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1. INTRODUCTION AND MOTIVATIONS

The tentative of reproducing a biological eye with artificial
electronic devices has always had a major drawback. In fact
there is an important difference between how a human eye
sees the world and how a standard video camera does: while
the common visual sensors generally have constant resolu-
tion on each part of the image, in their biological counter-
parts the picture elements are arranged in order to get a
very high amount of information in the central part of the
field of view (the so called fovea) and a gradually decreasing
density of photoreceptors while approaching the borders of
the receptive field. There is a practical motivation behind
this evolutional choice: a human being needs both a high
resolution in order to distinguish between the small details
of a particular object for fine movements (the human eye
has actually a maximum resolution of about 1/60 degrees)
and, at the same time, a large enough field of view (i.e.,
about 150 degrees horizontally and about 120 vertically for
the human eye) so to have a sufficient perception of the sur-
rounding environment. With a constant resolution array of
sensors, this two constraints would have increased the total
number of photoreceptors to an incredibly high value, and
the consequence of this would have been the need of other
unrealistic features such as an optic nerve having a diameter
of few centimeters (the actual human optic nerve diameter is
about 1.5 mm), in order to transfer this amount of data, and
a much bigger brain (weighting about 2300 kg, compared
to about 1.4 kg of our brain) in order to process all this
information, not considering the huge power requirements
of such a big brain.

Since a zooming capability would have implied a renounce
to the simultaneity of the two features, the evolution has
answered to the question on how to optimally arrange a
given number of photoreceptors over a finite small surface.
A lot of different eyes evolved with the disposition of the
photoreceptors adapted to the particular niche. Examples of
this diversity can be found in the eyes of insects (see, for
example, [1] for a review) and in those of some birds that
have two foveal regions to allow simultaneous flying and
hunting ([2, 3]).

In the human eye (Fig. 1.1) we have a very high density
of cones (the color sensitive photoreceptors) in the cen-
tral part of the retina and a decreasing density when we
move towards the periphery. The second kind of receptors
(the rods, sensitive to luminance), are absent in fovea, but
they have a similar spatial distribution. In fact the cone
density in the foveola (the central part of the fovea) is
estimated at about 150–180,000 cones/mm2 (see Fig. 1.1).
Towards the retinal periphery, cone density decreases from
6000 cones/mm2 at a distance of 1.5 mm from the fovea
to 2500 cells/mm2 close to the ora serrata (the extremity
of the optic part of the retina, marking the limits of the
percipient portion of the membrane). Rod density peaks at
150,000 rods/mm2 at a distance of about 3–5 mm from the
foveola. Cone diameter increases from the center (3.3 �m at
a distance of 40 �m from the foveola) towards the periph-
ery (about 10 �m). Rod diameter increases from 3 �m
at the area with the highest rod density to 5.5 �m in the
periphery [4].

Since this sensor arrangement has been proven by the
evolution to be an efficient one, we tried to investigate how
this higher efficiency could be translated in the world of
artificial vision. From the visual processing point of view
we asked on one hand whether the morphology of the
visual sensor facilitates particular sensorimotor coordination
strategies, and on the other, how vision determines and
shapes the acquisition of behaviors that are not necessarily
purely visual in nature. Also in this case we must note that
eyes and motor behaviors coevolved: it does not make sense
to have a fovea if the eyes cannot be swiftly moved over
possible regions of interest (active vision). Humans devel-
oped a sophisticated oculomotor apparatus that includes
saccadic movements, smooth tracking, vergence, and various
combinations of retinal and extra-retinal signals to maintain
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Figure 1.1. Cones and Rods Density—The density of the cones is max-
imum in the center of the fovea, and rapidly decreases towards the
periphery. The rods are absent in fovea, but have a similar decreasing
property.

vision efficient in a wide variety of situations (see [5] for a
review).

Since the coupling of this space variant structure (Fig. 1.2)
with an active vision system gives the capability of seeing
the regions of interest always with the best available quality,
it is expected that the transposition of this principles to an
artificial eye would be extremely efficient as well.

This addresses the question of why it might be worth
copying from biology and which are the motivations for pur-
suing the realization of biologically inspired artifacts. How
this has been done is presented in the following sections
where we shall talk about the development of a retina like
camera. Examples of applications are also discussed in the
field of image transmission and robotics. The image trans-
mission problem resembles the issue of the limitation of
bandwidth/size of the optic nerve discussed above. The lim-
itations in the case of autonomous robots are in terms of
computational resources and power consumption.

2. THE LOG-POLAR MAPPING

While the arrangement of photoreceptors on the human
retina is quite complex and irregular, there are some approx-
imations that are able to reproduce well their disposition.
The simple mathematical mapping that best fits this space
variant sensor structure is the log-polar mapping, that is also
called, for this reason, retina like mapping [6–8].

(a) (b)

Figure 1.2. Biological eye: (a) The real world (courtesy Tom Dorsey/
Salina Journal) and (b) how the human eye perceives it.

The log-polar transform is defined by the function [9]:

w = f �z� = log��z� (2.1)

where both z and w are complex variables.
While

z = x + iy = r�cos�+ i · sin�� (2.2)

is the representation of a point in the cartesian domain,

w = �z�+ i · ��z� (2.3)

represents the position of a point on the log-polar plane.
The equation (2.1) can also be written as:

{

�r� �� = log� r

��r� �� = h · �
(2.4)

Equations (2.4) point out the log-arithmic and the polar
structure of the mapping. In fact  is directly linked to log� r
and � is proportional to � when considering a traditional
polar coordinates system defined by:







r =
√

x2 + y2

� = arctan
y

x

(2.5)

In the Fig. (2.1)a it is possible to see how the regions of
the rectangular grid in the log-polar domain are arranged, in
cartesian coordinates �x� y�, in concentric rings whose width
is proportional to their distance from the origin of the map-
ping. Each ring is then divided in a certain number of recep-
tive fields, each one corresponding to a pixel in the cortical
image 2.1b.

The receptive fields that lie on a radius are mapped on
vertical lines on the plane (� �), while those lying on con-
centric circumferences centered on the origin are mapped
on horizontal lines. The origin of the plane (x� y) has no
corresponding points on the plane (� �), because of the
singularity that the complex logarithm function has in this
point and, theoretically, an infinite number of concentric
rings exist below any radius having a finite size. So a more
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(a) (b)

Figure 2.1. Log-polar Transform: (a) The grid in cartesian coordinates
and (b) Its transform. The areas marked in gray are each other’s
transformation.
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common expression for the log-polar transform is the fol-
lowing:







�r� �� = log�
r

r0

��r� �� = h · �

(2.6)

The logarithm base � is determined by the number of
pixels we want to lay on one ring, and by their shape.

While the qualitative shape of a pixel is fixed (it is the
intersection between an annulus and a circular sector, see
Fig. 2.2, its proportions may vary. If we require the photore-
ceptor’s shape to be approximately square, we can state that
the length of the segment BC should be equal to the length
of the arc DC or of the arc AB.

In the first case the base of the logarithm will be:

� =
2� +N

N
(2.7)

while in the second case we will have:

� =
N

N − 2�
(2.8)

Usually, when handling real situations, due to technolog-
ical constraints, the size of a pixel in an actual sensor can-
not boundlessly decrease, so the mapping has to stop when
the size of the receptive field approximates the size of the
smallest pixel allowed by the used technology. The conse-
quence is that there is an empty circular area in the center
of the field of view where the space variant sensor is blind.
This lack of sensibility can be avoided by filling this area
with uniformly spaced photoreceptors, whose size is equal
to the size of the smallest pixel in the logarithmic part of the
sensor. The structure of the whole sensor then will have a
central part, i.e., the fovea, where the polar structure is still
preserved and the space variant resolution (the logarithmic
decreasing) is lost. This choice automatically determines the
value of the shift factor r0 in (2.6). In fact, if we decided to
arrange i rings in fovea (with indices 0� � � � � i − 1), we will
have to assign an index i to the first logarithmic ring. Since
varying the value of r0 we are able to overlap any chosen
ring of the logarithmic part of the sensor to the ith ring of
the fovea, r0 is then determined.

Then the most general equation which describes the log-
polar transform introduces in equation (2.6) a proportional
constant k in order to scale the mapping to cover a desired

A B
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Figure 2.2. Log-polar pixel.

area, while keeping the total number of log-polar pixels, and
the previously mentioned shift constant r0:







�r� �� = k · log�
r

r0

��r� �� = h · �

(2.9)

The equations needed to perform a log-polar transform
(Eq. 2.10), and its anti-transform (2.11) then will be:















�x� y� = k · log�

√

x2 + y2

r0

��x� y� = h · arctan
y

x

(2.10)

and:














x�� �� = r0 · �
/k · cos

�

h

y �� �� = r0 · �
/k · sin

�

h

(2.11)

Both the previous equations are valid for the logarithmic
part of the mapping, while in fovea the following equations
are used:







�x� y� = k ·
√

x2 + y2

��x� y� = h · arctan
y

x

(2.12)

and:
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(2.13)

Generally the choice of the various parameters, especially
when handling the case of a discrete log-polar transform, is
crucial. It deeply affects, in fact, the quality of the images,
the compression factor, the size and the relevance of various
artifacts and false colors [10]. Peters [11] has investigated a
method in order to optimally choose the parameters of the
mapping.

3. THE LOG-POLAR SENSOR

In the 1980s various researchers have begun to transfer this
efficient idea from the biological world to the artificial one,
so to take advantage of the reduced cost of the acquisition
of the images. As we stated before, this means lower power
consumption, lower number of pixels to be acquired and
shorter processing time. Moreover such a family of sensors
is important for an artificial being that mimics a complex
system such as the human body.

Various approaches have been tried in order to build a
visual system capable to produce foveated images, but each
choice presented some drawbacks. The first, and more intu-
itive solution has been a standard CCD video camera con-
nected to a workstation with a frame grabber and a software,
which was able to perform the log-polar transform. Unfor-
tunately the technology that was available at that time did
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not allow a software simulation of a log-polar mapping or,
at best, when this was possible, its performances were not
comparable with those of a solid-state device. So the next
step has been the design of a dedicated hardware (see, for
example, [12–16]) that was able to speed up the remapping
process but the maximum resolution allowed was limited by
the resolution of the traditional camera, not considering the
additional cost of the electronic board and the need of an
acquisition of a number of pixel which was much higher than
the one in the output image. Another approach that permit-
ted to get a foveated image has been the use of distorting
lenses which were able to enlarge the central part of the
image while keeping the peripheral region unchanged [17,
18], but in order to get an actual log-polar transform some
additional operations were needed. So it has been decided to
design an implementation in silicon of a biologically inspired
completely new visual system.

Besides our realizations a few other attempts have been
reported in the literature on the implementation of solid-
state retina like sensors [19–21]. So far we are not aware of
any commercial device, besides those described here, that
have been realized based on log-polar retina like sensors.

3.1. The 2000 pixels CCD Sensor

Our first implementation of a solid-state foveated retina like
sensor has been realized in the beginning of the 1990s using
a 1.5 �m CCD technology [22]. At that time it was the state
of the art technology and it allowed a size of the smallest
possible pixel (i.e., a pixel in the foveal part of the image)
of about 30 �m, while the diameter of the whole sensor,
for practical reasons was limited to 9.4 mm. This sensor
was composed of 30 rings, and each ring was covered by
64 pixels, for a total of 1920 pixels in the log-polar part
of the sensor (Fig. (3.1)a), to which we still have to add
102 more pixels covering the fovea, for a total of 2022 ele-
ments. The fovea was covered by a uniform grid of square
pixels arranged on a pseudo lozenge, roughly an 11 × 11
cartesian grid with missing corners and one diagonal, like in
Fig. (3.1)b. Since the polar structure was not preserved in
the fovea, a major discontinuity was present on the border
between the two regions of the sensor.

Since the size of the largest pixel in this first CCD imple-
mentation was about 412 �m, the ratio between the largest
and the smallest pixels (R) was about 13.7. This parameter
describes the amount of “space variancy” of the sensor and,
of course, it is equal to 1 in the standard cartesian sensors
with constant resolution.

Another important parameter in space variant sensors is
the ratio between the total area of the sensor and the area
of the smallest pixel (or, alternatively, between the diameter
of a pixel and the diameter of the whole sensor). Rojer and
Schwartz [14] defined this value as Q, as a measure unit of
the spatial quality of a space variant sensor. In order to have
a reference term, consider that Q is obviously equal to the
size of the sensor (measured in pixels) in a constant resolu-
tion array, while it can have values very close to 10,000 in
the human retina. The importance of this parameter can be
understood by observing that its value represents the square
root of the number of pixels we would need to cover the
space variant sensor with a constant resolution grid having

(a)

(b)

Figure 3.1. 2000 pixels CCD log-polar sensor: (a) Picture of the whole
CCD log-polar sensor. (b) Detail of the fovea.

the same maximum resolution of the log-polar sensor (and
the same field of view).

Rojer and Schwartz also proved that Q exponentially
increases with the total number of pixels in the log-polar
sensor, so the addition of few more rings gives a much better
value of Q.

For the retina like CCD sensor, the parameter Q is equal
to about 300, meaning that if we want to simulate electron-
ically a log-polar camera starting from a traditional one,
the latter should have a sensor which is able to acquire at
least a 300× 300 square image, in order to obtain the same
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amount of information that the solid state retinical sensor
could obtain directly.

This first sensor has been the first solid state device of
this kind in the world, but presented some drawbacks mostly
related to the use of the CCD technology itself, like the
difficulty of properly addressing the pixels, which caused
the presence of some blind areas on the sensor (one in
the fovea, along a diameter and a circular sector in the
periphery, which is about 14 degrees wide (or 2.5 pixels),
both shown in Fig. 3.1).

3.2. The 8000 pixels CMOS Sensor

The next generation of the sensor had some very impor-
tant new features. First of all, the evolution of the tech-
nology allowed the construction of a much smaller pixel,
and consequently a significantly greater number of pho-
toreceptors could be fitted in a sensor having roughly the
same size of the CCD version. Moreover, in order to avoid
some of the problems that afflicted the previous version,
we decided to move to the CMOS technology. Since the
addressability in this new sensor was much simpler, no blind
areas were present on the surface. The chosen pixel for the
8000 points sensor was the FUGA model from IMEC (now
Fill Factory), in Loewen, Belgium. The pixels distinguished
themselves from classical CCD or CMOS sensors because
of their random addressability and logarithmic photoelec-
tric transfer. The random addressability allowed, in theory,
to read just some previously chosen parts of the sensor,
while the logarithmic behavior allowed the sensor to cor-
rectly acquire images even in extreme light conditions. The
logarithmic response yielded a dynamic range beyond six
decades (120 dB), by log-compression of the input optical
power scale onto a linear output voltage scale: the new pixel
could view scenes with vastly different luminances in the
same image, without even the need of setting an exposure
time. It can be useful to note that this behavior mimics very
well that of the eyes in similar conditions.

The major drawback of this technology was the introduc-
tion of the so-called fixed pattern noise (FPN), which is com-
mon to all the CMOS visual sensors. The continuous-time
readout of a logarithmic pixel implied the impossibility of
the removal of static pixel-to-pixel offsets. As a result, the
raw image output of such a sensor contained a large over-
all non-uniformity, often up to 50 or 100% of the actual
acquired signal itself. However, things were not dramatic,
since the FPN is almost static in time, so it can be nearly
completely removed by a simple first order correction.

The second new feature was the preservation of the polar
structure in the fovea. Although the number of pixels per
ring was not constant anymore, the presence of a polar
arrangement minimized the effect of the discontinuity fovea-
periphery. The fovea was structured with a central pixel,
then a ring with 4 pixels, one with 8, 2 with 16, 5 with 32
and 10 with 64 pixels per ring, for a total number of 845 pix-
els on 20 rings. Starting from the 21st ring, the logarithmic
increasing was applied (Fig. 3.3).

The third macroscopic difference compared to the CCD
sensor was that this time a color version of the chip had
been produced. Since a pixel, normally, is sensitive to just
one wavelength, the color had to be reconstructed for each

(a)

⇔

(b) (c)

Figure 3.2. 2000 pixels CCD Log-polar Sensor Simulation: (a) A stan-
dard cartesian image. (b) Its log-polar transform performed by this sen-
sor. (c) The remapped image. Please note that in this figure, and in the
next Figs. 3.4 and 3.6, the log-polar image and its transform are not in
scale. In all these images the fovea is not displayed.

photosite by interpolating the outputs of the neighboring
pixels. This is a common operation, needed on standard con-
stant resolution arrays as well, and various patterns have
been investigated in order to minimize the appearance of
false colors, but when dealing with the large pixels close to

(a) (b)

Figure 3.3. CMOS 8000 pixel Log-polar sensor: (a) Picture of the 1st
version of the CMOS log-polar sensor. (b) Detail of the fovea.
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⇔

(a) (b)

Figure 3.4. 8000 pixels CMOS Log-polar sensor simulation: (a) The
log-polar transform of the image 3.2a performed by this sensor. (b) The
remapped image.

the external border (low spatial frequency), and when the
image presents very high spatial frequencies, it happens that
adjoining pixels “see” different elements of the image, and
the consequence is that the color components used for the
reconstruction belong to uncorrelated object and that causes
the false colors.

3.3. The 33000 pixels CMOS Sensor

In the late 1990s the progress in the field of silicon manu-
facturing allowed us to design a new chip using a 0.35 �m
technology. This project had been developed within a EU
funded research project called SVAVISCA. The goal of the
project was to realize, besides the improved version of the
sensor, a micro camera with special purpose lens allowing a
140 degrees field of view. The miniaturization of the cam-
era was possible because some of the electronics required to
drive the sensor as well as the A/D converter were included
in the chip itself.

Table 1. A comparison between three generations of log-polar sensors.

Total Number Pixels in Pixels in Total Number
Sensor Version of Pixels Fovea Periphery of Rings Pixels per Ring

CCD 2022 102 1920 30 64
CMOS 8k 8013 845 7168 76 128
CMOS 33k 33193 5473 27720 152 252

Rings in Pixels in Angular
Sensor Version Rings in Fovea Periphery Periphery Amplitude Logarithm Base

CCD — 30 1920 5.413� 1�094
CMOS 8k 20 56 7168 2.812� 1�049
CMOS 33k 42 110 27720 1.428� 1�02337

Ø of the Size of the Radius of the
Sensor Version Sensor Smallest Pixel R Q Technology Used Fovea

CCD 9400 �m 30 �m 13�7 300 1.5 �m 317 �m
CMOS 8k 8100 �m 14 �m 14 600 0.7 �m 285 �m
CMOS 33k 7100 �m 6.5 �m 17 1100 0.35 �m 273 �m

(a) (b)

Figure 3.5. CMOS 33000 pixel Log-polar sensor: (a) Picture of the 2nd
version of the CMOS log-polar sensor. (b) Detail of the fovea.

The main novelty introduced by this sensor has been the
structure of the fovea, which was, this time, completely filled
by pixels. The 42 rings inside the fovea, while still having a
variable number of pixel each, had a constant decrease of
this parameter: so, not considering the ring 0, which was just
a single pixel, the other rings had a number of pixel which
was proportional to their distance from the center of the
sensor (Fig. 3.5).

A minor change in the layout was the adoption of a
pseudo triangular tessellation, in order to minimize the arti-
facts introduced by the low spatial frequency of the periph-
ery. It means that each even ring has been rotated by half a
pixel (about 0.7 degrees) respect to the odd rings. This had
the consequence that the average distance of a single point
from the closest red, green and blue pixel was inferior to
the one we had with the square tessellation, then it allowed
a more accurate color reconstruction.

Since the parameter Q in this version is about 1100, for
the first time the Log-polar image acquired by the camera
was “better” than the images produced by the standard “off
the shelf” video cameras available at that time. Better means
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⇔

(a) (b)

Figure 3.6. 33000 pixels CMOS Log-polar sensor simulation: (a) The
log-polar transform of the image 3.2a performed by this sensor. (b) The
remapped image. Although the remapped images are not in scale, the
log-polar ones are in scale between them.

that the remapped log-polar image had a better maximum
resolution than its cartesian counterpart, but using just about
one thirthieth of the pixels. This allowed sending video
streams on low bandwidth channels at a very high frame
rate, using standard existing compression algorithms. It was
even possible to transmit a video stream over a GSM cell
phone channel, which is a 9600 bit per second channel,
achieving a frame rate between 1 and 2 frames per second.

3.4. A Comparison Between the

Log-Polar Sensors

In order to have a better understanding of the evolution
of the log-polar sensor, it is useful to compare the main
characteristics of the three versions.

The increasing of the quality of the image is evident from
the Table 1, and it is shown in the simulated images in
Figs. 3.2, 3.4, and 3.6: while the numbers in the clock are
completely unreadable with the 2000 pixels sensor, they are
much more defined in the last versions.

4. MATHEMATICAL PROPERTIES OF THE
LOG-POLAR TRANSFORM

The log-polar transform is not only the best compromise
between biological motivation and simplicity of the mapping,
but it also presents some interesting mathematical features
which can be used for a more efficient implementation of
many image processing algorithms.

4.1. Conformity

The log-polar mapping is conformal. A conformal mapping,
also known as conformal transformation, angle-preserving
transformation, or biholomorphic map, is a transformation
that preserves local angles [23]. An analytic function is con-
formal at any point where it has a nonzero derivative. Con-
versely, any conformal mapping of a complex variable that
has continuous partial derivatives is analytic.

The demonstration of the angle preserving property
comes from the fact that if we consider a complex function:

w = f �z� = log��z� (4.1)

where z is a complex number in the cartesian domain that
is z = x + jy, and w is a complex number in the log-polar
domain which is w = + j� = �w� · ej·arg�w�, then we get:

w = log
(

�z� · ej·arg�z�
)

= log �z� + j · arg�z� (4.2)

If we set:

{

�w = w −w0

�z = z− z0

(4.3)

and we consider the Taylor expansion of f �z� centered in
z0, then we get:

f �z� = f �z0�+
�
∑

n=1

f �n��z�

n!
· ��z�n

⇒ f �z�− f �z0� =
�
∑

n=1

f �n��z�

n!
· ��z�n = �w (4.4)

If we stop at the first order approximation, then:

�w ≈ f ′�z0� · �z when f ′�z0� = 0 ⇒
1

z0

= 0 (4.5)

So, when � → 0, arg��w� = arg��z� + arg�f ′�z0��, and
if we set arg��z� = � and arg�f ′�z0�� = �, then arg��w� =
� + �.

This means that the segments in the cartesian plane are
just rotated (locally) by an angle � respect to the same seg-
ments in the log-polar domain. Furthermore the segment �z
is scaled in length by f ′�z0� = 1/z0.

The preservation of angles comes consequently, in fact, if
we set:

{

�z1 = �1

�z2 = �2

(4.6)

then:

arg��w2�− arg��w1� = ��2 + ��− ��1 + ��

= arg��z2�− arg��z1� (4.7)

So, when the derivative in z0 is not zero, which is always
true for the logarithmic function, the angles are preserved
(Fig. 4.1) and then the mapping is conformal.

The preservation of angles implies the preservation of the
proximity (i.e., a couple of pixels which are close in the
cartesian domain are still close in the log-polar one if we
do not consider the discontinuities that occur when � = 0,
� = 2� and  = 0�. These two peculiarities have the conse-
quence that any algorithm involving local operators can be
applied to the log-polar image without any significant change
(angle detection, edge detection, compression etc.) [8]. In
order to avoid the problems introduced by these discontinu-
ities, a graph theory based approach has been investigated,
defining a connectivity graph matching the morphology of
the sensor [15, 24].
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(a) (b)

Figure 4.1. Angle Preservation: The angles are locally preserved after a
log-polar Transformation. (a) Cartesian domain. (b) log-polar domain.
Please note that both images a and b are particulars, so the origin of
the mapping falls outside of the cartesian image.

4.2. Scale Change

One interesting and useful property of the log-polar trans-
form is its invariancy to scale change. A pure scale change
in the cartesian domain can be seen as a transformation
where all the vectors representing each pixel of an object
are transformed in another set of vectors each proportional
by a common constant k to its pre-transformation counter-
part. A scale change in the cartesian domain referred to the
center of the log-polar mapping is then denoted by:

w = log�kz� ⇒ w = log��kz� · ej·arg�kz��

= log �z� + log k + j arg�z� (4.8)

with k ∈ ℜ+.
This is equal to log�z�+K, with the constant K = log� k,

which is a pure translation along the  axis in the log-polar
domain (which is vertical in our representation, Fig. 4.2).

The invariance to scale change can be very important
and useful in applications where the camera moves along its
optical axis, such as the time to impact detection in a mobile
vehicle.

4.3. Rotation

Another property is the invariancy to rotation. A pure rota-
tion in the cartesian domain can be seen as a transformation
where all the vectors representing each pixel of an object
are transformed in another set of vectors whose phase
is increased by a common constant � compared to its
pre-transformation counterpart. A rotation in the cartesian
domain referred to the center of the log-polar mapping is
then denoted by:

log��z� · ej·arg�z�+�� = log �z� + j�arg�z�+ �� (4.9)

this is equal to log�z�+ �0, with the constant �0 ∈ Im, which
is a pure translation along the � axis in the log-polar domain
(horizontal in our representation, Fig. 4.3).
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x ρ
θ

⇔

⇔

(a) (b)

(c) (d)

Figure 4.2. Scale Change: A pure scale change referred to the origin of
the mapping, with no translational components, becomes a pure trans-
lation after the log-polar transform. (a) Cartesian domain. (b) log-polar
domain. (c), (d) Enlargement of the shaded areas respectively in (a)
and (b).
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x ρ

θ

⇔

⇔

(a) (b)

(c) (d)

Figure 4.3. Rotation: A pure rotation referred to the origin of the
mapping, with no translational components, becomes a pure transla-
tion after the log-polar transform. (a) Cartesian domain. (b) log-polar
domain. (c), (d)Enlargement of the shaded areas respectively in (a)
and (b).
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4.4. Translations

While a translation in the cartesian space can be performed
without any change in the shape of an object, this is no
longer true in the log-polar domain.

In fact, given a point P�x0� y0�, its transform is

PLP �0��0�=PLP

(

1

2
log�

[

x2
0+y2

0

r0

]

�arctan

[

y0

x0

])

(4.10)

this point, after a translation, becomes:

P�x0 + �x� y0 + �x�

= PLP

(

1

2
log�

[

�x0 + �x�2 + �y0 + �y�2

r0

]

� arctan

[

y0 + �y

x0 + �x

])

= PLP �0 + ��x0 + �x� y0 + �x�� �0 + ���x0 + �x� y0 + �x��

(4.11)

Since � and �� are non-linear functions, it follows that a
translation in the cartesian plane becomes a deformation in
the log-polar one, Fig. 4.4.

4.5. The Fourier-Mellin Transform

We have seen that the log-polar transform translates scale
changes and rotations into vertical and horizontal transla-
tions. This property has one important application in the
Fourier-Mellin transform [25]. One of the most important
properties of the Fourier transform is its magnitude invari-
ancy to translations. The idea is to take advantage from the
combination between the properties of the Fourier and log-
polar transforms in order to get a tool that is invariant to
translations, scale changes and rotations.

y

x ρ

θ

⇔

⇔

(a) (b)

(c) (d)

Figure 4.4. Translation: A pure translation implies a deformation of the
object after the log-polar transform. (a) Cartesian domain. (b) log-polar
domain. (c), (d) Enlargement of the shaded areas respectively in (a)
and (b).

The block diagram of the algorithm is described in
Fig. 4.5:

If we consider two images a�x� y� and b�x� y�, where b is
a rotated, scaled and translated copy of a:

b�x�y�=a�k"cos�x+sin�y#−x0�k"−sin�x+cos�y#−y0�

(4.12)

� is the rotation angle, k is the scale factor and x0 and y0

are the translation offsets. The Fourier transforms A�u� v�
and B�u� v� of a and b respectively are related by:

B�u�v�=
e−j�b�u�v�

k2
·

∣

∣

∣

∣

A

(

ucos�+vsin�

k
�
−usin�+vcos�

k

)
∣

∣

∣

∣

(4.13)

where �b�u� v� is the spectral phase of the image b�x� y�.
This phase depends on the rotation, translation, and scale
change, but the spectral magnitude (4.14)

�B�u� v�� =
1

k2
·

∣

∣

∣

∣

A

(

u cos�+ v sin�

k
�
−u sin�+ v cos�

k

)
∣

∣

∣

∣

(4.14)

is invariant for translations. Equation (4.14) shows that a
rotation of image a�x� y� rotates the spectral magnitude by
the same angle � and that a scale change of k scales the
spectral magnitude by k−1. However at the spectral origin
�u= 0� v = 0� there is no change to scale change or rotation.
Rotation and scale change can thus be decoupled around
this spectral origin by defining the spectral magnitudes of a
and b in log-polar coordinates, obtaining:

BLP �� �� = k2ALP �− (� � − �� (4.15)

where  = log�r� and ( = log�k�, while r and � are the
usual polar coordinates. Hence an image rotation (�) shifts
the image along the angular axis, and a scale change (k) is
reduced to a shift along the radial axis and magnifies the
intensity by a constant �k2�.

Input Image

FFT (magnitude)

Cartesian to log-polar

Mellin Transform

Output Image

Figure 4.5. The Fourier-Mellin Transform.
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This leads to both rotation and scaling now being simple
translations, so that taking a Fourier transform of this log-
polar representation reduces these effects to phase shifts, so
that the magnitudes of the two images are the same.

This is known as a Fourier-Mellin transform and can
be used to compare a single template against an unknown
image which will be matched even if it has undergone rota-
tion, scaling or translation.

4.6. Straight Line Invariancy

A generic straight line in the cartesian plane can be over-
lapped to any other one performing a linear combination of
a rotation and a translation. If we note that a translation for
a straight line of infinite length and zero width can also be
seen as a scaling, then the remapped straight line does not
change its shape in the log-polar domain.

If we consider a generic straight line in the cartesian
domain and its corresponding transform:

f1�x� = �x + ) ⇔ f1LP ��� = log�

(

)

r0�sin � − � cos ��

)

(4.16)

we can easily see that another generic straight line is:

f2�x� = �′x + )′ ⇔ f2LP ��� = log�

(

)′

r0�sin � − �′ cos ��

)

(4.17)

Now we perform a pure rotation, so we set the following
values:

�′ =
� cos �0 + sin �0

cos �0 + � sin �0

)′ =
)

cos �0 + � sin �0

(4.18)

Then we get:

f2�x� = �′x + )′ ⇔ f2LP ��� = log�

(

)′

r0�sin � − �′ cos ��

)

= f1LP �� − �0� (4.19)

which is a translation along the � axis.
Then, considering a pure translation:

f3�x� = �′x + )′ + k ⇔ f2LP ���

= log�

(

)′ + k

r0�sin � − �′ cos ��

)

(4.20)

since )′ and k are constants, we can set another constant
� = )′+k

)′ in order to get: )′ + k = �)′

The equation (4.20) then becomes:

f3�x� = �′x + �)′ ⇔ f2LP ��� = log�

(

�)′

r0�sin � − �′ cos ��

)

= f1LP �� − �0�+* (4.21)

with * = log� �.

This is a pure translation of the original straight-line func-
tion, translated by �0 horizontally and by −* vertically,
Fig. 4.6.

It is interesting to note that if we set in (4.16):










v = cot−1�−��

w = log�
) · sin v

r0

(4.22)

the equation becomes:

f1LP ��� = w − log� "cos�� − v�# (4.23)

where the point P = �w� v� is the point on the line which
is the closest to the origin of the log-polar mapping. This
point is unique and uniquely defines the line itself.

This feature is extremely important in various fields. Since
it makes easier the detection of straight lines, it can be used
in object recognition application, when the object of interest
has straight borders. Bishay [26] has taken advantage of this
property in order to detect objects edges with an unknown
orientation in an indoor scene.

Another application where the invariancy of the straight
lines is helpful is, in stereo vision, the detection of the epipo-
lar lines in a stereo pair [27].

4.7. Circumference Invariancy

In general, the shape of a circumference is not invariant in
the log-polar domain, but it is interesting to note that if we
change the sign of the equation of a generic straight line
that we saw in the previous section:

fLP ��� = − log�

(

)

r0�sin � − � cos ��

)

= log�

(

r0�sin � − � cos ��

)

)

(4.24)

and then we transform it back to the cartesian domain,
we get:

f �x� y� = )x2 + )y2 + r2
0�x + r2

0 y (4.25)

y

x ρ

θ

⇔

(a) (b)

Figure 4.6. Straight Line Invariancy: The shape of a straight line after
a log-polar transformation is invariant to its position and orientation.
(a) Cartesian domain. (b) Log-polar domain.
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which is the equation of a circumference passing through
the center of the mapping, centered in:

Cx =
r2
0�

2)
, Cy =

−r2
0

2)
(4.26)

with radius:

R =
r2
0

2)

√

�+ 1 (4.27)

as shown in Fig. 4.7.
Another significant family of circumferences is the set of

all the circles centered on the origin of the mapping. Since 
is constant for every value of �, if we transform the equation:

f �x� y� = x2 + y2 −R2 (4.28)

in log-polar coordinates, we get:

f �� �� = log�
R2

r0
(4.29)

Obviously, this is a constant expression, which is mapped
in a horizontal straight line, as in Fig. 4.7. For details about
the straight line and the circumference invariancy see [28].

4.8. The Log-Polar Hough Transform

As we showed before, both straight lines and the circum-
ferences passing through the origin are invariant in the log-
polar space. A very useful tool that can be used to detect
these families of lines is the Hough transform. The Hough
Transform [29] is a method for finding simple shapes (gener-
ally straight lines) in an image. It sums the number of pixels
elements that are in support of a particular line, defined in
a uniformly discretized parametric Hough space. The trans-
form is a map from points in an image to sinusoidal curves
in Hough space. In the ideal case, this curve represents the
family of straight lines that could pass through the point.

y

x ρ
θ

⇔

(a) (b)

Figure 4.7. Circumference Invariancy: The shape of a circumference,
passing through the origin of the mapping, after a log-polar transforma-
tion is invariant to its position and orientation. (a) Cartesian domain.
(b) Log-polar domain.

y

x ρ

θ

⇔

(a) (b)

Figure 4.8. Circumference Centered in the origin: The shape of a cir-
cumference, centered in the origin of the mapping, after a log-polar
transformation is a horizontal straight line. (a) Cartesian domain.
(b) Log-polar domain.

The standard form of the transform is the equation of a
straight line, parameterized in polar coordinates:

��� = xi cos � + yi sin � = d1 cos��1 − �� (4.30)

where (xi, yi) are the pixel cartesian coordinates, (xi, yi) are
the pixel polar coordinates,  is the closest distance to the
origin, and � the slope of the normal to the line.

Using this transform, any edge point that appears in the
image votes for all lines that could possibly pass through
that point. In this way, if there is a real line in the image,
by transforming all of its points to Hough space, we will
accumulate a large number of votes for the actual line, and
only one for any other line (assuming no noise) in the image.

The vast majority of research on the Hough transform
has treated sensors that use a uniform distribution of sens-
ing elements. For space-variant sensors various approaches
have been tried. Weiman [30] has proposed a log-Hough
transform, where equation (4.30) becomes:

log��� = log
���

0

= log d − log 0 + log�cos�� − ���

(4.31)

Barnes [31] has investigated the log Hough transform in
the real (discrete) case of images acquired by a log-polar
sensor.

4.9. Spirals

The last geometrical figure with some interesting character-
istics is the logarithmic spiral. The parametric equations for
such a spiral is:

{

x = � cos��� · e)�

y = � sin��� · e)�
(4.32)

with � and ) arbitrary parameters.
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θ

⇔

(a) (b)

Figure 4.9. Logarithmic Spiral: Such a spiral, centered in the origin of
the mapping, after a log-polar transformation becomes a straight line.
(a) Cartesian domain. (b) Log-polar domain. Please note that in our
representation we display the set of points �0 + 2k� all on �0.

The log-polar transform of (2.32) gives:

 = log�
� · e)�

r0
(4.33)

If we set in (4.33):














k1 = ln
a

r0

k2 =
1

ln�

(4.34)

then we get:

 = k2�k1 + )�� (4.35)

which is the equation of a straight line (Fig. 4.9).

5. APPLICATIONS

5.1. Panoramic View

Traditionally the acquisition of real time panoramic images
has been performed by the usage of lenses or mirrors cou-
pled with standard image sensors, but this solution presents
the problems of having different resolutions on different
part of the resulting images and the need of both the acqui-
sition of a huge amount of pixels and the processing of these
acquired pixels.

The main objective of the OMNIVIEWS project [32] was
to integrate optical, hardware, and software technology for
the realization of a smart visual sensor, and to demonstrate
its utility in key application areas. In particular the inten-
tion was to design and realize a low-cost, miniaturized digi-
tal camera acquiring panoramic (360�) images and perform-
ing a useful low-level processing on the incoming stream of
images, Fig. 5.1.

The solution proposed in OMINVIEWS was to inte-
grate a retina like CMOS visual sensor, with a mirror
with a specially designed, matching curvature. This match-
ing, if feasible, provides panoramic images without the

(a) (b)

Figure 5.1. Panoramic View: (a) Image acquired by an OMNIVIEWS
log-polar camera (software simulation). (b) Image acquired by a
conventional omnidirectional camera. Note that the image from
OMNIVIEWS camera is immediately understandable while the image
from a conventional camera requires more that 1.5 million operations
to be transformed into something similar with no added advantage.

need of computationally intensive processing and/or hard-
ware remapper as required by conventional omnidirectional
cameras. Therefore reducing overall cost, size, energy con-
sumption and computational power with respect to the cur-
rently used devices. The panoramic images obtained with
a log-polar technology are not only equivalent to the ones
obtained with conventional devices but also these images can
be obtained at no computational cost. For example with our
current prototype a panoramic image composed of about
27,000 pixels is obtained by simply reading out the pixels
(i.e., 27,000 operations) while with a conventional solution
the same image would required more than 1.7 million oper-
ations (about 50 times more). Besides that, unlike with a
warped traditional image, we get the interesting side effect
of a uniform resolution along the entire panoramic image.

The guiding principle is to design the profile of the mirror
so that if the camera is inserted inside a cylinder, the direct
camera output provides an undistorted, constant resolution
image of the internal surface of the cylinder. The advantage
of such an approach lays in providing the observer with a
complete view of its surrounding in one image which can be
refreshed at video rate.

For technical details about the design of the mirror, in
Fig. 5.2, see the OMNIVIEWS project report [33].

The panoramic vision has a lot of different applications,
with or without the presence of a space variant sensor but,
as we described above, the utilization of a log-polar sensor
greatly improves the performances of the system.

The most common usage of this technology (there are in
fact several commercial products already available based on
a camera and a panoramic mirror) is in the field of remote
surveillance, where it is very useful to have a complete vision
of the whole environment at once, maybe coupled with a
motorized standard camera in order to zoom on the objects
of interest.

Other applications involve biological vessels (panoramic
endoscopies) or industrial pipes investigation, where it is
important to have a simultaneous view of the whole inter-
nal surface of the cylinder, or robotic navigation, where the
advantage is represented by the need of just one camera
in order to have a representation of the whole surrounding
environment [34].
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Figure 5.2. Mirror design: (a) Profile of the mirror. (b) The mirror is
designed so that vertical resolution of a cylindrical surface is mapped
into constant radial resolution in the image plane.

5.2. Robotic Vision

The need of real-time image processing speed is particularly
relevant in visually guided robotics. It can be achieved both
by increasing the computational power and by constraining
the amount of data to be processed. We have seen that the
log-polar mapping is able to limit the number of pixels while
keeping both a wide field of view and a high resolution in
the fovea. But this is not the only reason for such a choice:
the biological motivation is very important too when dealing
with human-like robots.

Over the last few years, we have studied how sensorimo-
tor patterns are acquired in a human being. This has been
carried out from the unique perspective of implementing the
behaviors we wanted to study in artificial systems.

The approach we have followed is biologically motivated
from at least three perspectives: the morphology of the arti-
ficial being should be as close as possible to the human one,
i.e., the sensors should approximate their biological coun-
terparts; its physiology should be designed in order to have
its control structures and processing modeled after what is
known about human perception and motor control; its devel-
opment, i.e., the acquisition of those sensorimotor patterns,
should follow the process of biological development in the
first few years of life.

The goal has been that of understanding human sensori-
motor coordination and cognition rather than building more
efficient robots. So, instead of being interested in what a
robot is able to do, we are interested in how it does it. In
fact some of the design choices might even be question-
able from a purely engineering point of view but they are
pursued nonetheless because they improved the similarity
with, hence the understanding of, biological systems. Along
this feat of investigating the human cognitive processes, our
group implemented various artifacts both in software (e.g.,
image processing and machine learning) and hardware (e.g.,
silicon implementation of the visual system, robotic heads,
and robotic bodies).

The most part of the work has been carried out on a
humanoid robot called Babybot [35, 36] that resembles the
human body from the waist up although in a simplified
form, Fig. 5.3. It has eighteen degrees of freedom overall
distributed between the head, the arm, the torso and the
hand. Its sensory system consists of cameras (the eyes), gyro-
scopes (the vestibular system), microphones (the ears), posi-
tion sensors at the joints (proprioception) and tactile sensors
on the palm of hand. During the year 2004 a new humanoid
is being developed. It will have 23 degrees of freedom, it
will be smaller and all its parts will be designed with the
final goal of having the best possible similarity with their
biological counterparts.

Investigation touched aspects such as the integration of
visual and inertial information [37], and the interaction
between vision and spatial hearing [38].

So, it is very important to understand why the visual sys-
tem of the robot has to be as similar as possible to human
vision: we have to find out whether the morphology of the
visual sensors can improve particular sensorimotor strate-
gies and how vision can have consequences on the behaviors
which are not purely visual in nature. We should note again
that the eyes and motor behaviors coevolved: it is useless
to have a fovea if the eyes cannot be swiftly moved over
possible targets. Humans developed a sophisticated oculo-
motor apparatus that includes saccadic movements, smooth
tracking, vergence, and various combinations of retinal and
extra-retinal signals to maintain vision efficient in a wide
variety of situations.

As stated above, handling with log-polar images can be
sometimes uneasy and time consuming, due to the deforma-
tion of the plane, but this drawbacks are always balanced

Figure 5.3. LIRA-Lab Humanoid: Babybot
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by the highly reduced number of pixels that have to be
processed.

Various algorithms have been developed to perform com-
mon tasks in log-polar geometry, like vergence control and
disparity estimation [39]. In this last case, grossly simplifying,
by employing a correlation measure, the algorithm evalu-
ates the similarity of the left and right images for different
horizontal shifts. It finally picks the shift relative to the max-
imum correlation as a measure of the binocular disparity.
The log-polar geometry, in this case, weighs differently the
pixels in the fovea with respect to those in the periph-
ery. More importance is thus accorded to the object being
tracked.

Positional information is important but for a few tasks
optic flow is a better choice. One example of use of optic
flow is for the dynamic control of vergence as in [40]. We
implemented a log-polar version of a quite standard algo-
rithm [41]. The details of the implementation can be found
in [42]. The estimation of the optic flow requires taking into
account the log-polar geometry because it involves non-local
operations.

5.3. Video Conferencing, Video Telephony

and Image Compression

The log-polar transform of an image can be seen as a lossy
image compression algorithm, where all the data loss is con-
centrated where the information should be less attracting
for the user. With our family of sensor the compression rate
for a single frame is between 30 and 40 to 1, which is (see
Table 1) given by:

Q2

NLP

(5.1)

where NLP is the total number of pixels in the log-polar
image. As we have seen, some algorithms can still be applied
with no relevant change to the log-polar images, so we can
process the image, or the video stream with virtually all the
compression algorithms commonly available. This impres-
sive compressing factor can be used to send video streams
on very narrow band channels.

One possible application has been investigated in the past
few years with the EU funded project IBIDEM [43]. This
project has been inspired by the fact that hearing impair-
ment prevents many people from using normal voice tele-
phones for obvious reasons. A solution to this problem for
the hearing impaired is the use of videophones.

At that time available videophones working on standard
telephone lines (Public Switched Telephone Network) did
not meet the dynamic requirements necessary for lip read-
ing, finger spelling and signing. The spatial resolution was
also too small.

The main objective of IBIDEM was to develop a video-
phone useful for lip reading by hearing impaired people
based on the space variant sensor and using standard tele-
phone lines. The space variant nature of the sensor allowed
to have high resolution in the area of interest, lips or fingers,
while still maintaining a wide field of view in order to per-
ceive, for example, the facial expression of the interlocutor,

but reducing drastically the amount of data to be sent on
the line (see Fig. 5.4).

After the IBIDEM project, its natural continuation was to
test the performances of the log-polar cameras (which have
been called Giotto, see Fig. 5.5) on even narrower band-
widths. Extensive experiments on wireless image transmis-
sion were conducted with a set-up composed of a remote
PC running a web server embedded into an application that
acquires images from the a retina like camera and compress
them following one of the recommendations for video cod-
ing over low bit rate communication line (H.263 in our case).

The remote receiving station was a palmtop PC acting
as a client connected to the remote server through a dial-
up GSM connection (9600 baud). Using a standard browser
interface the client could connect to the web server, receive
the compressed stream, decompress it and display the result-
ing images on the screen. Due to the low amount of data
to be processed and sent on the line, frame rates of up to
four images per second could be obtained. The only special-
purpose hardware required is the log-polar camera; cod-
ing/decoding and image remapping is done in software on
a desktop PC (on the server side), and on the palmtop PC
(on the client side). The aspect we wanted to stress in these
experiments is the use of off-the-shelf components and the
overall physical size of the receiver. This performance in
terms of frame rate, image quality and cost cannot clearly be
accomplished by using conventional cameras. More recently
(within a project called AMOVITE) we started realizing a
portable camera that can be connected to the palmtop PC
allowing bi-directional image transmission through GSM or
GPRS communication lines. The sensor itself is not much
different from the one previously described apart from the
adoption of a companion chip allowing a much smaller
camera.

The same principle has been adopted in other exper-
iments of image transmission: Comaniciu [44] has added
a face-tracking algorithm to the software log-polar com-
pression for remote surveillance purposes. Weiman [45],
combining the log-polar transform with other compression
algorithms has reached a compression factor of 1600:1.

(a) (b)

Figure 5.4. IBIDEM project finger spelling experiment: (a) Log-polar
and (b) remapped images.
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Figure 5.5. Giotto Camera.

GLOSSARY

Active Vision The control of the optics and the mechanical
structure of cameras or eyes to simplify the processing for
vision.

Cone A specialized nerve cell in the retina, which detects
color.

Field Of View (FOV) An angle that defines how far from
the optical axis the view is spread.

Fovea A high-resolution area in the retina, usually located
in the center of the field of view.

Foveola The central part of the fovea.

Optical Axis An imaginary line that runs through the focus
and center of a lens.

Photoreceptor A mechanism that emits an electrical or
chemical signal that varies in proportion to the amount of
light that strikes it.

Receptive Field The portion of the sensory surface where
stimuli affect the activity of a sensory neuron.

Rod A light-detecting cell in the retina, detects light and
movement, but not color.

Saccadic Movement A rapid eye movement used to alter
eye position within the orbit, causing a rapid adjustment of
the fixation point to different positions in the visual world.

Vergence The angle between the optical axes of the eyes.

Retina The light-sensitive layer of tissue that lines the back
of the eyeball, sending visual impulses through the optic
nerve to the brain.

CCD (Charge-Coupled Device) A semiconductor technol-
ogy used to build light-sensitive electronic devices such as
cameras and image scanners. Such devices may detect either
colour or black-and-white. Each CCD chip consists of an
array of light-sensitive photocells. The photocell is sensitized
by giving it an electrical charge prior to exposure.

CMOS (Complementary Metal Oxide Semiconductor) A
semiconductor fabrication technology using a combination
of n- and p-doped semiconductor material to achieve low
power dissipation. Any path through a gate through which
current can flow includes both n and p type transistors.
Only one type is turned on in any stable state so there is no

static power dissipation and current only flows when a gate
switches in order to charge the parasitic capacitance.
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