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Abstract We present a novel anthropometric three dimen-
sional (Anthroface 3D) face recognition algorithm, which
is based on a systematically selected set of discriminatory
structural characteristics of the human face derived from
the existing scientific literature on facial anthropometry.
We propose a novel technique for automatically detecting
10 anthropometric facial fiducial points that are associated
with these discriminatory anthropometric features. We iso-
late and employ unique textural and/or structural character-
istics of these fiducial points, along with the established an-
thropometric facial proportions of the human face for detect-
ing them. Lastly, we develop a completely automatic face
recognition algorithm that employs facial 3D Euclidean and
geodesic distances between these 10 automatically located
anthropometric facial fiducial points and a linear discrimi-
nant classifier. On a database of 1149 facial images of 118
subjects, we show that the standard deviation of the Euclid-
ean distance of each automatically detected fiducial point
from its manually identified position is less than 2.54 mm.
We further show that the proposed Anthroface 3D recogni-
tion algorithm performs well (equal error rate of 1.98% and
a rank 1 recognition rate of 96.8%), out performs three of
the existing benchmark 3D face recognition algorithms, and
is robust to the observed fiducial point localization errors.
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1 Introduction

Automated human face recognition is a non-trivial computer
vision problem of considerable practical significance. It has
numerous applications including automated secured access,
automatic surveillance, forensic analysis, fast retrieval of
records from databases in police departments, automatic
identification of patients in hospitals, checking for fraud or
identity theft, and human-computer interaction. Besides the
need for automation, interest in computerized algorithms for
face recognition is inspired by the need to develop objective
measures of facial similarity.

Considerable research attention has been directed, over
the past few decades, towards developing reliable automatic
face recognition systems that use two dimensional (2D) fa-
cial images (Zhao et al. 2003). Three dimensional (3D) face
recognition technology is now emerging, in part, due to the
availability of improved 3D imaging devices and processing
algorithms. For such techniques, 3D images of facial sur-
faces are acquired using 3D acquisition devices. For auto-
mated human face recognition, 3D facial images have some
advantages over 2D facial images. Their pose can be easily
corrected by rigid rotations in 3D space. They also provide
structural information about the face (e.g., surface curva-
ture and geodesic distances), which cannot be obtained from
a single 2D image. Lastly, 3D face recognition algorithms
have been shown to be robust to variations in illumination
conditions during image acquisition (Kukula et al. 2004).

The existing 3D face recognition algorithms can be bro-
adly classified into ‘holistic’ and ‘local feature based’ tech-
niques (Gupta et al. 2007c). The holistic techniques employ
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information from the whole face or from large regions of
the 3D face. These algorithms include those that are based
on the appearance of facial range images (hereafter ‘appear-
ance based techniques’), e.g., ‘eigenfaces’ and ‘fisherfaces’
applied to facial range images. Then, there are the holistic
techniques, wherein, 3D facial surfaces are rigidly or non-
rigidly aligned and compared (hereafter ‘surface matching
based’). The other class of 3D face recognition algorithms
includes those that employ structural properties of local fa-
cial features (hereafter ‘local feature based’).

Numerous studies in the past have indicated the potential
of face recognition algorithms that employ local facial fea-
tures. For example, at the Face Recognition Vendor’s Test
(FRVT) in 2002 (Phillips et al. 2003), two of the top three
2D face recognition algorithms, namely local feature analy-
sis (Penev and Atick 1996), and elastic bunch graph match-
ing (EBGM) (Wiskott et al. 1997) were based on local fa-
cial features. In EBGM, a face is represented as an ‘elastic
bunch graph’, comprised of Gabor wavelet coefficients com-
puted at specific facial fiducial points, and 2D Euclidean dis-
tances between these points. Hüsken et al. (2005) developed
a successful 2D+3D face recognition technique called ‘hi-
erarchical graph matching’, which combined scores of 2D
EBGM and 3D EBGM (EBGM applied to facial range im-
ages). Their technique was also one of the top performers at
the Face Recognition Grand Challenge (FRGC) (Phillips et
al. 2005), which was conducted in the year 2005 to evalu-
ate the performance of state-of-the-art 3D face recognition
algorithms at the time.

Despite the existence of this evidence in favor of lo-
cal feature based face recognition techniques, such tech-
niques for 3D face recognition have been investigated less
deeply than the holistic techniques for two reasons. First
and foremost, there have not been attempts to systemat-
ically identify the local discriminatory structural charac-
teristics of the human face for automatic face recogni-
tion purposes. For the few reported 3D face recognition
techniques that employ local facial features, the choice of
facial landmarks has either been ad hoc (Gordon 1992;
Wang et al. 2002; Moreno et al. 2003; Lee et al. 2005;
Cadoni et al. 2009), or has been a straightforward extension
of local 2D techniques to range images (Hüsken et al. 2005;
Zhang and Wang 2009). Hüsken et al. observed that 2D
EBGM outperformed 3D EBGM, and acknowledged that
merely extending local 2D techniques to range images may
not be optimal for identifying the discriminatory 3D struc-
tural characteristics of the human face.

Second, completely automatic local feature based 3D
face recognition algorithms also require robust and accu-
rate techniques for automatically detecting local facial fea-
tures/fiducial points. However, techniques for 3D facial fidu-
cial point detection are currently poorly developed. Progress
in this research area is further restricted by the fact that the

‘ground truth’ locations of the facial fiducial points are not
available for many publicly available 3D face databases. It
is no surprise then that many studies of 3D or 2D+3D fa-
cial fiducial point detection (Gordon 1992; Wang et al. 2002;
Hüsken et al. 2005; Lu et al. 2006) report results of visual
inspection only and do not report error statistics for compar-
ison against any form of ‘ground truth’ data.

In this paper, we address both these challenging open
problems within the area of 3D face recognition. We present
a novel, completely automatic Anthropometric 3D Face
Recognition algorithm (Anthroface 3D) that employs dis-
criminatory anthropometric local structural characteristics
for the human face. Firstly, we employ the information
about the structural diversity of human faces from the re-
lated scientific discipline of facial anthropometry (Farkas
1987, 1994) to systematically isolate discriminatory struc-
tural characteristics of the 3D face. Secondly, we develop
novel effective 2D+3D algorithms to automatically and ac-
curately detect 10 facial anthropometric fiducial points that
are associated with the identified discriminatory facial char-
acteristics. We develop a successful 3D face recognition al-
gorithm that employs Euclidean and geodesic facial anthro-
pometric distance features and a linear discriminant analysis
(LDA) classifier. Lastly, we demonstrate the effectiveness of
both the proposed automatic fiducial points detection and
the 3D face recognition algorithms on a large database of
1149 3D faces. We compare the locations of the automati-
cally detected points to those of manually detected points.
We also demonstrate the significantly superior face recogni-
tion performance of the proposed Anthroface 3D algorithm
relative to three existing state-of-the-art 3D face recognition
algorithms.

This paper is organized as follows. In Sect. 2, we review
the existing 3D face recognition algorithms. This is followed
by a detailed description of the proposed Anthroface 3D al-
gorithm in Sect. 3. The methodology and the data that were
employed to evaluate the performance of all 3D face recog-
nition algorithms in this paper are presented in Sect. 4. The
significant results of this paper are outlined and discussed in
Sect. 5. The paper concludes with Sect. 6, wherein, the main
conclusions of this paper are summarized.

2 Background

The existing 3D face recognition algorithms can be broadly
classified into three groups (Gupta et al. 2007c). First, there
are the 3D appearance based techniques that are straight-
forward extensions of successful 2D appearance based tech-
niques (Zhao et al. 2003) to facial range images. Statistical
subspace projection methods including principal component
analysis (PCA) or ‘eigensurfaces’ (Chang et al. 2005), in-
dependent component analysis (ICA) (Hesher et al. 2003),
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and LDA or ‘fishersurfaces’ (Heseltine and Austin 2004;
BenAbdelkader and Griffin 2005) are among the prominent
existing appearance based 3D face recognition techniques.
The underlying philosophy of these techniques is to regard a
3D facial image as an instance in an N dimensional feature
space, where N is the number of pixels/points in the im-
age. All human faces are modeled to lie on a linear subspace
of this feature space (Duda et al. 2001). A statistical learn-
ing technique is employed to learn the linear subspace from
an ensemble of facial range images. Facial images are pro-
jected onto the learned subspace and are compared by means
of a suitable distance metric in that subspace. Besides the
subspace projection techniques, other appearance based 2D
face recognition techniques based on hidden Markov models
have also been extended to facial range images (Malassiotis
and Strintzis 2005; Tsalakanidou et al. 2005).

Of all the existing techniques for 3D face recognition,
PCA has been explored most extensively. For FRGC 2005,
the performance of 3D PCA was regarded as the baseline
(Phillips et al. 2005). PCA is reported to perform well with
small 3D facial databases of less than 100 subjects, but
poorly for larger data sets. Analogous to 2D face recogni-
tion, 3D techniques based on ICA, and LDA have been re-
ported to perform better than 3D PCA. With subspace pro-
jection algorithms, in general, gradient maps derived from
facial range images have been reported to produce better
recognition accuracies than facial range images. The per-
formance of holistic appearance based techniques for 3D
face recognition is generally greatly affected by the presence
of outlier cases, cluttered backgrounds, occlusions, noise,
and variations in facial expression and pose. Interpreting the
discriminatory facial structural information that the appear-
ance based techniques encode also remains an open problem
(Phillips et al. 2005).

The second class of 3D face recognition techniques is
that, wherein, pairs of 3D facial surfaces are rigidly or non-
rigidly registered and compared. Among these, techniques
based on the Iterative Closest Point (ICP) algorithm (Besl
and McKay 1992), wherein, one 3D model is rotated and
translated iteratively in space until its distance from the
other model converges to a minimum, has been explored
most extensively and is reported to be the most successful
(Russ et al. 2005; Lu et al. 2006; Koudelka et al. 2005;
Maurer et al. 2005). Metrics including the mean squared
error, point-to-closest-point mean squared error, point-to-
closest-surface mean squared error, and the partial Haus-
dorff distance (pH) have been employed to iteratively align
3D faces and to compute the final structural dissimilarity be-
tween them.

The ICP based 3D face recognition algorithms are re-
ported to be robust to variable facial poses (Lu et al. 2006)
and illumination conditions during image capture (Kukula et
al. 2004). They are also reported to perform better than 3D

PCA (Irfanöglu et al. 2004). On the downside, however, the
ICP based registration procedure is not guaranteed to con-
verge to a global minimum. It is computationally expensive
and is also affected by the presence of variable facial expres-
sions, which are non-rigid deformations of the facial surface
(Lu et al. 2006; Maurer et al. 2005).

To deal with variable facial expressions, Bronstein et al.
have proposed matching intrinsic representations of facial
surfaces that are computed using multi-dimensional scaling
(Bronstein et al. 2005). Recently, techniques to non-rigidly
warp one surface into another, using non-elastic deforma-
tions (Samir et al. 2009) and elastic deformations (Srivas-
tava et al. 2009) of facial geodesic curves, have also been
proposed. However, these techniques have not been tested
on a large data set to assess their 3D face recognition perfor-
mance. In other approaches, the rigid comparison of only the
nasal and eye socket regions of the face have also been inves-
tigated for expression invariant 3D face recognition (Mian et
al. 2007). In yet another approach, the facial expression de-
formations are modeled using PCA and are removed from
probe faces before they are compared to gallery faces (Al-
Osaimi et al. 2009).

Finally, there are the local feature based 3D face recog-
nition techniques that employ structural properties of local
regions of the 3D face. For a sub-class of these techniques,
various facial profile curves have been rigidly aligned and
compared (Beumier and Acheroy 2001; Zhang et al. 2006).
In numerous such studies, the central vertical facial profile
has been noted to be effective at uniquely identifying indi-
viduals. Hence, techniques have also been investigated to
automatically locate this natural axis of bilateral symmetry
of the human face. In general, these algorithms that employ
facial profiles for matching 3D faces are adversely affected
by the presence of variable facial expressions. Besides fa-
cial profiles, local geometric characteristics of facial sub-
regions including their positional co-ordinates, surface ar-
eas and curvatures, and 3D Euclidean distances, ratios of
distances, joint differential invariants, and angles between
the local facial regions, have been employed previously for
3D face recognition (Gordon 1992; Hüsken et al. 2005;
Moreno et al. 2003; Lee et al. 2005; Zhang and Wang 2009;
Cadoni et al. 2009). The shapes of facial landmarks have
been quantified by Gaussian and mean curvature values
(Gordon 1992; Moreno et al. 2003), Guassian-Hermite mo-
ments (Xu et al. 2004), ‘point signatures’ (Wang et al. 2002),
2D and 3D Gabor filter coefficients (Wang and Chua 2005;
Hüsken et al. 2005), and Scale Invariant Feature Transform
(SIFT) descriptors (Zhang and Wang 2009). The success-
ful 2D face recognition technique of local feature analysis
(Penev and Atick 1996), has also been applied to 3D facial
images (BenAbdelkader and Griffin 2005).

Automatic 3D facial landmark detection algorithms are
currently poorly developed. A few attempts have been made
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to automatically locate facial landmarks on 3D models using
surface (Gordon 1992; Hüsken et al. 2005; Lu et al. 2006;
Cadoni et al. 2009) or profile (Zhang et al. 2006) curvature,
or by aligning 3D models to generic facial templates with
known landmarks (Irfanöglu et al. 2004). The tip of the nose
has been detected as the most prominent point for 3D facial
models in canonical frontal poses. However, this heuristic
fails for faces in arbitrary poses. Moreover, none of these
existing studies have reported the accuracy of their facial
feature localization techniques against any form of ‘ground
truth’ data.

A number of techniques based on local facial features
have been reported to perform better than 3D PCA (Ir-
fanöglu et al. 2004). Some have also been reported to per-
form better than profile matching techniques (Irfanöglu et al.
2004), and ICP based techniques (Cadoni et al. 2009). They
have been reported to be less affected by global changes in
the appearance of facial range images including variable fa-
cial expressions, poses, and the presence of noise and occlu-
sions than the holistic techniques (Mian et al. 2007). Never-
theless, 3D face recognition techniques based on local facial
features have been explored much less than the holistic tech-
niques.

3 Anthropometric 3D Face Recognition
(Anthroface 3D)

3.1 Anthropometric Cranio-Facial Proportions

Anthropometric cranio-facial proportions (Farkas 1987) are
ratios of pairs of straight-line and/or along-the-surface dis-
tances between specific cranial and facial fiducial points
(e.g., Fig. 1). For example, the most commonly used nasal
index N1 is the ratio of the horizontal nose width to the ver-
tical nose height (N1 = (al − al)/(n − sn) from Fig. 1(b)).
Note that for the anthropometric facial fiducial points, this
notation of Farkas’ (Fig. 1 and Table 1) is used throughout
the paper.

The scientific discipline of cranio-facial anthropometry
has existed for nearly three centuries. Over the years numer-
ous anthropometric facial proportions have been proposed,
and researchers have collected, recorded and analyzed their
values on various human populations. Cranio-facial propor-
tions have been and continue to be used widely employed in
art and sculpture as neoclassical canons to aid in the creation
of well-proportioned faces; in anthropology for analyzing
prehistoric human remains (Comas 1960); for quantifying
facial attractiveness (Farkas et al. 1985); for analyzing fa-
cial disproportionality in anomalies or after facial injury as
an aid to planning facial cosmetic and reconstructive surgery
(Farkas 1987; Rogers 1974); and recently for creating para-
metric models of human faces in computer graphics (De-
Carlo et al. 1998). As far back as 1939, Hrdlička (1939)

Fig. 1 The 25 facial fiducial points associated with highly variable
anthropometric facial proportions on (a) a color image, and (b) a range
image

Table 1 The 23 most variable anthropometric facial proportions for
adult humans along with their standard deviation values (Farkas 1987).
The corresponding fiducial points are presented in Fig. 1(b). N denotes
nasal proportions, O denotes orbital proportions, L denotes propor-
tions related to the mouth region, and F denotes facial proportions

S. No Anthropometric Proportion σ

1. O3 = (ex − en, l)/(en − en) 7.75

2. O10 = (en − en)/(al − al) 8.29

3. O12 = (en − en)(ch − ch) 6.02

4. F32 = (n − sto1)/(ex − ex) 5.30

5. N1 = (al − al)/(n − sn) 5.81

6. N2 = (mf − mf )/(al − al) 7.08

7. N4 = (sbal − sn, l + r)/(al − al) 8.80

8. N6 = (ex − m′
sag, l)/(mf − mf ) 14.6

9. N7 = (sn − prn)/(al − al) 6.28

10. N8 = (sn − prn)/(sbal − sn, l + r) 12.8

11. N15 = (en − m′
sag, l)/(sn − prn) 11.2

12. N16 = (en − m′
sag, l)/(en − m, l) 7.26

13. N30 = (mf − mf )/(en − en) 6.06

14. N31 = (ex − m′
sag, l)/(en − en) 7.01

15. N32 = (al − al)/ch − ch 5.04

16. N33 = (sn − prn)/(sn − sto1) 13.8

17. L1 = (sn − sto1)/(ch − ch) 5.40

18. L4 = (sn − ls)/(sbal − ls′, l) 10.2

19. L5 = (sn − ls)/(sn − sto1) 5.97

20. L6 = (ls − sto1)/(sn − sto1) 7.10

21. L7 = (ls − sto1)/(sn − ls) 13.3

22. L9 = (ls − sto1)/(sto2 − li) 16.9

23. L14 = (sn − sto1)/(n − sn) 5.10
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emphasized the importance of anthropometric facial propor-
tions for comparing groups of people or populations. How-
ever, they have not been employed previously to aid in the
design of 3D face recognition algorithms.

Farkas and Munro consolidated a list of 155 cranio-facial
anthropometric proportions that are used for planning facial
reparative and cosmetic surgery (Farkas 1987). By means of
physical measurements, they also computed the mean (μ)
and standard deviation (σ ) values of these proportions for a
population of 2564 healthy young and adult human subjects
belonging to diverse ethnic, gender, and age groups (Farkas
1987, 1981). From amongst these 155 proportions, we iso-
lated 70 anthropometric proportions that are associated with
the facial region, and that can be computed automatically
from the fontal 3D facial models normally acquired by 3D
imaging devices. We identified a third (23) of these 70 facial
proportions with the highest standard deviation values (Ta-
ble 1) for adult human populations as being representative
of discriminatory facial structural characteristics. It is rea-
sonable to hypothesize that characteristics that display wide
variation between individuals are likely to be most useful for
distinguishing them. Associated with these 23 most variable
anthropometric proportions are 25 anthropometric face fidu-
cial points (Fig. 1). This information about the structural di-
versity of human faces forms the basis of our proposed An-
throface 3D face recognition algorithm (Gupta et al. 2007a,
2007b).

3.2 Manually Detected Fiducial Points

We manually located the 25 anthropometric facial fiducial
points associated with the identified diverse anthropomet-
ric measurements on all color images (e.g., Fig. 1(a)) of the
Texas 3D Face Recognition Database (Gupta et al. 2010)
that we employed. These fiducial points were located man-
ually on the facial color images by clicking at appropriate
locations with a mouse and a computer based graphical user
interface. Since the images in this database were acquired
using a stereo imaging system, the range and the color
images for a particular acquisition are perfectly aligned.
Hence, the locations of the fiducial points for the range im-
ages (Fig. 1(b)) are the same as their locations for the color
images (Fig. 1(a)).

A previous statistical analysis, on a large database of 994
facial images, has established the reliability and repeata-
bility of manually locating facial anthropometric fiducial
points on 2D facial images (Shi et al. 2006). In their analysis,
the authors observed that both the variability in the locations
of facial fiducial points due to different human subjects, and
the variability due to repeated observations by the same sub-
ject, were not statistically significant. Hence, manual iden-
tification of the fiducial points in our analysis served two
purposes. First, it provided the ‘ground truth’ data for as-
sessing the performance of the algorithms that we developed

for automatically detecting facial fiducial points. Second, in
a sense it helped to establish an upper bound on the expected
performance of 3D face recognition algorithms for reliably
detected manual anthropometric facial fiducial points.

Furthermore, in our analyses we first developed the An-
throface 3D face recognition algorithm using manually lo-
cated facial fiducial points. We reasoned that only upon es-
tablishing the potential of our proposed algorithm for well
detected manual fiducial points, would it be worthwhile to
investigate approaches to automatically locate the fiducial
points. This analysis with manually located facial fiducial
points, also helped to identify the most useful subset of the
25 anthropometric facial fiducial points (Fig. 1) for the pur-
poses of 3D face recognition.

3.3 Recognition Algorithm

As features for our proposed Anthroface 3D algorithm, we
employed 300 3D Euclidean distances and 300 geodesic dis-
tances between all of the possible pairs (

(25
2

) = 300) of the
25 anthropometric facial fiducial points (Fig. 1(b)) that we
identified in the previous analysis of facial anthropometric
proportions (Gupta et al. 2007b). We computed geodesic
distances along the facial surface using Dijkstra’s shortest
path algorithm (Dijkstra 1959; Tenenbaum et al. 2000). Be-
sides 3D Euclidean distances, the motivation for employ-
ing geodesic distances was that previous studies have shown
that geodesic distances are better at representing ‘free-form’
3D objects than 3D Euclidean distances (Hamza and Krim
2006). Furthermore, a recent study suggested that changes
in facial expressions (except for when the mouth is open)
may be modeled as isometric deformations of the facial sur-
face (Bronstein et al. 2005). When a surface is deformed
isometrically, intrinsic properties of the surface, including
Gaussian and mean curvature and geodesic distances, are
preserved (Do Carmo 1976). Hence, algorithms based on
geodesic distances are likely to be robust to changes in facial
expressions.

From among the 300 Euclidean and 300 geodesic dis-
tances, we selected subsets of the most discriminatory dis-
tance features, using the stepwise linear discriminant analy-
sis (Sharma 1996) procedure (‘stepdisc’, SAS Institute Inc.,
NC, USA). Briefly, the stepwise linear discriminant analysis
procedure selects a subset of the most discriminatory fea-
tures, which maximize a chosen statistical discrimination
criterion. For our analyses we employed the Wilks’ � cri-
terion, which is the ratio of the within group sum of squares
to the total sum of squares. The cut-off value of statistical
significance for both the addition and removal of a feature
was set at 0.05. The stepwise linear discriminant analysis
procedure begins with no selected features, and at each step
a feature is either added or removed. A feature that is al-
ready selected is removed if it does not statistically decrease
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the discrimination power of the set of selected features, as
measured by the selection criterion. If at a step no feature
is removed, then a feature that is not already selected, but
which adds statistically significantly to the discrimination
power of the selected features, is added. This procedure is
repeated until no feature is added or removed.

Using this procedure we identified the 106 and 117
most discriminatory Euclidean and geodesic distance fea-
tures from among the 300 Euclidean and 300 geodesic dis-
tances, respectively. We pooled these 106 Euclidean and 117
geodesic anthropometric distances together, and using a sec-
ond stage stepwise linear discriminant analysis procedure,
we identified the final combined set of 123 most discrimi-
natory anthropometric facial distance features. We trained a
Fisher’s linear discriminant analysis classifier (Duda et al.
2001), which linearly projected these 123 anthropometric
distance features onto 11 dimensions (11D). For the step-
wise LDA feature selection and for training the LDA classi-
fier we used a training data set, which had no overlap with
the test data set employed to test the final algorithm (Ta-
ble 2). The training data set contained 360 randomly se-
lected images of 12 subjects (30 images per subject) with
neutral or arbitrary facial expressions.

The goal of Fisher’s LDA is to find a linear projection
matrix W for projecting the input feature vector x onto a
linear subspace y = WT x, such that the discrimination be-
tween the different classes in the projected space is maxi-
mized (Duda et al. 2001). The discrimination between the
different classes is measured by the ratio of their projected
between class scatter matrix (SB ) and the sum of their pro-
jected within class scatter matrix (SW ) as

J (W) = |S̃B |
| ˜SW | = |WT SBW|

|WT SW W| , (1)

where,

SB =
c∑

j=1

nj (mj − m)(mj − m)T , (2)

SW =
c∑

j=1

nj∑

i=0

(xi − mj )(xi − mj )
T , (3)

where c is the total number of classes in the training data
(12 in our case), mj is the vector mean of class j , nj is
the number of elements in class j (30 in our case), and m
is the mean of all cases in the training data. Using Lagrange
multipliers and the Rayleigh quotient, a closed form solution
for W can be obtained by solving the eigen value problem

S−1
W SBw = λw (4)

and by computing the (c − 1) (in our case 11) eigen vectors
(w) and eigen values (λ) of (S−1

W SB ).

Fig. 2 The set of 25 arbitrarily located facial points

For all faces in the test data set, the 123 most discrimi-
natory anthropometric Euclidean and geodesic distance fea-
tures x were first computed. They were projected onto the
11D LDA space as y = Wx that was learned using the train-
ing data set. The final metric for comparing two faces A and
B was the Euclidean distance in the 11D LDA space com-
puted as

d =
√√
√√

10∑

i=0

(yA
i − yB

i )2 (5)

3.4 Effect of Choice of Facial Points

We also investigated the effect of the choice of facial fidu-
cial points on the performance of the proposed Anthroface
3D algorithm (Gupta et al. 2007a). We repeated the steps of
the Anthroface 3D recognition algorithm (Sect. 3.3), with
Euclidean and geodesic distances between 25 arbitrary fa-
cial points (Fig. 2) instead of the 25 anthropometric fidu-
cial points (Fig. 1). These points were located in the form of
a 5 × 5 rectangular grid positioned over the primary facial
features of each face (Fig. 2). We chose these particular fa-
cial points as they measure distances between the significant
facial landmarks, including the eyes, nose and the mouth
regions, without requiring localization of specific fiducial
points. A similar set of facial points was also employed in
a previous 3D face recognition algorithm for aligning 3D
facial surfaces using the ICP algorithm (Lu et al. 2006).

3.5 Subset of Anthropometric Fiducial Points

Next, we determined if a subset of the 25 manually located
anthropometric facial fiducial points could be employed for
the Anthroface 3D recognition algorithm, without a signifi-
cant loss of its performance. This was an important step to-
wards completely automating the proposed Anthroface 3D
algorithm. Clearly, the task of automatically detecting all
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Fig. 3 The subset of 10 anthropometric facial fiducial points that were
employed for the final automatic Anthroface 3D algorithm depicted on
a (a) color, and (b) range facial image

of the 25 anthropometric fiducial points with a high accu-
racy is expensive, non-trivial and may even be redundant.
To isolate this subset of points, we first removed individual
points (e.g. prn in Fig. 1(b)), or pairs of symmetric points
(e.g. al-al in Fig. 1(b)) from the overall Anthroface 3D al-
gorithm and re-evaluated its performance. Interestingly, the
removal of none of the individual points/pairs resulted in a
statistically significant loss in the performance of the An-
throface 3D recognition algorithm. This indicated that some
points in the set of 25 anthropometric points were clearly
redundant. We then proceeded to remove larger groups of
fiducial points associated with the orbital, nasal, and mouth
regions and re-evaluated the overall performance of the An-
throface 3D algorithm. Finally, we isolated a subset of 10
anthropometric facial fiducial points (Fig. 3) that resulted
in statistically equivalent recognition performance to that
of the algorithm that employed 25 fiducial points. Hence,
our final proposed Anthroface 3D algorithm employed only
these 10 anthropometric facial fiducial points (Fig. 3), in-
stead of the 25 points that we initially identified from the
literature on anthropometric facial proportions (Sect. 3.1).
Note also that for this Anthroface 3D algorithm, which em-
ployed

(10
2

) = 45 3D Euclidean and 45 geodesic distances,
nearly all (78) final features were selected using the step-
wise linear discriminant procedure as being the most dis-
criminatory. The order of the number of discriminatory fea-
tures selected for this algorithm was similar to the order of
the number of features selected (123) for the Anthroface 3D
algorithm with 25 anthropometric points.

Fig. 4 The 3D template face in canonical frontal upright position
which was used to automatically locate the nose tips of all 3D faces,
and its manually located nose tip

3.6 Automatic Detection of Anthropometric Fiducial
Points

To completely automate the Anthroface 3D algorithm, we
developed algorithms to automatically detect the 10 anthro-
pometric facial fiducial points (Fig. 3) that we isolated in
the previous analysis. Out algorithm automatically detects 3
of these points (prn, and al-al in Fig. 3) using only the 3D
shape information of the face. To locate the remaining seven
points it employs both the 2D and the 3D information of
the face. Furthermore, to locate all the points except for the
tip of the nose (prn), the algorithm assumes that each face
is in a frontal upright position, with its natural axis of bi-
lateral symmetry roughly along the vertical dimension (e.g.,
Fig. 4).

The overall algorithm for detecting the 10 anthropomet-
ric facial fiducial points proceeds in a sequence of cascaded
steps. Each stage in the sequence utilizes fiducial point loca-
tions found in the previous stages to assist in locating the
current fiducial points. The logical sequence used begins
with the most reliable and easy to detect feature, proceed-
ing to features that are less reliable and harder to detect.
However, as it turns out, all facial fiducial points were quite
reliable.

The sequence of stages for automatically detecting the
fiducial points in the Anthroface 3D algorithm begins with
the detection of the tip of the nose (prn). The location of
this point is then employed to detect the nose width points
al-al. These three points are then employed to detect the in-
ner corners of the eyes (points en-en) and the center of the
nose root (point m′). The tip of the nose (point prn) and nose
width points (al-al) are also employed to detect the corners
of the mouth (points ch-ch). Lastly, the locations of the in-
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ner corners of the eyes (points en-en) are used to locate the
outer corners of the eyes (points ex-ex).

A key underlying concept motivated the design of our
proposed Anthroface 3D algorithm for detecting these an-
thropometric fiducial points. By their definition of being
fiducial points or landmarks, these points have unique struc-
tural and/or textural properties that differentiate them from
their surrounding regions. When human beings search for
these facial fiducial points, either by visual or tactile in-
spection, it is these characteristics that inherently guide their
search. We reasoned that the key to accurately locating these
anthropometric fiducial points was to isolate their unique
structural and/or textural characteristics and to search for
them in an appropriately constrained region of the face. In
the following sections, we describe in detail the steps that
the Anthroface 3D algorithm employs to automatically de-
tect each of the 10 anthropometric fiducial points. Note that
all dimensions in the following discussion are described in
millimeters (mm). The actual ratio of pixel/mm of any 3D
image is related to the operational conditions of the acqui-
sition system and can be employed to determine the corre-
sponding dimensions in pixel units.

3.6.1 Nose Tip (prn)

In order to locate the tip of the nose (point prn in Fig. 3), the
algorithm employs a 3D template face (Fig. 4) with a man-
ually located nose tip. We selected this template face from
the training partition (Table 2) of our database. It was a rel-
atively holes free and symmetric face with no facial or sur-
rounding hair, and a neutral facial expression. The algorithm
registers the entire surface of every 3D face in the database
to the surface of the template face using the ICP algorithm
(Besl and McKay 1992). After aligning an arbitrary face to
the template face, the point on its surface closest to the tip
of the nose of the template face is found. This is the initial
estimate (ICP estimate) of the tip of the nose.

Although the ICP estimate of the tip of the nose is not
very accurate (the standard deviations of errors from the
manually located nose tips for the entire database of images
were σx = 6.271 and σy = 9.415 pixels), the ICP procedure
served two purposes. First, it helped to transform 3D models
in arbitrary poses to a frontal upright canonical pose, which
was required for detecting all the other points. Second, since
the ICP estimate was in the central region of all faces, it
helped to limit the search for the tip of the nose in the next
stage to a window of 96 mm × 96 mm about the ICP esti-
mate.

For facial range images of the form (x, y, z(x, y)), the
Gaussian surface curvature (K), the mean surface curvature
(H ), and two principal curvatures (κ1, κ2) can be computed
from their first and second partial derivatives as (Do Carmo

1976)

K = zxxzyy − z2
xy

(1 + z2
x + z2

y)
2
, (6)

H = zxx(1 + z2
y) + zyy(1 + x2

x) − 2zxzyzxy

(1 + z2
x + z2

y)
3/2

, (7)

κ1, κ2 = H ±
√

H 2 − K, (8)

where zx and zy are the first partial derivatives of z(x, y)

w.r.t. x and y, respectively, and zxx , zyy and zxy are the sec-
ond first partial derivatives of z(x, y) w.r.t. x and y. Fur-
thermore, the Gaussian curvature K = κ1κ2, and the mean
curvature H = (κ1 + κ2)/2. As a part of the Anthroface 3D
algorithm, we computed these partial derivatives, and the
Gaussian and mean curvature values for the facial range im-
ages, using a method developed by Besl (1988). The signs
of the Gaussian and the mean curvature values help to iden-
tify differently shaped regions of a surface. The regions with
K > 0 are ‘elliptic’, those with K < 0 are ‘hyperbolic’, and
those with K = 0 are either ‘planar’ or are ‘cylindrical’. For
the right-handed 3D co-ordinate system defined in Fig. 4, re-
gions of the surface with H > 0 are ‘concave’, while those
with H < 0 are ‘convex’.

Researchers in the past have noted that the sub-parts of
the human face have distinct surface curvature properties
(Gordon 1992; Moreno et al. 2003). We further observed
that in fact, of all the regions on the facial surface, the
region surrounding the tip of the nose has the highest el-
liptic Gaussian curvature (Fig. 5(a)), and more specifically
the highest convex elliptic Gaussian curvature (Fig. 5(b)).
Hence, the Anthroface 3D algorithm employs a very sim-
ple procedure, which reliably and accurately detects the tip
of the nose of 3D faces. The algorithm searches for the
point with the maximum elliptic Gaussian curvature within
a 96 mm × 96 mm central region of each face (Fig. 5(c)),
which surrounds the initial estimate of the nose tip obtained
using the ICP procedure. This is the location of the final
automatically located tip of the nose. For apparent reasons
(Fig. 5(b)), we coined the term ‘The Pinocchio Feature’ for
this reliable facial fiducial point.

3.6.2 Nose Width Points (al-al)

To detect the anthropometric facial fiducial points (al-al in
Fig. 3(b)), which define the anthropometric measurement
of ‘nose width’, the Anthroface 3D algorithm restricts its
search to sub-regions of the range image of size 42 mm ×
50 mm centered about the location of the automatically de-
tected nose tip. We determined the size of this search re-
gion using the reported average and standard deviation val-
ues of the nose heights and nose widths of adult human
males (Farkas 1994). On average, human males are reported
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Fig. 5 The magnitudes of the Gaussian curvatures of the (a) elliptic, (b) convex elliptic regions of a facial range image, and (c) of its central
96 mm × 96 mm region. In each image, the Gaussian curvature has been plotted as a 3D surface with the facial texture warped onto it

Fig. 6 (a) The edges detected with the LOG edge detector in
sub-regions of the facial range images centered about the detected nose
tip, and (b) critical points along the nose boundary (+) and the tip of
the nose (◦)

to have wider (μ = 35 mm, and σ = 2.5 mm) and taller
(μ = 53 mm with σ = 3.4 mm) noses than females. Hence,
to account for variations in the human population, we fixed
the width of the search region for points al-al about the tip
of the nose at the μ + 6σ value of the nose width of human
males. Similarly, we fixed the height of the search region at
the 0.6 × (μ + 6σ) value of the height of noses of human
males.

Within this search region about the tip of the nose, the
Anthroface 3D algorithm detects edges on the facial range
images using a Laplacian of Gaussian edge detector, with
σ = 7 pixels. Since the human nose is a distinct protrusion in
the facial surface, we observed that the left and right bound-
aries of the nose were always clearly delineated in the edge
maps of all faces (Fig. 6(a)). From this edge map, the algo-
rithm isolates the left and right boundaries of the nose by
traversing outwards horizontally in both directions from the
tip of the nose, and by retaining the first curves encountered.

The algorithm then detects all the ‘critical’ points (points
of high curvature) with negative curvature values (Ro-
driguez and Aggarwal 1990), which are present along the
nasal boundary contours. It traverses the nasal boundary
curves in a clockwise direction. For all faces in our database,
the points al-al were among these critical points (shown in
Fig. 6(b)). From among the critical points, the algorithm
isolates the points al-al, by searching for the leftmost and
rightmost critical points, that are closest to the tip of the
nose along the vertical direction.

Fig. 7 (a) The magnitude of the Gaussian curvature of the concave
elliptic regions of a facial range image, (b) that of a smaller region de-
fined to search for the right eye’s inner corner, and (c) that of a smaller
region defined to search for the left eye’s inner corner. In each image
the surface curvature is plotted as a 3D surface with the facial texture
warped onto it

3.6.3 Inner Eye Corners (en-en) and Center of Nose
Root (m′)

To automatically locate the inner corners of the eyes (points
en-en) we observed that for all faces, these points were lo-
cated in regions of the face that were distinctly concave el-
liptic (Fig. 7(a)). The Anthroface 3D algorithm locates the
peaks of Gaussian curvature of these two regions, as ini-
tial estimates (curvature estimates) of the locations of the
inner corners of the eyes. In order to define the search re-
gions for these peaks, we employed the locations of auto-
matically detected points prn, al-al, the location of the high-
est vertical point of each 3D model (v), and knowledge of
the established horizontal and vertical proportions of a nor-
mal adult human face (Farkas 1987). For an average adult,
the vertical distance between the inner corners of the eyes
and the tip of the nose is ∼0.3803 times the vertical dis-
tance between the top of the head and the tip of the nose
(Farkas 1987). To account for variations in human popu-
lations, we fixed the upper limits of the search regions to
(prny + 0.3803 × 1.5 × |prny − vy |), and the lower limits to
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(prny +0.3803×0.33×|prny −vy |), where prny is the ver-
tical co-ordinate of the tip of the nose and vy is the vertical
co-ordinate of the highest point of the 3D model.

To determine the horizontal limits of the two search re-
gions, we employed the fact that for an average face, the
ratio of the horizontal distance between the inner corners of
the eyes to nose width (the distance between points al-al) is
unity (Farkas 1987). Thus, Anthroface 3D searches between
prnx , the horizontal co-ordinate of the tip of the nose and
(alx,left +0.5×|alx,left −alx,right|) for the curvature estimate
of the inner corner of the subject’s left eye. Similarly, for the
curvature estimate of the inner corner of subject’s right eye,
the algorithm searches between the horizontal limits that are
defined on one side by (alx,right − 0.5 × |alx,left − alx,right|)
and prnx on the other side. These search regions for the two
inner eye corners are shown in Fig. 7(b) and (c), respectively.
Within these two regions, the algorithm determines the lo-
cations of the points with the highest Gaussian curvatures as
the curvature estimates for the inner corners of the eyes.

The Anthroface 3D algorithm obtains the final positions
of points en-en by further searching within a region of size
20 mm × 20 mm about the curvature estimates for these
points, using a recently developed 2D+3D EBGM algo-
rithm (Jahanbin et al. 2008). Briefly, as a part of the 2D+3D
EBGM algorithm, the algorithm locates the fiducial points
of interest manually on a set of 2D and 3D example images.
We selected 68 images of 12 subjects from the training par-
tition of our database, and 21 images of 13 subjects from
the Remaining partition (Table 2), as example images for the
2D+3D EBGM algorithm. In this set of images, we included
faces with various expressions, e.g., open/closed eyes, and
neutral/smiling with open/closed mouths. Forty 2D and forty
3D Gabor coefficients (at 5 scales and 8 orientations) are
computed for the manually located fiducial points of all
example faces. The Gabor filters that we employed corre-
sponded to a carefully designed filter bank (Bovik et al.
1990) that is widely used in the area of 2D face detec-
tion and recognition (Wiskott et al. 1997; Wang et al. 2002;
Wang and Chua 2005). For a face with unknown fiducial
points, the same 2D and 3D Gabor coefficients are com-
puted for every point within the defined search window as
were computed for the example faces. The point, within this
search window, that has Gabor coefficients most similar to
the Gabor coefficients of any example image, is regarded as
the final location of the detected fiducial point. Note that the
2D+3D EBGM algorithm could have been applied directly
to the larger search windows (Fig. 7(b) and (c)) that were
employed to find the initial curvature estimates of the inner
corners of the eyes. However, such an approach produces a
significantly large number of false positives at the locations
of the inner corners of the eyebrows, which have textural
characteristics similar to the inner corners of the eyes. The
center of the root of the nose (point m′ in Fig. 3) was located

at the algebraic mean of the positions of the automatically
detected inner corners of the eyes (en-en).

3.6.4 Outer Eye Corners (ex-ex)

In order to automatically locate the outer corners of the eyes
(points ex-ex in Fig. 3), Anthroface 3D employs the posi-
tions of the automatically detected inner corners of the eyes
(en-en) as reference points. For an average human adult,
the distance between the inner and the outer corner of an
eye is approximately equal to the distance between the inner
corners of the two eyes (Farkas 1987). Using this anthropo-
metric information, Anthroface 3D computes the initial es-
timate for the position of the outer corner of a subject’s left
eye as (enx,left +|enx,left − enx,right|, (eny,left + eny,right)/2),
and that of the outer corner of the right eye as (enx,right −
|enx,left − enx,right|, (eny,left + eny,right)/2). The algorithm
then uses the 2D EBGM algorithm to search within a rec-
tangular window of size 20 mm × 34 mm about the ini-
tial estimates of these points to obtain the final locations of
the points ex-ex. The set of example images that were em-
ployed for this 2D EBGM algorithm were the same as those
that were employed for detecting the point en-en. Note, that
since the outer corners of the eyes do not have distinct sur-
face curvature characteristics, we used 2D EBGM instead of
2D+3D EBGM.

3.6.5 Mouth Corners (ch-ch)

We examined the curvature of facial surface regions located
below the nose, and observed that for all faces, the outer
corners of the mouth were distinct concavities, i.e., regions
of high positive mean curvature (H ) (Fig. 8(a)). Hence, the
peaks of mean curvature (H ) in this region served as the ini-
tial estimates (curvature estimates) for the locations of the
points ch-ch. To find these peaks of mean curvature, we de-
fined appropriate search regions as follows.

We observed that for all faces (including those with bea-
rds, mustaches, and arbitrary facial expressions) regions of
the upper lip and lower lip have elliptic Gaussian curvature
(Fig. 8(b)). By detecting these upper and lower lip regions
below the tip of the nose, Anthroface 3D determines the ver-
tical limits of the search regions for the curvature estimates
of the corners of the mouth. Furthermore, it employs the lo-
cations of the automatically detected points al-al to horizon-
tally constrain these search regions. For chleft, Anthroface
3D searches to the left of alleft between the horizontal posi-
tions alx,left and (alx,left + 0.7 × |alx,left − alx,right|), and for
chright searches to the right of alright between alx,right and
(alx,right − 0.7 × |alx,left − alx,right|).

Finally, the algorithm refines the positions for the corners
of the mouth by searching in a window of size 11 mm ×
30 mm about the initial curvature estimates of these points
using the 2D+3D EBGM algorithm. We employed the same
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Fig. 8 (a) The mean curvature (H ) of the mouth region of an example
face plotted as a 3D surface, with the facial texture warped onto it.
Notable are the distinct peaks at the corners of the mouth. (b) Regions
below the nose with elliptic Gaussian curvature (non-black regions) of
an example face. Notable are the regions of the upper and the lower lip

set of example images that were employed to detect the
points en-en and the points ex-ex. This second stage, which
refines the positions of the corners of the mouth, eliminated
a significant number of errors that resulted in the first stage
for faces with open mouths.

3.7 Automatic Anthroface 3D Algorithm

Lastly, we developed the completely automatic version of
the Anthroface 3D recognition algorithm using 3D Euclid-
ean and 3D geodesic anthropometric facial distances be-
tween all pairs of the 10 automatically located facial fiducial
points and the classification methodology described earlier
(Sect. 3.3).

4 Performance Evaluation

4.1 Database

We employed the publicly available Texas 3D Face Recogni-
tion Database (http://live.ece.utexas.edu/research/texas3dfr)
to evaluate the performance of all algorithms (Gupta et al.
2010). This database contains 1149 2D and 3D image pairs
of 118 adult human subjects. The number of images of each
subject varies from 1 per subject to 89 per subject. The sub-
jects’ ages range from ∼22–75 years. The database contains
images of both males and females from the major ethnic
groups of Caucasians, Africans, Asians, East Indians and
Hispanics. The facial expressions included are neutral and
expressive, e.g., smiling or talking faces with open/closed
mouths and/or closed eyes (e.g. Fig. 9). No subject is wear-
ing a hat or eye-glasses.

The images in the Texas 3D Face Recognition Database
were acquired using a stereo imaging system manufactured
by 3Q Technologies Ltd. (Atlanta, GA). The final represen-
tation of each face in the database is a pair of range and
color images in the canonical frontal pose that are perfectly
aligned to each other (e.g., Fig. 1). The images are of size

Fig. 9 Color images of faces in the Texas 3D Face Recognition Data-
base in (a) neutral, and (b) expressive modes

751 × 501 pixels with a resolution of 0.32 mm along the x,
y, and z dimensions. The locations of a large number (25)
of manually located anthropometric fiducial points (Fig. 1)
that we identified in our analyses are also available for each
2D and 3D face in Texas 3D Face Recognition Database.
Details of image acquisition, pose normalization, and pre-
processing steps that were applied to generate the final faces
in the Texas 3D Face Recognition Database can be found in
Gupta et al. (2010).

The Texas 3D Face Recognition Database is closest in
terms of variability in facial expression, and facial pose that
it contains to the widely used FRGC data set. Both these
databases contain mostly frontal faces with neutral or mild
facial expressions. It is has also been previously noted that in
everyday life most people are likely to exhibit spontaneous
emotions in a light (low) intensity without exaggerated ap-
pearance and that displays of intense emotions rarely happen
(Douglas-Cowie et al. 2000). Hence, it is reasonable to as-
sume that both these databases contain adequate variability
to represent a real-world face recognition scenario involving
co-operative human subjects in a partially controlled envi-
ronment. However, the FRGC data set, which although is
larger than the Texas 3D Face Recognition database, was
unsuitable for our current analyses and could not be em-
ployed. This was because no manually annotated facial fidu-
cial points are available for the FRGC data set. Furthermore,
the pairs of color and range images in the FRGC database
were acquired a few seconds apart, and hence are not per-
fectly aligned (Phillips et al. 2005). For the same reason,

http://live.ece.utexas.edu/research/texas3dfr
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Table 2 A summary of the data partitions employed for developing
3D face recognition algorithms

Partition Subjects No. of Images

Neutral Expressive Total

Training 12 228 132 360

Test
Gallery 105 105 0 105

Probes 95 480 183 663

Remaining 13 0 21 21

certain pairs of range and color images in the FRGC 2005
database have inconsistent facial expressions or distortions
(Maurer et al. 2005). Using the FRGC database for the cur-
rent Anthroface 3D analyses would have required manually
locating the 25 facial fiducial points on both the ∼5000 color
and ∼5000 range images of the database, since the two are
not aligned. This is further complicated by the fact that many
anthropometric fiducial points (e.g. the corners of the eyes),
which have distinct textural and properties and not neces-
sarily distinct structural properties, are non-trivial to locate
manually on facial range images.

4.2 Data Partitions

For the purposes of developing the Anthroface 3D face reco-
gnition algorithm, we partitioned the Texas 3D Face Recog-
nition database into a training data set and a test data set
(Table 2). The training data set contained 360 randomly se-
lected images of 12 subjects (30 images per subject) in neu-
tral or expressive modes. For all the 3D face recognition al-
gorithms that we implemented, steps such as automatic fa-
cial fiducial point detection, classifier feature selection and
classifier optimization were performed using the training da-
ta set only. The trained classifier was evaluated on the inde-
pendent test data set, which did not overlap with the training
data set.

The test data set included 768 images of 105 subjects.
This test set was further partitioned into a gallery set and
a probe set. Consistent with the evaluation protocol of the
FRVT 2002 (Phillips et al. 2003) and FRGC 2005 (Phillips
et al. 2005), the gallery set contained one range image each
of 105 subjects with a neutral facial expression. The probe
set contained another 663 images of 95 of the gallery sub-
jects with a neutral or an arbitrary facial expression. In the
probe set, the number of images of each subject varied from
1 to 55. Furthermore, in accordance with the widely ac-
cepted ‘closed universe’ model for the evaluation of face
recognition algorithms (Phillips et al. 2003), every subject
in the probe data set was represented in the gallery data set.

After partitioning the entire database of 1149 images into
the training and test data sets, 21 images of 13 subjects re-
mained (hereafter the ‘Remaining’ set). All these were of

faces with an arbitrary facial expression. We employed this
Remaining set of images along with 68 images of 12 sub-
jects from the training data set as example images in the
2D/2D+3D EBGM algorithms for detecting facial fiducial
points.

4.3 Algorithms Performance

4.3.1 Fiducial Point Detection

In order to evaluate the performance of our proposed auto-
matic facial fiducial point detection algorithm, we regarded
the positions of the manually located points as the ‘ground
truth’. Across 1060 facial images, we computed the stan-
dard deviations (σx and σy ) of the positional errors of the
automatically detected fiducial points from their manual lo-
cations along the x and y dimensions, respectively. This set
of 1060 images included all the images in the Texas 3D Face
Recognition Database except the 89 images, which were
employed as ‘example images’ for the 2D+3D EBGM fidu-
cial point detection algorithms.

4.3.2 Face Recognition

We evaluated the verification performance of all 3D face
recognition algorithms using the Receiver Operating Char-
acteristic (ROC) methodology (Egan 1975), and observed
the values of the Equal Error Rates (EER) and the Areas
Under the ROC Curves (AUC). The identification perfor-
mance of the algorithms was evaluated using Cumulative
Match Characteristic (CMC) curves, and the rank 1 Recog-
nition Rates (RR) were observed. Statistical 95% confidence
intervals for the EER, AUC, and the rank 1 RR values were
obtained empirically using bootstrap sampling. All perfor-
mance statistics were observed separately for neutral faces,
for expressive faces, and for all faces in the probe data set.

4.4 Benchmark Algorithms

We also compared the performance of the Anthroface 3D
algorithm to three existing state-of-the-art automatic 3D
face recognition algorithms by implementing them on the
Texas 3D Face Recognition Database. The algorithms in-
cluded the eigensurfaces algorithm (Chang et al. 2005),
the fishersurfaces algorithm (Heseltine and Austin 2004;
BenAbdelkader and Griffin 2005), and a 3D face recogni-
tion algorithm based on the ICP procedure (Lu et al. 2006;
Russ et al. 2005). For the eigensurfaces and the fishersur-
faces algorithms, we employed sub-sections of the facial
range images between the pixels 147 and 553 along the ver-
tical, and 38 and 478 along the horizontal (e.g., Fig. 10).
These limits corresponded to the extrema of the uppermost,
bottommost, leftmost, and rightmost co-ordinates, respec-
tively, of the 25 manually located anthropometric fiducial
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Fig. 10 The sub-regions of the facial range images that were em-
ployed for the eigensurfaces and fishersurfaces 3D face recognition
algorithms

points across all faces in the database. In setting these limits
to the extrema of all faces, we ensured that the main facial
features were not excluded for any face.

Both the eigensurfaces and the fishersurfaces algorithms
were trained and tested on exactly the same data sets, which
were employed to train and test the Anthroface 3D algo-
rithm. For the eigensurfaces algorithm, we learned 69 eigen
directions that accounted for 99% of the variance of the data,
and linearly projected all faces in the test data set onto these
eigen directions. The final metric for the comparison of 3D
facial surfaces in the eigen sub-space was the L1 norm. For
the fishersurfaces algorithm, we first reduced the dimension-
ality of the range images to 348 using PCA. This was done
to ensure that the within-class scatter matrix (4) employed in
the LDA computations was non-singular. We then learned
11 LDA directions from the 348 PCA features, projected
all faces in the test data set onto these LDA directions, and
compared them using the L2 norm. The 3D face recognition
algorithm based on ICP did not require training. Hence, we
implemented it only on the test data set and compared all
faces in the probe set to all faces in the gallery set, after reg-
istering pairs of facial surfaces using the ICP algorithm. The
pairs of registered facial surfaces were compared using the
partial Hausdorff distance metric (Huttenlocher et al. 1993).

5 Experimental Results and Discussion

5.1 Manual Anthroface 3D

The equal error rates, the areas under the ROC curves, and
the rank 1 recognition rates of the Anthroface 3D algo-
rithm, which was based on 25 manually detected anthropo-
metric fiducial points (Fig. 1), and for the algorithm which
was based on 25 arbitrary facial points (Fig. 2), are pre-
sented in Table 3(a), (b) and (c), respectively. Table 3(a),
(b) and (c) also contain the same performance statistics for
the benchmark eigensurfaces, fishersurfaces, and ICP al-
gorithms, which were implemented on the Texas 3D Face
Recognition Database. The CMC and the ROC curves for
all these algorithms are presented in Figs. 11 and 12.

For all faces in the probe data set, the proposed Anthro-
face 3D algorithm, which was based on 25 manually located

Table 3 The observed (a) EER, (b) AUC, and (c) rank 1 RR values
and their 95% confidence intervals for the eigensurfaces, fishersur-
faces, ICP, and the Anthroface 3D algorithms based on 25 manually
located anthropometric points and 25 arbitrary facial points

EER [Confidence Interval] %

Algorithm Neutral Expressive All

Eigensurfaces
24.0 23.6 24.0

[21.3 26.3] [19.2 26.2] [21.8 26.6]

Fishersurfaces
8.11 3.60 6.69

[6.39 10.9] [2.00 6.43] [5.27 8.16]

ICP
7.97 9.92 9.03

[6.85 9.95] [6.71 14.7] [7.67 10.2]
Anthroface 3D 0.84 1.58 1.00

(25 anthro) [0.53 1.14] [0.64 2.67] [0.64 1.45]
Anthroface 3D 8.78 5.10 7.65

(25 arbitrary) [6.58 10.9] [3.37 8.61] [6.16 10.1]
(a)

AUC [Confidence Interval] ×10−2

Algorithms Neutral Expressive All

Eigensurfaces
16.7 14.9 16.3

[14.1 18.8] [11.9 18.0] [14.8 18.7]

Fishersurfaces
2.88 1.32 2.40

[2.12 3.71] [0.32 2.49] [1.79 2.96]

ICP
2.97 4.39 3.44

[2.16 4.12] [2.18 7.80] [2.56 4.27]
Anthroface 3D 0.07 0.08 0.08

(25 anthro) [0.03 0.12] [0.04 0.12] [0.04 0.12]
Anthroface 3D 3.0 2.08 2.70

(25 arbitrary) [2.23 3.95] [0.68 4.61] [2.03 3.65]
(b)

Rank 1 RR [Confidence Interval] %

Algorithms Neutral Expressive All

Eigensurfaces
58.1 52.5 56.6

[54.0 62.7] [45.4 60.1] [52.9 60.2]

Fishersurfaces
91.7 95.1 92.6

[89.4 94.0] [91.8 97.8] [90.6 94.4]

ICP
88.5 86.3 87.9

[85.6 91.5] [80.9 91.0] [85.5 90.2]
Anthroface 3D 98.8 95.6 97.9

(25 anthro) [97.7 99.6] [92.4 98.4] [96.8 98.9]
Anthroface 3D 86.0 91.3 87.5

(25 arbitrary) [82.9 89.0] [87.4 95.1] [84.9 89.9]
(c)
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Fig. 11 (a) The semi-log CMC curves, and (b) the ROC curves for
the benchmark 3D face recognition algorithms, the Anthroface 3D al-
gorithm that employed 25 manually located points, and the Anthroface
3D algorithm that employed 10 automatically located points

anthropometric fiducial points, performed well (EER = 1%,
AUC = 0.0008, and rank 1 RR = 97.9%). While it may
be non-trivial to automatically and accurately locate all the
25 anthropometric facial fiducial points that were employed
in this manual Anthroface 3D algorithm, nonetheless, an-
alyzing the performance of this algorithm serves two pur-
poses. Firstly, the performance of this manual version of
the Anthroface 3D algorithm can be regarded as an upper
bound on the expected performance of any automated ver-
sion of such an algorithm. Secondly, its high performance
is indicative of the potential of 3D face recognition algo-
rithms that incorporate knowledge about the structural diver-
sity and statistical distribution of anthropometric measure-
ments of the human face. This latter conclusion is further
supported by the fact that, while the Anthroface 3D algo-
rithm, which employed distances between the carefully se-
lected 25 anthropometric fiducial points, performed well, its
counterpart, wherein facial distances between 25 arbitrary
facial points were employed, performed significantly poorly
(EER = 7.65%, AUC = 0.027, and rank 1 RR = 87.5%) in
comparison (Table 3 and Fig. 12).

Fig. 12 (a) The semi-log CMC curves, and (b) ROC curves for the
Anthroface 3D algorithm based on 25 manually located facial fiducial
points and the algorithm based on 25 arbitrary facial points

The Anthroface 3D algorithm, which was based on 25
manually located facial fiducial points, also performed sig-
nificantly better than the three existing holistic benchmark
eigensurfaces (EER = 24.0%, AUC = 0.16, and rank 1
RR = 56.6%), fishersurfaces (EER = 6.69%, AUC = 0.024,
and rank 1 RR = 92.6%), and ICP algorithms (EER = 9.0%,
AUC = 0.034, and rank 1 RR = 87.9%) with nearly an or-
der of magnitude smaller EER and AUC values (Table 3,
Fig. 11). These results establish that the manual Anthroface
3D algorithm is more accurate at the task of 3D face recog-
nition than the existing benchmark 3D face recognition al-
gorithms of eigensurfaces, fishersurfaces and ICP. Further-
more, the results also point towards the superiority of lo-
cal feature based 3D face recognition algorithms relative
to holistic techniques. Another interesting observation in
this regard is the fact that the verification performance of
even the local feature based 3D face recognition algorithm,
wherein, facial distances between 25 arbitrary facial points
were employed (AUC = 0.027 with a confidence interval
of [0.020 0.036]), was statistically equivalent to the best
performing holistic fishersurfaces 3D face recognition algo-
rithm (AUC = 0.024 with a confidence interval of [0.018
0.030]). Interestingly, some studies in the cognitive sciences
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Fig. 13 The 20 most discriminatory facial (a) Euclidean, and (b) geo-
desic distance features. The geodesic distances are symbolically de-
picted by straight lines. In reality, they are along the surface of the face

suggest that similar to Anthroface 3D, which is based on
distances between facial fiducial points, humans may also
be processing facial information using relational informa-
tion between parts of the face (Tanaka and Farah 2003). It
is further believed that human beings may be acquiring this
information by means of sequential eye movements between
the different facial features (Henderson et al. 2005).

We attempted to gain further insights into the nature of
the discriminatory structural information, which was con-
tained in the variable anthropometric facial proportions that
we initially selected (Table 1). We separately ranked the an-
thropometric Euclidean and geodesic distances between the
25 manually located facial fiducial points in descending or-
der of their individual Fisher’s ratio (Duda et al. 2001) val-
ues. The 20 most discriminatory facial Euclidean and geod-
esic distances are presented in Fig. 13. Interestingly, these
distances were predominantly associated with the nasal re-
gion of the face, as were many of the variable anthropo-
metric facial proportions (Table 1). Furthermore, 17 (O10,
O12, N1, N6, N7, N8, N15, N16, N30, N31, N33, L1,
L4, L5, L6, L7, and L14) of the 23 facial proportions that
we selected (Sect. 3.1) have also been reported to be signif-
icantly different for the two genders by Farkas (1981), and
one (N7) has been reported to be significantly different for
various ethnic groups (Farkas et al. 1985). All these factors
very likely contribute to the success of the Anthroface 3D
algorithm.

Next, we compared the performance of the proposed An-
throface 3D algorithm, which employed both Euclidean and
geodesic distances between the 25 anthropometric facial
fiducial points to a similar algorithm that employed only
Euclidean distances between the same set of fiducial points.
We observed that for expressive faces, the verification per-
formance of the algorithm that employed both Euclidean and

Fig. 14 (a) The semi-log CMC curves, and (b) ROC curves for the
Anthroface 3D algorithm that employed only Euclidean distances, and
the Anthroface 3D algorithm that employed both the Euclidean and the
geodesic distances for expressive faces only

geodesic distances (AUC = 0.0008, CI = [0.0004 0.0012]),
was significantly better than the performance of the algo-
rithm that employed only anthropometric Euclidean distan-
ces (AUC = 0.0015, CI = [0.0009 0.0023]) (Fig. 14(b)).
Similarly, for expressive faces, the recognition rates of the
algorithm that was based on both the Euclidean and geodesic
facial anthropometric distances were also generally higher
than those of the algorithm that was based on only Euclid-
ean distances (Fig. 14(a)) This suggests that facial geodesic
distances may be useful for expression invariant 3D face
recognition and further strengthens Bronstein et al.’s (2005)
proposition that different facial expressions may be modeled
as isometric deformations of the facial surface.

The performance of the Anthroface 3D algorithm, which
was based on the reduced set of 10 manually located an-
thropometric fiducial points (Fig. 3) is presented in Table 4.
For all faces in the probe set, this algorithm resulted in
marginally lower verification performance (EER = 1.68%
and AUC = 0.0014) than that of the algorithm, which was
based on 25 manually located points (EER = 1.00% and
AUC = 0.0008). However, the recognition performance of
this Anthroface 3D algorithm (rank 1 RR = 98%) was not
statistically significantly different from that of the Anthro-
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Table 4 The observed (a) EER, (b) AUC, and (c) rank 1 RR values
and their 95% confidence intervals for the Anthroface 3D algorithms
based on 25 manually located Fiducial points, 10 manually located
fiducial points, and 10 automatically located fiducial points

EER [Confidence interval] %

Algorithms Neutral Expressive All

Anthroface 3D 0.84 1.58 1.00

(25 manual) [0.53 1.14] [0.64 2.67] [0.64 1.45]
Anthroface 3D 1.10 2.34 1.68

(10 manual) [0.65 1.96] [1.01 3.10] [1.10 2.24]
Anthroface 3D 1.65 2.81 1.98

(10 automatic) [1.11 2.28] [1.27 4.30] [1.37 2.88]
(a)

AUC [Confidence interval] ×10−2

Algorithms Neutral Expressive All

Anthroface 3D 0.07 0.08 0.08

(25 manual) [0.03 0.12] [0.04 0.12] [0.04 0.12]
Anthroface 3D 0.12 0.18 0.14

(10 manual) [0.04 0.30] [0.05 0.30] [0.07 0.25]
Anthroface 3D 0.14 0.25 0.18

(10 automatic) [0.08 0.23] [0.11 0.42] [0.11 0.28]
(b)

Rank 1 RR [Confidence interval] %

Algorithms Neutral Expressive All

Anthroface 3D 98.8 95.6 97.9

(25 manual) [97.8 99.6] [92.4 98.4] [96.8 98.9]
Anthroface 3D 98.8 96.2 98.0

(10 manual) [97.7 99.6] [93.4 98.9] [97.0 98.9]
Anthroface 3D 97.3 95.6 96.8

(10 automatic) [95.8 98.5] [92.4 98.4] [95.3 98.0]
(c)

face 3D algorithm, which was based on 25 manually located
fiducial points (rank 1 RR = 97.9%) for this database. Note,
that since the ability to distinguish the performance of differ-
ent algorithms depends on the size of the database, a larger
database may perhaps be able to distinguish between the
performances of these more unequivocally.

5.2 Automatic Anthroface 3D

The standard deviations of the positional errors of the 10
automatically located anthropometric facial fiducial points
(Fig. 3) from their respective manual ‘ground truth’ loca-
tions are presented in Table 5. It can be observed that all

Table 5 The standard deviations of the positional errors of the 10 auto-
matically located anthropometric facial fiducial points from their man-
ual locations in mm

Fiducial Point Error σx Error σy Radial Error σ

prn 1.045 1.680 1.978

alleft 0.721 1.655 1.805

alright 0.798 1.646 1.829

enleft 1.488 1.245 1.940

enright 1.354 1.344 1.908

m′ 1.355 1.811 2.261

exleft 1.795 1.286 2.208

exright 2.126 1.384 2.537

chleft 1.948 0.933 2.160

chright 1.976 1.045 2.235

Fig. 15 Example images showing the automatically detected anthro-
pometric facial fiducial points (+) and their manually located posi-
tions (•)

the 10 anthropometric facial fiducial points were detected
fairly accurately (e.g., Fig. 15). The radial standard devia-
tion of error for each of the 10 fiducial points was less than
2.54 mm. The average radial standard deviation across all
the 10 fiducial points was 2.09 mm.

The nose width points (al-al) were located most reliably
(within 2 mm of their manual locations), followed by the in-
ner corners of the eyes (en-en). The tip of the nose was also
located reliably for all faces in the database as the point in
the central region of the face with the highest convex elliptic
Gaussian curvature. Note that, this characteristic structural
property of the fiducial point prn also corresponds well with
the intuitive definition of the tip of the nose. The outer cor-
ners of the eyes (ex-ex) were detected least reliably (radial
errors σexleft = 2.208 mm and σexright = 2.537 mm), preceded
only by the corners of the mouth (ch-ch) with radial errors
σchleft = 2.160 mm and σchright = 2.235 mm. A majority of
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the false positive detections for the corners of the eyes were
located at the edges of the irises. This was not surprising
since the edges of the irises can have textural properties sim-
ilar to the corners of the eyes. We also observed that many of
the false positive detections for the mouth corners occurred
on smiling faces.

Recall that in order to automatically detect the tip of
the nose (prn), the inner corners of the eyes (en-en), the
outer corners of the eyes (ex-ex), and the corners of the
mouth (ch-ch) we employed two stages. For each point, we
obtained an initial estimate of the point’s location using a
first detection stage and then searched within a window sur-
rounding this initial estimated location for the final location
of the point. We observed that for these points, their respec-
tive second detection stages helped to considerably reduce
the errors encountered during their first detection stages. It
is also instructive to note that for the points en-en, ex-ex and
ch-ch a combination of information from the 2D and 3D im-
ages resulted in the best overall detection performance, indi-
cating that only the structural properties of these points may
not be adequately discriminatory for detecting them accu-
rately.

Lastly, we present the performance of the completely au-
tomatic Anthroface 3D algorithm, which employed facial
anthropometric distances between these 10 automatically
detected fiducial points, is presented in Table 4 and Fig. 11.
For all faces in the probe data set, the verification perfor-
mance (EER = 1.98% and AUC = 0.0018) of this algorithm
was not statistically different from that of the Anthroface
3D algorithm, which was based on the same 10 manually
detected fiducial points (EER = 1.68% and AUC = 0.0014).
The recognition performance of these two algorithms was
also similar (Table 4(c)). Furthermore, the recognition per-
formances of the two Anthroface 3D algorithms, which were
based on 10 automatically detected points and on 25 man-
ually detection fiducial points, respectively, were not sta-
tistically different (Table 4(c) and Fig. 11(a)). These re-
sults suggest that the Anthroface 3D algorithm may be ro-
bust to facial fiducial point detection errors with a radial
standard deviation (σ ) of less than 2.45 mm. Note also
that this completely automatic Anthroface 3D algorithm,
which was based on 10 automatically detected facial fiducial
points, also performed significantly better than the bench-
mark eigensurfaces, fishersurfaces, and ICP algorithms (Ta-
bles 3 and 4).

6 Conclusion

In this paper, we proposed a novel Anthroface 3D recogni-
tion algorithm, which presents a number of unique contribu-
tions and interesting insights to the field of 3D face recog-
nition and 3D facial processing. The first of which is the

introduction of a sound anthropometric perspective for the
field of 3D face recognition. We presented a novel way of
thinking about the 3D face recognition problem. Rather than
employing general purpose pattern recognition algorithms
(e.g., PCA, LDA) or an ad hoc set of 3D facial features
for the task of 3D face recognition, it is for the first time
that we have presented a systematic approach of employ-
ing domain specific knowledge about the structural diversity
of faces for designing successful 3D face recognition algo-
rithms. We have presented a practical method for isolating
this information from the scientific discipline of facial an-
thropometry, and have also developed and demonstrated the
successful and robust Anthroface 3D recognition algorithm
that employs this information effectively. On a large data-
base of 3D images, we have clearly demonstrated the sta-
tistically superior performance of our proposed local feature
based algorithm in comparison to a number of the existing
benchmark holistic 3D face recognition algorithms.

The second unique novel contribution of this work is
the identification of the subset of 10 anthropometric facial
points from among the set of 25 points that are most rele-
vant for the task of 3D face recognition. Again, it is for the
first time in the field if 3D face recognition that we have
also clearly demonstrated by means of rigorous statistical
analysis on a large facial database, that the facial distances
between these 10 anthropometric facial fiducial points re-
sult in statistically identical face recognition performance as
the distances between the 25 anthropometric facial fiducial
points. This is an important result in the field of 3D face
recognition and has the potential to positively influence gen-
erations of future local feature based 3D face recognition al-
gorithms. As further research in the largely unexplored area
of local feature based 3D face recognition progresses, this
result is likely to be significant in providing a sound scien-
tific basis for selecting this optimal set of 10 facial anthro-
pometric fiducial points that we identified for local feature
based algorithms, and especially for 3D face recognition al-
gorithms that are based on facial graphs.

The third unique novel contribution of this work is the
demonstration that the fusion of carefully selected 2D and
3D information that embodies characteristic discriminatory
textural and structural properties of specific facial land-
marks, and that the employment of the established anthro-
pometric knowledge about the facial points’ positions in
relation to the other points, can significantly improve the de-
tection of the fiducial points and, as a consequence, the per-
formance of the recognition system. We envision the highly
accurate fiducial point localization algorithms that we have
developed to have potential applications not only in the field
of 3D face recognition, but also in a number of related ar-
eas that require facial anthropometric measurements, includ-
ing facial surgical planning and computer graphics. Another
unique feature of our analyses is that unlike many of the pre-
viously reported studies of automatic facial fiducial points
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detection, we have systematically assessed and reported the
performance of our localization algorithms against manually
detected points. Furthermore, we have empirically demon-
strated that these localization errors do not adversely affect
the recognition performance of the proposed Anthroface 3D
algorithm.

In the future, a number of areas of this research could
be expanded upon. The fiducial points detection algorithm
could be extended to include more than the 10 anthropomet-
ric fiducial points that were detected here. Currently the An-
throface 3D recognition algorithm has been evaluated only
for nearly frontal faces, with neutral or mild facial expres-
sion and/or occlusions due to hair that are presented in the
Texas 3D Face Recognition database. In the future, it may be
interesting to investigate the performance of the Anthroface
3D on data sets including the Binghamton University 3D
Facial Expression Database (Yin et al. 2006) or the Bospho-
rus databases (Savran et al. 2008), which contain lager pose
variations, more extreme facial expressions, and more se-
vere occlusions than those present the Texas 3D Face Recog-
nition database. Investigations with these data sets would
require appropriate manual annotations of facial landmarks
on the images of these data sets. Investigating the effective-
ness of the structural information contained in localized re-
gions about the anthropometric facial fiducial points for the
task of 3D face recognition and developing effective tech-
niques for incorporating the learned knowledge into the pro-
posed Anthroface 3D algorithm could be a logical next step.
Lastly, numerous studies in the past have demonstrated that
a combination of the 2D and 3D imaging modalities for face
recognition results in superior performance relative to either
of them individually (Mian et al. 2007). Hence, a natural ex-
tension of this current work would be to investigate tech-
niques of incorporating discriminatory 2D facial features
into the recognition stage of the Anthroface 3D algorithm,
which currently only uses 3D facial features.
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