
Int. J. Mol. Sci. 2008, 9, 355-370 

International Journal of 

Molecular Sciences 
ISSN 1422-0067 

© 2008 by MDPI 

www.mdpi.org/ijms/ 

Review 

 

Anti-Cancer Effects of Xanthones from Pericarps of 

Mangosteen 

Yukihiro Akao *, Yoshihito Nakagawa, Munekazu Iinuma, and Yoshinori Nozawa 

Gifu International Institute of Biotechnology, 1-1 Naka-Fudogaoka, Kakamigahara, Gifu 504-0838, 

Japan; Tel: +81-583-71-4646, Fax: +81-583-71-4412 

* Author to whom correspondence should be addressed. E-mail: yakao@giib.or.jp 

Received: 10 January 2008 / in revised form: 13 February 2008 / Accepted: 15 February 2008 / 

Published: 14 March 2008 

 

Abstract: Mangosteen, Garcinia mangostana Linn, is a tree found in South East Asia, and 

its pericarps have been used as traditional medicine. Phytochemical studies have shown that 

they contain a variety of secondary metabolites, such as oxygenated and prenylated 

xanthones. Recent studies revealed that these xanthones exhibited a variety of biological 

activities containing anti-inflammatory, anti-bacterial, and anti-cancer effects. We 

previously investigated the anti-proliferative effects of four prenylated xanthones from the 

pericarps; α-mangostin, β-mangostin, γ-mangostin, and methoxy-β-mangostin in various 

human cancer cells. These xanthones are different in the number of hydroxyl and methoxy 

groups. Except for methoxy-β-mangostin, the other three xanthones strongly inhibited cell 

growth at low concentrations from 5 to 20 μM in human colon cancer DLD-1 cells. Our 

recent study focused on the mechanism of α-mangostin-induced growth inhibition in DLD-1 

cells. It was shown that the anti-proliferative effects of the xanthones were associated with 

cell-cycle arrest by affecting the expression of cyclins, cdc2, and p27; G1 arrest by α-

mangostin and β-mangostin, and S arrest by γ-mangostin. α-Mangostin found to induce 

apoptosis through the activation of intrinsic pathway following the down-regulation of 

signaling cascades involving MAP kinases and the serine/threonine kinase Akt. Synergistic 

effects by the combined treatment of α-mangostin and anti-cancer drug 5-FU was to be 

noted. α-Mangostin was found to have a cancer preventive effect in rat carcinogenesis 

bioassay and the extract from pericarps, which contains mainly α-mangostin and γ-

mangostin, exhibited an enhancement of NK cell activity in a mouse model. These findings 

could provide a relevant basis for the development of xanthones as an agent for cancer 

prevention and the combination therapy with anti-cancer drugs.  
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1. Overview 

The mangosteen tree has been cultivated for centuries in tropical areas of the world. The tree is 

presumed to have originated in Southeast Asia or Indonesia and has largely remained indigenous to 

Malay Peninsula, Myanmar, Thailand, Cambodia, Vietnam and the Moluccas (Figure 1A). The white, 

inner pulp of the mangosteen fruit is highly praised as one of the best tasting of all tropical fruits. The 

scientific name is Garcinia mangostana. The entire fruit is typically 2.5-7.5 cm in diameter, roughly 

the size of a tangerine (Figure 1B). The rind (or skin) of the fruit is 0.6-1.0 cm thick and contains a 

purplish pigment. The inner pulp consists of four to eight juicy, white-colored segments (fruit portion, 

Figure 1B). The edible portion of the fruit comprises only about 25% of the total volume, whereas the 

remainder is tough, bitter pericarp which exudes a yellow resin (hence the term xanthones or yellow in 

Greek)(Figure 1B). The mangosteen rind, leaves and bark have been used as folk medicine for 

thousands of years. The thick mangosteen rind has been and is used for treating catarrh, cystitis, 

diarrhea, dysentery, eczema, fever, intestinal ailments, pruritis and other skin ailments. The 

mangosteen leaves are also used by some natives in teas and for diarrhea, dysentery, fever, and thrush. 

It is also known that concentrates of mangosteen bark can be used for genito-urinary afflictions and 

stomatosis. 

Figure 1. The Garcinia mangostana Linn tree (A), the appearance of mangosteen fruit (B) 

and the chemical structures of xanthones included in the pericarps (C). 

 
2. Introduction 

Increasing attention has been paid to primitive medicinal plants and dietary factors to search for 

new substances with potentially effective anti-cancer activity. A large number of natural products have 

been evaluated as potential chemopreventive or therapeutic agents. In fact, among these compounds, 

paclitaxel, etoposide, camptothecin, and vincristine, have been used as anticancer drugs. 

Epidemiological studies have shown that dietary phytochemicals provide beneficial effects on cancer 
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prevention [1-4]. In this context, evidence-based biofactors for cancer prevention are strongly required 

for practical use. Among them, polyphenols are of great interest as chemopreventive agents because of 

their anti-oxidative and possible anti-cancer activity [1-6].  

   In our series of investigations to search for anti-cancer agents from plant sources, all the 

polyphenols and terpenoids tested which exhibited an anti-proliferative effect, were observed to induce 

apoptosis by targeting mitochondria with a decreased membrane potential, leading to the activation of 

the intrinsic apoptotic signal transduction [7-13]. In some cases, the early responsive signaling 

cascades including protein kinases MAPK and Akt referring to growth and survival, respectively, were 

down-regulated [13]. 

   Our previous reports indicated a potent anti-proliferative activity of 4 xanthones (α-mangostin, β-

mangostin, γ-mangostin, and methoxy- β-mangostin) from the pericarps of mangosteen against human 

leukemia HL60 cells. Interestingly, α-mangostin was observed to induce mitochondrial  dysfunction 

[11]. Moreover, it induced cell-cycle arrest and apoptosis in human colon cancer DLD-1 cells [14]. In 

this review, we discuss the mechanism of anti-cancer effect of xanthones and the possibility of 

chemopreventive agents for cancer, especially in α-mangostin and γ-mangostin. 

3. Chemistry of Xanthones 

   The subsurface chemistry of the mangosteen pericarp comprises an array of polyphenolic acids 

including xanthones and tannins that assure astringency to discourage infestation by insects, fungi, 

plant viruses, bacteria and animal predation while the fruit is immature. Color changes and softening 

of the pericarp are natural processes of ripening, which indicates that the fruit can be eaten and the 

seeds finish developing. Among the constituents of the pericarps, xanthones are biologically active 

phenols that naturally occur in a restricted group of plants [15-17]. Over 200 xanthones are currently 

known to exist in nature and approximately 50 of them are found in the mangosteen. The xanthones 

possess a six-carbon conjugated ring structure with multiple double carbon bonds. The chemical 

structures of 4 major xanthones contained in percarps are shown in Figure 1C. The prenyl group is 

considered to be implicated in the internalization into the cell, which in turn leads to interaction with 

the signal transduction molecules and the proteins involved in mitochondria permeability transition 

[18,19]. 

4. Growth Inhibitory Effect of Prenylated Xanthones 

   The major 4 structurally similar prenylated xanthones [α-mangostin (αΜ), β-mangostin (βΜ), γ-

mangostin (γΜ), and methoxy-β-mangostin (βΜ−ΜE)] from the pericarps of mangosteen were 

examined for the effect on the growth of human colon cancer DLD-1 cells (Figure 2). Except for 

methoxy-β-mangostin, other xanthones displayed growth inhibitory effects. From the values of the 

IC50, the inhibitory activity was estimated; βΜ-ΜE<βΜ<αΜ<γΜ (Table 1). The Hoechst 33342 

staining and DNA electrophoretic analysis demonstrated that the anti-proliferative effect of α-

mangostin, which is the major constituent of the extract, is due to the apoptotic process (Figure 3). 

   In comparison with the anti-cancer drugs such as 5-FU, actinomycin D and camptothecin used for 

the patients with colon cancer, the IC50 of α-mangostin was close to that of 5-FU (Table 1). However, 
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the morphological changes by α-mangostin was quite distinct from those induced by 5-FU  

(Figure 3A).  

Figure 2. Effect of xanthones on cell growth in human colon cancer DLD-1 cells.  

 

Table 1. Growth inhibitory effect (IC50) of α-mangostin and anti-cancer drugs in 

DLD-1 cells. 

 

5. Mechanism of α-Mangostin-inducing Apoptosis 

   In our previous study, it was demonstrated that α-mangostin activated caspase-9 and -3 but not -8 

in HL60 cells, indicating that α-mangostin may mediate the mitochondrial pathway in the apoptotic 
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process [11]. Parameters of mitochondrial dysfunctions such as swelling, loss of membrane potential, 

decrease in intracellular ATP, ROS accumulation, and cytochrome c/AIF release, were observed 

within 1 or 2 h after the treatment, indicating that α-mangostin preferentially targets mitochondria in 

the early phase [11]. Interestingly, replacement of hydroxyl group by methoxy group (Figure 1C) 

remarkably decreased the potency to cause mitochondrial dysfunction. It was also shown that the 

cytotoxicity was correlated with the decrease in the mitochondrial membrane potential. Furthermore, 

we demonstrated that
 α-mangostin induced a cell cycle arrest at G1/S and the subsequent apoptosis via 

the intrinsic pathway in DLD-1 cells, while a cell cycle arrest by γ-mangostin was at S phase (Figure 

4A and B) [14]. The changes in expression of cell cycle regulatory proteins were shown in Figure 4C. 

α-Mangostin-induced apoptosis was mediated by a caspase-independent pathway via mitochondria 

with the release of Endo-G (Figure 5) [13]. Endo-G, a known 30-kD nuclease residing in 

mitochondria, is able to induce nucleosomal DNA fragmentation [13]. 

Figure 3. The cell death induced by α-mangostin and 5-FU. Hoechst 33342 staining (A) 

and nucleosomal DNA fragmentation (B). 

 
   Many serine/threonine protein kinases control cell growth, proliferation, differentiation, cell 

cycle, survival and death. Mitogen-activated protein kinases (MAPKs) and Akt kinase are key 

regulatory proteins in cells. MAPKs are a widely conserved family of serine/threonine protein kinases 

involved in many cellular processes such as cell proliferation, differentiation, motility, and death [20]. 

Akt, another serine/threonine protein kinase, is associated with cell survival, growth, and glycogen 

metabolism [21]. Various phytochemicals, including epigallocatechin-3-gallate [22], resveratrol [23],
 

arucanolide
 
[10] etc., have been shown to modulate the signaling pathways of MAPKs and/or Akt, 

leading to growth inhibition and cell death.  
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   The levels of phosphorylation of p38 and p-JNK appeared to change within 24 h after the 

treatment with α-mangostin, but their changes could not be properly explained (Figure 6). The levels 

of p-Erk1/2 showed 2 peaks at the early and late phases. Recently, the dual expression of p-Erk1/2 was 

also 2 peaks observed in HT-22 cells exposed to glutamate-induced oxidative stress [24]. Erk1/2 may 

play a dual role, acting first as a cellular adaptive response at the initial phase and then as a cytotoxic 

response at the later stage. As reported [24],
 
the decline in p-Erk1/2 after the later peak may be 

associated with the apoptotic machinery. On the other hand, in the Akt signaling the level of p-Akt was 

markedly reduced at 6 h following α-mangostin treatment (Figure 6), coincident with the occurrence 

of apoptosis. Therefore, down-regulation of Akt signaling could participate in the mechanism of 

apoptosis induced by α-mangostin.  

 

Figure 4. Effect of xanthones on cell cycle progression.  

 

 

   Intriguingly, we have recently found that α-mangostin up-regulated the expression of miRNA-143 

(Figure 7)[13]. miR-143 is highly expressed especially in normal colon tissues, but its expression in 

human colon cancer tumors is markedly decreased [25,26]. We determined its target mRNA to be 

ERK5 by introducing miRNA-143 into DLD-1 cells [25,26]. α-Mangostin increased the expression 

levels of miRNA-143 in the process of the apoptotic cell death probably by modulating its 

transcription and/or the upstream signals associated with the transcription factors of miR-143 [13]. The 

molecular mechanism of the apoptotic cell death induced by α-mangostin in DLD-1 cells is 

schematically summarized in Figure 8. α-Mangostin first affects the cell cycle i.e. arrest at G1/S and 
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thereafter induces apoptosis which is mediated by the intrinsic pathway through mitochondria, which 

follows the modulation of the growth-related signal transduction via MAPK Erk1/2 and Akt, and the 

expression level of miRNA-143, a target of ERK5. 

Figure 4. (continued) 

 

6. Combined Treatment of α-Mangostin with Anticancer Drugs 

   In view of recent phytochemical studies, it has been pointed out that such substances included in 

vegetables and fruits could affect the efficacy of anti-cancer drugs and their metabolism [27], because 

many of the patients with cancer take folk medicines and supplements in addition to anti-cancer drugs. 

Therefore, it is important to study the interaction between phytochemicals and anti-cancer drugs. 

Furthermore, strategies aimed at enhancing the therapeutic efficiency of anti-cancer drugs and 

decreasing the side effect involve its administration schedule and also its use in combination with 

phytochemicals for a better treatment response [27,28]. 5-FU, which is one of the most effective 

chemotherapeutic agents for colorectal adenocarcinoma [28],
 
can produce response rates of ~11% 

when used as a single agent [28]. For example, folinic acid [28], leucovorin (LV) [29-31], oxaliplatin 

(L-OHP), LV in the FOLFOX regimen [32], and irinotecan (CPT-11) and LV in the FOLFIRI regimen 

[33] are combination therapies for colorectal cancer patients.  
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Figure 5. α-Mangostin-induced apoptosis in DLD-1 cells.  

 

 

Figure 6. Activities of MAP kinases and Akt kinase in 20 µM α-mangostin-treated DLD-1 cells. 
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Figure 7. Semi-qRT-PCR-evaluated or TaqMan
®

 probe assay (Real-Time PCR)-evaluated  

miRNA-143.  

 
 

Figure 8. A scheme showing the possible mechanisms of α-mangostin-induced cell death. 

 
 

   We demonstrated the synergistic effect on cell growth when 5-FU was used with α-mangostin 

(total 2 and 5 µM) (Figure 9A). The growth inhibition by 5-FU was probably due to cell cycle arrest at 
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the concentrations tested [34], because no apoptotic cells were observed (Figure 3A). At more than 15 

µM α-mangostin, apoptotic cells were observed, whereas at lower concentrations α-mangostin most 

likely causes cell cycle arrest like 5-FU. Therefore, the synergistic effect by the combined treatment at 

the total 2 and 5 µM concentrations was probably due to the additional enhancement of the machinery 

leading to cell cycle arrest. Indeed, the expression of cell cycle-related proteins such as cyclin D1 and 

c-Myc at total 5 µM was significantly reduced at 24 h, compared with that found in single each agent 

(Figure 9B).    

It is possible that the mechanism of growth suppression by α-mangostin is different from that of 5-

FU at more than 15 µM, because the growth inhibition obtained by a single treatment with α-

mangostin was greater compared with that by the combined treatment. It is possible that the more 

potent apoptosis-inducing activity of α-mangostin which was observed at more than 15 µM, was not 

induced by the combination with 5-FU at both 7.5 µM and 10 µM. In this context, the activation of 

MAPKs and Akt signal pathways, which were changed by the treatment with 20 µM α-mangostin 

alone, could be reduced in the single treatment of α-mangostin or 5-FU. Thus, phytochemicals are 

conceivable to exert a considerable effect on the efficacy of anti-cancer agents, depending on their 

concentrations, by modulating the intracellular signaling pathways [27].
 
The enhanced efficacy of α-

mangostin with other anti-cancer agents was also shown by our recent study.   

Figure 9. Synergistic growth-inhibiting effect in the combined treatment with α-mangostin 

and 5-FU in DLD-1 cells.  

7. Cancer Preventive Effect in vivo 

   We examined whether α-mangostin has short-term chemopreventive effects on putative 

preneoplastic lesions involved in rat colon carcinogenesis [35]. Rats in groups 1-3 were given a 

subcutaneous injection of carcinogen 1,2-dimethylhydrazine (DMH)(40 mg/kg body weight) once a 

week for 2 weeks. Dietary administration of α-mangostin at doses of 0.02% and 0.05% α-mangostin 

significantly inhibited the induction and/or development of aberrant crypt foci (ACF) (P<0.05 for 

0.02% α-mangostin, P<0.01 for 0.05% α-mangostin), when compared to the DMH-treated group 
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(group 1)(Figure 10). Moreover, treatment of rats with 0.05% α-mangostin significantly decreased 

dysplastic foci and β-catenin accumulated crypts, to below the group 1 values [35]. The finding that α-

mangostin has potent chemopreventive effects in our short-term colon carcinogenesis bioassay system 

suggests that the longer exposure would result in suppression of tumor development. 

Figure 10. Body weight, liver weight, and the number of atypical crypt foci in the colon 

from BALB/C control mice and mice treated with 0.02% and 0.05 % dietary α-mangostin. 

 

8. Immunomodulatory Effect 

   Natural killer (NK) cell works as the main immune cells of the innate immunity, and it is 

especially important in the eradication of the tumor cells and the virus infected cells. However, the 

activity of the NK cell decreases with aging after the peak at about 15 years old. The morbidity rate of 

people with cancer is rising by aging, which may be related to the decline of the activity of the NK cell 

activity.  

   We investigated the effect of α-mangostin on NK cell activity using a mouse model. We 

administrated the α-mangostin-enriched extract from pericarps named Panaxanthone (α-mangostin, 

80-90%; γ-mangostin, 5-10%) to mice everyday by gavage with different doses for 30 days. The NK 

cell activity was determined by measuring LDH after the incubating of YAC-1 cells (target cells) and 

splenocytes (effector cells) at the ratio of 1:50. The activities of 20 and 40 mg/kg groups were 

significantly elevated compared with that in control group 0 mg/kg (Figure 11). A significant increase 
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in the NK cell activity by Panaxanthone was also observed in the human pilot study using healthy 

people at the dose of 150 mg/day per a person for 7 days.  

Figure 11. Effect of mangosteen pericarps extract Panaxanthone on the activity of NK 

cells in mice.  

 

9. Conclusion and Future Perspectives 

   The anti-proliferative activity of α-mangostin is markedly high, because the IC50 of α-mangostin 

is almost same as that of 5-FU in DLD-1 cells. Its activity is mainly due to apoptosis. The apoptotic 

observations such as morphological changes and DNA ladder formation emerged at 24 h-treatment 

with α-mangostin, while the decrease in the mitochondrial membrane potential and the release of 

Endo-G observed at 6 h-treatment. These events were preceded by the inactivation of the signaling 

cascades involving Erk1/2 and Akt at 3 h-treatment. The cell cycle regulatory proteins cyclin D1 and 

cdc2 were also down-regulated at 3 h-treatment. Since the swelling of mitochondria was observed at 1 

h-treatment, α-mangostin most likely attacks the proteins involved in permeability transition of 

mitochondria. This event could trigger the cell cycle arrest and apoptosis (Figure 8). 

   Considering the chemopreventive effects of phytochemicals, they may depend on three main 

activities: anti-oxidant, apoptosis inducing, and phase II enzymes inducing. In our studies, we have 

verified such activities in α-mangostin. It has been already known that the ORAC (Oxygen Radical 

Absorbance Capacity) value of mangosteen is makedly high [36](www,naturalproductsassoc.org). α-

Mangostin increased the expression of glutathione S-transferase (GST) at 0.5-5.0 µM for 12 h-

treatment in human hepatocellular carcinoma HuH-7 cells. Furthermore, recent study has revealed that 

the suppression of inflammatory reaction by phytochemicals leads to cancer prevention. The 

xanthones, which have anti-oxidant activity, have been reported to reduce the expression of 

cyclooxygenase-2 (COX-2) [37-39] and to suppress the nuclear factor-κB (NF-κB)[37,40]. 

   Recently, we succeeded in crystallizing the extract from the pericarps and found that the 

substance contains more than 90% xanthones (α-mangostin, 80-90%; γ-mangostin, 5-10%). This was 

named Panaxanthone, and assessed to be safe by a conventional safety test using mouse model. The 
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safety was further confirmed by the fact that these xanthones have been used as a folk medicine for 

many years and more than 160 kinds of fruits juice containing whole extract of mangosteen are 

distributed worldwide. The safety clinical trial of Panaxanthone is under progress, leading to 

development for a cancer preventive and therapeutic agent.    
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