% 172 

UR: -0.20–0.03 days decade-1) for the frequency and -0.02°C decade-1 (5%–95% UR: 173 

-0.04–0.01°C decade-1) for the intensity. Thus, anthropogenic emissions of GHGs should have 174 

produced around 7~8% larger increases in frequency and intensity of compound hot extremes than 175 

observed. Despite the detection of NAT’s role (Figs. 5a, b), the attributable portion from it to both 176 

frequency and intensity increases is far less than that from anthropogenic GHGs (Fig. 5c). These 177 

detection and attribution conclusions are robust against alternative time-smoothing schemes, such 178 

as using five-year-mean instead (see Methods and Supplementary Fig. 8).  179 

The same methodology is also applied to detect and attribute observed changes in independent hot 180 

days and nights (see Supplementary Note 3). Both ANT and NAT signals are detected in observed 181 

changes of these two types of summertime hot extremes (Supplementary Figs. 9 and 10). The 182 

historical simulations overestimate (underestimate) responses of independent hot days (nights) to 183 



anthropogenic GHGs, thus warranting a scaling factor below (above) the unity to scale down (up) 184 

simulated responsive changes. 185 

Observationally-constrained projections. Aforementioned varying degrees of 186 

underestimations/overestimations of modeled responses to external forcings would bias projections 187 

of hot extremes, if simply extrapolating un-scaled responses to prescribed emission levels in the 188 

future (e.g., RCP4.5 and RCP8.5). We take advantage of observation-based calibration on 189 

responses to external forcings to constrain projections (ref. 40, also see Methods). Compound hot 190 

extremes show the greatest increases in frequency and intensity (Fig. 6); while the frequency is 191 

projected to stay nearly constant for independent hot days, and to increase gradually under RCP 192 

4.5 and to peak then fall under RCP8.5 for independent hot nights. These distinct increases in hot 193 

extremes’ frequency result in drastic shifts of the most common type of summertime hot extremes, 194 

an impact-relevant character under-reported previously. Specifically, the dominance of independent 195 

hot days in total hot extremes before the 1990s has been replaced by independent hot nights, 196 

whose dominance is expected to hold till the 2030s (Figs. 6a and 6c). After that, compound hot 197 

extremes become the most common type across the Northern continents. This rapid transition calls 198 

for urgent adaptation and mitigation efforts against compound hot extremes in particular. Relative to 199 

2012, anthropogenic forcings will cause an approximate four-fold increase in the 200 

hemispheric-average frequency of compound hot extremes (from 8.3 days per summer to 32.0 201 

days per summer) under RCP4.5 by the end of the 21st century. Following a high-end emission 202 

pathway (RCP8.5), about three quarters of summer days (~69 days) would be compound hot 203 

extremes before 2100, equivalent to over an eightfold increase. 204 

Converting these emission pathways to specific warming levels (Methods), we find that compared 205 

to a 1.5°C warmer world, 2°C of global warming signifies, on average across the Northern 206 

Hemisphere land, an extra ~5 days of compound hot extremes and an additional ~0.5°C increase 207 



in their intensity. However, 4~6°C of global warming from the non-mitigated pathway (RCP8.5) 208 

adds extra 40~60 days in frequency and 4~6°C in intensity of compound hot extremes, relative to 209 

the 1.5°C status (Fig. 6c, d). Of note, the hemispheric-average intensity of compound events 210 

increases quasi-linearly with the rising levels of global warming in the future, indicative of a decisive 211 

role of general warming41. This consolidates and extends observation-based estimates (Fig. 2f). 212 

Also notable is that the compound type is the only one showing monotonic increases in frequency 213 

and intensity with rising levels of GHGs and global mean surface temperature (GMST). 214 

Subject to scaling factors’ calibration, the range of simulated historical changes now better 215 

encapsulates observed counterparts and the MME mean is much closer to the observation 216 

(compare Supplementary Fig. 11 with Supplementary Fig. 12). This improvement of consistency 217 

between simulations and observations is particularly pronounced in compound and nighttime 218 

events. For both types, the divergence between un-calibrated and calibrated projections augments 219 

with higher levels of GHG emissions and GMST. Under RCP8.5, by the end of the 21st century, 220 

constrained MME mean projection of compound event frequency (intensity) is around 13% (8%) 221 

larger than the default MME mean. The combination of bivariate classification and constrained 222 

projection, therefore, warns about higher risks of summertime compound hot extremes than 223 

originally predicted. 224 

Future population exposure to compound hot extremes. We assess future population 225 

exposure42 (Methods) to heat hazards by combining climate projections and population projections 226 

compatible with Shared Socioeconomic Pathways (SSPs)43. Even if the world evolves toward a 227 

sustainable future via moderately-mitigated GHG emissions (RCP4.5) and low population growth 228 

(SSP1), the Northern Hemisphere still expects to see nearly a quadrupling of population exposure 229 

to compound hot extremes, from 19.5 billion person-days in the 2010s to 74.0 billion person-days in 230 

the 2090s (Fig. 7a). By contrast, the scenario combining unmitigated emissions (RCP8.5) and 231 



rapidly-growing populations (SSP3) is projected to see an over eightfold increase to 172.2 billion 232 

person-days in the 2090s (Fig. 7b). Greater increases are clustered over highly-urbanized and/or 233 

populous regions such as eastern United States, western Europe, western Asia and eastern China 234 

(Supplementary Fig. 13). Population exposure to daytime and nighttime hot extremes exhibits a 235 

similar peak structure, with the differential exposure to them in two worlds (RCP4.5&SSP1 vs. 236 

RCP8.5&SSP3) substantially smaller than that to compound type (Fig. 7 and Supplementary Fig. 237 

13). After 2030, the compound type would be the one that populations in the Northern Hemisphere 238 

are most frequently exposed to (Fig. 7).  239 

The high similarity in temporal patterns of hazard (Fig. 6) and exposure (Fig. 7) demonstrates the 240 

dominant role of anthropogenically-driven increases in hot extremes in determining increases in the 241 

hemispheric-scale population exposure. However, above estimates in population exposure only 242 

present a lower boundary, since the raw climate projections that we use for calculating exposure 243 

(rationale see Methods) underestimate future increases in compound heat hazards as addressed 244 

above. Underestimation in population exposure to compound hot extremes also arises from the 245 

insufficient land coverage in the analysis, with some highly populous areas like India unaccounted 246 

for (Supplementary Fig. 13).  247 

 248 

Discussion 249 

In this study, we report observed changes in compound hot extremes across the Northern 250 

continents, with underlying mechanisms proposed and contributions from various external forcers 251 

quantified. On this basis, future changes in both heat hazards and population exposure to them are 252 

projected. These findings provide new insights into heat-related risk assessment and management. 253 

Added value in guiding adaptation and mitigation planning could be gained by further considering 254 

the vulnerability of various communities and sectors to these hot extremes. This better 255 



embracement of the risk framework calls for a closer multidisciplinary collaboration by sharing data, 256 

methodology and knowledge amongst different fields. It is reasonable to expect that compound hot 257 

extremes are more dangerous to human health12, agriculture44 and ecology fields45, as this type 258 

impairs human and natural systems’ resilience to ambient excess heat.  259 

The limited data availability over much of the Southern Hemisphere prohibits us from conducting a 260 

quasi-global scale analysis. Although the Berkeley Earth Surface Temperature dataset23 provides a 261 

global coverage by merging 14 datasets of station observations, the data quality and availability still 262 

vary apparently with time and region, particularly at a daily scale critical to identify extremes. We 263 

also stress that the quality of observational data matters for detection-attribution-projection 264 

conclusions, even though the homogenized Berkeley data23 and non-homogenized HadGHCND22 265 

provide very similar area-weighted time series at a hemispheric dimension here. Influences of data 266 

quality on detection-attribution-projection, however, may stand out more starkly in regional-scale 267 

analysis (e.g., Supplementary Fig. 1e, f). 268 

Although previous studies have highlighted the importance of increasing summer-mean 269 

temperatures to hot day or night changes46,47, this is the first study confirming the dominant role of 270 

general warming in observed increases in compound hot extremes. There are contrasting 271 

evidences indicating that changes in temperature variability also played an important or even 272 

determinant role in inducing changes in hot extremes at regional scales (e.g., North America)48,49 or 273 

in producing extraordinarily intense cases50. These inconsistencies may stem from different 274 

datasets and methods used to quantify changes in the shape of temperature distribution51, as well 275 

as from distinct temporal- and spatial-scales being considered52.  276 

We also note that projections of compound hot extremes show increasingly large 277 

inter-member/inter-model spread, which is markedly larger than that of daytime/nighttime event 278 

projections (Fig. 6). In light of our physical interpretations (Fig. 3) and other recent studies53,54, this 279 



large spread may be linked to increasingly diverging projections of precipitation and resultant 280 

discrepancies in land-air interaction physics. So more trustworthy projections of compound hot 281 

extremes with reduced uncertainties, particularly at a regional scale, should be built on deeper 282 

mechanism understandings, including synoptic dynamics and local-to-regional surface energy 283 

balance as well as their responses to anthropogenic forcings54. At continental to global scales, both 284 

our statistical analysis (Fig. 2e, f) and some existing literature16,31 strongly suggest that changes in 285 

synoptic dynamic-thermodynamic drivers are likely secondary to the direct radiative forcing of 286 

increasing GHGs in driving long-term changes in compound hot extremes. 287 

  288 



 289 

Methods 290 

Observations and simulations. Gridded observations of near-surface Tmax and Tmin at a 291 

horizontal resolution of 3.75° longitude × 2.5° latitude are taken from the HadGHCND dataset22. 292 

Considering the availability of observations for producing this dataset, we focus our analysis on the 293 

Northern Hemisphere land areas. Only grid-boxes with no more than one missing value for 294 

Tmax/Tmin over 1960–2012 are used. The single missing value is infilled by the average of its 295 

neighboring two days’ observations. To test the sensitiveness of trend estimates to the choice of 296 

dataset, we also use daily Tmax and Tmin observations from the Berkeley Earth Surface 297 

Temperature dataset23, which are re-gridded onto 3.75° × 2.5° grids following the HadGHCND’s 298 

resolution and geography and then masked by the observation availability in the HadGHCND. 299 

Historical simulations and projections of climate variables are taken from the Coupled Model 300 

Intercomparison Project Phase 5 (CMIP5)55. To improve the sampling of internal variability, each 301 

model used here is required to have at least three ensemble members with Tmax/Tmin outputs 302 

available at a daily scale in each forced experiment, as detailed in Supplementary Table 1. Note 303 

that the experiments including both anthropogenic and natural forcings (ALL) end in 2005, after 304 

when the RCP4.5 simulations are employed to extend historical ALL-forcing simulations till 2012. 305 

Following the observation’s resolution and geography, we apply a bilinear interpolation algorithm to 306 

re-grid model outputs onto the same 3.75° × 2.5° grid and then mask the re-gridded data by the 307 

observations. 308 

For projections of population, we use spatially explicit global population scenarios43 which account 309 

for both changes in the size and spatial distribution of future population. These projections are 310 

provided at a spatial resolution of 1/8°×1/8° and at a decadal interval over 2010-2100. To reconcile 311 

the spatial resolution and availability of grids in climate and population projections, we compute 312 



3.75° × 2.5° population grids by tallying up the total number of persons in those 1/8° population 313 

grids42 included in the domain of each climate grid, and then mask them by the observation grids. 314 

Summertime hot extremes, frequency and intensity. A hot day/night is considered when 315 

Tmax/Tmin is higher than its historical 90th percentile for the specific calendar day during summer 316 

(June-August)56. Such daily-based 90th percentiles are determined by ranking historical 317 

(1960–2012) 15-day samples surrounding this day (7 days before and after, i.e., total samples 318 

15×53=795 days). These daily-based percentiles are, on one hand, stronger than the 319 

seasonal-fixed threshold during peak summer, thus acting to distinguish especially intense events 320 

from more typical cases; on the other hand, slightly lower than seasonal-fixed threshold during 321 

early/late summer, thereby permitting to identify hot extremes at different stages of summer56. Thus, 322 

these daily-based percentiles take into account intra-seasonally varying preparedness and 323 

acclimatization potential of human and ecosystems against excess heat56,57. The adoption of 324 

daily-based percentiles also avoids possible inhomogeneity in frequency and intensity series58. 325 

On this basis, we define three types of summertime hot extremes: a compound hot extreme– 326 

sequential occurrence of a hot day and a hot night within 24 hours; an independent hot day–a hot 327 

day without a following hot night; and an independent hot night–a hot night without a preceding hot 328 

day.  329 

The frequency for each type is the number of days satisfying corresponding constraints. The 330 

intensity is measured by the temperature exceedance(s) above corresponding threshold(s), thus 331 

highlighting the detrimental effects of excess heat above high background temperatures. We 332 

calculate the hemispheric-scale frequency and intensity of summertime hot extremes by averaging 333 

area-weighted grid values. We compute observed trends for frequency and intensity of 334 

summertime hot extremes and other physical variables using the nonparametric Theil–Sen’s 335 

method59,60 and estimate their 90% confidence interval based on the method proposed in ref. 61. 336 



We perform the nonparametric Mann-Kendall test of the null hypothesis of trend for each grid at the 337 

0.05 significance level62,63. Absolute trends (days decade-1 for frequency and °C decade-1 for 338 

intensity) are also converted to relative changes (% decade-1 for both) with respect to their 339 

climatological means over 1961–1990, to facilitate inter-type comparisons (Supplementary Fig. 3). 340 

Roles of general warming and changing variability. We first estimate the general warming 341 

signals by fitting a second-order polynomial to summer mean Tmax/Tmin during 1960–2012 for 342 

each grid-box. Then, with these general warming signals removed from daily Tmax/Tmin, the 343 

frequency and intensity are re-computed based on Tmax/Tmin residuals. The trends for these 344 

re-computed frequency and intensity are assumed to be dictated by evolving variabilities of 345 

summertime Tmax/Tmin (including inter-annual variability, seasonal cycle, intra-seasonal and 346 

diurnal variability). Accordingly, the remaining proportion in trends for original series is believed to 347 

be ascribed to the general warming (i.e. mean-state shift). The 5%-95% uncertainty range of 348 

observed relative contributions is estimated through randomly sampling valid grid-boxes 100,000 349 

times. 350 

Formal detection and attribution. We employ an optimal fingerprinting method for the detection 351 

and attribution of observed changes in summertime hot extremes38. Observed changes (Y) are 352 

represented as a sum of scaled fingerprints (X) of various external drivers, plus internal climate 353 

variability (ε)  354 

Y = Xβ + ε. (1) 355 

The MME mean of forced simulations are used to construct the fingerprints, and outputs from 356 

pre-industrial control runs are used to estimate internal climate variability. These fingerprints, in 357 

both frequency and intensity, are then pre-processed into non-overlapping three-year-mean time 358 

series consisting of 18 data samples over 1960–2012. The anthropogenically-forced signal (ANT) 359 



is represented as the difference between MME mean responses to ALL and to NAT (natural) 360 

forcings. Furthermore, the signal forced by other anthropogenic drivers (OANT, dominated by 361 

aerosols and large-scale land use changes6) is extracted from ANT by excluding the GHG-forced 362 

signal. The regression coefficients (scaling factors) β scale the fingerprints to best fit observed 363 

changes. The regression is resolved following the scheme proposed in ref. 38 364 

�̃� =  (𝐗𝑻𝐂𝑵−𝟏𝐗)−𝟏𝐗𝑻𝐂𝑵−𝟏𝐘.  (2) 365 

To fit and test the regression models, we need two independent estimates for inversed covariance 366 

structure of the internal climate variability (𝑪𝑵−𝟏). Specifically, we divide these pre-industrial control 367 

simulations into 64 non-overlapping chunks and then separate them into two sets, which are used 368 

for data pre-whitening and estimating the 5%–95% uncertainty range of scaling factors �̃� , 369 

respectively. We conduct a regularized estimate of the covariance matrix of internal climate 370 

variability39, which yields a full rank covariance matrix and avoids the underestimation of the lowest 371 

eigenvalues occurring in the original covariance matrix. 372 

If the scaling factor for specific external forcing excludes zero, the influence of this forcing is 373 

deemed detectable in observed changes. Furthermore, when the scaling factor contains the unity, 374 

we claim that the MME mean of forced responses is consistent with observation. If the scaling 375 

factor is smaller (larger) than one, the magnitude of responses to this forcing are overestimated 376 

(underestimated) in simulations compared to observations. To ensure the validity of detection and 377 

attribution analysis, a standard residual consistency test38 is also implemented to evaluate models’ 378 

performance in reproducing internal variability of the frequency and intensity of summertime hot 379 

extremes. All results shown pass this test at the 0.05 significance level. Based on a successful 380 

detection, attributable portion in observed trends for frequency and intensity are computed as the 381 

product of simulated linear trends for these indices and their respective scaling factors. The 5%-95% 382 

uncertainty range for attributable changes is then obtained by multiplying the MME mean forced 383 



changes with corresponding scaling factors’ uncertainty range. 384 

Observationally-constrained projections. The detection and attribution analysis provides an 385 

optimal estimate of the scaling to better match the simulated amplitude of forced changes to 386 

observed signals40. By exploiting this calibration effect on forced responses, we produce 387 

constrained projections of summertime hot extremes during 2013–2099 under RCP4.5 and RCP8.5. 388 

More specifically, we scale raw projections of frequency and intensity changes in response to 389 

various external forcings by multiplying corresponding scaling factors40. We note that such 390 

extension of simulations to future periods may introduce inhomogeneities in the frequency and 391 

intensity series (as revealed in ref. 58). Such inhomogeneities, however, turn out to be negligibly 392 

small (Supplementary Fig. 12). For the historical period (1960–2012), we reconstruct simulated 393 

anomalies (relative to 1960–2012) of changes in hot extremes by summing optimally-scaled MME 394 

mean responses to GHG, OANT and NAT (via the three-signal detection). For the period after 2012, 395 

the MME mean responses under RCP4.5 and RCP8.5 are scaled by the scaling factor for ANT. 396 

Finally, we adjust the historical mean (1960–2012) of the reconstructed series to match the 397 

observed counterpart. Apparently, this observationally-constrained projection method assumes the 398 

propagation of current biases of simulated forced changes into future, and does not account for 399 

errors exclusive to the future, such as a sudden shut-down in the thermohaline circulation40. 400 

Specific levels of global warming. Based on the re-gridded daily Tmax and Tmin outputs from 401 

CMIP5 models (Supplementary Table 1), we compute monthly anomalies (relative to 1861-1890) of 402 

daily mean surface air temperatures at each grid-box for each simulation. Then, weighting the 403 

gridded values by the cosine of their latitudes, we calculate the ensemble mean annual global 404 

mean surface air temperature anomalies for individual models and average these ensemble means 405 

to obtain the MME mean global warming magnitudes. Similar to the methods of King et al. (2017)64, 406 

we measure specific levels of global warming by decadal-average MME mean global warming 407 



magnitudes. 408 

Projection of population exposure to hot extremes. Considering both population dynamics and 409 

hazard increases42, our measure of population exposure refers to the number of person-days 410 

experiencing hot extremes, calculated as the summer number of events multiplied by the number of 411 

people exposed. The projected exposure, per decade, is computed from the spatial average of the 412 

product of decadal-average event frequency at each grid and the total population at that grid in that 413 

decade. Note that here we have to rely on raw projections of hot extremes instead of 414 

observationally-constrained ones for hazard aspect in calculating exposure, since the latter 415 

projection scheme can not be performed on a grid-scale basis as methodologically required. 416 

Potential biases in estimating population exposures by using unconstrained projections of hazards 417 

are discussed in the main text.  418 

Among various integrated scenarios constituted by RCPs and SSPs, we show a RCP4.5-SSP1 419 

combination to frame a world evolving into a future with relatively low challenges to adaptation and 420 

mitigation, and a RCP8.5-SSP3 combination to characterize a world with rapid growth in emissions 421 

and populations, i.e., the most challenging scenario65.  422 

 423 
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 619 

FIGURES 620 

 621 

Fig. 1 Observed changes in summertime hot extremes. Linear trends for frequency and intensity 622 

are estimated for the period of 1960–2012 based on the HadGHCND observations, with respect to 623 

compound hot extremes (a, b), independent hot days (c, d), and independent hot nights (e, f). 624 

Stipples indicate significance at the 0.05 level.  625 

 626 

 627 

 628 



 629 

Fig. 2 Contributions from changing temperature mean and variability. Observed changes in 630 

frequency and intensity of compound hot extremes caused by changes in summer-mean 631 

temperature are shown in a, b and those caused by changes in temperature variability are 632 

displayed in c, d. e, f show observed and modeled ensemble median contributions from changing 633 

summer-mean temperature (orange bars) and temperature variability (blue bars) to area-weighted 634 

mean frequency (e) and intensity (f) changes, respectively. The vertical black bars show the 5%–95% 635 

uncertainty range of contributions in observation. Gray diamonds and circles indicate values from 636 

individual simulations of each model, with their MME (multi-model ensemble) median shown by 637 

orange and blue dashed lines. 638 

 639 

 640 

 641 

 642 

 643 



 644 

 645 

Fig. 3 Dependence of trend patterns on physical drivers. a Climate zones and their acronyms. b, c 646 

Scatter-plot between trends for circulation changes represented by (b) sea level pressure and (c) 647 

500hPa geopotential height and frequency trends for compound hot extremes averaged in each of 648 

the twenty climate zones during 1960–2012. d, e Scatter-plot between summertime monthly-mean 649 

daily minimum (d) & maximum (e) temperature-precipitation correlation and frequency trends for 650 



compound hot extremes during 1960–2012. Before calculating correlation coefficients, both 651 

monthly-mean temperature and precipitation series are linearly detrended. Each symbol represents 652 

one climate zone. Long and short dashed lines show the 95% confidence and prediction intervals 653 

for the regression, respectively. The linear regression equation, the proportion of the variance of Y 654 

explained by X (R2), the Pearson correlation coefficient (corr), and its p-value (P) are indicated in 655 

each panel. For calculation details for b and c see Supplementary Note 2.  656 
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 659 

 660 

 661 

Fig. 4 Hemispheric-average indices of compound hot extremes over 1960–2012. a Anomalies in 662 

area-weighted mean frequency. b Anomalies in area-weighted mean intensity. All anomalies are 663 

relative to the 1960–2012 mean. Shown include observations (black line); the MME (multi-model 664 

ensemble) mean simulations forced jointly by ANT (anthropogenic) and NAT (natural) forcings (ALL; 665 

red line) and the 5%–95% range of ALL responses among individual simulations (red shading); and 666 

the MME mean simulations forced only by NAT forcings (blue line) with the 5%–95% range of NAT 667 

responses among individual simulations (blue shading). 668 
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 670 
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 675 
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 677 
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 679 

 680 

 681 

 682 

Fig. 5 Scaling factors and attributable changes for compound hot extremes. a The best estimate 683 

(cross) and 5%-95% uncertainty range (bar) of scaling factors for ANT (anthropogenic, orange) and 684 

NAT (natural, blue) forcings. b Same as a but for GHG (greenhouse gases, purple), OANT (other 685 

anthropogenic, green), and NAT (blue) in the three-signal detection analysis. c The best estimate 686 

(shading) for observed changes (gray) and those changes attributable to GHG (purple), OANT 687 

(green) and NAT (blue), with black bars representing the 90% confidence interval for observed 688 

trends and the 5%–95% uncertainty range for attributable trends. The calculations of confidence 689 

interval for observed trends and the uncertainty range for attributable changes are detailed in 690 

Methods. For the meaning of scaling factors and attributable changes see Methods–Formal 691 

detection and attribution section.  692 
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 695 

 696 

Fig. 6 Constrained projections of summertime hot extremes. Area-weighted series of simulated and 697 

projected MME (multi-model ensemble) mean frequency (a) and intensity (b) of summertime 698 

compound hot extremes (purple lines), independent hot days (blue lines), and independent hot 699 

nights (green lines) under RCP4.5. c, d Same as a, b, but under RCP8.5. Shadings enclose the 700 

5%–95% range of individual simulations for each type. Black symbols represent decadal-average 701 

GMST (global mean surface air temperature) anomalies (relative to 1861–1890, right y-axis) from 5 702 

used models, with their names specified by the legend in b. Red circles enclose the MME mean of 703 

decadal-average GMST anomalies, the average among which reaches global warming levels of 704 

1.5°C, 2°C and 4°C. Two vertical dashed lines locate the year of 1990 and 2030, when transitions 705 

of the dominant type of summertime hot extremes occur. 706 
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 708 

 709 

 710 

Fig. 7 Projections of population exposure to summertime hot extremes. a Population exposure to 711 

summertime compound hot extremes (purple lines), independent hot days (blue lines), and 712 

independent hot nights (green lines) across the Northern continents through the twenty-first century 713 

in the integrated scenario combining RCP4.5 (climate) and SSP1 (population) for a future with 714 

relatively low adaptation and mitigation challenges. b Same as a, but in the integrated scenario 715 

constituted by RCP8.5 (climate) and SSP3 (population) for a future with rapid growth in both 716 

greenhouse gas emissions and populations. Decadal-average MME (multi-model ensemble) 717 

means are indicated by dots connected by solid curves, with vertical bars framing the 5%–95% 718 

range of all members’ projections. The vertical dashed line locates the year of 2030, after which 719 

compound hot extremes will become the type that populations in the Northern Hemisphere are 720 

most frequently exposed to. 721 
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