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Abstract

Background: Baicalein is a widely used Chinese herbal medicine derived from Scutellaria baicalenesis, which has

been traditionally used as anti-inflammatory and anti-cancer therapy. In this study we examined the anti-tumour

pathways activated following baicalein treatment in non-small cell lung cancer (NSCLC), both in-vitro and in-vivo.

Methods: The effect of baicalein treatment on H-460 cells in-vitro was assessed using both BrdU assay (cell

proliferation) and High Content Screening (multi-parameter apoptosis assay). A xenograft nude mouse model was

subsequently established using these cells and the effect of baicalein on tumour growth and survival assessed

in-vivo. Tumours were harvested from these mice and histological tissue analysis carried out. VEGF, 12-lipoxygenase

and microvessel density (CD-31) were assessed by immunohistochemistry (IHC), while H and E staining was carried

out to assess mitotic index. Gene expression profiling was carried out on corresponding RNA samples using Human

Cancer Pathway Finder Arrays and qRT-PCR, with further gene expression analysis carried out using qRT-PCR.

Results: Baicalein significantly decreased lung cancer proliferation in H-460 cells in a dose dependent manner.

At the functional level, a dose-dependent induction in apoptosis associated with decreased cellular f-actin content,

an increase in nuclear condensation and an increase in mitochondrial mass potential was observed. Orthotopic

treatment of experimental H-460 tumours in athymic nude mice with baicalein significantly (p < 0.05) reduced

tumour growth and prolonged survival. Histological analysis of resulting tumour xenografts demonstrated reduced

expression of both 12-lipoxygenase and VEGF proteins in baicalein-treated tumours, relative to untreated. A

significant (p < 0.01) reduction in both mitotic index and micro-vessel density was observed following baicalein

treatment. Gene expression profiling revealed a reduction (p < 0.01) in both VEGF and FGFR-2 following baicalein

treatment, with a corresponding increase (p < 0.001) in RB-1.

Conclusion: This study is the first to demonstrate efficacy of baicalein both in-vitro and in-vivo in NSCLC. These

effects may be mediated in part through a reduction in both cell cycle progression and angiogenesis. At the

molecular level, alterations in expression of VEGF, FGFR-2, and RB-1 have been implicated, suggesting a molecular

mechanism underlying this in-vivo effect.
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Background
Lung cancer is the primary cause of cancer related death

in the developed world, accounting for 12 % of deaths

worldwide [1]. The majority of patients with advanced

non-small cell lung cancer (NSCLC) will have a median

survival of 18 months and 9 months for locally advanced

or metastatic disease respectively [2]. While treatment

options have improved dramatically in recent years,

current therapeutic strategies remain relatively ineffective,

reflected by an overall survival rate of just 15 % [3]. Non-

small cell lung cancer (NSCLC) is the most common

cause of cancer-related deaths in men and women, com-

prising approximately 80–85 % of all lung cancers [4].

Baicalein, a bioactive flavanoid, is found in extracts of

the root of the plant Scutellaria baicalensis and has been

used extensively as a Chinese herbal medicine. A range

of biological effects of baicalein have been reported. It is

known for its anti-inflammatory, anti-pyretic and anti-

hypersensitivity properties [5], as well as demonstrating

anti-viral, and anti-tumour effects. Baicalein has been

previously reported to induce apoptosis in human

gastric, colon, hepatoma, pancreatic and prostate cancer

cells [6–10]. It has also been shown to target tumour

angiogenesis and metastasis [10]. However, the mecha-

nisms underlying these effects are poorly understood.

The mechanisms underlying the effects of baicalein were

previously examined in prostate and human epidermoid

cancer cells, with alterations to various members of the

Bcl-family of proteins, activation of the caspase cascade

and PARP cleavage reported [6, 10, 11].

While the effects of baicalein on a range of human can-

cer cells has been investigated in-vitro, few studies have

been carried out to examine its effects in-vivo. The first

indication of an in-vivo growth inhibitory effect of baica-

lein was reported in prostate cancer [12]. A later study re-

ported that it reduced tumour growth in hepatocellular

carcinoma [8], with a further study demonstrating that it

reduced the incidence of tumour formation in colitis-

associated colon cancer [13]. While previous studies have

demonstrated the anti-cancer efficacy of this flavanoid in

NSCLC, these are based in cell lines and cannot predict

the efficacy of baicalein in-vivo. Leung et al., found that

baicalein inhibits tumour cells growth in NSCLC via in-

duction of apoptosis. This was associated with altered

regulation of cell cycle and apoptosis proteins such as bcl-

2/bax, caspase-3 and p53 [14]. A more recent study car-

ried out by Gong et al., also demonstrated dysregulation

of the apoptotic machinery (bcl-2/bax ratio) as well as

negatively affecting proteins implicated in angiogenesis

(MMP-2, MMP-9) following baicalein treatment [5]. The

negative effect on angiogenesis proteins lends support to

earlier observations in human vascular endothelial cells

(HUVECs) [10]. This study also demonstrated an anti-

angiogenic role for baicalein in-vivo using the CAM assay.

In the current study, we examined the effect of physiolo-

gically relevant doses of baicalein on multiple pathways

regulating tumour growth in NSCLC cells in-vitro and

examined the use of baicalein as a therapeutic strategy in

a xenograft mouse model. Using this model, we investi-

gated the effects of baicalein treatment on tumour growth

and survival in-vivo and also assessed potential mecha-

nisms underlying these effects.

Methods
Cell culture and drugs

The human non-small cell lung cancer cells H-460 (large

cell carcinoma), A549 (adenocarcinoma) and SKMES1

(squamous carcinoma) were obtained from the American

Type Culture Collection (Rockville, MD) and maintained

in a humidified atmosphere of 5 % CO2 in air at 37 °C.

They were routinely cultured in RPMI 1640 medium,

which was supplemented with 10 % (v/v) foetal bovine

serum (Life Technologies Inc.), 2 μM L-glutamine, and

100 μg/ml penicillin-streptomycin. Sub-culturing was car-

ried out when the cells reached 80 % confluency. Baicalein

was obtained from Cayman Chemical (Ann Arbor, MI,

USA) and made up either in DMSO (in-vitro cell culture

studies) or in a solution containing 80 % PBS and 20 %

DMSO (in-vivo xenograft studies). Proportionate volumes

of DMSO were used for vehicle control groups in all

experiments.

Animals

Surgical procedures and care of animals was approved by

the Ethics Committee of Trinity College Dublin, Ireland,

and were carried out according to institutional guidelines.

All experiments were carried out under a license granted

by the Department of Health and Children in Ireland.

Male 4–6 week old BALBc nude mice (Harlan Labora-

tories, UK) were housed at a constant temperature and

supplied with laboratory chow and water ad libatum on a

12-h dark/light cycle. Mice (5/cage) were kept in isolated

(with their own air supply), sterile cages in a clean facility,

with bedding changed twice weekly. Animal husbandry

was carried out under sterile conditions in a microbio-

logical safety cabinet. Body weights were recorded prior to

and during experimentation to ensure the ongoing health

of the animals.

Cell proliferation assay

H-460, A549 or SKMES1 cells were seeded at a concen-

tration of 5 × 103/well into 96-well plates and allowed to

adhere at 37 °C overnight. Following overnight incuba-

tion in serum-deplated media (0.5 % FBS), cells were

treated for 24 h with or without various concentrations

(100 nM, 1 μM, 10 μM, 100 μM) of baicalein (Caymen

Chemicals, Ann Arbor, MI). Serum depletion was

carried out in order to closely replicate the tumour
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microenvironment in-vivo [15]. Thereafter, cell prolifera-

tion was assessed by a specific non-radioactive cell

proliferation ELISA based on the measurement of BrdU

incorporation during DNA synthesis according to the

manufacturer’s instructions (Roche Diagnostics GmbH,

Mannheim, Germany).

High content screening: multi-parameter apoptosis assay

Cells were seeded in at a concentration of 5 × 103/well

into 96-well plates and allowed to adhere overnight at

37 °C. Following overnight incubation in serum-depleted

media, cells were treated in duplicate for 24 h with 100

nM, 1 μM, 10 μM and 100 μM baicalein. A positive

apoptosis control treatment (10 μM cisplatin) was also

used. Parameters relating to the process of apoptosis was

then analysed using the Multi-parameter Apoptosis 1

HitKit (Cellomics Inc, Pittsburgh, PA, USA) following the

manufacturers’ instructions. Briefly, 30 min prior to

completion of the compound incubation, 50 μL of

MitoTracker/Hoescht solution was added to each well

and incubated at 37 °C for 30 min. 100 μL of pre-warmed

fixation solution (7.3 mL of 37 % formaldehyde added to

14.7 mL 1X Wash Buffer) was then added directly to each

well and the plate was incubated in a fume hood at RT for

10 min. The wells were then washed in 1X Wash Buffer,

and 1X Permeabilization Buffer was added for 90 s.

Following a further washing step, 50 μL AlexaFlour

Phalloidin Solution was added to each well and the plates

incubated for 30 min. The plates were washed 3 times in

1X Wash Buffer, with the last wash left in the wells. Plates

were then sealed and analysed on the InCell 1000

Analyser (GE/Amersham Biosciences, Piscataway, NJ,

USA), according to manufacturers’ instructions (Cellomics

Inc., Pittsburgh, PA, USA). Analysis of the 96-well plates

was carried out by a trained user of the InCell analyser

software.

Xenograft mouse model: assessment of the effects of

baicalein on tumour growth and survival in-vivo

H-460 cells (1 × 106) were administered subcutaneously

into the left dorsal flank of 6-week-old male nude mice

(BALBc). When tumour size reached approximately

50 mm3, animals were randomised (blindly) into control

and treatment groups (n = 7/group). Mice were adminis-

tered either the flavanoid/LOX inhibitor, baicalein

(1 mg/kg or 3 mg/kg in 50 μl DMSO/PBS), or an equal

volume of a vehicle control (20 % DMSO in PBS), by

intratumoural injection (3 groups in total; each group

represents an experimental unit). Intratumoural injec-

tion was carried out twice weekly, and tumour size was

measured every 48 h using a digital callipers. Tumour

volume was calculated from size measurements using

the formula V = width × length × Π/6. Body weights

were recorded at the beginning of the experiment and

subsequently at all intervals where tumour size was re-

corded. Animals were regularly monitored for evidence

of any adverse experimental effects (such as dramatic

weight loss or tumour ulceration), although none were

observed. Experiments were terminated when tumours

reached a size of 1500 mm (in any direction) and the

animals were sacrificed by cervical dislocation. Tumours

were then isolated and excised for further analysis. A

portion of the tumour was placed in formalin, processed,

and embedded in paraffin for histological analysis. The

remaining portion was removed into RNAlater® (Qiagen,

Sussex, UK) overnight (at 4 °C) before storing at −80 °C

for RNA analysis.

Gene expression analaysis following baicalein treatment

in-vitro and in-vivo: qPCR arrays

Gene-expression profiling was carried out on tumour

tissue isolated from the sub-cutaneous xenograft model

of tumour growth (previously described). Briefly, total

RNA was extracted from tumour tissue samples using a

Qiagen RNeasy® Mini Kit, according to manufacturers’

instructions (Qiagen, Sussex, UK). A DNase treatment

step was also included in this protocol to ensure the

highest RNA quality. First strand cDNA was synthesized

using the ReactionReady™ First Strand cDNA synthesis

kit (Molecular Research Center Inc., OH, US), as previ-

ously described. Gene expression profiles following

baicalein treatment in the H-460 cell line in-vivo were

assessed by quantitative PCR array, using the RT2

Profiler™ PCR Array Human Cancer PathwayFinder

(SuperArray Bioscience Corporation, MD, US) (n = 2

pooled control samples and 2 pooled 1 mg/kg baicalein

samples). Quantitative RT-PCR was carried out in all

groups for the expression of a panel of genes of interest

following baicalein treatment (selected from PCR-array

results data and also based on previous observations in

the literature). Genes of interest included VEGFA, FGFR2,

ITGAV, BCl-2, MMP-2, MMP-9, IGF-1 and Ang-2. This

qRT-PCR was carried out using validated primer/probe

sets (Life Technologies, Applied Biosystems, Carlsbad,

CA, USA) and was run on a 9500 thermal cycler (Applied

Biosystems, Life Technologies). 18S was used as an

endogenous control for data normalization. Analysis was

performed using SDS 2.3 and SDS RQ 1.2 relative quanti-

fication software (Applied Biosystems). One untreated (ve-

hicle-treated) sample was set as the calibrator for analysis.

In a separate set of experiments, the A549 and

SKMES1 cells were cultured in 6-well plates and serum

depleted overnight. Thereafter cells were treated with

1 μM baicalein for 24 h and RNA was extracted using a

Qiagen RNeasy® Mini Kit, according to manufacturers’

instructions (Qiagen, Sussex, UK). cDNA was prepared

as described above and gene expression profiling carried

out using Taqman quantitative PCR arrays (Cancer
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Profiler Arrays, Superarray). Genes listed were found to

be differentially regulated (greater than 2 fold increase/

decrease) in the baicalein-treated cells, relative to

vehicle-treated controls.

Histological analysis following baicalein treament in-vivo

Histological analysis was also carried out on all tissue

samples isolated from mouse xenografts. 5 μM sections

were cut from all paraffin blocks and stained for 12-

LOX, VEGF and CD-31 (as microvessel density marker).

Heamatoxylin and eosin staining was carried out to assess

mitotic cell activity/mitotic index. Immunohistochemical

staining was carried out manually using Vectastain Elite

Kits (Vector labs, Burlingame, CA, USA) and rabbit

polyclonal IgGs specific for 12-LOX (1:200; American

Diagnostica, Stamford, CT, USA), VEGF (1:500; Millipore,

Billerica, MA, USA), and CD-31 (1:100 DAKO, Glostrup,

Denmark). Sections were incubated in the primary anti-

body for 1 h at room temperature. Staining was visualized

and quantified using a Nikon 900i light microscope.

CD-31 microvessel density quantification was carried

out by manually counting the number of vessels in each

high-powered field of view under x 20 magnification

(variation in xenograft sizes between groups), with the

average number of vessels then calculated for each xeno-

graft sample. Quantification was carried out by 3 inde-

pendent observers. Mitotic index was estimated using a

1 mm3 grid, counting an average of 500 tumour cells per

mm3. 10 fields were scored by 2 independent observers

(Z.U., C.D.) in a blinded fashion. Mitotic cells were iden-

tified morphologically and the mean number of mitotic

cells in 10 fields used as the mitotic index.

Statistical analysis

Statistical comparison between treatments was carried out

using ANOVA with post-test analysis by Tukey-Kramer

multiple comparisons test. Data are taken as significant

where p < 0.05. Statistical comparison of groups (as unit of

measurement) was carried out using a 2-tailed Student’s t-

test or ANOVA with Scheffe post-hoc correction. Results

are expressed as mean ± SEM. Data were taken as signifi-

cant where p < 0.05. Statistical analysis was carried out

using GraphPad Prism 5.0 (GraphPad Software Inc., La

Jolla, CA, USA).

Results
Effect of baicalein treatment on lung cancer cell survival

The flavanoid, baicalein induced a significant growth in-

hibition in lung cancer cells in a dose-dependent manner

as measured by BrdU incorporation into H-460 cells at

24 h, relative to control cells (Fig. 1). This growth inhib-

ition was first observed at 1 μM baicalein (61 ± 8.9 %

baicalein vs. 99 ± 2.5 % untreated; p < 0.01) and further

exacerbated following treatment with both 10 μM (17 ±

2.9 % baicalein vs. 99 ± 2.5 % untreated; p < 0.0001) and

100 μM baicalein (12 ± 4.5 % baicalein vs. 99 ± 2.5 %

untreated; p < 0.0001). Treatment with 10 μM of the

positive anti-neoplastic agent, cisplatin resulted in a

similar anti-proliferative effect (21 ± 3.74 % cisplatin vs.

99 ± 2.5 % untreated; p < 0.0001).

To demonstrate that the effect of baicalein was not

unique to H460 cells, A549 cells representing adenocar-

cinoma and SKMES1 cells (squamous carcinoma) were

also treated with baicaelin and baicalein significantly

reduced proliferation of each of these NSCLC subtypes

(Additional file 1: Figure S1). These data show that

baicalein has broader applicability as an anti-cancer

agents across various NSCLC subtypes.

Induction of cell death following baicalein treatment

A dose-dependent induction of apoptosis following

baicalein treatment was observed in H-460 cells. High

Content Screening analysis was carried out following

24 h baicalein treatment. Multi-parameter analysis of

morphological features of apoptosis was assessed using

the GE In Cell Analyser. Three spectrally distinct fluoro-

phore labels were used to examine fundamental parame-

ters of apoptosis; loss of f-actin content (cytoskeletal

integrity), increased nuclear condensation and increased

mitochondrial mass/potential (Fig. 2). A reduction in

Alexa Flour®488Phalloidin staining corresponded with

loss of f-actin and thus a loss of cell integrity, a hallmark

of apoptosis. This was evident at 10 μM baicalein treat-

ment, and more pronounced at 100 μM when compared

Fig. 1 Effect of baicalein treatment on lung tumour cell proliferation/

survival. Tumour cell proliferation was assessed following 24 h

treatment (100 nM, 1 μM, 10 μM and 100 μM baicalein) by BrdU assay.

Baicalein treatment resulted in a significant reduction in tumour cell

survival in H-460 cells. Data is expressed as mean ± SEM of three

independent experiments, with cell proliferation expressed as a

percentage of untreated controls (*p < 0.05, **p < 0.01, ***p < 0.0001)
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to untreated control cells (Fig. 2a). Nuclear condensation

and fragmentation, viewed with aid of Hoescht staining

of the nuclei, was observed in cells treated with baicalein,

compared with untreated cells, which have intact normal-

sized nuclei. An increase in Mito Tracker® Red staining

also occurred in treated cells (also evident at 10 μM and

100 μM concentrations) when compared to controls. This

corresponded to an increase in mitochondrial activity,

coupled with a loss in potential across the mitochondrial

membrane, and also occurs during apoptosis.

Quantification of multi-parameter apoptosis signal-

ling was carried out using In Cell Analyser Software,

confirming qualitative observations. Baicalein treat-

ment resulted in a significant (p < 0.0001) reduction

in f-actin content (Fig. 3a) with a significant increase

in both nuclear condensation (Fig. 3b; p < 0.0001) and

mitochondrial mass/potential (Fig. 3c; p < 0.0001) also

observed. The reduction in f-actin content was appar-

ent at 1 μM concentration (175 ± 9.6 units 1 μM

baicalein vs. 185 ± 8.6 units untreated), but reached

statistical significance following treatment with 10 μM

(126 ± 1.72 units) and 100 μM (107 ± 0.4 units) of the

drug. Treatment with cisplatin had no effect on cyto-

skeletal integrity (195 ± 6 units). The increase in

nuclear condensation observed following treatment

only reached significance at 10 μM concentration

(157 ± 1.9 units 10 μM baicalein vs. 117 ± 1.5 units

untreated), an effect that was maintained at 100 μM

(131 ± 1.6 units; p < 0.01). A similar significant in-

crease in fragmentation was also observed following

cisplatin treatment (136 ± 1.6 units 10 μM cisplatin vs.

117 ± 1.5 units untreated). Mitochondrial activity

(mass/potential) was similarly increased following

baicalein treatment, an effect that reached significance

at 10 μM (824 ± 41.1 units 10 μM baicalein vs. 603 ±

22.5 units untreated) and 100 μM (1043 ± 44.3 units)

concentrations. As with f-actin, no change in mito-

chondrial activity was seen following cisplatin treat-

ment (697 ± 17 units 10 μM cisplatin vs. 603 ± 22.5

units untreated).

Cell number was also recorded following baicalein

treatment using the In Cell Analyser. At concentra-

tions of 10 μM and 100 μM (Fig. 3d), a drastic reduc-

tion in cell number can be seen compared to control

cells and cells treated with the other two concentra-

tions (891 ± 286.6 cells 10 μM baicalein vs. 3414 ± 300

cells untreated; 989 ± 89.4 cells 100 μM baicalein vs.

3414 ± 300 cells untreated; p < 0.0001). This was compar-

able with the cell count observed following cisplatin treat-

ment (1489 ± 256.7 cells 10 μM cisplatin vs. 3414 ± 300

cells untreated; p < 0.001), with baicalein treatment dem-

onstrating an even greater effect on cell number. These

findings support the findings of the proliferation assays,

reported in Fig. 1.

Fig. 2 Multi-parameter apoptosis analysis of baicalein-treated H-460 cells. Morphologic features of apoptosis were identified in-vitro by High Content

Screening analysis. Apoptosis was induced in a dose-dependent manner after treatment with 100 nM, 1 μM, 10 μM and 100 μM concentrations of

baicalein when compared to control cells. 10 μM cisplatin was used as a positive apoptosis control. 3 spectrally distinct fluorophore labels were used

to assess cell health by examining nuclei, f-actin (cytoskeletal protein) and mitochondrial potential. Loss of f-actin (green) shows the loss of cell

integrity during apoptosis as membrane blebbing occurs and mitochondrial activity increases during apoptosis (orange) coupled with an increase

in nuclear condensation
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The effect of baicalein on tumour growth and survival

in-vivo

The sub-cutaneous (s.c.) xenograft mouse model of

tumour growth was used to examine a potential role for

baicalein in the treatment of NSCLC in-vivo. All (21/21)

experimental animals were used in the subsequent ana-

lysis. Monitoring of tumour growth for approximately

4 weeks post-injection revealed a significant (p < 0.05)

reduction in growth (as determined by measurement of

tumour volume, described above) in baicalein-treated H-

460 tumours, relative to PBS + DMSO treated controls

(n = 7/group; Fig. 4a). This was paralleled by a consider-

able reduction in animal survival (animals were sacri-

ficed once the tumours reached a size of 1500 mm in

any direction;n = 7/group; Fig. 4b). Median survival

(following first baicalein treatment) was 13 days for the

vehicle control group, relative to a median survival of

26 days for the baicalein-treated group. All mice in the

vehicle control group were sacrificed by day 26, while al-

most 30 % of baicalein-treated mice survived for 52 days

(86 % survival on day 26). Baicalein was well tolerated in

all mice treated with the drug, with no significant

difference in animal weight observed during the course

of treatment. Notably, the higher concentration of baica-

lein 3 mg/Kg did not extend survival further in the sub-

cutaneous (s.c.) xenograft mouse model. In fact, while

tumour growth was inhibited and survival was significantly

extended in these mice (Additional file 2: Figure S2), the

higher dose of baicaline was less effective that then

1 mg/kg dose. This is most likely due to baicalein in-

ducing a greater innate immune response following higher

rates of apoptosis in the tumours, which could have

resulted in more immune infiltrate and larger tumour

bulk, resulting in the animals being sacrificed earlier when

the tumours reached the 1500 mm3 size.

Histologic examination demonstrated reduced 12-LOX

(Fig. 4c) and VEGF (Fig. 4d) expression in the baicalein-

treated xenograft groups, relative to the saline-treated

controls. This was paralleled by a significant reduction

in mitotic cell index (1.21 % ± 0.1, 1 mg/kg baicalein vs.

2.6 % ± 0.23 control; p < 0.001; 0.99 % ± 0.12, 3 mg/kg

baicalein vs. 2.6 % ± 0.23, control; p < 0.0001; n = 7/

group; Fig. 5a). Microvessel density was also significantly

reduced by baicalein treatment (p < 0.01, 1 mg/kg

Fig. 3 Quantification of morphologic features of apoptosis following baicalein treatment. The In Cell Analyser was used to quantify apoptosis

markers following treatment with increasing concentrations of baicalein (100 nM, 1 μM, 10 μM and 100 μM) and High Content Screening. Levels

of f-actin were significantly reduced by baicalein (a), while nuclear condensation (b) and mitochondrial mass/potential (c) were both increased.

Cell count was also significantly reduced following treatment (d), confirming earlier observations. Data is expressed as mean ± SEM of three

independent experiments (**p < 0.01, ***p < 0.0001)
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baicalein vs. control; p <0.01, 3 mg/kg baicalein vs.

control; n = 7/group), as indicated by CD-31 staining

(Fig. 5b).

Baicalein-induced changes in gene expression in-vivo

Human Cancer Pathway Finder RT2 PCR Profiler™ PCR

arrays were incorporated to determine the molecular

mechanisms underlying the effects of baicalein treat-

ment on tumour growth and survival in-vivo. RNA was

isolated from baicalein-treated (1 mg/kg) H-460 xeno-

grafts and corresponding vehicle treated controls (n = 2/

group). First strand cDNA was synthesized from 1 μg of

each RNA sample and used for gene-expression analysis.

Array data was pooled from 2 mice/group and used to

generate a gene-expression profile following treatment.

A number of genes were differentially regulated

(greater than 2-fold increase or decrease) in the baicalein-

treated group, relative to the vehicle control group

(Table 1). A total of eleven genes were significantly altered

following baicalein treatment, with gene expression

changes across all biological pathways observed. The

greatest number of gene-changes were observed in the cell

Fig. 4 Effect of baicalein treatment on NSCLC tumour growth in-vivo. A xenograft mouse model was generated using H-460 NSCLC cells. When

tumour size reached approximately 50 mm3, animals were randomised into control and treatment groups (n = 7/group). Mice were administered

either the flavanoid, baicalein (dissolved in 50 μl DMSO/PBS), or an equal volume of a vehicle control (20 % DMSO in PBS), by intra-tumoural injection

(twice weekly). Baicalein treatment significantly reduced tumour growth, relative to vehicle-treated controls (a; n = 7/group, *p < 0.05). Treatment also

prolonged survival of these xenograft mice (b). Immunohistochemical staining of the xenograft tumour tissue revealed reduced 12-LOX expression

following baicalein treatment (c), while VEGF expression was also negatively affected (d)
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Fig. 5 In-vivo tumour cell growth and angiogenesis following baicalein treatment. Tumour tissue from all xenografts was processed for histological

analysis. Immunohistochemical staining revealed an increase in mitotic index (a), coupled with a reduction in microvessel density (b) following

treatment. Data is expressed as mean ± SEM (n = 7/group; *p < 0.05, ***p < 0.01)

Table 1 Effect of baicalein treatment on cancer gene expression in-vivo. Genes shown to be up-regulated or down-regulated in

H-460 cells following baicalein treatment, by qPCR. RNA was extracted from xenograft tumour tissue treated with baicalein and

corresponding control tissue (n = 2/group). cDNA was prepared from this RNA and gene expression profiling carried out using

Taqman quantitative PCR arrays (Cancer Profiler Arrays, Superarray). 11 genes were found to be differentially regulated (greater than

2 fold increase/decrease) in the baicalein-treated tumours, relative to vehicle-treated controls

Altered gene Gene name Function Fold change

CDC25A Cell division cycle 25A Cell cycle arrest. Allows time for DNA repair. −2.79

CHEK2 Checkpoint kinase 2 Cell cycle check-point regulator and tumor suppressor −2.24

E2F1 E2F transcription factor 1 Cell cycle control. Mediator of P53 - dependant apoptosis. +2.27

TNFRSF25 (DR3) TNF receptor superfamily; member 25 Increases apoptosis. Anti-metastatic. +3.4

ERBB2 V-ERB-B2 avian erythroblastic leukemia
viral oncogene homolog 2

Oncogene. Mutations associated with lung cancer. −2.16

ITGA1 Integrin alpha-1 Involved in cell-cell adhesion. −2.11

ITGB3 Integrin beta-3 Cell adhesion and cell surface mediated signalling.
Involvedin platelet aggregation.

+6.96

FGFR-2 Fibroblast Growth factor R2 Angiogenic receptor. Inhibition blocks small cell lung
cancer growth in-vitro and in-vivo.

−8.27

IFNB-1 Interferon B1 Anti-tumor effects. −2.07

MMP-9 Matrix metalloproteinase-9 Invasion of tumour cells through basement membrane.
Implicated in lung metastasis of breast tumours.

+2.08

PLAU Urinary plasminogen activator Converts plasminogen to plasmin. Stimulates cell migration. +2.04
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cycle control and DNA damage repair pathway (3 genes),

followed by adhesion, angiogenesis, and invasion and

metastasis pathways (2 genes altered in each pathway).

The most significantly up-regulated genes included

TNFRSF25 (+3.4) and ITGB3 (+6.96), which have been

shown to induce apoptosis, and have been associated with

increased survival in cancer. The most significantly down-

regulated gene was FGFR2 (−8.27).

The most significantly altered gene on this array

(FGFR2) was selected for further validation studies. A

further panel of genes was also selected based on previous

observations in the literature. This panel was mainly com-

prised of genes implicated in angiogenesis and apoptosis

pathways and included VEGFA, FGFR2, Bcl-2, ITGAV,

RB-1, MMP-2, MMP-9, IGF-1 and Ang-2. No amplifica-

tion of IGF-1 or Ang-2 was observed (data not shown)

suggesting that these genes are expressed at a very low

level in H-460 xenografts. Expression of both FGFR-2 and

VEGF was significantly (p < 0.01) reduced by baicalein

treatment, relative to the control group (Fig. 6a and b),

validating previous observations in-vivo and in-vitro.

MMP-2 and MMP-9 have previously been shown to be

negatively affected by baicalein treatment [10, 16]. A

reduction in MMP-9 expression following baicalein treat-

ment was not observed in this study, although a trend to-

wards reduced MMP-2 expression was observed following

treatment (p = 0.14; 1.8 ± 0.3 baicalein treated vs. 3.2 ± 0.8

vehicle control; Fig. 6c). There was no significant differ-

ence in ITGAV levels between control and treatment

groups (Fig. 6d). Bcl-2 levels appeared to increase,

although this failed to reach statistical significance (Fig. 6e).

RB-1 (a tumour suppressor gene, which regulates cell sur-

vival and cell death) was significantly (p < 0.001) increased

by baicalein treatment at both concentrations (Fig. 6f).

To determine if these gene alterations are a more

generalised effect of baicalein in NSCLC, two other

NSCLC cell lines, A549 and SKMES1, were treated with

baicalein and gene changes were determined using the

same arrays. Notably in both A549 and SKMES1 cells, a

number of similar genes were altered (Additional file 3:

Table S1 and Additional file 4: Table S2). In the SKMES1

cell line the validated gene FGFR-2 was downregulated

Fig. 6 Gene expression profiling following baicalein treatment. A panel of genes were selected for gene expression analysis by quantitative real-time

PCR using specific probe/primer sets. FGFR-2 (a) was the most significantly altered gene to come out of the PCR arrays (Table 1). VEGF (b), MMP-2

(c) and ITGAV (d) have been implicated in tumour angiogenesis and were also selected based on previous observations in the literature. Bcl-2 (e) has

been implicated in the apoptotic response to baicalein, while RB-1 (f) is a known lung cancer gene. Data is expressed as mean ± SEM (n = 7/group;

**p < 0.01, ***p < 0.0001)
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3.29 fold following treatment with baicalein. Additionally

gene levels of VEGF were decreased in both the A549

(2.55 fold) and the SKMES1 (3.39 fold), indicating a gen-

eralised effect of baicalein on angiogenic gene expression

profiles across at least three different NSCLC cell lines.

Angiogenic regulators formed the highest group of al-

tered genes when grouped according to cancer hallmark,

with 28 % of altered genes in A549 and 33 % of altered

genes in the SKMES1 cell line. A decrease in integrin

expression was also seen in SKMES1 cells, with ITGA2

and ITGA4 being decreased by 2.09 and 28–fold

respectively. While ITGA1 was decreased (2.11 fold) by

baicalein in the H460 tumours, this indicates a common

effect of baicalein on integrin alpha expression across a

panel of NSCLC cells.

Discussion

Baicalein is a bioactive flavonoid originally isolated from

the roots of Scutellaria baicalensis. The flavonoid has

been shown to inhibit certain types of lipoxygenases [17]

and also acts as an anti-inflammatory agent [18]. It has

demonstrated considerable promise as an anti-cancer agent

both in-vitro [5, 9, 14, 19] and in-vivo [12, 13, 20, 21].

While some investigators have used this agent as a target

of the LOX pathway in cancer [14, 22], more recent studies

have focused on the anti-cancer effects of this com-

pound and elucidating the mechanisms underlying

these effects. While numerous in-vitro studies have

been carried out with baicalein in a range of cancer

types, the relative number of in-vivo studies with this

agent is small, with its in-vivo efficacy in NSCLC not

reported. In light of promising in-vitro data in

NSCLC, the aim of this study was to investigate the

role of baicalein as an anti-cancer agent in-vivo in

NSCLC and to uncover potential mechanisms underlying

these effects. Our study demonstrates that baicalein re-

duces growth and improves survival in-vivo, an effect that

is at least partly mediated through effects on cell cycle and

tumour angiogenesis.

Using a number of in-vitro assays, we first demon-

strated the anti-proliferative and pro-apoptotic effects of

baicalein in the H-460 cell line. A dose-dependent

reduction in cell proliferation was observed following

baicalein treatment and this was validated by High

Content Screening. This decrease in cell numbers was

associated with an increase in apoptosis, confirming

initial observations by Leung et al. [14]. Using a fluoro-

chrome based multi-parameter apoptosis assay we ob-

served a significant increase in nuclear condensation

and mitochondrial activity, in conjunction with a signifi-

cant loss of cytoskeletal integrity and the formation of

apoptotic bodies. Qualitative observations were validated

by quantification using the In Cell Analyser. While these

observations are merely a snap-shot of cellular structure

at a selected time-point, they indicate significant changes

in many characteristics of apoptosis following baicalein

treatment. Similar anti-proliferative and pro-apoptotic

effects have been observed in pancreatic and prostate

cancer cells following baicalein treatment [6, 22]. Zhang

et al., demonstrated the growth inhibitory and pro-

apoptotic effects of baicalein treatment in oesophageal

squamous cell carcinoma cells. They demonstrated in-

creased expression of pro-apoptotic mediators’ caspase-9

and −3 as well as PARP following treatment. They also

found components of the PI3K/Akt pathway to be up-

regulated by baicalein [13]. Baicalein treatment of colon

cancer cells inhibited cell growth and induced apoptotic

cell death [8]. The authors demonstrated that apoptosis in-

duction was associated with cleavage of poly(ADP-ribose)

polymerase, while NF-kB was suppressed through PPARγ

activation. Our study did not assess the molecular mecha-

nisms underlying baicalein-mediated effects in-vitro, but

instead used a xenograft mouse model to examine the

anti-tumour effects and mechanisms of this agent in-vivo.

Treatment of H-460 xenografts with baicalein (intra-

tumoural injection) resulted in a significant decline in

tumour growth and increased survival in-vivo. Subse-

quent histological analysis of xenograft tumours revealed

a significant loss in mitosis (mitotic index) and a corre-

sponding reduction in angiogenesis (microvessel density).

While there are some limitations associated with this

experimental approach (using a homogeneous tumour cell

population derived from humans to inject into mice), a

similar approach has been used to test the in-vivo efficacy

of baicalein in other cancer types. While ours is the first

study to demonstrate a growth-inhibitory effect of baica-

lein in lung tumours, a similar effect was previously

observed following oral baicalein administration in

prostate tumours, confirming our observations [12]. Anti-

proliferative and anti-angiogenic (sprout assay) effects

were also demonstrated in prostate cancer cell lines,

which is in further agreement with our study. The

incidence of colitis-associated colon tumour formation

(induced by azoxymethane and dextran sulphate sodium)

was also significantly reduced by baicalein treatment, sup-

porting our own observations [13]. Several reports have

demonstrated that the anti-proliferative effects of baicalein

are mediated via its inhibitory action on 12-LOX [23, 24].

It was originally demonstrated to be a selective inhibitor

of 12-lipoxygenase (12-LOX), although it has more

recently also been shown to inhibit the activity of reticulo-

cyte human 15-LOX-1, which is highly expressed in

malignant cancer cells [17]. LOXs have been shown to

regulate cell survival and apoptosis in a number of cell

types [25]. We observed reduced 12-LOX protein expres-

sion in baicalein-treated xenograft tissue (relative to

vehicle-control tissue) following histological analysis,

providing evidence for the in-vivo activity of this agent.
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We also observed reduced VEGF expression in the treated

tissue providing support for an anti-angiogenic mechan-

ism of action of baicalein.

The molecular mechanisms underlying the effects of

baicalein in-vivo in NSCLC have not yet been elucidated.

In light of this, we used low-density gene-expression

arrays (Cancer Pathway Profiler Arrays) to quantitatively

assess the effect of baicalein on a panel of 84 genes

associated with the hallmarks of cancer. Notable changes

in genes involved in the pathways of cell cycle control,

apoptosis, adhesion, angiogenesis, and invasion/metasta-

sis were observed following baicalein treatment. While

baicalein significantly reduced tumor growth and

survival in-vivo, its effect on gene-expression patterns

were modest. Only 11 genes were altered by greater than

2-fold following treatment and just 3 genes were altered

by greater than 3-fold. This is likely due to the relatively

low concentration of baicalein used in our study,

although the significant effect on tumour growth and

subsequent histological features demonstrate its benefit.

With the exception of Kim et al., previous xenograft

studies with baicalein have used higher concentrations,

although none of these have carried out gene or pro-

tein expression analysis on the resulting tumour tissue

[12, 13, 20, 21]. Additionally, previous studies have been

cell-line based and therefore failed to assess the contribu-

tion of the tumour microenvironment.

As baicalein reduced angiogenesis and VEGF

protein expression in our xenograft tissue, we initially

focused on angiogenic genes and validated genes

changes using qPCR probe assays (using all samples).

FGFR-2 was the most significantly down-regulated

gene. FGFR-2 protein has been reported to be over-

expressed in NSCLC [26], while FGFR inhibition has

recently been shown to block lung cancer growth

both in-vitro and in-vivo [27, 28]. While VEGF gene-

expression was not significantly altered following

1 mg/kg baicalein, a significant reduction in expres-

sion was observed following 3 mg/kg treatment.

VEGF is a known potent angiogenic factor, which has

previously been shown to be negatively affected by

baicalein treatment [29]. The anti-angiogenic effect of

baicalein has previously been reported in HUVECs,

where it significantly reduced the angiogenic response

induced by VEGF in a CAM assay. Tubule formation

was also reduced following baicalein treatment and

MMP-2 activity reduced [10]. Expression of both

MMP-2 and MMP-9 were assessed in our study

following baicalein treatment. Both have important

roles in degradation of the basement membrane and

are also involved in tumour cell invasion and metas-

tasis [27]. A decrease in MMP-2 was observed in our

study although this failed to reach statistical signifi-

cance. The effect of baicalein on angiogenic gene

expression in lung cancer is further supported by data

from two other NSCLC subtypes, both of which dis-

played a great number of gene alterations focused on

angiogenesis and the VEGF signalling pathway follow-

ing treatment with baicalein. Notably FGFR2, VEGF,

MMP1, TEK and ANGPT2 were all downregulated in

the squamous NSCLC line SKMES1. Similarly, VEGF,

PDGFB, TGFBR, TEK and ANGPT2 were all downreg-

ulated in A549 cells indicating many overlapping an-

giogenic targets effected by baicalein.

A second subset of genes regulating cell cycle was

also altered following treatment with baicalein. As

mitotic index was reduced in our xenograft tissues,

we validated a number of these genes by qPCR.

Baicalein was previously reported to effect cell

survival in prostate cancer by arresting the cell cycle

during the G0/G1 phase [6], whereas in the lung

cancer line H-460, the arrest was found to be at the

S-phase [14]. We have previously demonstrated that

baicalein induced cell cycle arrest in prostate cancer

cell lines [6]. In this study we observed altered

expressionof a number of genes implicated in cell

cycle (CDC25A, CHEK-2, E2F-1) and apoptosis

(TNFRSF25), following treatment in-vivo.

An up-regulation of the transcription factor E2F1 has

been observed in tumor explants following baicalein

treatment. This increased expression is likely due to a

significant upregulation of the retinoblastoma-1 (RB-1)

tumour suppressor gene that we observed following bai-

calin treatment (validation cohort). RB-1 is commonly

mutated in NSCLC [15] and its main function is in the

control of cell growth, through binding to and sequester-

ing the transcriptional activity of the E2F1 transcription

factor. We have previously shown that baicalein inhibits

the phosphorylation of RB protein in prostate cancer cell

lines, which is associated with the release of E2F [6].

Conclusions

This is the first study to demonstrate a growth inhibi-

tory and pro-survival effect for baicalein in-vivo in

NSCLC. This study also uncovers histological mecha-

nisms associated with baicalein treatment in-vivo, in-

cluding inhibitory effects on cell proliferation and

tumour angiogenesis. At the protein level, both 12-

LOX and VEGF expression were reduced by baicalein

treatment, while at the gene level significant alter-

ations in expression were observed for VEGF, FGFR-2

and RB-1. It is likely that the growth inhibitory ef-

fects are mediated in part through RB-1, while the

anti-angiogenic effects may be partly mediated via

VEGF and FGFR-2. Baicalein may therefore have

therapeutic efficacy in NSCLC and warrants further

investigation.
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Additional files

Additional file 1: Figure S1. Effect of baicalein treatment on lung

tumour cell proliferation/survival in A549 and SKMES1 cell lines. Tumour

cell proliferation was assessed following 24 h treatment (10 nM, 100 nM,

1 μM and 10 μM baicalein) by BrdU assay. Baicalein treatment resulted in

a significant reduction in tumour cell survival in both the A549 (a) and

SKMES1 cells (b). Data is expressed as mean ± SEM of three independent

experiments, with cell proliferation expressed as a percentage of

untreated controls (*p < 0.05, **p < 0.01). (TIFF 49 kb)

Additional file 2: Figure S2. Effect of 3 mg/kg baicalein treatment on

NSCLC tumour growth in-vivo. A xenograft mouse model was generated

using H-460 NSCLC cells. When tumour size reached approximately

50 mm3, animals were randomised into control and treatment groups

(n = 7/group). Mice were administered either the 3 mg/Kg baicalein

(dissolved in 50 μl DMSO/PBS), or an equal volume of a vehicle control

(20 % DMSO in PBS), by intra-tumoural injection (twice weekly). Baicalein

treatment significantly prolonged survival of these xenograft mice relative

to vehicle-treated controls (n = 7/group, *p < 0.05). However no additional

survival was observed compared to the lower 1 mg/Kg dose. (TIFF 70 kb)

Additional file 3: Table S1. Effect of baicalein treatment on cancer

gene expression in the A549 cell line in-vitro. RNA was extracted from

A549 cells following 1 μM baicalein treatment and corresponding

control A549 cells (n = 2). cDNA was prepared from this RNA and gene

expression profiling carried out using Taqman quantitative PCR arrays

(Cancer Profiler Arrays, Superarray). Genes listed were found to be

differentially regulated (greater than 2 fold increase/decrease) in the

baicalein-treated tumour cells, relative to vehicle-treated controls.

(TIFF 72 kb)

Additional file 4: Table S2. Effect of baicalein treatment on cancer

gene expression in the SKMES1 cell line in-vitro. RNA was extracted from

SKMES1 cells following 1 μM baicalein treatment and corresponding

control SKMES1 cells (n = 2). cDNA was prepared from this RNA and gene

expression profiling carried out using Taqman quantitative PCR arrays

(Cancer Profiler Arrays, Superarray). Genes listed were found to be

differentially regulated (greater than 2 fold increase/decrease) in the

baicalein-treated tumour cells, relative to vehicle-treated controls.

(TIFF 73 kb)
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