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Anti-corrosive and oil sensitive 
coatings based on epoxy/
polyaniline/magnetite-clay 
composites through diazonium 
interfacial chemistry
Khouloud Jlassi1, A. Bahgat Radwan1, Kishor Kumar Sadasivuni1, Miroslav Mrlik2, 

Aboubakr M. Abdullah  1, Mohamed M. Chehimi3 & Igor Krupa1,4

Epoxy polymer nanocomposites filled with magnetite (Fe3O4) clay (B), named (B-DPA-PANI@Fe3O4) 

have been prepared at different filler loading (0.1, 0.5, 1, 3, 5 wt. %). The surface modification of clay 
by polyaniline (PANI) is achieved in the presence of 4-diphenylamine diazonium salt (DPA). The effects 
of the nanofiller loading on Tensile, mechanical and dielectric properties were systematically studied. 
Improved properties was highlighted for all reinforced samples. The addition of only 3 wt. % of the 
filler enhanced the tensile strength of the composites by 256%, and the glass transition temperature 
Tg by 37%. The dielectric spectra over a broad frequency showed a robust interface between the hybrid 
(B-DPA-PANI@Fe3O4) fillers and epoxy matrix. The results showed most significant improvement in 
corrosion inhibition using electrochemical impedance spectroscopy (EIS) in 3.5 wt % NaCl, as well as a 
significant response in oil sensing test. High charge transfer resistance of 110 × 106 Ω.cm2 using 3-wt 
% of filler was noted compared to 0.35 × 106 Ω.cm2 for the pure epoxy. The results obtained herein will 
open new routes for the preparation of efficient anticorrosion sensor coatings.

Nowadays, Intensive research was devoted to design a smart and intelligent multifunctional hybrid poly-
mer nanocomposite materials for emerging applications1,2. Particularly, hybrid bio-based materials, in con-
trast to fossil resources have received much attention3,4. they can be produced from many renewable sources. 
Multi-functionality may be added to those materials collected from renewable sources by combining them with 
many di�erent materials to achieve the desired functionality5,6. such multifunctional bio-based nanocomposite 
fabrication may involve the incorporation of inorganic component and can produce a product with useful electri-
cal, mechanical, magnetic, and a wide range of applications7,8.

Clay, particularly bentonite, is a naturally abundant resource and environmentally friendly due to its biode-
gradable and renewable features9. Moreover, clay is well known to add interesting properties to a polymer matrix, 
such as �ame retardancy10, and high storage modulus11,12. Bentonite is a swellable clay; it is composed of thin 
aluminosilicate layers13, is hydrophobic in nature. Surface pre-modi�cation is a main key to designing new mate-
rials from bentonite. �ere are various processes of modi�cations; Using silane-coupling agents14, mediating the 
hydroxyl groups of bentonite located on the sheet, the cation exchange method15, or, more recently, the covalent 
modi�cation using diazonium salts16, which produces new interfaces between clay �ller and di�erent polymers 
like poly(methacrylates)17 and conductive polymers18. Among those polymers, polyaniline is well known as one 
of the best conducting polymers due to its easy preparation, important electrical and sensing properties19,20.

Polyaniline has been used for di�erent sensor applications such as gas, volatile organic compound, pressure 
and strain15,21. However, the weak mechanical properties and poor solubility of PANI limited its commercial uses 
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and experimental studies. �us, attention has been given to the immobilization of PANI on a variety of materials 
namely Clays materials, in order to enhance its applicability20,22. �e alliance of modi�ed clays with polyaniline23, 
improve mechanical24, dielectric25, magnetic properties26, and may o�er some added value and applications to the 
�nal clay-PANI composites, especially in anti-corrosive coatings27–30, and oil sensing applications31,32.

On the one hand, metal corrosion is one of the most severe problems in industries30,33. Barrier protective coat-
ings34–36 (e.g. paints) provide an interesting approach to protect against corrosion by using clay-PANI modi�ed 
with metal oxides37,38, as functional additives in which they act as a barrier for moisture or oxygen transportation 
pathways. Clay-PANI composites have already proved to be anti-corrosive and have become natural candidates 
for further research39. Moreover, the redox behavior of PANI provided self-healing properties to the intentionally 
scratched coatings40. Furthermore, synthesis of epoxy-doped Clay-PANI nanocomposites with di�erent metal 
oxide nanoparticles such as ZnO41,42, TiO2

43, SiO2
44, Fe2O3

45,46, ZrO2
47 and Al2O3

48 was found to improve the cor-
rosion protection of carbon steel via the adjustment of the interaction between the clay-PANI nanocomposites 
and the added metal oxide Nano-species49–51. �e most discussed mechanism of PANI based nanocomposites in 
the literature is the called “ennobling mechanism”52. It is focused on the assumption that the conductive polymer 
acts as an oxidant and maintains the metal in the passivity domain. �is mechanism could induce the oxidation 
of the free metal surface at small defects in the passive layer53.

On the other hand, oil is considered as main reasons of water contamination, particularly in marine environ-
ment54. Oil spills could be caused by the release of crude oil from o�shore platforms55, by derivate products used 
by huge ships56.

Several set up controlling oil pollution are available, and they mostly measure speci�c properties such as light 
scattering, �uorescence, and so on. �ese existing devices are usually huge (e.g. require water to be pumped in), 
expensive and consume signi�cant amounts of energy57.

�erefore, signi�cant research work has been dedicated to designing new, low-cost, smart sensors2 that can 
be directly used, in order to provide quick and quantitative evidence about organic contaminants in biosphere. 
Indeed new hybrid materials based on conductive polymers, namely PANI have been developed58,59. �e con-
ductive polymers provide an appropriate level of electrical conductivity of the material at low concentration. �e 
operation of this sensor is based on the electrical resistance changes of the hybrid composites when exposed to oil.

In this way, we sought to design new hybrid and functional material (relevant to corrosion protection and oil 
sensing) by utilizing a naturally abundant material (bentonite) as active diazonium modi�ed platform for the 
immobilization of the prepared DPA-PANI@Fe3O4 magnetite hybrid �ller. DGEBA epoxy resins are selected as 
a matrix for blending the prepared hybrid �ller, as it is the most widely used thermosetting resin. It is very well 
documented that the addition of well-dispersed �llers into DGEBA epoxy resin can signi�cantly increase the 
mechanical60, thermal61, anticorrosion62, and other important properties63. �e surface modi�cation of the clay 
with polyaniline (PANI) was achieved using an in-situ surface-initiated polymerization method in the presence 
of gra�ed diazonium salts to the bentonite surface to provide well-dispersed epoxy nanocomposites. �e loading 
e�ects of the prepared �ller were studied. �e thermal stability of the �lled epoxy was studied by thermogravimet-
ric analysis (TGA) in addition to mechanical properties such as dynamic mechanical (DMA) and tensile analysis. 
Interface studies between the prepared �ller and the epoxy matrix were investigated using the dielectric prop-
erties. �e fracture surface of the cured and �lled epoxy was observed by scanning electron microscope (SEM). 
Finally the DGEBA matrix �lled B-DPA-PANI@Fe3O4, was tested simultaneously as oil sensor and anti-corrosion 
coating in 3.5 wt % NaCl media.

To the best of our knowledge, such an investigation using B-DPA-PANI@Fe3O4 nanohybrids, designed by the 
reaction of bentonite through the in situ polymerization of aniline in the presence of 4-diphenylamine diazonium 
salt, for smart anticorrosion sensors, has not been previously reported. �at was the motivation for this project.

Experimental
The DGEBA (Bisphenol A diglycidyl ether), the 4,4′-diaminodiphenylsulfone (DDS) were purchased from 
Sigma-Aldrich. Bentonite was puri�ed according to a standard procedure64 resulting in ∼80-µm-sized bentonite 
(B). �e cationic exchange capacity (CEC) was equal to 101.9 meq/(100 g of clay). Fe3O4 nanopowder (Sigma 
Aldrich, 97% purity, 50–100 nm), N-phenyl-p-phenylenediamine (Acros, 98% purity), isopentyl nitrite (Alfa 
Aesar, purity 97%), ammonium persulfate (APS, Acros, 98% purity), and nitric acid (Carlo Erba, 60% purity). 
Aniline (Aldrich, 99.5% pure) was puri�ed and stored at low temperature before usage. Distillated water for 
cleaning and dilutions was used throughout.

Synthesis of the Hybrid Filler B-DPA-PANI@Fe3O4
�e B-DPA-PANI nanocomposites clay/polyaniline were prepared as function of the cation exchange capacity 
(CEC)18 by polymerization of aniline on the 4-diphenylamino diazonium-exchanged clay as active platform. 
�e B-DPA-PANI@Fe3O4 hybrid magnetite �ller were prepared with reference to mechanochemical synthesis 
process65. B-DPA-PANI were used as starting materiel and Fe3O4 nanoparticles (Sigma Aldrich) as magnetite 
substrate. Samples were mixed at a (in a 1:1 weight percent ratio) using a Retsch PM400 planetary ball mill, with 
the milling speed of 450 rpm in order to get a homogeneous particle distribution for 2 h and in the two-step mill-
ing operation65.

Preparation of the Composites
Preparation of B-DPA-PANI@Fe3O4/DGEBA Resin Suspensions. DGEBA resin suspensions con-
taining (0.1, 0.5, 1, 3, 5 wt. %) of the as-prepared hybrid �ller were prepared. Fillers in di�erent ratios were mixed 
with the DGEBA epoxy resin and sonicated (probe sonicator) for 10 min before being mechanically stirred for 
one hour.
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Curing of the B-DPA-PANI@Fe3O4/DGEBA Resin. �e DDS hardener was added into the B-DPA-PANI@
Fe3O4 (0.1, 0.5,1, 3, 5 wt. %)/DGEBA resin suspensions at 180 °C with vigorous stirring; it was then poured into a 
metallic mold (12 cm × 15 cm × 3 mm thick), cured for 4 h at 180 °C, post cured at 200 °C for 1 h and cooled natu-
rally to room temperature.

Preparation of coatings for corrosion, dielectric and oil sensing study study. B-DPA-PANI@
Fe3O4/DGEBA resin coatings were prepared using probe sonicator (UP 400 S ultrasonic processor) by dispersing 
(1, 3, 5 wt. %) of B-DPA-PANI@Fe3O4 �llers in DGEBA epoxy resins. �e DDS curing agent was then added to 
the mixture. �e application of coating was accomplished by using a doctor blade (500 mm).

Characterization. TGA measurements were accomplished under nitrogen using a TGA 4000 (Perkin Elmer, 
USA) from 30 °C to 700 °C (heating rate of 10 °C/min). �e X-ray di�raction (XRD) measurements were performed 
using PANalytical instrument (modelX’PertPRO) with Co Kα (1.789 A°) radiation. Tensile properties were tested by 
using a LIoyd LR50K-Plus universal testing machine (UTM), equipped with a 10 kN load cell at a displacement rate 
of 5 mm/min at room temperature as per ASTMD 638. Flexural properties were determined using rectangular bars 
having dimensions of 127 mm × 12.5 mm × 4 mm on the same machine, at a speed of 10 mm/min as per ASTM D 
790. �e fracture surfaces of the samples were studied using a Nova Nano SEM 450 Scanning Electron Microscope.

Dynamic mechanical analyses were conducted using a RSA-G2 (TA Instruments, USA) in 3-point bending mode 
in the linear viscoelastic region (LVR). Rectangular samples (40 mm × 8 mm × 1.2 mm) were prepared and inves-
tigated from 30–250 °C (3 °C/min heating rate), with a strain deformation of 0.007% and a frequency of 1 Hz. �e 
thermal stability of the samples was analyzed using a TGA Pyris 4000 from 30–800 °C (heating rate of 10 °C/min).  
Dielectric measurements were performed using a Novocontrol GmbH Concept 40 broadband dielectric spec-
trometer (Montabaur, Germany), and data were collected at room temperature over the frequency range of 
0.01 Hz–2 MHz. Sample discs (2 cm diameter) were sandwiched between two gold-coated copper electrodes (2 cm 
diameter) and transferred to the instrument for data collection.

Experimental data were described using Havriliak-Negami model equation 15,
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where ∆ε′ = ε′s − ε′∞ is the dielectric relaxation strength; ε′s and ε′∞ are relative permittivities at zero and 
in�nite frequencies, f, respectively; ω, is angular frequency (=2 π f); trel is the relaxation time; and a and b are 
shape parameters describing the asymmetry of the dielectric function. Electrochemical impedance spectroscopy 
(EIS) measurements were performed in a NaCl solution (3.5 wt. %) in a frequency range of 0.01 Hz to 100 kHz 
with a wave amplitude of 5 mV at 25 °C. EIS data analysis was performed using Gamry Echem analyst so�ware. 
Before conducting the EIS experiments, samples were immersed in the 3.5 wt. % NaCl electrolyte for 30 min. �e 
water contact angles (WCA) of the fabricated coatings were measured using Dataphysics (OCA 35, Germany) 
with 5 µL distilled water.

�e oil sensing experiments were conducted by measuring the electrical conductivity of sample using a 
Novocontrol GmbH Concept 40 broadband dielectric spectrometer (Montabaur, Germany). �e electrodes were 
coated by using silver paste on the surface of the sample and maintaining a prescribed distance (1 mm). �e oil 
drop was applied to the other side of the electrode to avoid oil and electrode interactions.

Results and Discussion
Effect of Diazonium Cation and Fe3O4 Intercalation on clay/Polyaniline Properties. �e B-DPA-
PANI conductive hybrid �llers were initially prepared by the covalent bonding of the diazonium cation to ben-
tonite surface, followed by the oxidative polymerization of the aniline monomer as formerly reported24. �en 
the B-DPA-PANI@Fe3O4 hybrid magnetite �ller were prepared with reference to mechanochemical synthesis 
process65 in order to get a homogeneous particle distribution inside clay galleries.

Figure 1 displays the interface chemistry of the as prepared magnetite hybrid nano�ller with the DGEBA 
epoxy resin and the DDS hardener. �e as prepared hybrid magnetite �ller has highly dispersed and stable Fe3O4 
nanoparticles, NH groups from both DPA and PANI, which could react with epoxy groups via ring opening, 
resulting in covalent bonding of the resin to the clay sheets (via PANI and DPA). Moreover, �e DDS hardener 
has two amino groups, which may react with epoxy by the same mechanism.

Table 1 summarize the most important properties of the prepared hybrid materials. �e introduction of the 
diazonium salt and Fe3O4 are important to prepare a new conductive and exfoliated hybrid �ller.

Herea�er, we will report the impact these new �llers had on Interfacial, morphology, mechanical, tensile, and die-
lectric properties of DGEBA epoxy resins as well as its potential application in corrosion protection and oil sensing.

IR and XRD of the prepared nanofillers. The XRD patterns of the purified bentonite B, prepared 
B-DPA-PANI, and B-DPA-PANI@Fe3O4 nanocomposites are shown in Fig. 2. Bentonite is characterized by a 
di�raction peak at 2 ϴ = 6.67 which corresponds to an interlayer distance equal to 1.37 nm; this di�raction peak 
disappeared for the B-DPA-PANI and DPA-PANI@Fe3O4 nanocomposites and con�rms the exfoliation of the 
bentonite a�er the polymerization of aniline in the presence of the diazonium (DPA) coupling agent. Moreover, 
the broad peaks at 19–20° and 25–26° con�rmed the gra�ing of PANI chains to the bentonite sheets, correspond-
ing to the (020) and (200) re�ections of the emeraldine PANI salt66. For the B-DPA-PANI@Fe3O4, di�raction 
peaks appeared at ∼30°, 35°, 43°, 53°, 57° and 62°, which may be assigned to (220), (311), (400), (422), (511) and 
(440), respectively—the inverse spinel phase of Fe3O4 (JCPDS 01-1111).
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Microstructure of fractured surface of the nanofiller filled epoxy. To con�rm the presence of the 
prepared �ller in the epoxy composites, SEM images in the mapping mode were obtained (Fig. SI2). �e red 
colored individual particles contain the iron structure; clearly showing that the particles are homogenously dis-
persed within the cured DGEBA and can improve the physical characteristics of the prepared composites.

Figure 1. Molecular view of the DGEBA- B-DPA-PANI@Fe3O4 interface.

B-/PANI18 B-DPA/PANI@Fe3O4

Surface modi�er 4-diphenylamine diazonium salt (DPA) +Fe3O4

Experimental details
Oxidative polymerization of 
aniline in presence of puri�ed clay

Puri�ed bentonite (B) �rst covalently bonded to the DPA, 
followed by the oxidative polymerization of aniline

Structure and crystallinity
same basal distance as in puri�ed 
clay(1.38 nm)

-exfoliated bentonite structure
-crystalline structure of Pani
-crystalline structure of Fe3O4

Conductivity S·cm−1 σ = 2.1 × 10−8 σ = 3.4 × 10−2

Table 1. Summary of Preparation Methods as well as Electrical and Morphological Features of Clay/PANI 
Nanocomposites.

Figure 2. XRD patterns of B, B-DPA-PANI and B-DPA-PANI@Fe3O4.
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Figure 3 displays fracture surfaces for untreated and DGEBA with different weight loadings of B-DPA/
PANI-Fe3O4. Figure 3a shows a smooth fracture surface together with the river-like structure67. However, radical 
change was observed in the morphology of the blended DGEBA. Figure 3(b–e) reveal the formation of a strong 
network microstructure within the DGEBA resin. �is unusual morphology is most likely induced by a very 
strong �ller−matrix (hybrid magnetite �ller-DGEBA) adhesion. However, for the 5% added nano�ller, there is 
showed in Fig. 3(f) some cleavage in the �bril network structure to a small broken segments was observed. �is 
could be ascribed to the high number of crosslinks present in the cured DGEBA. Indeed, PANI can act also as 
a (secondary) cross linker in addition of the DDS (principal hardener). �is latter is most likely the cause of the 
agglomeration of the used �ller, hence the fragility and breaking of the �bril microstructure.

Mechanical Properties. �e mechanical behavior of the composites in the tensile mode was investigated.
�e tensile strength of epoxy containing various B-DPA/PANI �ller loadings is shown in Fig. 4. Addition 

of low nano�ller loadings (0.1. 0.5, 1 and 3% wt.) showed signi�cant enhancements in the tensile strength of 
the epoxy nanocomposites (~23%, 143%, 206% and ~256%, respectively). �is �nding could be due to e�cient 
dispersion of the nano�ller as well as robust �ller-matrix physico-chemical interfaces achieved between the par-
ticles and the epoxy matrix24, which not only increases the epoxy monomer dispersion over faster intralamellar 
reaction but also reacts with epoxy chains. �is reinforcing mechanism will lead to an increase in the strengths of 
the epoxy nanocomposites68. �is can be likely due to the very well dispersion of nano�ller (0.1–3 wt %) loading, 
resulting in the strong interface between the hybrid magnetite �ller and the DGEBA resin. Nevertheless, the 
observed lower tensile with 5wt % of nano�ller, can be caused by the magnetite �ller agglomeration as described 
previously from SEM micro-structure.

Viscoelastic Properties of Filled Epoxy by DMA. Dynamic mechanical analyses provide evidence on 
the incorporation of the hybrid �ller in the epoxy matrix as well as of its exfoliation via a mechanical performance 
investigation. In Fig. 5, the glass transition temperature (Tg) of the neat matrix is close to that observed for the 
0.1 wt. % composite hybrid �ller. Moreover, the Tg increased as the amount of hybrid �ller increased in the epoxy 
matrix and shi�ed from 150 °C to 205 °C; this shi� represents a signi�cant enhancement. In general, exfoliation 
of the hybrid �ller in the matrix increases with homogenous �ller dispersion and is con�rmed by XRD and SEM 
mapping. �e system increased the Tg due to the polymer chain mobility restrictions and su�ciently raised 
toughness as evidenced by DMA investigation. However, for 5wt % composite hybrid �ller, there is a radically 
decrease of the (Tg), most likely due to the agglomeration of the magnetite hybrid �ller in the DGEBA resin. �is 
might be attributed to the high density of crosslinks present in the blended DGEBA: Resulting in the agglom-
eration of the �ller, thus the decrease of mechanical properties, con�rmed in the previous section by the SEM 
microstructure and tensile strength properties.

Dielectric Properties of Composites. To investigate the interfacial processes in the epoxy-based com-
posites, the room temperature dielectric spectra over a broad frequency range were evaluated. The exper-
imental data were then fit with Havriliak-Negami model, and parameter identification provided us with 
information on how the hybrid �ller in�uenced the epoxy composites. Generally, in the composite systems, the 

Figure 3. SEM images of the fracture surfaces taken from tensile specimens of cured pure DGEBA, 0.1, 0.5, 1, 3 
and 5-wt % B-DPA/PANI-Fe3O4 �lled DGEBA.



www.nature.com/scientificreports/

6SCIENTIFIC REPORTS |  (2018) 8:13369  | DOI:10.1038/s41598-018-31508-0

Wagner-Maxwell-Sillars (MWS) relaxation occurs at low frequencies. �e interfacial processes are intensi�ed 
because of the hybrid �ller addition. As seen in Fig. 6, the peak maxima increase as the amount of �ller increases 
up to 3 wt%. In addition, the relaxation time (Table 2) as a measure of the process activity decreases, indicating a 
strong interaction between the hybrid �ller and matrix. From Table 2, it can also be seen that relative permittivity 
extrapolated to zero frequency increases as the �ller content increases, which con�rms the enhanced dielectric 
properties. �ese results provide clear evidence of improved properties due to the enhanced �ller-matrix interac-
tion up to 3 wt% and is in good agreement with the results obtained from DMA, tensile strength and microstruc-
ture investigations.

TGA of the nanofiller filled epoxy. �e TGA spectra showed in SI1 that the addition of the hybrid �ller 
does not a�ect the properties of the composites and is most likely due to the low �ller loading. Even if the thermal 
properties were not signi�cantly enhanced, the improvement imparted in mechanical and dielectric properties 
is appreciable.

Anticorrosion performance. Electrochemical impedance spectroscopy (EIS) experiments are conducted 
to explore how the magnetite polymer in the epoxy coatings in�uences their corrosion protection e�ciency. 
Figures 7 and 8 show the Nyquist and the Bode plots of the nanocomposites in 3.5 wt. % NaCl, respectively. �e 
measured EIS data are presented by the scattered symbols, and their �tted lines are the solid ones. Fitting is done 
using the equivalent circuit (Fig. 9).�ree measurements were conducted out for all of the as-prepared coatings. 
�e reproducibility of the results was good.

�e EIS parameters, derived from �tting the EIS data using the equivalent circuit shown in Fig. 9, are listed 
in Table 3.

Figure 4. Tensile load−displacement curves of the cured epoxy and epoxy nanocomposites �lled with di�erent 
nano�ller loadings (0.1, 0.5, 1, 3 and 5.wt %).

Figure 5. Temperature dependence of storage (right) and loss (le�) moduli for the cured pure epoxy and �lled 
epoxies with 0.1, 0.5, 1, 3 and 5 wt. % B-DPA/PANI-Fe3O4 loadings.
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Rs, Rpo and Rct are the solution, pore and charge transfer resistances, respectively. In addition, CPE and W are 
the constant phase element and Warburg impedance, respectively. �e impedance of the CPE is calculated using 
the formula 1/ZCPE = Qo (jw)α, where Q° (s. Ω−1) equals the admittance (1/|Z|) at ω = 1 rad/s, ω is the angular fre-
quency of the AC signal (1/rad) and α is the CPE exponent69–76. As α approaches 1, the CPE behavior approaches 
ideal capacitor behavior. It is worth mentioning that both of CPE1 and CPE2 were used instead of a regular capac-
itor element, to estimate the value of the coating capacitance (Cc) and the double layer capacitance (Cdl); using 
the following formula77,78.

=
α−

Cdl
Q

R ( 1)x

n

where, Q is CPE constant, α is CPE exponent, respectively. Rx represent the pore resistance (Rpo), or the charge 
transfer resistance (Rct).

Good �ttings were obtained with Chi-square (Χ2) using the equivalent circuit in Fig. 9, see Table 3. �e mag-
nitude of impedance modulus at low frequency (|Z|0.01 Hz), is an suitable element for calculating the overall 
corrosion protection e�ciency of the as-prepared coatings, while the charge transfer resistance (Rct) re�ects the 
resistance to electron transfer across the metal solution interface underneath the coating which is inversely pro-
portional to the undercoating corrosion rate.

�e high impedance values ~106 Ω cm2 at the low frequency region in the EIS measurements con�rms the 
good corrosion protection e�ciency of the nanocomposite coating. As the wt. % of the magnetite polymer 
increases, the Rct and Rpo increase from 0.35 × 106 Ω cm2 and 0.2 × 106 Ω cm2 for pure epoxy to 110 × 106 and 
53 × 106 Ω cm2 respectively, a�er the addition of 3 wt. % of the �ller. However, at a higher content of the �ller 
(5 wt. %), the Rct and Rpo decrease signi�cantly to 0.6 × 106 and 0.5 × 106 Ω cm2, respectively. In addition, the 
double layer capacitance at the coating/metal interface distinctly decreased from 35 µF for the pure epoxy to 
0.4 µF for the 3 wt. % composite of the magnetite polymer, and the Warburg coe�cient consequently decreased 
from 89 × 10−6 for the pure epoxy to 0.03 × 10−6 Ω cm2 s−1/2 for the 3 wt.% nanocomposite. Many reports have 
suggested di�erent mechanisms of the corrosion protection of the doped PANI with an epoxy coating especially 
when a low content of PANI is used. Ramezanzadeh et al.79 found that the addition of graphene oxide/polyani-
line (GO-PANI) to a zinc-rich epoxy increases the protection e�ciency of the carbon steel because the depos-
ited PANI existed in the emeraldine salt (PANI-ES) form, which was converted to emeraldine base (PANI-EB) 
by capturing the released zinc particles from the corrosion process. However, in the presence of Cl− ions, the 
PANI-EB was reconverted to PANI-ES and completed the autocatalytic cycle, which stabilized the Fe in the pas-
sive region and Zn in its active form. Kinlen et al.80 used the scanning reference electrode technique (SRET) to 

Figure 6. Dielectric spectra in the broad frequency range for the cured pure epoxy and �lled epoxy with 0.1, 
0.5, 3 and 5-wt % B-DPA/PANI-Fe3O4 loadings.

Neat Epoxy 0.1% 0.5% 3% 5%

ε″∞ 2.09 2.26 2.02 2.71 3.16

∆ε′ 4.96 3.77 7.09 6.69 6.12

trel [s] 2.31 0.72 0.41 0.07 0.25

a 0.89 0.93 0.87 0.79 1

0.98 0.37 1.15 0.68 1.53 0.68

ε′s 6.05 7.03 9.11 9.4 9.28

Table 2. Parameters of the modi�ed Havriliak-Negami model (eq. 1) for the various epoxy composites.
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prove that polyaniline (PANI) passivates pinhole defects that exist in the coating matrix on carbon steel. On the 
other hand, Hosseini et al.81 attributed the corrosion protection of their nanocomposite coating (EP/DBSA doped 
PANI-TiO2) to the titania nanoparticles as an inert material in addition to the produced Fe2O3 at the coating/
metal interface that �lls the pores of the coating matrix which hindered the attack of the corrosive ions. In addi-
tion to the aforementioned reasons for the corrosion resistance of PANI, it is observed that the �ller used in this 
study decreases the hydrophilicity of the as-prepared coatings up to a maximum amount of �ller, a�er which the 
hydrophilicity increases again which lowers the corrosion resistance.

�e corrosion protection of the magnetite polymer can be attributed to that �ller which decreases the porosity 
of the nanocomposite coating and therefore decreases the di�usion of the chloride ions inside along with the cor-
rosion products out of the coating82. However, a further increase in the concentration of the magnetite nanopar-
ticles (>3 wt.%), leads to a noticeable decrease in the corrosion protection of C-steel, which could be attributed 
to the agglomeration of the magnetite nanoparticles particles83, that leaves defects (such as pinholes or pores) in 
the coating matrix and increases the di�usion of the aggressive ions through the coating81. �e agglomeration 
is produced by both van der Waals forces and electrostatic attraction of the charges that exist on the magnetite 
nanoparticles surface84. On the other hand, increasing the content of the hydrophobic PANI in the epoxy coat-
ing decreased the hydrophilicity of the nanocomposites and consequently increased the WCA from 50° ± 4 to 
85° ± 2 for the 3 wt.% of BP-DPA-PANI-Fe3O4 (Fig. 10), which resulted in a decrease in the di�usion of the ions 
through the coating. However, further addition of the �ller (5 wt. %) decreased the WCA to 75° ± 3 and resulted 
in a signi�cant decrease in the corrosion resistance. �e decrease in the hydrophilicity a�er the addition of the 
�ller could be attributed to the increase of the surface roughness as shown in SI3. Nevertheless, at 5 wt.% the 
surface roughness prominently decreased to 10 nm due to agglomeration and non-homogeneous distribution of 
the nanoparticles.

Figure 7. Nyquist (a–d) plots of epoxy coatings with 0 (a), 1 (b), 3 (c) and 5 (d) wt. % BP-DPA-PANI@Fe3O4 
polymer.
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Oil sensing application. It has been described that conducting polymers composites such as PANI and 
polypyrrole are being used as sensitive materials for oil sensing applications due to their inexpensive and facile 
room temperature preparation85. In this work, the sensitivity of the composites’ sensing property was measured 
by connecting both the ends of the �lmstrip and dipping it in oil. One emerging application of these composite 
�lms is as an oil sensor to detect oil on the surface of marine vehicles. It is also popularly utilized as an anticor-
rosive coating. All sensing experiments fundamentally rely on the measurement of electrical conductivity of 
the developed samples. In the previous reports, as well as in our study, it acts as elementary principle behind all 
sensing86,87. �e chemical nature of the matrix is by far the most vital parameter for sensing and in�uences the 
electrical properties aside from other variables, such as the nature of the polymer matrix, �ller concentration and 
resistance88. As seen in Fig. 11, measurements for conductivity were performed in an oil media at 25 °C for all 
samples. �e conductivity measurements followed a decreasing trend for the samples, which is a rare and unlikely 
change. �e highest conductivity change in the oil occurred with epoxy �lled with 3 wt. % of B-DPA-PANI@
Fe3O4 �llers, at 5 wt% the conductivity start to decrease due magnetite hybrid �ller agglomeration as described 

Figure 8. Bode (e–h) plots of epoxy coatings with 0 (e), 1 (f), 3 (g) and 5 (h) wt. % BP-DPA-PANI@Fe3O4 
polymer.

Figure 9. Equivalent electrical circuit used to �t the EIS spectra of the di�erent nanocomposite coatings in 
seawater.

�e wt. % 
of the �ller Rct Ω.cm2 Rpo Ω.cm2

CPE1 µF 
cm−2 sα−1 n1

Ccoat µF 
cm−2

CPE2 µF 
cm−2 sα−1 n2 Cdl, µF W, Ω.cm2 s−1/2

Goodness 
of �t

0 0.35 × 106 0.2 × 106 13 0.876 14 23 0.828 35 89 × 10−6 1 × 10−4

1 9.8 × 106 7 × 106 0.7 0.813 1 2 0.798 4 0.62 × 10−6 2.2 × 10−4

3 110 × 106 53 × 106 0.06 0.782 0.08 0.1 0.773 0.4 0.03 × 10−6 3.2 × 10−4

5 0.6 × 106 0.5 × 106 5 0.811 6 8 0.769 12 31 × 10−6 2.4 × 10−6

Table 3. Corrosion parameters obtained from the EIS data for the corrosion of pure epoxy containing di�erent 
concentrations of BP-DPA-PANI-Fe3O4.
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previously. �e explanation behind this kind of conductivity behavior can be attributed to the absorbance and 
expansion of some molecules at the time of oil exposure. �at expansion leads to a decrease in the e�ective �ller 
volume fraction, which in turn decreases the overall electrical conductivity.

Conclusions
In this work, we have shown that the surface chemistry of aryl diazonium salts combined with magnetite nan-
oparticles is versatile and can be e�ciently employed to modify the surface of natural bentonite. It permits the 
chemical binding with bentonite surface from one side; moreover, it provides anchoring sites for the in situ 
polymerization of aniline resulting in a new hybrid material, which exhibits a polymer rich surface with unique 
properties. �e later was used as �ller for DGEBA at di�erent weight loading and was found to improve interfa-
cial, hydrophobicity, mechanical and dielectric conductivities of the epoxy resin for all reinforced samples up to 
3 wt%. All results con�rmed a strong interaction between the hybrid magnetite �ller and DGEBA. Moreover, the 
ability of BP-DPA-PANI@Fe3O4 nanocomposite �lm as a protective layer to prevent corrosion of carbon steel as 
well as oil sensor has been studied. Results con�rmed that the prepared nanocomposites supply protection for 
the carbon steel, the highest charge transfer resistance of 110 × 106 Ω.cm2 was achieved using 3 wt.% only of the 

Figure 10. �e measured water contact angle of before addition of the �ller (a) pure epoxy coating and a�er the 
addition of the magnetite polymer (b) 1 wt. %, (c) 3 wt. % and (d) 5 wt. % of B-DPA/PANI- Fe3O4.

Figure 11. Sensing characterization of samples. Conductivity (Ϭ/cm) vs time (min) for DGEBA-B-DPA-PANI@
Fe3O4 composite �lms in oil.
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prepared �ller. It was found that the speci�c electrical conductivity of the materials (Ϭ/cm) strongly depends on 
to the absorbance and expansion of some molecules at the time of oil exposure, highest conductivity change in 
the oil occurred with epoxy �lled with 3 wt. % of magnetite �ller.

From the above, this approach clearly highlights a new surface and interface chemistry using diazonium salt 
to prepare e�cient and inexpensive bio-based epoxy, for oil sensing & anti-corrosive smart protection with very 
strong interfacial interactions between �ller and host matrix. �is strategy can be used potentially to development 
of smart coatings such as Painting.
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