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ABSTRACT

The traditional wisdom for building disk-based relational database
management systems (DBMS) is to organize data in heavily-encoded
blocks stored on disk, with a main memory block cache. In order to
improve performance given high disk latency, these systems use a
multi-threaded architecture with dynamic record-level locking that
allows multiple transactions to access the database at the same time.
Previous research has shown that this results in substantial over-
head for on-line transaction processing (OLTP) applications [15].

The next generation DBMSs seek to overcome these limitations
with architecture based on main memory resident data. To over-
come the restriction that all data fit in main memory, we propose
a new technique, called anti-caching, where cold data is moved
to disk in a transactionally-safe manner as the database grows in
size. Because data initially resides in memory, an anti-caching ar-
chitecture reverses the traditional storage hierarchy of disk-based
systems. Main memory is now the primary storage device.

We implemented a prototype of our anti-caching proposal in a
high-performance, main memory OLTP DBMS and performed a
series of experiments across a range of database sizes, workload
skews, and read/write mixes. We compared its performance with an
open-source, disk-based DBMS optionally fronted by a distributed
main memory cache. Our results show that for higher skewed
workloads the anti-caching architecture has a performance advan-
tage over either of the other architectures tested of up to 9× for a
data size 8× larger than memory.

1. INTRODUCTION
Historically, the internal architecture of DBMSs has been pred-

icated on the storage and management of data in heavily-encoded
disk blocks. In most systems, there is a header at the beginning of
each disk block to facilitate certain operations in the system. For
example, this header usually contains a “line table” at the front of
the block to support indirection to tuples. This allows the DBMS to
reorganize blocks without needing to change index pointers. When
a disk block is read into main memory, it must then be translated
into main memory format.
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DBMSs invariably maintain a buffer pool of blocks in main mem-
ory for faster access. When an executing query attempts to read a
disk block, the DBMS first checks to see whether the block already
exists in this buffer pool. If not, a block is evicted to make room
for the needed one. There is substantial overhead to managing the
buffer pool, since blocks have to be pinned in main memory and the
system must maintain an eviction order policy (e.g., least recently
used). As noted in [15], when all data fits in main memory, the
cost of maintaining a buffer pool is nearly one-third of all the CPU
cycles used by the DBMS.

The expense of managing disk-resident data has fostered a class
of new DBMSs that put the entire database in main memory and
thus have no buffer pool [11]. TimesTen was an early proponent of
this approach [31], and more recent examples include H-Store [2,
18], MemSQL [3], and RAMCloud [25]. H-Store (and its com-
mercial version VoltDB [4]) performs significantly better than disk-
based DBMSs on standard OLTP benchmarks [29] because of this
main memory orientation, as well as from avoiding the overhead of
concurrency control and heavy-weight data logging [22].

The fundamental problem with main memory DBMSs, however,
is that this improved performance is only achievable when the database
is smaller than the amount of physical memory available in the sys-
tem. If the database does not fit in memory, then the operating
system will start to page virtual memory, and main memory ac-
cesses will cause page faults. Because page faults are transparent
to the user, in this case the main memory DBMS, the execution of
transactions is stalled while the page is fetched from disk. This is a
significant problem in a DBMS, like H-Store, that executes transac-
tions serially without the use of heavyweight locking and latching.
Because of this, all main memory DBMSs warn users not to ex-
ceed the amount of real memory [5]. If memory is exceeded (or
if it might be at some point in the future), then a user must either
(1) provision new hardware and migrate their database to a larger
cluster, or (2) fall back to a traditional disk-based system, with its
inherent performance problems.

One widely adopted performance enhancer is to use a main mem-
ory distributed cache, such as Memcached [14], in front of a disk-
based DBMS. Under this two-tier architecture, the application first
looks in the cache for the tuple of interest. If this tuple is not in the
cache, then the application executes a query in the DBMS to fetch
the desired data. Once the application receives this data from the
DBMS, it updates the cache for fast access in the future. Whenever
a tuple is modified in the database, the application must invalidate
its cache entry so that the next time it is accessed the application
will retrieve the current version from the DBMS. Many notable web
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Figure 1: DBMS Architectures – In (a) and (b), the disk is the primary storage for the database and data is brought into main memory as it is needed. With
the anti-caching model shown in (c), memory is the primary storage and cold data is evicted to disk.

sites, such as Facebook, use a large cluster of Memcached nodes in
front of their sharded MySQL installation.

There are two problems with this two-tier model. First, data ob-
jects may reside both in the cache (in main memory format) and
in the DBMS buffer pool (in disk format). This double buffering
of data is a waste of resources. The second issue is that it requires
developers to embed logic in their application to keep the two sys-
tems independently synchronized. For example, when an object is
modified, the update is sent to the back-end DBMS. But now the
states of the object in the DBMS and in the cache are different. If
the application requires up-to-date values, the application must also
update the object in the cache.

To overcome these problems, we present a new architecture for
main memory DBMSs that we call anti-caching. In a DBMS with
anti-caching, when memory is exhausted, the DBMS gathers the
“coldest” tuples and writes them to disk with minimal translation
from their main memory format, thereby freeing up space for more
recently accessed tuples. As such, the “hotter” data resides in main
memory, while the colder data resides on disk in the anti-cache por-
tion of the system. Unlike a traditional DBMS architecture, tuples
do not reside in both places; each tuple is either in memory or in a
disk block, but never in both places at the same time. In this new
architecture, main memory, rather than disk, becomes the primary
storage location. Rather than starting with data on disk and read-
ing hot data into the cache, data starts in memory and cold data is
evicted to the anti-cache on disk.

This approach is similar to virtual memory swapping in operat-
ing systems (OS). With virtual memory, when the amount of data
exceeds the amount of available memory, cold data is written out to
disk in pages, typically in least recently used (LRU) order. When
the evicted page is accessed, it is read back in, possibly causing
other pages to be evicted. This allows the amount of virtual mem-
ory to exceed the amount of physical memory allocated to a pro-
cess. Similarly, anti-caching allows the amount of data to exceed
the available memory by evicting cold data to disk in blocks. If data
access is skewed, the working set will remain in main memory.

With anti-caching, it is the responsibility of the DBMS to read
and write data as needed. An alternative is to let the virtual mem-
ory system do the paging of the data to and from disk. Indeed, this
is the approach taken in [28]. However, anti-caching has several
advantages over virtual memory in the context of a main memory
DBMS. In particular, it provides fine-grained control of the data
evicted to disk and non-blocking reads of evicted data from disk.
These two main differences are described in detail below:

Fine-Grained Eviction: A key advantage of anti-caching over
virtual memory in the context of a main memory DBMS is the gran-
ularity at which data can be evicted. In anti-caching, eviction deci-
sions are performed at the tuple-level. This means that the coldest
tuples will be written to disk. In virtual memory, OS makes evic-
tion decisions at the page-level. A virtual memory page is likely
to be significantly larger than a typical OLTP tuple. Thus, each
page selected for eviction will contain multiple tuples, each with
potentially varying levels of coldness. A single hot tuple on a page
will cause the entire page to be hot and kept in memory, even if the
other tuples are cold. It is best to make evictions at the same level
of granularity that the data is accessed, which in a DBMS is at the
tuple level. Anti-caching provides a method for this finer-grained
control of evicted data by building pages of cold tuples only.

Non-Blocking Fetches: Another difference is how evicted data
is retrieved when it is needed. In a virtual memory system, the OS
blocks a process when it incurs a page fault from reading a mem-
ory address that is on disk. For certain DBMSs [29, 34], this means
that no transactions are executed while the virtual memory page is
being fetched from disk. In an anti-caching DBMS, a transaction
that accesses evicted data is simply aborted and then restarted at a
later point once the data that it needs is retrieved from disk. In the
meantime, the DBMS continues to execute other transactions with-
out blocking. Lastly, since every page fault triggers a disk read,
queries that access multiple evicted pages will page fault several
times in a sequential fashion. We instead use a pre-pass execution
phase that attempts to identify all evicted blocks needed by a trans-
action, which will allow all blocks to be read together [23].

In this paper, we explore the details of our anti-caching proposal.
We have implemented a prototype in the H-Store DBMS [2] and
performed a thorough experimental evaluation of the three different
DBMS architectures depicted in Fig. 1:

1. Traditional, disk-based DBMS (MySQL).

2. Traditional, disk-based DBMS with a distributed cache front-
end (MySQL + Memcached).

3. Anti-caching in a main memory DBMS (H-Store).

The results of these experiments show that the anti-caching ar-
chitecture outperforms both the traditional disk-based and hybrid
architecture on popular OLTP workloads. The difference is even
more pronounced at higher skew levels, and demonstrates that main
memory databases designed around the anti-caching architecture
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Figure 2: The H-Store Main Memory OLTP system.

can scale to significantly larger than the available main memory
while experiencing minor throughput degradation.

Our anti-cache design is based on two key assumptions. Fore-
most is that our current prototype restricts the scope of queries to
fit in main memory. We do not consider this a significant hindrance,
since such large queries are uncommon in OLTP workloads. The
other design assumption is that all indexes fit in memory. The
trade-offs of using large secondary indexes is a well-studied topic in
database optimization and we do not believe that this requirement
is overly restrictive. We propose alternative designs to obviate the
need to keep secondary indexes in memory.

2. H-STORE SYSTEM OVERVIEW
Before discussing the details of our anti-caching model, we first

review H-Store’s architecture and the motivations behind its de-
sign. In a disk-oriented DBMS, the system retrieves tuples from
blocks on disk as they are requested by transactions. These blocks
are stored in an in-memory buffer pool. If a transaction invokes a
query that accesses data that is not in memory, the DBMS stalls that
transaction until the block with that data is retrieved from disk and
added to the buffer pool. If the buffer pool is full, then the DBMS
chooses another block to evict to make room for the incoming one.
Since the transaction waits until this disk operation completes, such
systems employ a concurrency control scheme to allow other trans-
actions to execute while the stalled one is waiting for the disk. The
overhead of this movement of data and coordination between con-
current transactions has been shown to be significant [15].

This DBMS architecture made sense when compute nodes with
enough RAM to store an entire database in memory were either
non-existent or prohibitively expensive. But modern distributed
DBMSs are able to store all but the largest OLTP databases entirely
in the collective memory [29].

Given these observations, H-Store is designed to efficiently ex-
ecute OLTP workloads on main memory-only nodes [18, 29]. As
shown in Fig. 2, an H-Store node is a single physical computer sys-
tem that manages one or more partitions. A partition is a disjoint
subset of the data [26]. Each partition is assigned a single-threaded
execution engine at its node that is responsible for executing trans-
actions and queries for that partition.

Although H-Store supports ad hoc queries, it is primarily opti-
mized to execute transactions as stored procedures. In this paper,
we use the term transaction to refer to an invocation of a stored
procedure. Stored procedures are an effective way to optimize
OLTP applications because they execute entirely at the data node,
thereby reducing the number of round-trips between the client and
the database. A stored procedure contains control code (i.e., ap-
plication logic) that invokes pre-defined parameterized SQL com-
mands. A client application initiates a transaction by sending a re-
quest to any node in the cluster. Each transaction request contains
the name of a stored procedure and the input parameters for that

procedure’s control code. H-Store assumes a workload of transac-
tions with the following composition:

Single-Partition Transactions: In this case, there is a database
design that allocates the various partitions of each table to nodes in
such a way that most transactions are local to a single node [26].
Looking up a banking account balance or a purchase order is an
example of a single-partition transaction.

A single-partition transaction is examined in the user-space H-
Store client library, where parameters are substituted to form a
runnable transaction. The user-level library is aware of H-Store’s
partitioning scheme [26], so the transaction can be sent to the cor-
rect node where it is executed from beginning to end without any
blocking. Hence, single-partition transactions are serialized at each
node, and any application that consists entirely of single-partition
transactions will obtain maximum parallelism.

Multi-Partition Transactions: These transactions consist of mul-
tiple phases, each of which must be completed before the next
phase begins. Moreover, one or more of the phases touches multi-
ple partitions.

Each H-Store transaction is given a unique transaction ID, based
on the time it arrived in the system. Standard clock-skew algo-
rithms are used to keep the various CPU clocks synchronized. If
a transaction with a higher transaction ID has already arrived at a
node, then the incoming transaction is refused. In this way trans-
actions are synchronized in timestamp order at the various nodes,
without the need for any deadlock detection. Multi-Partition trans-
actions use an extension of this protocol, where each local executor
cannot run other transactions until the multi-partition transaction
finishes execution. This scheme gives good throughput for work-
loads with a preponderance of single-partition transactions.

To ensure that all modifications to the database are durable and
persistent, each DBMS node continuously writes asynchronous snap-
shots of the entire database to disk at fixed intervals [21, 29]. In
between these snapshots, the DBMS writes out a record to a com-
mand log for each transaction that completes successfully [22]. The
DBMS combines multiple records together and writes them in a
group to amortize the cost of writing to disk [16, 34]. Any modifi-
cations that are made by a transaction are not visible to the appli-
cation until this record has been written. This record only contains
the original request information sent from the client, which is more
lightweight than record-level logging [22].

3. ANTI-CACHING SYSTEM MODEL
We call our architecture anti-caching since it is the opposite ar-

chitecture to the traditional DBMS buffer pool approach. The disk
is used as a place to spill cold tuples when the size of the database
exceeds the size of main memory. As stated earlier, unlike normal
caching, a tuple is never copied. It lives in either main memory or
the disk based anti-cache.

At runtime, the DBMS monitors the amount of main memory
used by the database. When the size of the database relative to the
amount of available memory on the node exceeds some administrator-
defined threshold, the DBMS “evicts” cold data to the anti-cache in
order to make space for new data. To do this, the DBMS constructs
a fixed-size block that contains the least recently used (LRU) tuples
from the database and writes that block to the anti-cache. It then
updates a memory-resident catalog that keeps track of every tuple
that was evicted. When a transaction accesses one of these evicted
tuples, the DBMS switches that transaction into a “pre-pass” mode
to learn about all of the tuples that the transaction needs. After
this pre-pass is complete, the DBMS then aborts that transaction
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(rolling back any changes that it may have made) and holds it while
the system retrieves the tuples in the background. Once the data has
been merged back into the in-memory tables, the transaction is re-
leased and restarted.

We now describe the underlying storage architecture of our anti-
cache implementation. We then discuss the process of evicting cold
data from memory and storing it in the non-volatile anti-cache.
Then, we describe how the DBMS retrieves data from the anti-
cache. All of the DBMS’s operations on the anti-cache are transac-
tional and any changes are both persistent and durable.

3.1 Storage Architecture
The anti-cache storage manager within each partition contains

three components: (1) a disk-resident hash table that stores evicted
blocks of tuples called the Block Table, (2) an in-memory Evicted

Table that maps evicted tuples to block ids, and (3) an in-memory
LRU Chain of tuples for each table. As with all tables and indexes
in H-Store, these data structures do not require any latches since
only one transaction is allowed to access them at a time.

One of the trade-offs that we need to consider is the storage over-
head of this bookkeeping, given that the main goal of evicting tu-
ples is to free up memory. Obviously the amount of memory used
to keep track of evicted tuples should only be a small fraction of the
memory gained from evicting tuples. Our current implementation
also requires that all of the database’s primary key and secondary
indexes fit in memory. We explore this issue further in Section 5.6.

Block Table: This is a hash table that maintains the blocks of
tuples that have been evicted from the DBMS’s main memory stor-
age. Each block is the same fixed-size and is assigned a unique
4-byte key. A block’s header contains the identifier for the single
table that its tuples were evicted from and the timestamp when the
block was created. The body of the block contains the serialized
evicted tuples from a single table. Every tuple stored in a block
is prefixed with its size and is serialized in a format that closely
resembles its in-memory format (as opposed to a format that is
specifically designed for disk-based storage). The key portion of
the Block Table stays in memory while its values (i.e., the block
data) are stored on disk without OS or file-system caching.

Evicted Table: The Evicted Table keeps track of the tuples that
have been written out to blocks on disk. When a tuple is evicted,
the DBMS removes it from the regular storage space for tables and
adds it to a dynamically-constructed block that is then stored in
the Block Table. Each evicted tuple in a block is assigned a 4-byte
identifier that corresponds to its offset in the block it resides in. The
DBMS updates any indexes containing evicted tuples to reference
the Evicted Table. As discussed in Section 3.4, the Evicted Table
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Figure 4: Physical representation of the LRU Chain embedded in the tuple
headers. Each tuple header contains 1 byte for bit flags (left-most box)
followed by two 4-byte tuple IDs of the tuples adjacent in the linked list.

ensures that the DBMS is able to identify all of the evicted tuples
that are needed by a transaction.

LRU Chain: Lastly, H-Store also maintains an in-memory list of
all the tuples for each table in LRU order. This allows the DBMS to
quickly ascertain at runtime the least-recently used tuples to com-
bine into a new block to evict. The LRU Chain is a doubly-linked
list where each tuple points to the next and previous most-recently
used tuple for its table. Tuples are added to the tail of the chain
whenever they are accessed, modified, or inserted by a transaction.
When a tuple is read or updated, it is first removed from its original
location in the chain and inserted at the back. The tuples that were
previously adjacent to it in the chain are then linked to each other.

Rather than maintain a separate data structure for the LRU Chain,
the DBMS embeds the pointers directly in the tuples’ headers. To
reduce the memory overhead of this, the pointer for each tuple is
a 4-byte offset of that record in its table’s memory at that partition
(instead of an 8-byte address location).

To reduce the CPU overhead of tracking the total ordering of
each table’s LRU Chain, the DBMS selects a fraction of the trans-
actions to monitor at runtime. The selected transactions are used to
update data in the LRU Chain. Because hot tuples are, by defini-
tion, accessed more frequently, they are more likely to be accessed
in the transactions sampled and thus are more likely to be updated
in the LRU Chain. The rate at which transactions are sampled is
controlled by parameter α, where 0 < α ≤ 1. We explore the
affect of sampling and other trade-offs in Section 5.4.

In addition, there are often tables that are accessed frequently
and should not be allowed to be evicted to disk (e.g., small lookup
tables). Because these tables would be considered hot, it is unlikely
that any portion of such a table would be evicted to disk. Still, there
is added overhead of maintaining the LRU chain for such tables. To
remove this, tables can be specifically flagged as evictable during
schema creation. Any table not labeled as evictable will not main-
tain an LRU chain and will remain entirely in main memory.

3.2 Block Eviction
Ideally, our architecture would be able to maintain a single global

ordering of tuples in the system, thus globally tracking hot and
cold data. However, the costs of maintaining a single chain across
partitions would be prohibitively expensive due to the added costs
of inter-partition communication. Instead, our system maintains a
separate LRU Chain per table that is local to a partition. Thus, in
order to evict data the DBMS must determine (1) what tables to
evict data from and (2) the amount of data that should be evicted
from a given table. For our initial implementation, the DBMS an-
swers these questions by the relative skew of accesses to tables.
The amount of data accessed at each table is monitored, and the
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amount of data evicted from each table is inversely proportional
to the amount of data accessed in the table since the last eviction.
Thus, the hotter a table is, the less data will be evicted. For the
benchmarks tested, this approach is sufficient, but we expect to
consider more sophisticated schemes in the future.

After determining how much data to evict from each table, H-
Store executes special single-partition transactions that select tu-
ples for eviction and writes blocks to disk. Since transactions are
executed one-at-a-time at each partition, these eviction transactions
automatically block all other transactions at their target partition
without needing any additional locking mechanisms.

When the eviction transaction executes, it creates a new block
by popping tuples off the head of the target table’s LRU Chain. For
each tuple being evicted, H-Store copies its data into the eviction
block buffer. It then adds an entry into the Evicted Table and up-
dates all indexes to point to this entry instead of the original tuple
location. Each tuple in the Evicted Table includes a special evicted

flag in its header that enables the DBMS to recognize when a trans-
action accesses evicted data. This eviction process continues until
the block is full, at which point the transaction will create the next
block. The process stops once the transaction has evicted the req-
uisite amount of data from each table. Groups of blocks are written
out in a single sequential write. For example, if the table is asked to
evict a set of n blocks, it will create each of the n blocks indepen-
dently, and only when all n blocks have been created will it write
the result to disk in one sequential write.

It is also important to note that the state of the database is con-
sistent during the eviction process. Although indexes are updated
and the tuple is removed from the original table before the block is
written to disk, the single-threaded nature of the execution engine
means that no other transactions access these changes until the spe-
cial transaction finishes. Other transactions will not execute until
the entire set of blocks requested for eviction are written to disk.
Also, at no point during this process is data un-recoverable if the
DBMS crashes (see Section 3.6).

3.3 Transaction Execution
Main memory DBMSs, like H-Store, owe their performance ad-

vantage to processing algorithms that assume that data is in main
memory. But any system will slow down if a disk read must be pro-
cessed in the middle of a transaction. This means that we need to
avoid stalling transaction execution at a partition whenever a trans-
action accesses an evicted tuple. We now describe how this is ac-
complished with anti-caching.

A query can access evicted data through either an index or a

sequential look-up (i.e., a full table scan). For the latter, the DBMS
will need to store the entire table in memory, which may exceed the
physical memory available. We discuss this problem in Section 6.1.

For index look-up queries, the system searches the target index
to find the keys that match the query’s predicate. Each key in the
index points to a tuple that is either in the normal table storage or in
the Evicted Table. If none of the accessed tuples are evicted, then
the DBMS allows the transaction to continue. If evicted data is
needed, the transaction will then enter a special phase to determine
exactly which data is needed and where that data exists on disk.

Pre-pass Phase: A transaction enters the pre-pass phase if evicted
data is needed to continue execution. The goal of the pre-pass phase
is to determine all of the evicted data that the transaction needs to
access so that it can be retrieved together. To do this, the transac-
tion executes as normal, except that the DBMS checks the evicted

flag for each tuple that it accesses to determine whether the tuple
has been evicted. If it has, then the DBMS records the evicted tu-
ple’s block ID and offset from the Block Table (see Fig. 3). When
pre-pass has finished execution, the DBMS rolls back any changes
that the transaction made at any partition and then re-queues the
transaction along with the list of evicted tuple identifiers that it at-
tempted to access during the pre-pass phase. Also, during the pre-
pass phase, any in-memory tuples are updated in the LRU Chain to
reduce the likelihood that these tuples are evicted before the trans-
action is re-queued. This minimizes the possibility of a transaction
being restarted multiple times due to evicted data.

Although it is small, the overhead of aborting and restarting trans-
actions is not zero. Thus, in the pre-pass phase, the DBMS attempts
to identify all of the data that a transaction needs by allowing that
transaction to continue executing after it encounters an evicted tu-
ple [23]. This allows the DBMS to batch fetch requests and min-
imize the possibility of restarting a transaction multiple times. In
contrast, in the event of a page fault in virtual memory, execution
halts for each individual evicted page access [28].

For some transactions, it is not possible for the DBMS to dis-
cover all of the data that it needs in a single pre-pass. This can occur
if the non-indexed values of an evicted tuple are needed to retrieve
additional tuples in the same transaction. In this case, the initial
pre-pass phase will determine all evicted data that is not dependent
on currently evicted data. Once this data is successfully merged
and the transaction is restarted, this unevicted data will be used to
resolve any data dependencies and determine if any additional data
needs to be unevicted. From our experience, however, we believe
that such scenarios are rare. The more typical access pattern is that
a transaction retrieves the key of a record from a secondary index,
in which case the DBMS will still be able to run the transaction in
the pre-pass phase because the indexes always remain in memory.

We next describe how the DBMS retrieves the evicted tuples
identified during the pre-pass and merges them back into the sys-
tem’s in-memory storage.

3.4 Block Retrieval
After aborting a transaction that attempts to access evicted tu-

ples, the DBMS schedules the retrieval of the blocks that the trans-
action needs from the Block Table in two steps. The system first
issues a non-blocking read to retrieve the blocks from disk. This
operation is performed by a separate thread while regular transac-
tions continue to execute at that partition. The DBMS stages these
retrieved blocks in a separate buffer that is not accessible to queries.
Any transaction that attempts to access an evicted tuple in one of
these blocks is aborted as if the data was still on disk.

Once the requested blocks are retrieved, the aborted transaction
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is then rescheduled. Before it starts, the DBMS performs a “stop-
and-copy” operation whereby all transactions are blocked at that
partition while the unevicted tuples are merged from the staging
buffer back into the regular table storage. It then removes all of
the entries for these retrieved tuples in the Evicted Table and then
updates the table’s indexes to point to the real tuples.

The key issue that we must consider during this step is on how
much data to merge from a retrieved block back into the in-memory
storage. For example, the DBMS can choose to merge all of the tu-
ples from the recently retrieved block or just the tuple(s) that the
previous transaction attempted to access that caused the block to
be retrieved in the first place. We now discuss two different solu-
tions for this problem. We compare the efficacy and performance
of these approaches in Section 5.1.

Block-Merging: The simplest method is for the DBMS to merge
the entire retrieved block back into the regular table storage. All of
the tuples in the block are inserted back into the in-memory table.
The requested tuple(s) are placed at the back of the table’s LRU
Chain. Conversely, any tuples not needed by pending transactions
are added to the front (i.e., cold end) of the LRU Chain, which
means that they are more likely to be chosen for eviction in the
next round. This ensures that only the tuples that were needed by
the transaction that caused the block to be un-evicted become hot,
whereas the rest of the block is still considered cold. After the
DBMS merges the tuples from the block, it can delete that block
from the Evicted Table.

The overhead of merging all the tuples from the un-evicted block
can be significant, especially if only a single tuple is needed from
the block and all of the other tuples are re-evicted shortly thereafter.
In the worst case, there is a continuous un-eviction/re-eviction cy-
cle, where unwanted tuples are brought into the system and then
immediately re-evicted.

Tuple-Merging: To avoid this oscillation, an alternative strat-
egy is to only merge the tuples that caused the block to be read
from disk. When a block is retrieved from disk, the DBMS extracts
only the tuples that are needed from that block (based on their off-
sets stored in the Evicted Table) and then only merges those tuples
back into the in-memory table. Once the desired tuples are merged,
the fetched block is then discarded without updating the block on
disk. This reduces the time of merging tuples back into their ta-
bles and updating their indexes. It now means that there are now
two versions of the tuple, the one in memory and the stale one in
the anti-cache on disk. But since the DBMS removes the merged
tuples’ from the Evicted Table, all subsequent look-ups of these tu-
ples will use the in-memory version. If this block is ever fetched
again, the stale entries of the already unevicted tuples are ignored.

Over time, these “holes” in the blocks accumulate. This means
the amount of valid data that is retrieved in each block is reduced.
We employ a lazy block compaction algorithm during the merge
process. This compaction works by tracking the number of holes
in each of the blocks in the Block Table. When the DBMS retrieves
a block from disk, it checks whether the number of holes in a block
is above a threshold. If it is, then the DBMS will merge the entire
block back into the memory, just as with the block-merge strategy.
We discuss more sophisticated approaches in Section 6.2.

3.5 Distributed Transactions
Our anti-caching model also supports distributed transactions.

H-Store will switch a distributed transaction into the “pre-pass”
mode just as a single-partition transaction when it attempts to ac-
cess evicted tuples at any one of its partitions. The transaction is
aborted and not requeued until it receives a notification that all

of the blocks that it needs have been retrieved from the nodes in
the cluster. The system ensures that any in-memory tuples that the
transaction also accessed at any partition are not evicted during the
time that it takes for each node to retrieve the blocks from disk.

3.6 Snapshots & Recovery
Persistence and durability in disk-based systems is typically achieved

using a combination of on-disk data and logging. In a main mem-
ory DBMS, however, other techniques such as snapshots and com-
mand logging [22, 29] are used. This does not change for a DBMS
with anti-caching, except that now the system must also snapshot
the additional data structures discussed Section 3.1.

To do this, the DBMS serializes all the contents of the regular
tables and index data, as well as the contents of the Evicted Table,
and writes it to disk. At the same time, the DBMS also makes a
copy of the Block Table on disk as it existed when the snapshot be-
gan. No evictions are allowed to occur in the middle of a snapshot.
To recover after a crash, the DBMS loads in the last snapshot from
disk. This will set up the tables, indexes, Block Table, and Evicted
Table as it existed before the crash. The DBMS then replays the
transactions in the command log that were created after this snap-
shot was taken. With this process, all anti-caching data is persistent
and the exact state of a system is recoverable in the event of a crash.

Making a snapshot of the Block Table could be prohibitively ex-
pensive for large data sizes. Instead of making copies for each
checkpoint, the DBMS takes delta snapshots. Because the data
within a block in the Block Table is not updated, the DBMS just
checks to see which blocks were added or removed from the Block
Table since the last snapshot. This technique greatly reduces the
amount of data copied with each snapshot invocation.

4. ARCHITECTURE COMPARISON
To evaluate our anti-caching model, we implemented a prototype

in H-Store and compared its performance against MySQL, an open-
source, disk-oriented DBMS. We tested MySQL with and without
Memcached [14] as a front-end distributed cache.

We first describe the two benchmarks and the three DBMS con-
figurations that we used in this analysis.

4.1 Benchmarks
We used the OLTP-Bench [10] framework for the MySQL ex-

periments and H-Store’s built-in benchmarking framework for the
anti-caching experiments.

YCSB: The Yahoo! Cloud Serving Benchmark is a collection of
workloads that are representative of large-scale services created by
Internet-based companies [9]. For all of the YCSB experiments in
this paper, we used a ∼20GB YCSB database containing a single
table with 20 million records. Each YCSB tuple has 10 columns
each with 100 bytes of randomly generated string data. The work-
load consists of two types of transactions; one that reads a single
record and one that updates a single record. We use three different
transaction workload mixtures:

• Read-Heavy: 90% reads / 10% updates

• Write-Heavy: 50% reads / 50% updates

• Read-Only: 100% reads

We also vary the amount of skew in workloads to control how
often a tuple is accessed by transactions. For these experiments,
we use YCSB’s Zipfian distribution as it is emblematic of skewed
workloads where older items are accessed much less frequently
than newer items. The amount of skew in the Zipfian distribution
is controlled by the constant s, where s > 0. Higher values of s

1947



(a) data_size
mem_size

= 1, read-only (b) data_size
mem_size

= 2, read-only (c) data_size
mem_size

= 4, read-only (d) data_size
mem_size

= 8, read-only

(e) data_size
mem_size

= 1, read-heavy (f) data_size
mem_size

= 2, read-heavy (g) data_size
mem_size

= 4, read-heavy (h) data_size
mem_size

= 8, read-heavy

(i) data_size
mem_size

= 1, write-heavy (j) data_size
mem_size

= 2, write-heavy (k) data_size
mem_size

= 4, write-heavy (l) data_size
mem_size

= 8, write-heavy

Figure 6: YCSB experiments. In aLRU, α = 0.01.

signify higher skews. In our experiments, we use a Zipfian skew
with values of s between 0.5 and 1.5.

TPC-C: This benchmark is the current industry standard for
evaluating the performance of OLTP systems [32]. It consists of
nine tables and five procedures that simulate a warehouse-centric
order processing application. Only two of these procedures modify
or insert tuples in the database, but they make up 88% of the bench-
mark’s workload. For our experiments, we used a ∼10GB TPC-C
database containing 100 warehouses and 100,000 items. We con-
figured both the H-Store and OLTP-Bench benchmark frameworks
such that each transaction only accesses data from a single ware-
house (i.e., there are no distributed transactions).

We must further decide which tables will be designated as evictable.
Some of the tables in the TPC-C benchmark are called lookup ta-

bles and contain only static data. For example the CUSTOMERS,
DISTRICT, and WAREHOUSE tables fall into this category. Once ini-
tially loaded, no new data is added to these tables. Also, these ta-
bles are used by a majority of the transactions in the workload, and
are unlikely to be evicted. Thus, we did not mark them as evictable.
This allows the system to not maintain a LRU Chain for these ta-
bles. In most real-world deployments, static lookup tables on the
order of a few gigabytes will easily fit in memory. Thus, these ta-
bles will not be evicted and will reside in memory throughout the
duration of the benchmark.

On the other hand, some tables are used to record orders, but
this data is not read by transactions in the future. These include
the HISTORY, ORDERS and ORDER_LINE tables. It is these tables that
cause a TPC-C database to grow over time. In our benchmark, these
tables are labeled as evictable. For the benchmark, we set the avail-
able memory to the system to 12GB. This allows all static tables to
fit in memory. As the benchmark progresses and more orders accu-
mulate, the data size will continue to grow, eventually exhausting
available memory, at which point the anti-caching architecture will
begin evicting cold data from the evictable tables to disk.

4.2 System Configurations
All three systems were deployed on a single node with a dual-

socket Intel Xeon E5-2620 CPU (12 cores per socket, 15M Cache,
2.00 GHz) processor running 64-bit Ubuntu Linux 12.04. The
data for each respective DBMS was stored on a single 7200 RPM
disk drive. According to hdparm, this disk delivers 7.2 GB/sec for
cached reads and about 297 MB/sec for buffered reads. All trans-
actions were executed with a serializable isolation level.

MySQL: We used MySQL (v5.6) with the InnoDB storage en-
gine. We tuned MySQL’s configuration to optimize its execution
for the type of short-lived transactions in our target benchmarks. In
particular, we also used 512 MB log file cache and 10 MB query
cache. We configured InnoDB’s buffer pool according to the work-
load size requirement for the different experiments. We did not
limit the number of CPU cores that the DBMS is allowed to use.

MySQL + Memcached: In our second configuration, we used
MySQL with Memcached (v1.4) deployed on the same node. We
modified the transaction code for the different benchmarks to store
cached query results in Memcached as serialized JSON objects. As
described below, the amount of memory allocated to Memcached
is based on the working set size of the benchmark.

The primary benefit of using Memcached as a front-end to MySQL
is to improve the performance of read queries. Because Mem-
cached does not use heavyweight locking, simple key-based lookups
of cached tuples can be faster than in MySQL. However, writes
must be propagated to both the Memcached frontend and MySQL
backend, thus incurring additional overhead.

H-Store with Anti-Caching: Lastly, we deployed the latest ver-
sion of H-Store [2] that uses our anti-caching prototype. In our cur-
rent implementation, we use BerkeleyDB’s hash table to store the
Block Table [24]. BerkeleyDB is configured to use direct I/O with-
out any caching or locks. We split each benchmark’s database into
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Figure 7: TPC-C experiments.

six partitions using a partitioning scheme that makes all transac-
tions single-partitioned [26]. We configured the memory threshold
for the system according to the workload size requirement for the
different experiments. We set the system to check its database size
every 5 seconds and evict data in 1MB blocks.

The benchmark clients in each experiment are deployed on a sep-
arate node in the same cluster. For each experiment, we execute the
benchmarks three times and report the average throughput of these
trials. In each trial, the DBMSs are allowed to “warm-up” for two
minutes. Empirically, we found that sustained transaction through-
put had stabilized within this period. During the warm-up phase,
transactions are executed as normal but throughput is not recorded
in the final benchmark results. For H-Store, cold data is evicted to
the anti-cache and hot data is brought into memory. For MySQL,
hot data is brought into the buffer pool. For the Memcached de-
ployment, the client pre-loads relevant objects into Memcached’s
memory. After the warm-up, each benchmark is run for a duration
of five minutes, during which average throughput is recorded. The
final throughput is the number of transactions completed in a trial
run divided by the total time (excluding the warm-up period). Each
benchmark is run three times and the throughputs from these runs
are averaged for a final result.

For the anti-caching architecture, we evaluate H-Store’s perfor-
mance using a LRU Chain sampling rate of α = 0.01 (aLRU) and
α = 1.00 (LRU). Thus, for aLRU, only one out of every one hun-
dred transactions updates the LRU chain while for LRU every trans-
action will update the LRU chain.

4.3 Results & Discussion
We now discuss the results of executing the two benchmarks

in Section 4.1 on the three DBMS architectures across a range of
workload skew and data size configuration.

YCSB: The results in Fig. 6 are for running the YCSB bench-
mark with all three workload types (read-only, read-heavy, write-
heavy) across a range of data sizes and workload skews. These
results show that as database size increases relative to the amount
of memory in the system, the throughput of all three systems de-
grades, since they perform more disk reads and writes. Similarly,
as the skew decreases, their performance also degrades since trans-
actions are more likely to access tuples that are evicted and need to
be retrieved from disk.

We observe, however, that for highly-skewed workloads (i.e.,
workloads with skews of 1.5 and 1.25) the anti-caching architecture
outperforms MySQL by a factor of 9× for read-only, 18× for read-
heavy, and 10× on write-heavy workloads for datasets 8× memory.
For the same high skews, out anti-caching architecture outperforms
the hybrid MySQL + Memcached architecture by a factor of 2× for
read-only, 4× for read-heavy, and 9× on write-heavy workloads

Figure 8: Merge Strategy Analysis – YCSB read-only, 2× memory, 1MB
evict blocks.

for datasets 8× memory. There are several reasons for this. One is
that H-Store’s lightweight concurrency control scheme is more ef-
ficient than MySQL’s model [15]. Another advantage is that tuples
are not converted back-and-forth between disk and main memory
format. Evicted tuples are copied in and out of eviction blocks
as contiguous chunks of memory. Also, in an anti-caching archi-
tecture, eviction blocks are composed dynamically of cold tuples,
rather than evicting fixed blocks which could contain some rela-
tively hot data. Hence, anti-caching provides finer-grained control
of the bytes evicted to disk.

There are several interesting results regarding the MySQL bench-
marks. One is that that Memcached improves the throughput of
MySQL most on the read-only workloads and only for high skew.
The lower performance in the other workloads is due to the over-
head of synchronizing values in Memcached and in MySQL in the
event of a write. For low skew workloads, there is a high cost of
cache misses in this hybrid architecture. If Memcached is queried
and does not contain the requested data, the application must then
query MySQL, resulting in a cache miss. If Memcached is queried
and contains the requested data (i.e. a cache hit), the MySQL
backend is not queried at all. Because of the lower overhead of
Memcached over MySQL, the benefits of a cache hit can be signif-
icant. However, for the OLTP benchmarks tested, tuples are rela-
tively small and queries are relatively simple, so the cost of a cache
miss outweighs the cost of a cache hit. It is only in read inten-
sive, higher skewed workloads (where the likelihood of a cache hit
is higher) that hybrid architecture outperforms standalone MySQL.
Also noteworthy is that for workloads with writes, MySQL actu-
ally performs worse for skews of 1.5 and 1.25. This results in
higher lock contention for hot tuples in a disk-based DBMS that
uses heavyweight locking and latching.

Another result is that for almost all data sizes and skews tested,
aLRU performs as well or better than the standard LRU. As dis-
cussed previously, sampling of transactions is an effective way to
capture workload skew and is able to significantly lessen the over-
head of maintaining the LRU chain. Default H-Store provides an
effective baseline by which to compare the overheads of the anti-
caching components. In Figs. 6a, 6e and 6i, we see where the
throughput of the aLRU implementation is close to H-Store base-
line, ranging from a 2–7% throughput overhead. Conversely, the
anti-caching with traditional LRU suffers significantly as skew is
decreased, meaning the maintenance of the LRU chain is a major
bottleneck at lower skews.

TPC-C: The results for TPC-C are shown in Fig. 7. Because the
anti-cache architecture is able to efficiently evict cold data from the
tables that are growing (i.e., HISTORY, ORDERS and ORDER_LINE)
the throughput declines little. In TPC-C, the only transaction that
potentially accesses evicted data is the Order-Status transaction.
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(a) Block Size (b) Tuple Size

Figure 9: Block and Tuple Size Analysis – YCSB read-only workload
with 2× data size.

However, this transaction is only 4% of the workload and reads the
most recent order for a given customer. Thus, the data that these
transactions need is unlikely to be evicted, meaning the slight de-
crease in throughput for anti-caching is not due to unevicting data.
Instead, it is a result of the increasing memory overhead as the
amount of evicted data grows, since there is an entry in the Evicted
Table for each evicted tuple. Due to the amount of writes, the hy-
brid architecture performs worse than stand-alone MySQL when
data size is larger than memory. Overall, anti-caching provides a
7× improvement in throughput over the other architectures.

5. EXPERIMENTAL ANALYSIS
We also conducted additional experiments to evaluate our design

and test its sensitivity to changes in key parameters. These experi-
ments were conducted on the same hardware configuration used for
the system comparison study in Section 4.

5.1 Merge Strategies
We first compare the two block retrieval strategies from Sec-

tion 3.4: (1) block-merge and (2) tuple-merge. For this experi-
ment, we use the YCSB read-only workload at 2× memory with an
eviction block size of 1MB. The tuple-merge fill-factor (i.e., when
the lazy compaction merges the entire block into memory) is set to
0.50, meaning that each block can contain no more than 50% holes.

The results in Fig. 8 show that across the skews tested the tuple-
merge policy outperforms the block-merge policy. There are two
reasons for this. First is that the larger merge costs of the block-
merge policy, shown in Fig. 11a. Because merging tuples blocks
transactions from executing on the target partition, this can nega-
tively affect throughput. Second is that in the block-merge policy,
unrequested tuples (i.e., tuples that were part of the fetched block
but were not requested by a transaction) are merged and placed at
the cold end of the LRU Chain. Thus, these tuples were unevicted
only to shortly thereafter be evicted once again. This uneviction/re-
eviction cycle creates unnecessary overhead and is another reason
for the lower throughput of the block-merge policy.

5.2 Evicted Table Block Size
We next investigate the impact on performance of different Evicted

Table block sizes. This parameter controls how many tuples are in
each evicted block. Because we have already shown the advan-
tage of the tuple-merge policy over block-merge in Section 5.1, we
only evaluate the tuple-merge policy. In this experiment, we use the
read-only YCSB workload and with a database size of 2× memory.

The results in Fig. 9a show that larger block sizes reduce overall
throughput, especially for highly skewed workloads. The through-
put degradation is not due to the eviction process, which evicts
batches of blocks in a single sequential disk write. Thus, writing
five 1MB blocks or twenty 256KB blocks is nearly equivalent in
terms of I/O cost. The main difference is due to the added costs of
fetching larger blocks.

Another result from this experiment is that the difference in through-
put for larger block sizes is most pronounced at higher skewed

Figure 10: Eviction Chain Analysis.

workloads. The main reason for this is that with a highly skewed
workload, the DBMS needs to retrieve fewer blocks from disk. Be-
cause each block is unlikely to be retrieved from disk, it is also rela-
tively less common that multiple tuples from a single block will be
requested together. Thus, the system is less likely to benefit from
the locality of tuples on the same block.

5.3 Tuple Size
Another important factor in the performance of a DBMS with

anti-caching is tuple size. The memory overhead of anti-caching’s
internal data structures is much greater for smaller tuples than for
large tuples. Also, when evicting large blocks of smaller tuples, the
CPU overhead of eviction could be significant, because the DBMS
must update indexes and the Evicted Table for each evicted tuple.
The cost of eviction from the LRU Chain is constant regardless of
tuple size. Thus, to measure the affect of tuple size we will use
the read-heavy YCSB workload with 2× data size and 1MB block
sizes. We vary size of tuples in each trial from 128B to 1024B.

The results in Fig. 9b show that the DBMS achieves higher through-
puts for the larger tuple sizes. This may seem counterintuitive,
but the reason is because there is a small but unavoidable mem-
ory overhead for eviction per tuple. Thus, with smaller tuples anti-
caching is able to reclaim less memory with each tuple eviction.
This means that to reclaim a fixed amount of memory, more tu-
ples need to be evicted. However, evicting more tuples increases
the CPU resources consumed. This additional cost degrades the
DBMS’s throughput since transaction processing at a partition is
blocked while the eviction process executes.

5.4 LRU Chain Overhead
We next analyze the internal bookkeeping in anti-caching used

to keep track of tuple accesses. We compare the DBMS’s perfor-
mance using either a doubly-linked or a singly-linked list for the
LRU Chain. As discussed in Section 3.1, there is an inherent trade-
off between the amount of memory used to track the LRU ordering
of tuples in a table and the cost of maintaining that ordering. To
show this, we implemented a micro-benchmark in H-Store’s execu-
tion engine that updates 100,000 tuples and reports the total elapsed
time needed to update the LRU Chain. As a baseline, we compare
against the cost when anti-caching is disabled, and thus no eviction
chain is maintained.

The results are shown in Fig. 10. The baseline is constant across
all skew levels, as expected. For higher skewed workloads, the
doubly-linked list performs within 5% of the baseline and 20×
faster than the singly-linked list. The two strategies slowly con-
verge as skew is decreased. The difference in performance between
the singly-linked list and doubly-linked list is due to the high cost
of updating a tuple in the chain. Choosing a tuple for eviction in-
volves removing the front tuple of the chain, which can be done
in O(1). Similarly, adding a tuple to the back of the chain can
also be done in constant time. However, updating a tuple could,
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(a) Eviction/Uneviction Costs. For each block size, the left bar represents
the block-merge costs and the right bar represents the tuple-merge costs.

(b) Index Update Costs. Elapsed time represents cost of updating the spec-
ified number of indexes for a block of 1,000 tuples.

Figure 11: Eviction and Uneviction analysis.

in the worst case, involve scanning the entire chain to find the tu-
ple. This is an O(n) operation, where n is the number of tuples
in the chain. For high skew workloads, it is likely that the hot tu-
ples that are being updated frequently will be found at the back of
the chain, since the chain is ordered from coldest to hottest. Thus,
it is better to scan the chain from back-to-front rather than from
front-to-back, necessitating a doubly-linked list. We contend that
the added memory overhead of a doubly-linked list is a necessary
trade-off to optimize for skewed workloads.

5.5 Eviction Overhead Micro-benchmark
We created another micro-benchmark to compare the relative

costs of evicting and unevicting an anti-cache block for a fixed-
size 1KB tuple. The engine first reads the oldest tuples from one
table, copies them into an eviction block, updates an index, and
then writes the block to disk. Then, the engine reads that block
back from disk, copies the data back into the table, and updates
the index. This constitutes a single run of the benchmark. This is
repeated three times and the run times averaged for the final result.

The results in Fig. 11a show that the cost of updating indexes
and copying data to and from disk scales linearly relative to the
block size. Although in this experiment the construct and merge

phases take longer than the disk I/O operations, this experiment
was conducted with no other disk traffic.

Additionally, we created a micro-benchmark to analyze the cost
of updating indexes as the number of indexes is increased, since it is
not uncommon for OLTP tables to have more than one secondary
index. In our analysis, for completeness we test with up to eight
indexes, but acknowledge this is more indexes than would be likely
in practice due to the high costs of maintaining secondary indexes
in any DBMS, independent from anti-caching. Each benchmark
updates 1,000 tuples in a number of indexes varied from one to
eight. The choice of 1,000 tuples represents the number of tuples
in a single eviction block assuming 1KB tuples and a 1MB block.
Both a hash index and a balanced tree index were used. Reported

(a) YCSB (b) TPC-C

Figure 12: Eviction overhead measurements for a 60 second interval of the
TPC-C and YCSB (read-heavy, 2× memory, 1.0 skew) benchmarks. Each
vertical line represent a point in time when block(s) were evicted.

times represent the total time required to update all 1,000 tuples in
each of the n indexes, averaged over three runs of the benchmark.
The results are seen in Fig. 11b. The performance is shown to scale
linearly with the number of indexes and even for a larger number
of indexes elapsed time is reasonable. We conclude that the update
of secondary indexes is unlikely to be a bottleneck for most OLTP
workloads.

5.6 Overhead Measurements
Lastly, we measured the affect of evictions on the sustained through-

put in the system. For this, we record the throughput of the YCSB
and TPC-C benchmarks over time, also recording when evictions
occur. The graphs in Fig. 12 show a timeline view of the through-
put of our anti-caching implementation while it is evicting and un-
evicting data. The vertical lines represent when an eviction oc-
curs in the system. Eviction happens less frequently in TPC-C
because data takes longer to accumulate in memory due to few
unevictions. Also due to the few unevictions in TPC-C, through-
put is less volatile over time compared to YCSB. There are several
reasons for throughput volatility. One is group commit of writes,
which commits transactions in large batches, thereby making the
throughput more volatile over time. Eviction is another factor, and
the throughput can be seen to decrease during an eviction. This de-
crease is caused by the creation of the eviction block, which must
block other transactions. However, once created, writing of the
eviction block to disk is done asynchronously.

6. FUTURE WORK
We now discuss several extensions to our anti-caching model that

we plan to investigate in the future.

6.1 Larger-than-Memory Queries
Anti-caching allows main memory DBMSs to manage databases

that are larger than the amount of collective memory at all nodes.
Our current implementation works as long as the scope of each
transaction (i.e., the amount of data that it reads from or writes to
the database) fits in memory. But some applications contain queries
that need to access more data than can fit in memory, thus we need
to extend our anti-caching model to support them. We first note
that we have never seen an OLTP application in which a transaction
needs to write a large number of tuples all at once. Thus, there is no
need to support writes that exceed the size of main memory. Reads
are a different matter. While very uncommon in OLTP, it is possible
for an application to need to perform simple analytical queries (e.g.,
aggregates) on entire tables. This is a problem with our current anti-
cache design, since all of data needed to complete such a query
must be in memory first before the query can be processed. We
now discuss three possible solutions.

Obviously, large read queries generate a concurrency control prob-
lem when mixed with transactions that execute write queries. In a
traditional DBMS, the query will commence after acquiring a table-
level lock, at which point no writes will be processed in parallel.
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Once the query finishes, the lock is released and all the queued up
writes can move forward. In this scenario, the total time in the
DBMS is divided into two modes of operations: (1) small write
queries are running or (2) large read queries are running. This
could be implemented in H-Store, but we suspect that it will have
the same performance as traditional DBMS architectures [29].

The second solution is to process large read queries in historical
mode [30]. For this approach, each transaction is assigned a times-
tamp of when it enters the system and then is only allowed to read
tuples with a timestamp that is less than or equal to it. The DBMS
will not overwrite tuples when one of these queries is running, but
instead must keep both the before and after images of the database
to ensure that the large read queries are provided with the correct
version. H-Store already does this type of no-overwrite process-
ing through its asynchronous checkpoints [22]. Hence, extending it
to include timestamps is straightforward. Furthermore, time-travel
reads, originally proposed in Postgres, are already supported in sev-
eral DBMSs, including Vertica and Oracle. Again, this solution is
readily implementable and should perform in a comparable fashion
to the same solution in a traditional architecture.

Finally, the third solution that is often proposed for this prob-
lem is to allow dirty reads (but not dirty writes) [19]. In this case,
all read-write conflicts between queries are ignored. The result of
a large read query will include the affects of some updates from
parallel transactions, but not necessarily all of them. For this so-
lution, no guarantees can be made about the semantics of the read
result. In a partitioned system like H-Store, the query is decom-
posed into individual, single-partitioned operations and then aggre-
gated together after processing the data at each partition separately.
Again, this solution should execute with comparable performance
to the same solution in existing systems.

Although we plan to explore these options in detail in the future,
we do not expect the results to change the benefits of anti-caching.

6.2 Block Reorganization
As described in Section 3.4, when the DBMS uses the tuple-

merge retrieval policy, the anti-cache blocks could contain “holes”
of tuples that were selectively unevicted. Depending on the work-
load, over time these holes reduce the number of tuples that are
retrieved when a block is retrieved from disk. Thus, we are inves-
tigating how to reorganize blocks to reduce the number disk opera-
tions without affecting the system’s runtime performance.

There are several drawbacks to our lazy compaction scheme de-
scribed in Section 3.4. First, while the holes accumulate within a
block but remain below the threshold that triggers the compaction,
every time the block is read the garbage data is retrieved. Ideally,
each block fetched from disk would be full. Another problem is
that under the lazy block compaction scheme, when the number
of holes rises above the acceptable threshold and the entire block
is merged into memory, the non-hole tuples being merged in are
cold and likely unwanted. Thus, this has the same drawback as the
block-merge strategy, though to a lesser degree. It is likely that
these tuples will be immediately evicted during the next eviction
cycle. But if we know these tuples are cold, a better design would
be to never move them back into memory. As future work, we
plan to explore a background block compaction process that com-
pacts blocks without un-evicting the tuples. This could be done by
merging half-full blocks and updating the appropriate Evicted Ta-
ble entries for the evicted tuples compacted. Of course, this would
have to be done in a transactionally consistent way, ideally without
affecting the overall performance of the system.

Also possible in a block reorganization scheme would be seman-
tic reorganization of blocks consisting of tuples from a set of tables.

For example, if one of the queries in the workload often reads data
from several tables, then the data is considered semantically re-
lated. It would be desirable to have all of these tuples reside on the
same block, so that if that data is requested from disk only a single
block will need to be read.

6.3 Query Optimizations
There are several potential optimizations that would allow H-

Store to process queries on evicted tuples without needing to re-
trieve it from disk. For example, the DBMS does not need to re-
trieve an evicted tuple if an index “covers” a query (i.e., all of the
columns that the query needs in its predicate and output are in the
index). Another idea to further reduce the size of the database that
needs to be kept in memory is to evict only a portion of a tuple to
disk. That is, rather than evicting the entire tuple, the system could
only evict those columns that are unlikely to be needed. The sys-
tem could analyze transactions and identify which columns in each
table are not accessed often by queries and then choose the opti-
mal design that minimizes the number of block retrievals but also
maximizes the memory saved.

7. RELATED WORK
There is an extensive history of research on main memory DBMSs.

Notable systems include PRISMA/DB [6], Dalí [17] (later renamed
to DataBlitz [7]), and TimesTen [31]. Commercial implementa-
tions include VoltDB [4], SAP’s HANA [13], MemSQL [3], and
EXtremeDB [1]. RAMCloud [25] provides a scalable main mem-
ory resident key-value store for use in various cloud computing en-
vironments, though it does not provide some other common DBMS
features, such as secondary indexes and multi-object transactions.
All of these systems are limited to databases that are smaller than
the amount of available memory.

The HyPer DBMS [19] is a main memory system that is designed
to execute both OLTP and OLAP queries simultaneously. Similar
to H-Store, OLTP queries are executed serially at partitions without
the need for a heavyweight concurrency control scheme. HyPer
creates periodic memory snapshots to execute long running OLAP
queries. The DBMS relies on virtual memory paging to support
databases that are larger than the amount of available memory.

In [28], similar to this work, the authors address the problem of
evicting cold data to disk in a main memory database. However,
their approach is very different, and relies on virtual memory to
swap data from memory to disk. Tuple-level access patterns are
analyzed off line, and in-memory data is reorganized according to
these access patterns. Cold data is moved to a memory location that
is more likely to be paged to disk by the OS. This approach is sim-
ilar to anti-caching in that it attempts to evict the cold data to disk
and maintain the hot working set in memory. The major difference
between the two approaches is that the anti-caching architecture
does not block while an evicted block is being read from disk. This
allows other transactions to execute during the disk read. In con-
trast, during a virtual memory page fault, no further transactions
can be executed.

The goals of Project Siberia, part of Microsoft’s Hekaton [12]
main memory table extension for SQL Server, are also similar to
our anti-caching proposal, but the implementations are different. In
Hekaton, a table either exists entirely in main memory or is consid-
ered disk-based, meaning it is controlled by the standard disk-based
execution engine with buffer pool, locks and latches. Anti-caching,
which evicts data at the granularity of individual tuples, offers finer-
grained control over which data is evicted.
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In [20] the authors propose a method for identifying hot and cold
tuples from a sample of transactions in Hekaton. For our imple-
mentation in H-Store, we use a LRU-based identification method
that does not require an off-line mechanism. We consider this work
complementary and plan to investigate more complicated schemes
for identifying cold data.

Calvin [33] is a main memory OLTP system that is designed to
efficiently handle distributed transactions. It is also able to read
disk-resident data in a transactionally consistent way. To do this,
Calvin serializes transactions similar to a disk-based system. If a
small percentage of transactions need disk-resident data (the paper
suggests less than 1%), it is possible to hide disk latency and avoid
performance degradation.

The problem of maintaining coherence between an in-memory
buffer pool and data store on disk is explored in several previ-
ous works by retrofitting DBMSs to work with distributed caches.
MemcacheSQL [8] does this by modifying Postgres’s buffer pool to
use Memcached [14] as an extended distributed memory. All trans-
actions interact only with the Postgres front-end. In [27], the au-
thors propose TxCache, a transactionally consistent DBMS that au-
tomatically manages data in a standalone instance of Memcached.
The user must still specify how long data will remain in the cache
and the application still must perform a separate query each time to
determine whether an object is in the cache.

Our pre-pass execution phase is similar to run-ahead execution
models for processors explored in [23], where that goal is to pre-
execute instructions to identify page faults and pre-fetch data pages.

8. CONCLUSION
In this paper, we presented a new architecture for managing datasets

that are larger than the available memory while executing OLTP
workloads. With anti-caching, memory is the primary storage and
cold data is evicted to disk. Cold data is fetched from disk as
needed and merged with in-memory data while maintaining trans-
actional consistency. We also presented an analysis of our anti-
caching model on two popular OLTP benchmarks, namely YCSB
and TPC-C, across a wide range of data sizes and workload pa-
rameters. On the workloads and data sizes tested our results are
convincing. For skewed workloads with data 8× the size of mem-
ory, anti-caching has an 8×-17× performance advantage over a
disk-based DBMS and a 2×-9× performance advantage over the
same disk-based system fronted with a distributed main memory
cache. We conclude that for OLTP workloads, in particular those
with skewed data access, the results of this study demonstrate that
anti-caching can outperform traditional architectures popular today.
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