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1 Introduction

One of the main challenges in connecting String Theory to our observed Universe is to

provide a string theoretic description of the early and late time accelerated expansions. This

requires us to identify well-controlled string theory vacua whose 4D geometry corresponds

to de Sitter (dS) or quasi-dS, with all moduli stabilised. Moduli stabilisation into a dS

vacuum has been notoriously difficult to achieve, and the no-go theorems [1, 2] made clear

what ingredients would be necessary. In particular, taking the classical two-derivative

10D string supergravities, including localised Dp-brane, Dp-branes and Op-plane sources,

the Einstein’s and dilaton equations imply that one needs negative tensions and negative

internal curvature to source dS. A way to evade these restrictions is to include higher

derivative corrections.
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Although this makes the explicit construction of dS vacua — and moreover metastable

dS vacua — difficult, several mechanisms have been proposed. Arguably the most used

construction is to uplift1 a Minkowski or adS vacuum to dS with the addition of a positive

energy density from an D3-brane. For a small number of probe D3-branes at the tip of a

highly warped throat, an effective field theory analysis shows that such a configuration is

metastable [8]. There is a non-perturbative instability to antibrane-flux annihilation, but

the timescale of this stability can be far longer than the age of the Universe. Moreover, if we

place the D3-brane on top of an O3-plane, then any concerns about tachyonic instabilities

that might appear when going beyond the probe approximation (see [9, 10] and references

therein) are simply projected out.

The original D3-brane uplift scenario, by Kachru, Kallosh, Linde and Trivedi

(KKLT) [11], was presented in three steps. Firstly, a Giddings, Kachru, Polchinski

(GKP) [12] type IIB flux compactification stabilises the dilaton and complex structure

moduli in a non-supersymmetric vacuum. Next, the resulting runaway in the Kähler mod-

ulus is stabilised into a supersymmetry restoring vacuum by non-perturbative effects, such

as gaugino condensation on wrapped D7-branes and/or Euclidean D3-branes. Finally, the

supersymmetric adS vacuum is uplifted to a supersymmetry breaking dS vacuum by the

D3-brane. Note that the dS vacuum is achieved with a combination of the D3-brane and

non-perturbative effects — without the non-perturbative effects, the anti-brane would just

give a runaway towards decompactification — so, as expected, quantum corrections are

essential to evade the dS no-go theorems.

The D3-brane, as well as uplifting the classical vacuum energy to dS, spontaneously

breaks supersymmetry. Any string compactification with spontaneously broken supersym-

metry would have a non-linearly realised local supersymmetry (“non-linear supergravity”)

as its effective field theory description at energies below2 the mass of the goldstino’s super-

partner (usually the sgoldstino). That is, the action is invariant under non-linear supersym-

metry transformations, and the non-linear supersymmetry transformation for the goldstino

implies that all solutions spontaneously break supersymmetry. The goldstino is eaten by

the gravitino in the super-Higgs mechanism. Non-linear supergravity can be written in

terms of non-linear or constrained supermultiplets, which contain a single elementary field

(either bosonic or fermionic) and the goldstino. This superfield description makes it easy to

couple to supergravity and matter, starting with [13, 14]. Recently, [15–18] computed the

component form for supergravity coupled to a nilpotent chiral superfield, S2 = 0, which

carries the goldstino, and general matter.

Although the original KKLT construction parameterised the D3-brane contribution to

the 4D low energy effective field theory (LEEFT) in terms of an uplift term that explicitly

broke supersymmetry, the connection between non-linear supergravity and D3-branes has

been explored a lot recently in an effort to find a well-controlled LEEFT description of

1Alternative methods include D-term uplifting via gauge fluxes on wrapped D7-branes [3, 4], F-term up-

lifting via complex structure [5], α′ corrections to the Kähler potential in no-scale flux compactifications [6]

and F-term uplifting from dilaton dependent non-perturbative terms [7].
2At energies above the visible sector superpartner masses, the latter can still be parameterised by soft

susy breaking terms.
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KKLT setup. Notably, by studying an D3-brane placed on top of an O3-plane in a warped

throat geometry, the massless degrees of freedom on the brane were identified with the

goldstino of spontaneously broken supersymmetry, which can be described by a nilpotent

chiral superfield S2 = 0 [19–24]. Motivated by matching the degrees of freedom, canonical

kinetic terms and scalar potential arising from the D3-brane action in a GKP background,

a non-linear supergravity theory was proposed for the final step of the KKLT scenario [22].

In detail, for a KKLT variant with supersymmetric background fluxes and the volume

modulus stabilised by racetrack non-perturbative effects:

K = −3 ln(T+T̄−SS̄) and W = Ae−aT+Be−bT+M2S and S2 = 0 , (1.1)

which gives:

V =
M4 − 3|W0|2
(T0 + T̄0)2

with W0 = W (T0) (1.2)

and T0 the value of T at its minimum, where DTW |T=T0 = 0.

The purpose of this paper is two-fold. First, we provide the full 4D N = 1 non-linear

supergravity action which describes at low energies an D3-brane in a GKP flux compacti-

fication including non-perturbative effects a.k.a. the KKTL scenario. In particular, we go

beyond the original three-step process and include the D3-brane from the beginning, and

thus its couplings to all the bulk moduli. Indeed, intuitively, one imagines the D3-brane to

have emerged, somehow, together with the 10D compactification and background fluxes.

This picture allows us to order the dynamics in terms of energy scales, with the mass

hierarchy set up to be:

Mpl & Ms ≫ Mw
s ∼ M❳

❳susy ≫ Mw
kk ∼ Λ ∼ Λnp ≫ Mτ,Z ≫ MT ∼ M3/2 ∼ Mgoldstino (1.3)

where the tension of the D3-brane goes as the warped string scale, Mw
s , Λnp is the scale at

which non-perturbative effects kick in, and Λ is the UV cutoff for the 4D LEEFT. As we

explain below, the supersymmetry breaking scale, M❳
❳susy, is associated with the tension of

the D3-brane, which — being placed in an orientifold flux compactification — only realises

supersymmetry non-linearly. The 4D goldstino descends from the worldvolume fermion

on the D3-brane, and — due to the non-linear realisation of supersymmetry — has no

superpartner. In the decompactification limit, supersymmetry is still broken due to the

interplay between the D3-brane and the orientifold. Supersymmetry would only be restored

via the non-perturbative process of antibrane-flux annihilation, where the supersymmetry

breaking degrees of freedom on the D3-brane are replaced by the supersymmetric degrees

of freedom of a stack of D3 branes.

We are able to write down the full 4D LEEFT by using a combination of dimen-

sional reduction, non-linear supersymmetry and remnants of the modular invariance of

10D type IIB string theory. The non-linear supergravity action can be written in terms

of a real Kähler potential, holomorphic superpotential and gauge kinetic functions, and

Fayet-Iliopoulos terms. One interesting observation is that there are several equivalent

ways to express the action. For example, we can place the goldstino in a nilpotent chiral

– 3 –



J
H
E
P
1
0
(
2
0
1
7
)
1
8
5

superfield [25], S2 = 0, a constrained chiral superfield [13], X, which obeys the nilpotency

plus a derivative constraint, or a constrained vector superfield [14], V . The uplift term

associated to the D3-brane therefore corresponds either to an F-term or an FI D-term,

even though the D-term associated to the constrained vector superfield is not associated

with any gauge symmetry.

The second objective of the paper is to study the robustness of the uplifted 4D dS

vacuum against quantum gravity corrections in gs and α′. This is important, especially

because the dS vacuum is obtained by invoking classical and non-perturbative effects, so

one has to check that the vacuum is not destabilised by perturbative corrections, which

would dominate over non-perturbative effects. Early arguments on using non-perturbative

effects to stabilise flat directions in CY compactifications relied on non-renormalisation the-

orems for the holomorphic superpotential [26, 27]. Certain Peccei-Quinn (PQ) shift sym-

metries forbade the superpotential from depending on the axionic partners of the dilaton

and volume modulus, and then holomorphicity of the superpotential forbade corrections

to all finite orders in gs and α′. In flux compactifications non-renormalisation is not so

simple, as the superpotential does depend explicitly on the dilaton through the Gukov,

Vafa, Witten (GVW) superpotential [28]. However, the non-renormalisation theorem was

extended to this case in [29]. We here extend further the non-renormalisation theorem to

compactifications in the presence of an D3-brane, by using — as in [29] — remnants of

the stringy modular symmetry spontaneously broken by fluxes and the nilpotential super-

field. Although the Kähler potential will receive order-by-order perturbative corrections

in gs and α′, as the vacuum structure is generally determined by the superpotential (see

however, [6, 30]), non-renormalisation of the latter offers an enhanced robustness to the

“uplifted” dS vacua against quantum gravity corrections.

The paper is organised as follows. In section 2, we review how D3-branes in Calabi-Yau

orientifold flux compactifications spontaneously break supersymmetry, together with the

degrees of freedom and the action of a D3-brane in such a background. In section 3, after

reviewing the background material on constrained superfields, we derive the 4D LEEFT

describing the KKLT setup, parameterising the D3-brane uplift both as an F-term and a

D-term potential. Section 4 gives a proof that the superpotential found does not receive

any corrections to all finite orders in gs and α′. We summarise our results and some open

questions in section 5. Two appendices give our conventions and a derivation of the modular

transformation properties of the worldvolume fermion on the D3-brane. An expert reader

can simply jump to our main results from section 3.2 onwards.

2 Spontaneous supersymmetry breaking by D3-branes

The purpose of this section is to review how D3-branes spontaneously break supersym-

metry in a Calabi-Yau orientifold flux compactification. After introducing the type IIB

supergravity theory, including localised sources, we first show how an D3-brane spontan-

eously breaks the supersymmetry of a flat orientifold background. Correspondingly, its

worldvolume action reduces to a Volkov-Akulov theory, with non-linearly realised global

supersymmetry. We then build on these results, to review how an D3-brane spontan-
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eously breaks the supersymmetry of a Calabi-Yau flux background, with supersymmetry

preserving background fluxes. We present the leading order worldvolume action in this

background, which was worked out in [22]. In the next section we will work out how this

action contributes to the non-linear supergravity theory corresponding to a Calabi-Yau flux

compactification with a probe D3-brane.

2.1 Setup

Our starting point is type IIB supergravity, which has 16 + 16 linearly realised super-

symmetries. The degrees of freedom are the graviton gMN , axio-dilaton τ = C0 + i e−φ,

three-form RR flux F(3) = dC2, three-form NS-NS flux H(3) = dB(2), self-dual five-form

RR flux F(5) = dC4 + . . . , and their fermionic superpartners; the complex-Weyl gravitino

ΨM (M = 0, . . . , 9 and Γ11ΨM = −ΨM ) and dilatino λ (Γ11λ = λ). The action, in the

Einstein frame, is:

SIIB =
1

2κ210

∫

d10x
√−g

[

R− ∂M τ̄ ∂Mτ

2(Im τ)2
−

G(3).Ḡ(3)

12 Im τ
− 1

480
F 2
(5)

]

− i

8κ210

∫

C(4) ∧G(3) ∧ Ḡ(3)

Im τ
+ fermions + higher derivative corrections (2.1)

where G(3) = F(3) − τH(3) and 2κ210 = (2π)7α′4 and α′−1/2 = Ms is the string scale.

In addition to the bulk 10D supergravity, we consider a number of localised sources;

D-branes, D-branes and O-planes. These sources each realise half of the bulk spacetime

supersymmetries linearly and half non-linearly. The fields of the 4D worldvolume theory

of a D3-brane or D3-brane are its 10D spacetime coordinates, XM , a U(1) gauge field

Aµ (µ = 0, 1, 2, 3) and a pair of Majorana-Weyl spinors ΘA (A = 1, 2). For a D-brane,

Γ11ΘA = −ΘA, whereas for an D-brane, Γ11ΘA = ΘA.

The worldvolume action for D-branes and D-branes describes the interaction between

worldvolume fields and a general supergravity background. It can be written as a 4D non-

linear sigma model with curved superspace as the target space, where the worldvolume fields

ZΛ(σ) =
(

XM (σ),ΘA(σ)
)

(M = 0, . . . , 9; Λ = M |A) define a map from the worldvolume

coordinates σµ to a superspace with coordinates ZΛ(σ) [31]. The action is simply given by

the DBI and WZ expressions promoted to superspace; in the Einstein frame we have:

S3 = −T3

∫

d4σ
√

−det(gµν + Fµν) + qT3

∫

CeF , (2.2)

where the tension of the D3/D3-brane is given by T3 = (2π)−3α′−2g−1
s and F = 2πα′dA−

B(2), with gs = 〈eφ〉 and B(2) the pull-back to the worldvolume of the spacetime 2-form

potential B(2). Also, for a D3-brane, q = +1, whereas an D3-brane has q = −1. The

induced metric on the worldvolume, gµν , is expressed in terms of the pullback of the

supervielbein EΛ̄
Λ (with flat indices Λ̄) to the worldvolume:

Ea
µ(X,Θ) = ∂µZ

ΛEa
Λ(X,Θ) (2.3)

as:

gµν

(

XM (σ),ΘA(σ)
)

= Ea
µ(X,Θ)Eb

ν(X,Θ)ηab , (2.4)

– 5 –
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with ηab is the 10D Minkowski metric. Note that the complete, explicit action for D-brane

degrees of freedom is only known for a single D-brane or D-brane in a flat background; for

a single brane in a flux background it is known only to quadratic order in the fermions.

However, this will be sufficient for our purposes.

The action is fully covariant under spacetime-local supersymmetry, worldvolume-local

general coordinate invariance and a worldvolume-local fermion symmetry, known as κ-

symmetry, as well as U(1) gauge invariance. Gauge fixing to the static gauge leaves six

scalar degrees of freedom, Xm (m = 4, . . . , 9), for a D3/D3-brane, and the spacetime spinors

ΘA become worldvolume spinors. Gauge-fixing the κ-symmetry, the local target space

supersymmetry combines with a particular κ-transformation into a global worldvolume

supersymmetry, and reduces the 32 fermionic degrees of freedom by half. Recalling that

the equations of motion reduce the fermionic degrees of freedom again to eight, the brane

thus has the required supersymmetric matching of the number of fermionic and bosonic

(six scalar d.o.f. and two d.o.f. from the gauge bosons) physical degrees of freedom.

In the presence of D3/D7-branes, tadpole cancellation requires the presence of appro-

priate orientifold O3/O7-planes, whose action is similar to (2.2), with, however, only the

rigid pullback of the bulk metric and potential C4 appearing. The total system is thus

defined by:

SIIB +
∑

b

Sb
3,7 +

∑

o

So
3,7 (2.5)

where b runs over the D3/D7-branes and a single D3-brane and o runs over the O-planes.

2.2 D3-brane in orientifolded flat space

As a warm up, let us briefly review a probe D3-brane or D3-brane in a flat orientifolded

4D compactification, taking the global limit [21]. The orientifold projects out half of the

16+16 supersymmetries. The D3-brane realises the surviving supersymmery linearly and

the D3-brane does so non-linearly. The D3/D3-brane scalars are the goldstone bosons of

the spontaneously broken translation symmetry and the D3-brane worldvolume fermions

are the goldstinos of spontaneously broken supersymmetry.

In more detail, a convenient choice of orientifolding3 — which has to be compatible

with the κ-symmetry gauge fixing [21] — is:

Θ1 = Γ0123Θ
2 , with Γ0,1,2,3 flat Γ-matrices (2.6)

leaving only one linear combination of the 10D MW spinors, say Θ = Θ1, as an independent

degree of freedom. This 10D MW spinor, Θ (16 d.o.f.), can be decomposed into four 4D

complexWeyl spinors λI (I = 0, . . . , 3) (4 times 4 real d.o.f.). Indeed, after compactification

the structure group reduces as SO(9, 1) → SO(3, 1) × SO(6) → SO(3, 1) × SU(3), under

which, for a D-brane:

16′ → (2̄,4)⊕ (2, 4̄) → (2̄,3)⊕ (2̄,1)⊕ (2, 3̄)⊕ (2, 1̄) , (2.7)

3Alternative gauge choices often encountered are setting one of Θ1 or Θ2 equal to zero [32], or Θ1 = cΘ2

for some constant number c [33].
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and for an D-brane:

16 → (2,4)⊕ (2̄, 4̄) → (2,3)⊕ (2,1)⊕ (2̄, 3̄)⊕ (2̄, 1̄) . (2.8)

In both cases, we have a singlet, λ0, and a triplet, λi (i = 1, 2, 3), under the SU(3) acting

on the complex three-dimensional normal space to the brane.

If we moreover, place the D3-brane on top of an O3−-plane [34], the worldvolume

position scalars, Xm (m = 4, . . . , 9), and the worldvolume gauge bosons, Aµ, are projec-

ted out. Supersymmetry then implies that their superpartners, the worldvolume spinor,

are also projected out. There are no degrees of freedom left on the D3-brane, and the

worldvolume action is vanishing. An D3-brane on top of the O3−-plane also carries no

worldvolume bosons, meanwhile the worldvolume spinor survives.

Dimensional reduction of the gauged-fixed D3-brane action (2.2) in a flat orientifolded

background then directly yields a 4D N = 4 Volkov-Akulov action:

SD3 = −M4

∫

d4σ detE = −M4

∫

E0∧E1∧E2∧E3 , Eµ = dσµ+
3

∑

I=0

λ̄IγµdλI , (2.9)

where M4 = 2T3. The four 4D fermions are the four goldstino fields associated with the

4D N = 4 spontaneously broken supersymmetry. Indeed the action is invariant under a

non-linearly realised supersymmetry that acts only on the fermions:

δǫλ
I = ǫI +

3
∑

J=0

(

λ̄JγµǫJ
)

∂µλ
I , (2.10)

with ǫI the supersymmetry variation parameter.

2.3 D3-brane in flux compactifications

We now consider a probe D3-brane in an N = 1 Calabi-Yau orientifold compactification of

type IIB supergravity with background fluxes, known as a GKP compactification [12]. We

assume for simplicity that the Calabi-Yau has only one Kähler modulus. Note also that we

choose the background fluxes, complex structure and dilaton to ensure that the flux — by

itself — would preserve N = 1 supersymmetry (i.e. fluxes are imaginary self-dual). This

generically induces a potential for the complex structure and dilaton in the 4D effective

field theory.

The background geometry is given by the warped metric:

ds210 = e2A(y)ηµνdx
µdxν + e−2A(y)gmndy

mdyn (2.11)

and is supported by a five-form flux:

F̃(5) = (1 + ∗)
[

dα(y) ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3
]

with α(y) = e4A(y) (2.12)

and an imaginary self-dual three-form flux threading three-cycles in the internal Calabi-Yau:

∗6 G(3) = iG(3) . (2.13)

– 7 –
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The Bianchi identity:

dF̃(5) = H(3) ∧ F(3) + 2κ 2
10T3ρ

loc
3 (2.14)

is satisfied by including a number of source O-planes together with the fluxes, D-branes

and D-branes, where ρloc3 is the D3 charge density form from the localized sources. The

orientifold projects out half of the 10D complex Weyl gravitino, ΨM , similarly to what we

have seen for 10D MW worldvolume fermions, ΘA. The surviving components, with which

we may compose a 10D MW spinor4 ΨM , decomposes into a 4D complex Weyl singlet and

4D complex Weyl triplet with respect to the SU(3) holonomy as in (2.7). The triplet is

massive, leaving one massless complex Weyl gravitino.

In the Calabi-Yau orientifold flux compactification, a probe D-brane (appropriately

aligned with the source D-branes) preserves the 4D N = 1 spacetime supersymmetry [35],

whereas an D3-brane breaks it spontaneously. For a supersymmetric D-brane (away from

the O3−-plane so that worldvolume fields are kept), the singlet λ is a 4D gaugino, and

joins the worldvolume U(1) gauge field, Aµ, to form a 4D N = 1 vector multiplet. The

three ψi each lie in a 4D N = 1 chiral supermultiplet, together with a complex scalar field

composed from the six worldvolume position fields, Xm. The low energy effective field

theory for a D3-brane in a GKP background has been worked out in [36].

Ref. [22] worked out the worldvolume theory for a probe D3-brane in the GKP flux

background, to lowest order in the fermions. To simplify the discussion, the brane is again

placed on an O3−-plane so that it carries only the worldvolume fermions (their bosonic

superpartners being projected out by the orientifold). The D3-brane action is obtained

from (2.2) evaluated in curved superspace, plugging in the GKP background at the position

of the brane. Including the volume fluctuations, u, in the metric,5 the GKP metric in the

4D Einstein frame is:

ds2 = e2A−6ugµνdx
µdxν + e2u−2Agmndy

mdyn . (2.15)

The D3-brane action in the GKP background, to quadratic order in the spinors and in the

Einstein frame, is thus computed to be [22] (compared to eq. (3.11) in ref. [22] we transfer

to the Einstein frame,6 write gamma matrices w.r.t. the unwarped metrics and include the

volume fluctuations):

LD3
2−f =

√−g T3e
4A0−12uΘ̄

[

2e−A0Γµ∇µ +
1

6
eφ/2+3A0−6u

(

ImGISD
mnp

)

Γmnp

]

Θ , (2.16)

where the subindex 2− f indicates second order in the fermions. The factor e4A0 indicates

the warp factor at the position of the D3-brane, which close to the tip is given by:

e4A0−4u = r40/L
4 (2.17)

4Two 10D MW spinors can be obtained from a complex Weyl spinor as Ψ1 = 1
2
(Ψ + ΨC) and Ψ2 =

1
2i
(Ψ−ΨC) with ΨC ≡ C10Ψ̄

T and C10 the 10D charge conjugation matrix.
5See [37] for subtleties in identifying the universal Kähler modulus in warped compactifications.
6The relations between 10D string and Einstein frames are gMN s = eφ/2gMN E , Θs = e

φ
8 ΘE . Also, in

going to the 4D Einstein frame gµν E = e−6ugµν E4
, we have ΘE = e−3u/2ΘE4

.
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with r0 the distance between the D3-brane and the (effective) N D3-branes sourcing the

warp factor, measured with the metric gmn. For the D3-brane in e.g. the deformed conifold,

this distance is cut off at r0 ∼ Z1/3, with Z the complex structure modulus associated

with the radius of the blown-up S3 in the base of the deformed conifold. The usual

procedure [12] is then to exploit the fact that fluxes induce a superpotential which fixes Z;

indeed solving DZWflux = 0 gives7 Z ∼ exp(−2πK/Mgs). However, as there will be further

contributions to the superpotentional from the D3-brane, which we have not yet written

down, we postpone the fixing of complex structure and dilaton, and keep the implicit

dependence of A0 on the moduli, defining this dependence as:

eAz(Z,Z̄) ≡ e4A0−4u . (2.18)

At the end, it will be clear that the presence of the D3-brane in fact does not modify the

stabilisation of Z at exponentially small values, Z ∼ exp(−2πK/Mgs), and the hierarchy

of scales eAtip ∼ Z1/3 ∼ exp(−2πK/3Mgs).

Dimensional reduction of the D3-brane action (2.16) now gives the following result [22]

(compared to eq. (3.18) and (A.14) in [22] we change to the Einstein frame, include the

volume fluctuations, use the unwarped metric and translate to two-component notation for

the spinors8):

LD3
2−f =

√−g 2T3e
4A0−12u

[

e−A0 λ̄σ̄µ∇µλ+ e−A0δīiψ̄
īσ̄µ∇µψ

i

+
1

2
e3A0−6um̄īj̄ψ̄

īψ̄j̄ +
1

2
e3A0−6umijψ

iψj

]

(2.19)

with

mij = ǫjkl e
t
i e

ū
k̄ e

v̄
l̄ δ

kk̄δll̄eφ/2ḠISD
tūv̄ . (2.20)

Provided that the background flux is of primitive (2,1) type, the triplet of worldvolume

fermions, ψi, is massive, whereas the singlet, λ, remains massless. The massless singlet, λ,

is the goldstino of spontaneously broken 4D N = 1 supersymmetry. The symmetries in

the setup imply that the completion of the action to higher order in the fermions would

show the Volkov-Akulov nature of the theory, that is, non-linearly realised supersymmetry

associated with spontaneous symmetry breaking. Recall, moreover, that the bosonic part of

an D3-brane action, in the GKP background, gives rise to an effective positive energy [39]:

VD3 = 2T3e
4A0−12u . (2.21)

Note that, by itself, this potential energy would drive a runaway in the volume modulus,

hence we will consider setups with additional non-perturbative effects, which ensure a

stable compactification. Our task is now to work out the supersymmetric completion of

the contributions (2.19) and (2.21) to the full 4D LEEFT, and write down the latter in the

language of non-linear supergravity.

7See however [38] where a non-negligible correction to this result is computed.
8It will be clear from the context whether we are using 4-component Majorana spinors, 4-component

complex Weyl spinors or 2-component spinors.
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3 Non-linear supergravity from D3-branes

In this section we work out the 4D LEEFT corresponding to a CY orientifold flux compacti-

fication including an D3-brane and non-perturbative effects, in terms of a supergravity the-

ory with non-linearly realised supersymmetry. We first review the description of non-linear

supersymmetry and the goldstino using constrained superfields, including their couplings

to matter and supergravity. Then we work out the non-linear supergravity corresponding

to the D3-brane in an N = 1 supersymmetric GKP flux background — including all bulk

moduli fields. As we have just seen, an D3-brane in a flux background gives rise to a

runaway in the volume modulus,9 so we also include non-perturbative effects à la KKLT to

stabilise this modulus in a metastable dS vacuum. We use three different formulations of

the non-linear supergravity in terms of constrained superfields, where the uplift potential

can be written either in terms of an F-term potential or a Fayet-Iliopoulos D-term, and

show their equivalence.

3.1 Constrained superfields and their couplings to supergravity and matter

So far, we have seen that the Volkov-Akulov theory provides a description for non-linear

global supersymmetry. The degrees of freedom correspond to the goldstini of spontaneously

broken global supersymmetry, and the action is invariant under non-linear supersymmetry

transformations acting on the goldstini. The Volkov-Akulov theory can also be written

with manifestly realised linear supersymmetry, using constrained superfields. In fact, there

are several different realisations with constrained superfields.

Constrained chiral superfield X. The first such realisation was to place the goldstino

within a constrained chiral superfield,10 X(y, θ) = φX(y)+
√
2ψX(y)θ+FX(y)θθ, obeying

the following constraints11 [40]:

X2 = 0 and − 1

4
XD̄2X̄ = M2X . (3.1)

These constraints imply that the only independent degree of freedom in the chiral multiplet

is the goldstino fermion, with the other components given by:

φX =
ψXψX

FX
and FX = M2 + fermions , (3.2)

where the complete form of the second relation is given in [41] but is not important for our

purposes. Since 〈FX〉 6= 0, supersymmetry is spontaneously broken.

The action can be written either as a pure F-term or pure D-term (the second constraint

implies that the F-term and D-term are equivalent):

S =

∫

d4x

∫

d2θd2θ̄XX̄ or S = M2

(∫

d4x

∫

d2θX + h.c.

)

. (3.3)

It was shown in [40] that this action is equivalent to the Volkov-Akulov one.

9Without the D3-brane, a supersymmetric flux compactification leads to the well-known “no-scale” flat

direction for the volume modulus.
10We write the chiral superfield as a function of its natural variables, yµ = xµ + iθσµθ̄ and θ.
11Recall that − 1

4
D̄2θ̄2 = 1.
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Constrained vector superfield V . Another possibility is to place the goldstino in a

vector superfield:

V (x, θ, θ̄) = C(x) + iθχ(x)− iθ̄χ̄(x) +
i

2
θθ [M(x) + iN(x)]− i

2
θ̄θ̄

[

M̄(x)− iN̄(x)
]

−θσµθ̄Aµ(x) + iθθθ̄

[

λ̄(x) +
i

2
σ̄µ∂µχ(x)

]

− iθ̄θ̄θ

[

λ(x)− i

2
σµ∂µχ̄(x)

]

+
1

2
θθθ̄θ̄

[

D(x) +
1

2
�C(x)

]

, (3.4)

constrained as [13, 14]:

V 2 = 0,

V DADBV = 0 V DADBDCV = 0

1

16
V DαD̄2DαV = M2V (3.5)

with DA = (∂a, Dα, D̄α̇). These constraints fix all component fields — including the gauge

field — in terms of the gaugino field λ, and remove the gauge symmetry.

The Volkov-Akulov action, expressed in terms of a constrained vector superfield

is [13, 14]:

S = −1

2
M2

∫

d4x

∫

d2θd2θ̄V or S =

∫

d4x

∫

d2θWαW
α + h.c. , (3.6)

with chiral field strength superfield Wα = 1
4D̄

2DαV , and again, the derivative constraint

ensures that the Fayet-Iliopoulos term and the kinetic term are equivalent

The constrained vector superfield and constrained chiral superfield are related by [42]:

V =
1

M2
X̄X and X = −M

4
D̄2V . (3.7)

Nilpotent chiral superfield, S. The constrained superfields X and V above have the

goldstino as their only independent degree of freedom. It is also possible to place the

goldstino within a chiral superfield, S, that is constrained only by the nilpotency condition:

S2 = 0 . (3.8)

By dropping the derivative constraints, the complex auxiliary field, FS is restored to an

independent (though non-dynamical) degree of freedom. The Volkov-Akulov action in

terms of the nilpotent chiral superfield, S, is given by:

S =

∫

d4x

∫

d2θd2θ̄SS̄ +M2

(∫

d4x

∫

d2θS + h.c.

)

. (3.9)

Note that a nilpotent vector superfield, constrained only by V 2 = 0, would carry — in

addition to the goldstino and real auxiliary field, D — the gauge field as an independent
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degree of freedom. For a D3-brane on an O3−-plane, the worldvolume gauge field is pro-

jected out, and therefore the degrees of freedom of V 2 = 0 do not correspond12 to those of

the D3-brane on an O3−-plane. The superfield S does carry the correct degrees of freedom,

and is also convenient for coupling to matter and supergravity.

Coupling to supergravity and matter. Having a superfield description of the gold-

stino makes its couplings to supergravity and matter straightforward. In coupling to super-

gravity, the derivative constraints are modified by extending the flat superspace covariant

derivatives to curved ones and the chiral projector to:

D̄2 → D̄2 − 4R . (3.10)

Derivative constraints are also modified by matter couplings. These complications are

avoided by taking the nilpotent field, S, for which the derivative constraint is discarded.

However, as already mentioned, in this case the auxiliary field, FS is then an independent

degree of freedom, which has to be integrated out using its equation of motion. This requires

a complicated non-Gaussian integration [17, 18] after replacing φS = ψSψS/FS . In any

case, the superspace action is described as usual by a real Kähler potential K, holomorphic

superpotential W , gauge kinetic functions HAB and Fayet-Iliopoulos D-terms:

S = − 3

κ24

∫

d4xd2θd2θ̄Ee−
1
3
κ2
4K(Φ,Φ̄,V ) ΞΞ− 1

κ24

∫

d4xd2θE
(

Ξ3W+HAB(Φ)W
Aα

W
B
α

)

+h.c.

(3.11)

where Ξ is the so-called Weyl compensator field, a nowhere vanishing covariantly constant

chiral superfield which renders the supergravity action invariant under scale and conformal

transformations. The bosonic part of the component action is just as in linear N = 1

supergravity, and only the quartic and higher fermionic terms are different between the

linear and non-linear supergravity [15–18].

Further possible constrained superfields which can carry the goldstino field are the

spinor goldstino superfield [14] and a constrained complex linear superfield [45]. In addi-

tion to the goldstino superfields, there exist other constrained superfields containing matter

fields with no superpartners. We will encounter below a triplet of constrained chiral super-

fields, Y i (i = 1, 2, 3), which are constrained by [46]:

SY i = 0 . (3.12)

This constraint fixes the scalar component to be:

φi =
ψSψi

FS
− (ψS)2

2(FS)2
F i . (3.13)

12Yet another possibility is to use the vector superfield recently introduced in [43, 44], constrained by

V 2 = 0, V DADBV = 0 and V DADBDCV = 0 (where DA = (∂a, Dα, D
α̇)), which contains only the

goldstino and auxiliary D-field as independent components and is thus the vector analogue of the nilpotent

chiral superfield, S.
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3.2 Non-linear supergravity for KKLT

We are now ready to deduce the non-linear supergravity theory that describes, at low en-

ergies, a D3-brane in a supersymmetric GKP flux compactification with non-perturbative

effects, a.k.a. a KKLT setup. Let us review the fields present in the 4D LEEFT. The

flux background generically gives masses to the axio-dilaton, complex structure and world-

volume fermion triplet. Usually, these fields are integrated out to leave only the Kähler

moduli and goldstino (plus matter). However, we keep them, as their masses are suppressed

with respect to the KK mass, and we want to know how the D3-brane couples to all the

moduli and moreover consider constraints from invariance under modular transformations

of the dilaton.

With regards to the Kähler moduli, we have seen that at leading order, a D3-brane in a

CY orientifold would give a runaway direction in the volume modulus. We consider setups

with non-perturbative racetrack effects arising from Euclidean D3-branes or gaugino con-

densation on wrapped D7-branes13 which stabilise the volume modulus in a metastable dS

vacuum, provided that the runaway contribution does not dominate the non-perturbative

stabilisation [48]. In that case, we can write down the 4D LEEFT.14 Note that although

we do not know the full 10D description of the non-perturbative effects, we do have a

description of them in 4D. Also, considering only classical and non-perturbative effects

will be justified, as the superpotential is protected from perturbative corrections by non-

renormalisation theorems, which we prove in section 4.

To summarise, we are assuming a mass hierarchy:

Mw
s ∼ M❳

❳susy ≫ Mw
kk ∼ Λ ∼ Λnp ≫ Mτ,Z ≫ MT ∼ M3/2 ∼ Mgoldstino (3.14)

where Λ is the cutoff for our 4D LEEFT and Λnp the energy scale at which non-perturbative

effects kick in. Note that there is no sgoldstino in our hierarchy. In fact, the would-be

superpartner of the goldstino in our setup is the worldvolume gauge boson, but the interplay

between the D3-brane and the orientifold flux compactification leads to the non-linear

realisation of supersymmetry already at the warped string scale, Mw
s , and the goldstino

and gauge boson should lie in separate constrained supermultiplets as in [46, 49]. As we

have seen, the decompactification limit does not restore supersymmetry — the D3-brane in

the flat orientifold still has only non-linear supersymmetry. Supersymmetry is only restored

after the process of antibrane-flux annihilation, where the supersymmetry breaking sectors

of the D3-brane are replaced by supersymmetry preserving degrees of freedom on a stack

of D3-branes. The goldstino degree of freedom on the antibrane can be written as a

constrained N = 1 superfield, and we now want to identify the goldstino superfield and its

couplings to the bulk moduli.

13Take care that gaugino condensation can provide a local source for supersymmetry breaking IASD flux

G(1,2) [47], whereas we will assume — for simplicity — supersymmetric background fluxes and supersym-

metric racetrack. The affect of the G(1,2) fluxes in the 4D LEEFT can be parameterised by the usual

superpotential of gaugino condensation [47].
14Note that the initial antibrane-flux setup — before non-perturbative effects switch on — has no static

solution in 10D, as the positive energy density of the D3-brane would lead to decompactification. Therefore,

writing down a 4D LEEFT based around a static solution would be inconsistent.
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The leading order action governing the 4D LEEFT can be deduced using a combination

of dimensional reduction, non-linear supersymmetry and modular invariance.

3.2.1 Modular invariance

A fundamental feature of string theory is modular invariance or S-duality. In type IIB string

theory, this can be seen as descending from the modular invariance of the torus in the elliptic

fibration that relates type IIB to F-theory. Indeed, the 10D axio-dilaton,15 τ = e−φ − iC0,

parameterises an SL(2,R)/U(1) coset space. The type IIB supergravity action in the

Einstein frame (2.1) is manifestly invariant under the SL(2,R) transformations, where it

will be useful to see how the following combinations of fields transform:

τ → aτ − ib

icτ + d
, G(3) →

G(3)

icτ + d
, eφ/2G(3) → e−2iδeφ/2G(3), F(5) → F(5)

ΨM → e−iδΨM , λ → e−i3δλ , (3.15)

with a, b, c, d ∈ R and ad− bc = 1 and the phase

eiδ =
(icτ + d)

1
2

|icτ + d| 12
. (3.16)

This modular invariance of the type IIB classical action is broken at the perturbative level

and restored to SL(2,Z) by non-perturbative effects.

We begin by deriving the classical contributions to the 4D LEEFT action, which in-

herit the perturbative SL(2,R) invariance. Describing the 10D gravitino that survives the

orientifolding as a 10D MW spinor, its dimensional reduction gives:16

Ψµ = ψ+
µ ⊗ ζ− + c.c. , (3.17)

with ζ− the 6D nowhere vanishing covariantly constant (w.r.t. the unwarped metric) spinor

with negative chirality and ψ+
µ the 4D massless gravitino in complex Weyl notation with

positive chirality. Converting to the usual 4D Majorana gravitino, the latter transforms as:

ψµ → e−iδγ5ψµ (3.18)

from which we can deduce the transformation of the supersymmetry Killing spinor and the

fermionic superspace coordinate:

ǫ → e−iγ5δǫ and θ → e−iγ5δθ . (3.19)

In the absence of the antibrane, N = 1 supersymmetry is preserved. The 4D axio-

dilaton and volume modulus fall into N = 1 chiral multiplets, whose complex scalar com-

ponents are given by:

τ = e−φ − iC0 and T = e4u − i b (3.20)

15For convenience of notation, we now rotate the axio-dilaton given in section 2.1 by −i.
16Here, c.c. stands for charge conjugation, ΨC ≡ C10Ψ̄

T . Writing the decomposition of the 10D charge

conjugation matrix is C10 = C4 ⊗C6, we have c.c. = −C4γ
0(ψ+

µ )∗ ⊗C6(ζ−)
∗, so ψ+

µ ⊗ ζ− → e−iγ5δψ+
µ ⊗ ζ−

and c.c. → e−iγ5δc.c. under modular transformation.
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where, recall that ds2 = e2A−6u(x)gµνdx
µdxν +e−2A+2u(x)gmndy

mdyn and b is the universal

axion descending from the 10D self-dual 4-form C(4), C(4) = a(2) ∧ J̃ and da(2) = e−8u⋆̃db.

The low energy effective field theory is described by an N = 1 4D supergravity action,

with Kähler potential and superpotential taking the form (as usual, chiral superfields are

labelled by their lowest components):

κ24K = − ln(τ + τ̄)− 3 ln(T + T̄ )− ln

(

−i

∫

M
Ω ∧ Ω̄

)

(3.21)

and

W =

∫

G3 ∧ Ω , (3.22)

where κ24 = κ210/〈Vw〉, with Vw is the warped 6D volume. Moreover, Ω is the holomorphic

(3,0)-form of the CY, so that the last term in the Kähler potential gives the dependence

on the complex structure moduli.

The Kähler and superpotential are invariant under the 4D modular transformation:

τ → aτ − ib

icτ + d
, (3.23)

up to a Kähler transformation17

K → K + ln |icτ + d|2 and W → W/(icτ + d) (3.26)

so that the combination G = K + ln |W |2 remains invariant.

The modular symmetry persists in the presence of probe D3/D3-branes, which are each

self-dual under the SL(2,R) transformation [51–53]. Requiring that the coupling (2.16)

between the 10D MW spinor, Θ, and the field strength, G(3), in the Einstein frame, is

modular invariant allows us to deduce the modular transformation property of the world-

volume fermion [33]. For the D3-brane (see appendix):

Θ → ei(γ5⊗1)δΘ . (3.27)

Dimensional reduction of the worldvolume fermion on the D3-brane gives:

Θ = λ− ⊗ ζ− + ψi
− ⊗ ζi + c.c. (3.28)

17Recall that the transformation (3.23) implies that the dilaton chiral supermultiplet τ(y, θ) transforms as:

τ(y, θ) →
aτ(y, θ′)− ib

icτ(y, θ′) + d
. (3.24)

This induces a Kähler transformation in the Kähler potential, K = − ln(τ + τ̄), from which we can write

down how the susy parameter, θα, transforms:

K → K + F + F̄ , with F = ln(icτ + d), ⇒ θα → θ
′

α =
|icτ + d|

1

2

(icτ + d)
1

2

θα . (3.25)

The Kähler transformation is also accompanied by Weyl rotations of the spinors as follows [50]. The grav-

itino transforms as ψµ → exp(− i
2
(ImF ))ψµ, as does the spinor in a vector superfield, λ→ exp(− i

2
(ImF ))λ.

Spinors of modular weight 0 transform as ψ → exp( i
2
(ImF ))ψ.
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where λ− and ψi
− are 4D complex Weyl spinors with negative chirality, ζi =

1
6||Ω||Ωijkγ

jkζ−

and ||Ω||2 = 1
3!ΩijkΩ̄

ijk. The 4D singlet and triplet transform under the modular symmetry

as (converting to 4D Majorana spinors):

λ → e−iγ5δλ (3.29)

and similarly for the triplet of worldvolume fermions:

ψi → e−iγ5δψi (i = 1, 2, 3). (3.30)

These imply, as they must, that the 4D action descending from the D3-brane is modular

invariant.

Notice that the classical action also enjoys an accidental SL(2,R) symmetry acting

on the Kähler modulus, whose Peccei-Quinn subgroup descends from the 10D RR-gauge

invariance.

3.2.2 Nilpotent chiral superfield and modular invariance

We now write down the non-linear supergravity with nilpotent chiral superfield, corres-

ponding to a KKLT model. We have seen that the D3-brane introduces four new fermionic

degrees of freedom corresponding to a goldstino and fermion triplet. Refs. [21, 22] propose

that the goldstino lies in the nilpotential chiral superfield, satisfying S2 = 0, and ref. [46]

argues that the fermion triplet lies in three constrained chiral supermultiplets, satisfying

SY i = 0. We now consider the same constrained chiral superfields, together with all the

light bulk moduli.

GKP flux compactification with an D3-brane. Let us start with the contributions

to the 4D LEEFT action that descend from the CY orientifold compactification in the

presence of background fluxes and a probe D3-brane. These contributions stabilise the

complex structure and dilaton with a positive vacuum energy, but — if they were the

only contribution — would leave a runaway direction in the volume modulus. A candidate

Kähler potential and superpotential is:18

κ24K = − ln(τ + τ̄)− 3 ln(T + T̄ )− ln

(

−i

∫

M
Ω ∧ Ω̄

)

+KSS̄(τ, τ̄ , T, T̄ , Z, Z̄)SS̄ +KY Ȳ (τ, τ̄ , T, T̄ , Z, Z̄)δīiY
iȲ ī (3.31)

and

W =

∫

G3 ∧ Ω+M(τ, T, Z)2S + hij(τ, T, Z)Y iY j (3.32)

where KSS̄(τ, τ̄ , T, T̄ , Z, Z̄),KY Ȳ (τ, τ̄ , T, T̄ , Z, Z̄),M(τ, T, Z) and hij(τ, T, Z) are functions

of the moduli — possibly constant — to be identified. We have neglected possible contri-

butions KY Y Y
iY j + h.c. to the Kähler potential, as such terms would contribute to the

component action only at higher order in the fermions, and thus cannot be fixed to the

quadratic order we are working in, see [36] for analogous terms for a D3-brane in a flux

18Our conventions for the mass dimensions are [θ] = − 1
2
(so [dθ] = 1

2
and [Dα = 1

2
]), [S] = 1 and [V ] = 0.
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background. Also, the most general action would include a linear term in the superpoten-

tial, gi(τ, T, Z)Y i, but this term is absent for our choice of background fluxes.

Let us first assume an unfluxed, unwarped CY orientifold with no complex structure.

We first write down a candidate real Kähler potential and holomorphic superpotential that

would satisfy modular invariance and match the uplift term in the scalar potential and

fermion mass terms from the D3-brane. Then we match the fermion kinetic terms, and —

as a consistency check — ensure that the superfields derived via this matching have the

assumed modular transformation properties. The result is the following:

κ24K = − ln(τ + τ̄)− 3 ln

(

T + T̄ − κ24
(T + T̄ )

3(τ + τ̄)
SS̄ − κ24

1

3
(T + T̄ )δīiY

iȲ ī

)

, (3.33)

and

W = M2S where M2 =
√

2T3 , (3.34)

with

ψS =
√
2e−φ/2e−6uM2λ+ . . . and ψi

Y = M2e−6uγ0ψi + . . . , (3.35)

where here and below we drop higher order fermion terms in the fermion field redefinitions.

Indeed, from the SL(2,R)τ modular transformation properties of λ, ψi and θ, we can deduce

that the superfields S and Y i transform as:19

S → S

icτ + d
and Y i → Y i . (3.36)

Note also that S and Y i then have “modular weight”−1 or 0 under the SL(2,R)T symmetry,

depending on whether the antibrane is in the highly warped or unwarped region of the CY.

The corresponding kinetic term for the goldstino and fermion triplet is:

LD3
2−f =

√−g

[

1

(τ + τ̄)
ψ̄S σ̄µ∇µψ

S + δijψ̄
i
Y σ̄

µ∇µψ
j
Y

]

(3.37)

and the contribution to the scalar potential is

VD3 =
M4

(T + T̄ )3
. (3.38)

The K and W also lead to a number of other couplings which are higher order than the

approximations we used in the dimensional reduction, but whose presence are guaranteed

by supersymmetry. As well as higher than quadratic order in the worldvolume fermions,

we also thus derive couplings between bulk and brane fields (e.g. via the supercovariant

derivatives of the fermions), which we neglected when evaluating the probe brane action

in a background supergravity configuration.

Note that, although the D3-brane breaks supersymmetry, the Lagrangian gravitino

mass parameter m3/2 = κ24
∣

∣eκ
2
4K/2W

∣

∣ vanishes since W = 0 in the background. We will

19Before fluxes are included, ψi
Y = M2e−6uψi + . . . and Y i → e−2iδY i would also seem a consistent

choice, however, writing the flux-dependent mass term as a holomorphic superpotential term fixes Y i as in

the main text.
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return to the gravitino mass once we have incorporated non-perturbative contributions and

stabilised the volume modulus in a genuine dS vacuum, but see also [54–56] for a discussion

of the gravitino mass in dS space.

Now let us assume a warped, fluxed CY orientifold with a single complex structure

modulus. Before including the D3-brane, the Kähler potential is:

κ24K = − ln(τ + τ̄)− 3 ln(T + T̄ )− 3 ln(Z + Z̄) . (3.39)

After adding the D3-brane, we need that the uplift potential be independent of the complex

structure. Since the superpotential is holomorphic, the only possibility is:

κ24K = − ln(τ + τ̄)− 3 ln(Z + Z̄)

−3 ln

(

T + T̄ − κ24
e−4A0(T + T̄ )

3(τ + τ̄)(Z + Z̄)3
SS̄ − κ24

e−4A0(T + T̄ )

3(Z + Z̄)3
δīiY

iȲ ī

)

(3.40)

and

W =

∫

G(3) ∧ Ω+M2S + hij(τ)Y
iY j with M2 =

√

2T3 , (3.41)

where

ψS =
√
2e−φ/2e−6u+7A0/2(Z+Z̄)3/2M2λ+. . . and ψi

Y = M2e−6u+7A0/2(Z+Z̄)3/2γ0ψi+. . .

(3.42)

and hij(τ) is a function of the dilaton determined from (2.20) to be:

hij(τ) = (Z + Z̄)−
3
2 ǫj̄k̄l̄ e

t̄
ī e

u
k e

v
l δ

kk̄δll̄δīiδ
j̄
jG

ISD
t̄uv , (3.43)

recalling that all quantities are with respect to the unwarped metric, gmn in (2.15). Notice

that as hij(τ) is linear in the flux G(3), it has modular weight −1, as required by modular

invariance. Moreover, similarly to the case of a D3-brane in a flux background [36], all the

non-holomorphic dependence on Z in the right-hand side of (3.43) must cancel, yielding a

holomorphic superpotential independent of Z. We have checked this for the simple toroidal

orientifold outlined in appendix B of [22].

The classical plus antibrane contributions to the scalar potential are then:

Vcl = Vflux +
M4e4A0

(T + T̄ )3
= Vflux +

M4e4Az(Z,Z̄)

(T + T̄ )2
, (3.44)

where the second equality is for the antibrane placed in the highly warped region at the

tip of the throat (where e4A0 = e4u+Az(Z,Z̄)). Note that we have chosen a background with

〈W 〉 = 0, 〈DτW 〉 = 0, 〈DZW 〉 = 0 and 〈DTW 〉 = 0, and supersymmetry is broken only by

〈DSW 〉 6= 0. Therefore, the potential so far is semi-positive definite, stabilises the complex

structure and dilaton, but as discussed, leaves the volume modulus as a runaway to be

stabilised by non-perturbative effects.

For a general CY, we have:

κ24K = − ln(τ + τ̄)− ln f(Z, Z̄)

−3 ln

(

T + T̄ − κ24
e−4A0(T + T̄ )

3(τ + τ̄)f(Z, Z̄)
SS̄ − κ24

e−4A0(T + T̄ )

3f(Z, Z̄)
δīiY

iȲ ī

)

(3.45)
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and

W =

∫

G3 ∧ Ω+M2S + hij(τ)Y
iY j , (3.46)

with

hij(τ) = f(Z, Z̄)−
1
2 ǫj̄k̄l̄ e

t̄
ī e

u
k e

v
l δ

kk̄δll̄δīiδ
j̄
jG

ISD
t̄uv (3.47)

and

ψS =
√
2e−φ/2e−6u+7A0/2f(Z, Z̄)1/2M2λ+. . . , ψi

Y = M2e−6u+7A0/2f(Z, Z̄)1/2γ0ψi+. . . .

(3.48)

Note that the above relations — together with the 4D supergravity supersymmetry trans-

formations δψS = −
√
2FSǫ+ . . . — imply that the normalised Volkov-Akulov brane fields

λVA = e−A0/2λ, ψi
VA = e−A0/2ψi (see (2.19)) have the expected non-linear supersymmetry

transformation (working to lowest order in the fermions):

δλVA = ǫ+O(fermion2) (3.49)

δψi
VA = O(fermion2) . (3.50)

We also recover, as is necessary, the expected linearly supersymmetric 4D N = 1 theory

when the D3-brane tension is taken to zero.

Non-perturbative effects, the dS vacuum and the super-Higgs mechanism. The

classical plus antibrane contributions to the scalar potential discussed so far, although pos-

itive semi-definite, give a runaway in the volume modulus, T . However, non-perturbative

contributions will also come into play, and may stabilise the volume modulus leading to a

metastable dS vacuum, if they are not too small. For example, one can consider a racetrack

combination of gaugino condensates from wrapped D7-branes and/or Euclidean D-branes.

The final 4D non-linear N = 1 LEEFT is then given by:

κ−2
4 K = − ln(τ + τ̄)− ln f(Z, Z̄)

−3 ln

(

T + T̄ − κ24
e−4A0(T + T̄ )

3(τ + τ̄)f(Z, Z̄)
SS̄ − κ24

e−4A0(T + T̄ )

3f(Z, Z̄)
δīiY

iȲ ī

)

(3.51)

and

W =

∫

G3 ∧ Ω+M2S + hij(τ)Y
iY j +Ae−aT +Be−bT . (3.52)

Note that the non-perturbative SL(2,Z) modular invariance suggests that the racetrack

contributions to W carry some flux or matter dependence, which imparts a modular weight

−1, through the coefficients A, B. The gravitino mass is now m3/2 = κ24|eκ
2
4K/2W | =

κ24|eκ
2
4K/2Wracetrack|.

3.2.3 Modular invariance with constrained superfields X or V

The non-linear supergravity describing the D3-brane in a GKP flux background at low

energies can also be written using a constrained chiral superfield, X, satisfying20 [42]:

X2 = 0 and M2X Ξ3 = −1

4
GX

(

D̄2 − 4R
)

FX̄Ξ Ξ̄ , (3.53)

20The Weyl weights are as follows: [Ξ] = −1, [D̄α̇] = − 1
2
, [Dα] = − 1

2
, [X] = 0 and [V ] = 0.
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where F , G are, respectively, composite real and covariantly chiral superfields, functions of

the moduli fields to be determined in order to set the supersymmetry breaking auxiliary

field FX as required.

We fix the conformal gauge to the Einstein frame by choosing the scalar component of

the Weyl compensator to be (see e.g. [57]):

Ξ = eκ
2
4Kmoduli/6 = (τ + τ̄)−

1
6 f(Z, Z̄)−

1
6 (T + T̄ )−

1
2 at θ = θ̄ = 0. (3.54)

The scalar potential is given in terms of FX as:21

VF = −FXKXX̄F X̄ − eκ
2
4K/2

(

FXDXW + F X̄DX̄W̄
)

− 3κ24e
κ2
4K |W |2 , (3.55)

with FX determined by the derivative constraint in (3.53). We can then write the action,

for example, as:

κ24K = − ln(τ + τ̄)− ln f(Z, Z̄)

−3 ln

(

T + T̄ − κ24
e−4A0(T + T̄ )

3(τ + τ̄)f(Z, Z̄)
XX̄ − κ24

e−4A0(T + T̄ )

3f(Z, Z̄)
δīiY

iȲ ī

)

(3.56)

and

W =

∫

G3 ∧ Ω+M2X + hij(τ)Y
iY i (3.57)

where

ψX =
√
2e−φ/2e−6u+7A0/2f(Z, Z̄)1/2M2λ+ . . . , ψi

Y = M2e−6u+7A0/2f(Z, Z̄)1/2γ0ψi + . . .

(3.58)

and the derivative constraint is chosen in order to match the uplift potential with an F-term

potential:

VF =
M4e4A0

(T + T̄ )3
⇒ FX = −(τ + τ̄)

1
2 f(Z, Z̄)

1
2

(T + T̄ )
3
2

e4A0M2 + fermions (3.59)

so:

G = 1 and F = −(τ + τ̄)−2/3f(Z, Z̄)−2/3(T + T̄ )e−4A0 + fermions . (3.60)

Note that the derivative constraint in (3.53) also implies that the superspace action can

moreover be equivalently written either in terms of a Kähler contribution or a superpoten-

tial contribution from X.

Alternatively, a constrained vector superfield, V , may be used, satisfying [42]:

V 2 = 0 and
1

16
HVDα

(

D̄2 − 4R
)

DαIV = M2V ΞΞ̄ , (3.61)

where recall that the derivative constraint removes the gauge field and gauge symmetry,

and fixes the auxiliary D-term. Again, H, I are functions of the moduli fields to be

21See e.g. equation (6.26) of [58] for the scalar potential in terms of the supergravity auxiliary fields. We

have integrated out the auxiliary field M of the supergravity multiplet.
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determined in order to set the supersymmetry breaking auxiliary field D as required. The

scalar potential is given by the following D-term contributions:

VD = −Re(H)

2
D2 −Da (KV |V=0) , (3.62)

where H is the gauge kinetic function. One way to write the action is then:

κ24K = − ln(τ + τ̄)− ln f(Z, Z̄)− 3 ln

(

T + T̄ − κ24
e−4A0(T + T̄ )

3f(Z, Z̄)
δīiY

iȲ ī − ξV

)

, (3.63)

H = −1 and W =

∫

G3 ∧ Ω+ hij(τ)Y
iY i (3.64)

where:

λV = e−6u+3A0/2M2γ0λ+ . . . , ψi
Y = M2e−6u+7A0/2f(Z, Z̄)1/2γ0ψi + . . . . (3.65)

The derivative constraint is chosen in order to match the uplift potential with a D-term

potential:

D = − 2M2e2A0

(T + T̄ )
3
2

+ fermions and ξ = −κ24M
2

6

e2A0

(T + T̄ )
1
2

(3.66)

so:

H = −1

2
e−2A0(τ + τ̄)−

1
3 f(Z, Z̄)−

1
3 (T + T̄ )

1
2 + fermions and I = 1 . (3.67)

Now the derivative constraint is such that the superspace action could also be written

equivalently as either a kinetic term for the vector supermultiplet or a Fayet-Iliopoulos

term. Note that although V enters as a field dependent FI-term, it is not associated with a

gauged U(1) shift symmetry or Stückelberg coupling, as there is no dynamical gauge field.

Finally, note that the above action is modular invariant, with V modular invariant,

as it must be given that the hermitian conjugate components in the θ expansion of the

superfield (3.4) would otherwise transform with opposite weights.

Pure D-term uplifting and the super-Higgs mechanism. The appearance of a D-

term uplift simultaneously with a trivial F-term deserves some further comment. Indeed,

it is usually said that D-terms are proportional to F-terms, and can only be non-vanishing

if the latter are non-vanishing (see e.g. [59]). The auxiliary field D is called the Killing

potential, and is the real solution to the complex Killing equation:

(taφ)i = −iGik̄ ∂D
a

∂φ̄k̄
⇒ Da = iGi(t

aφ)i = iKi(t
aφ)i + i

Wi

W
(taφ)i ⇒ eG/2Da = FiX

i (3.68)

with ta the generator of the would-be gauged isometry on the Kähler manifold spanned

by the φi, and Fi = eG/2Gi. However, for the constrained vector field, there is no gauged

isometry and (3.68) simply does not arise. Similar to the F-term uplifting associated

with the nilpotent chiral superfield, the gravitino mass is given by m3/2 = κ24|eκ
2
4K/2W | =

κ24|eκ
2
4K/2Wracetrack|. Note that the non-perturbative effects are not subject to a gauge

invariance associated with the D-term, as there is no associated gauged symmetry, but

they must be modular invariant.

– 21 –



J
H
E
P
1
0
(
2
0
1
7
)
1
8
5

3.2.4 Equivalence between the F-term and FI D-term uplift

The 4D LEEFT in terms of the constrained chiral supermultiplet, X, and the constrained

vector supermultiplet, V , are equivalent. In the absence of matter, the relations between

the two fields are given by (3.7). In the presence of matter, these relations are modified.

Starting from the action in terms of X, (3.56) and (3.57), we can obtain the action in terms

of V , (3.64), using the following relations. Firstly:22

XX̄ = M2J V with J = −e6A0(τ + τ̄)f(Z, Z̄)

2(T + T̄ )
3
2

+ fermions . (3.69)

Secondly, the inverse relation between X and V , which can be derived using (3.69)

and (3.53):

M2X Ξ3 = −1

4
(D̄2 − 4R)FJM2V Ξ Ξ̄ . (3.70)

The superpotential term M2X in (3.57), becomes a gauge kinetic term in (3.64) with the

help of (3.70) and (3.61) (and recall that the kinetic term for the vector supermultiplet is

moreover equivalent to an FI-term).

4 Non-renormalisation theorem

In the previous section, we have presented the non-linear supergravity that constitutes

the 4D non-linear N = 1 LEEFT describing a flux orientifold compactification of type

IIB string theory in the presence of a probe D3-brane (placed on an O3−-plane) and non-

perturbative effects. A generic non-linear supergravity action would be subject to quantum

corrections, and in fact, be highly non-renormalizable. However, as EFTs, the non-linear

supergravity theories in which we are interested are valid only up to a cutoff given by

the KK scale, with non-renormalisable interactions suppressed by inverse powers of the

cutoff scale. Moreover, as we now show, non-linear supergravity theories arising from

string theory have an enhanced protection from quantum corrections. This is due to a

straightforward extension of the well-known non-renormalisation theorems that apply to

the 4D EFTs describing linearly realised N = 1 string compactifications.

The classic string theory non-renormalisation theorems [26, 27] are based on the holo-

morphicity of the superpotential W and the gauge kinetic function f and the invari-

ance under certain global symmetries — the perturbative Peccei-Quinn (PQ) symmetries

τ → τ + i const. and T → T + i const. These symmetries preclude the superpotential,

W , and gauge kinetic function, f , from depending perturbatively on the axionic parts

of the dilaton and volume chiral multiplets. Holomorphicity of the W and f then also

precludes them from depending on the string coupling or volume modulus, and therefore

W receives no corrections to all finite orders in the string-loop and α′ expansions, and f

receives corrections at most at one-loop. For flux compactifications, the discussion is a bit

22Note that (3.69) can be used to relate the auxiliary field FX and the auxiliary field D, and that this

relation agrees with that obtained directly from (3.59) and (3.66).
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more involved, as the tree-level superpotential does depend explicitly on the dilaton via the

GVW flux contribution. Ref. [29] extended the textbook arguments to this case, and we

now do the same for flux compactifications in the presence of an D3-brane with non-linearly

realised supersymmetry, following [29]. As well as the PQ-symmetries used in string non-

renormalisation theorems, R-symmetry as used to prove the non-renormalisation of global

supersymmetry theories [60] also play an important role.

Recall that the 4D non-linearly realised N = 1 supergravity theory is parameterised —

similarly to the case of linearly realisedN = 1 supersymmetry — by a real Kähler potential,

holomorphic superpotential, holomorphic gauge kinetic functions and Fayet-Iliopoulos D-

terms.

4.1 R-symmetry and Peccei-Quinn symmetry

The symmetries that underlie the non-renormalisation theorem in the presence of back-

ground fluxes and the D3-brane are an R-symmetry, a PQ-symmety in τ and a PQ-

symmetry in T . The former two are subgroups of the modular symmetry, SL(2,R), dis-

cussed in section 3.2.1, with the R-symmetry transformations corresponding to:

ib = |τ |, ic = 1/|τ | and d = 0 (4.1)

and the PQ-symmetry transformations corresponding to:

a = d = 1 and c = 0 . (4.2)

As already mentioned, although the SL(2,R) symmetry is only a symmetry to leading

order in gs and α′, quantum corrections are expected to preserve its discrete subgroup

SL(2,Z), once non-perturbative effects are also included. Moreover, the continuous R-

symmetry and PQ-symmetries are preserved to leading order in α′ (being symmetries of

the 10D supergravity action) and — at this leading order in α′ — to all orders in gs
(since supersymmetry fixes the dilaton dependence in the 10D supergravity action). The

PQ symmetries in τ and T descend from 10D RR gauge invariance. One subtlety in our

arguments is that the flux compactification in the presence of a D3-brane is only a static

solution if the runaway volume modulus is stabilised by non-perturbative effects, and so —

for consistency — we have to incorporate these non-perturbative effects in the 4D LEEFT.

However, as the non-renormalisation theorems only apply to perturbative corrections, we

will neglect these effects in what follows.

4.2 Spontaneously broken SL(2,RRR) and spurions

Clearly, when type IIB supergravity is compactified in a GKP background, the SL(2,R)

symmetry — and its R-symmetry and Peccei-Quinn subgroups — are spontaneously broken

by the non-trivial vacuum expectation values for the fluxes and dilaton (see (3.15)). Thus

the 4D EFT describing the compactification at low energies will not enjoy the SL(2,R)

invariance. However, we can replace the symmetry breaking parameters — which cor-

respond to combinations of flux and dilaton v.e.v.’s — with auxiliary spurion fields, Gr,

which transform under SL(2,R) in such a way as to recover the symmetry. As we know
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all the sources of symmetry breaking — flux and constant dilaton v.e.v.’s — we can then

write down all possible operators in the EFT by constructing the invariant operators and,

finally, restoring the spurion field to the original constant parameters. The superpotential

becomes expressed in terms of these spurions Gr and the light fields.

Using the modular transformation properties given in section 3.2.1, we can work out

the R-charges for the various objects. The Grassmanian superspace coordinate, θ, has

R-charge Rθ = −1
2 , from which one can deduce that the superpotential has R-charge

RW = −1. The R-charges for the light fields and spurions are:

RT,Z,Y i = 0 , RX = −1 and RGr = −1 . (4.3)

Then, indeed, the superpotential (3.46) has RW = −1. Meanwhile, all fields (apart from

of course τ and T themselves) are invariant under the PQ-symmetries τ → τ + i const. and

T → T + i const.

4.3 Proof of the non-renormalisation theorem

Let us first consider the action to leading order in α′. The action enjoys the R-symmetry

discussed above, with the superpotential carring R-charge −1. Collecting the fields with

non-trivial R-charge −1 together, Gs = (Gr , X), and those with trivial R-charge as ϕα =

(T, Z, Y i), the full superpotential can then be written without loss of generality as:

W (τ ,Gs , ϕα) = G0w(ϕα,Gs/G0) (4.4)

for some field G0 ∈ {Gs}. Note that w cannot depend separately on τ (beyond its depend-

ence via Gr) as τ transforms under the PQ-symmetry, whereas W must be PQ-invariant.

However, we cannot argue thatW is independent of τ — since it depends on τ via Gr — and

therefore we cannot use this independence to argue that W is protected from perturbative

string-loop corrections. This problem arises because the string coupling constant, eφ, is

not the loop counting parameter for the 10D type IIB supergravity action. To see the non-

renormalisation of W , we have to reorganise the string-loop expansion,23 by performing

the following rescaling of the 10D fields:

eφ → λeφ , G3 → λ−1G3 , Θ → λ−1/2Θ . (4.5)

With this rescaling the action (in the string frame) acquires an overall factor S → λ−2S so

that λ can be used a loop-counting parameter for type IIB supergravity. That is, we may

perform the rescaling (4.5) and dimensionally reduce, whereby:

Gr → λ−1Gr , ψX → λ−1ψX and X → λ−1X . (4.6)

Then we formally expand the 4D EFT in terms of the loop-counting parameter λ, taking

back λ → 1 at the end. If the superpotential receives no higher order corrections in the

23See [29] for the argument as to why we can meaningfully reorganise this generically divergent — but

asymptotic — loop-expansion.
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supergravity-loop counting parameter λ, then nor will it receive corrections in the string-

loop counting parameter, gs.

Finally, we can easily show thatW receives no corrections to all orders in λ. Indeed, the

arguments of the function w(ϕα,Gs/G0) are clearly independent of λ and so W receives no

corrections in the expansion in λ. Therefore, the superpotential, to leading order in the α′

expansion, receives no corrections to all orders in the string-loop expansion. Moreover, the

PQ-symmetry T → T+i const. together with the holomorphy of W ensures that W receives

no corrections to all orders in the α′ expansion, just as in the original non-renormalisation

theorem.

Similar arguments can be applied to the gauge kinetic functions. In the end, the

4D non-linear N = 1 EFT describing string flux compactifications with an D3-brane can

receive perturbative gs and α′ corrections only via the Kähler potential and up to one loop

in the gauge kinetic functions, whereas the superpotential can only receive non-perturbative

corrections. As it is the superpotential that generally determines the vacuum structure of

the theory, this result puts such vacua on much firmer footing.

5 Discussion

We have derived the 4D LEEFT for CY orientifold compactifications of type IIB super-

gravity with supersymmetric background fluxes in the presence of a probe D3-brane and

non-perturbative effects, including all the bulk moduli. As the CY orientifold flux geo-

metry and the D3-brane together spontaneously break supersymmetry (each preserving a

different N = 1 supersymmetry), at energy scales above the gravitino mass but below the

warped string scale associated with the D3-brane tension, the LEEFT can be written in

terms of a non-linearly realised N = 1 supergravity theory.

Our computations proceeded by writing down a 4D non-linear supergravity Lagrangian

— a real K, holomorphic W and H — whose kinetic, mass and uplift terms match those

obtained from dimensionally reduction of the 10D theory. The non-linear supersymmetry

inferred from the symmetry of the antibrane-flux setup can then be used to obtain the

remaining couplings in the LEEFT at leading order. The 4D action is invariant under the

4D modular transformations — provided we allow background fields to transform — as it

must be. It also recovers the expected results both in the vanishing antibrane limit and

the vanishing flux, decompactification limit.

The non-linear local supersymmetry can be described with the use of constrained su-

perfields appropriately coupled to gravity and matter. The non-linear supergravity action

can be written in several different ways, depending on the kind of constrained superfield

in which we choose to place the goldstino fermion of the spontaneously broken local su-

persymmetry. A nilpotent chiral superfield, S, contains the goldstino and auxiliary F-term

field as independent component fields. The 4D LEEFT for KKLT can then be written as:

κ24K = − ln(τ + τ̄)− ln f(Z, Z̄)

−3 ln

(

T + T̄ − κ24
e−4A0(T + T̄ )

3(τ + τ̄)f(Z, Z̄)
SS̄ − κ24

e−4A0(T + T̄ )

3f(Z, Z̄)
δīiY

iȲ ī

)

(5.1)
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and

W =

∫

G3 ∧ Ω+M2S + hij(τ)Y
iY j . (5.2)

The uplift of the scalar potential due to the positive energy density contribution from the

D3-brane is here described using an F-term scalar potential associated with the superpo-

tential term W = M2S.

We can also parameterise the brane contributions in term of the constrained chiral

superfield, X, which satisfies both the nilpotency condition and an additional derivative

constraint. The latter is chosen precisely to fix the F-term auxiliary field, in such a way that

the F-term scalar potential matches the uplift term from the D3-brane. Equivalently, the

brane contributions can be written in terms of a constrained vector superfield, V , with the

uplift potential corresponding to a D-term potential. This is even though the constraints

on V fix all the component fields except for the goldstino, and in particular remove the

gauge boson and gauge symmetry. In the case of non-linearly realised supersymmetry,

there is no physical distinction between F-term and D-term uplifting.

Having a 4D LEEFT description of the antibrane-flux setup including all bulk moduli

sheds light on several aspects of the KKLT scenario for stringy dS vacua. Once again,

we have evidence that the antibrane spontaneously breaks supersymmetry and that the

subsequent non-linearly realised supersymmetry gives us control in the setup. We can now

also avoid the ad-hoc three-step picture of uplifting, where the D3-brane is added into

the picture at the very end, after moduli stabilisation in an adS vacuum by fluxes and

non-perturbative effects. Instead, we can follow the physical hierarchy of scales:

Mw
s ∼ M❳

❳susy ≫ Mw
kk ∼ Λnp ∼ Λ ≫ Mτ,Z ≫ MT ∼ M3/2 ∼ Mgoldstino (5.3)

to order the dynamics. The mass of the gravitino is m3/2 = κ24e
κ2
4K/2|〈Wnp〉|, with further

effective contributions to the super-Higgs mechanism from the Hubble scale associated with

the dS vacuum H2 = 〈V〉/M2
Pl [55, 56].

Finally, we have argued that any metastable dS vacuum thus obtained would be ro-

bust against quantum corrections, due to the non-renormalisation theorems that we show

to hold for the non-linear supergravity theories descending from string compactifications.

These arise thanks to remnants of S-duality and RR-gauge invariance in type IIB super-

gravity with D3/D3-branes, and they protect the 4D superpotential from perturbative

corrections (as we have seen, non-perturbative corrections can and do come into play). In-

deed, although background fluxes spontaneously break modular invariance, we can follow

this breaking by associating these backgrounds with spurion fields. In this way, we used a

combination of an R-symmetry and PQ-symmetries — together with holomorphicity of the

superpotential in the non-linear supergravity action — to show that the 4D superpotential

receives no corrections to all finite orders in the gs and α′ expansions. The Kähler po-

tental will receive perturbative corrections in both expansions, and the superpotential will

receive higher order non-perturbative corrections, but the vacuum structure is generally

determined by the leading contributions written down here.

There are a number of important directions in which to extend our effective description

of D3-branes in type IIB CY orientifold flux compactifications. For simplicity, we placed
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the D3-brane on top of an O3−-plane, thus projecting out the worldvolume scalars and

gauge bosons and leaving only the worldvolume fermions on the brane. Incidentally, this

circumvents any worry about tachyonic instabilities which have been argued to appear

when going beyond the probe brane approximation [10]. However, having placed the D3-

brane on an O3−-plane, there does not seem to be a supersymmetric state to which the

setup could non-perturbatively decay — as the antibrane is stuck on the O-plane, it cannot

follow the usual KPV [8] brane polarisation and flux annihilation (in fact the details of this

process is in any case unknown for the case of a single D3-brane, see however [9]). Even the

decompactification limit leaves the non-supersymmetric D3/O3−-system, which was argued

to be perturbatively stable in [34] (perhaps surprisingly given the fact that D3’s and O3−’s

both have negative RR-charge, see also e.g. section 6.5.3 of [61]). Placing the D3-brane away

from any O-plane will restore the worldvolume bosonic degrees of freedom, allowing once

again non-perturbative decay via antibrane/flux annihilation. Worldvolume bosons should

then lie in their own constrained supermultiplets, as proposed by [46]. It would be very

interesting to extend our analysis to this case, which has been begun in [62], as well as the

original KKLT scenario where supersymmetry is broken by both the fluxes (with non-trivial

W0 = 〈
∫

G3 ∧ Ω〉) and D3-brane. Work towards understanding the soft-supersymmetry

breaking terms for visible sectors with D3-brane spontaneous supersymmetry breaking was

begun in [63].
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A Notation and conventions

We use a mostly minus signature. Our conventions for the 10D gamma matrices are:

Γµ = γµ ⊗ 18 (µ = 0, 1, 2, 3) and Γm = γ5 ⊗ γm (m = 4, 5, 6, 7, 8, 9) (A.1)

from which it follows that:

Γ11 = γ5 ⊗ γ7 . (A.2)

For the 4D gamma matrices:

γµ =

(

0 σµ

σ̄µ 0

)

, (A.3)
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where σµ = (−1, ~σ) and σ̄ = (1, ~σ) where 1 stand for the identity matrix and ~σ denote

Pauli matrices. In particular,

γ0 =

(

0 −1

1 0

)

, γ5 = iγ0γ1γ2γ3 =

(

1 0

0 −1

)

. (A.4)

The charge conjugation matrices satisfy:

C10 = C4 ⊗ C6 , with CT
10 = −C10 , CT

4 = −C4 and CT
6 = C6 , (A.5)

and also:

ΓT
M = C10ΓMC−1

10 . (A.6)

A convenient choice for the charge conjugation matrices is:

C4 = iγ3γ1 =











0 i 0 0

−i 0 0 0

0 0 0 i

0 0 −i 0











and C(6) = σ1 ⊗ σ1 ⊗ σ1 =











0 0 0 1

0 0 . 0

0 . 0 0

1 0 0 0











. (A.7)

We use the following definitions for Dirac conjugation, charge conjugation and complex

conjugation for a general Dirac spinor:

Ψ̄ ≡ Ψ†Γ0 and ΨC ≡ C10Ψ̄
T . (A.8)

4D complex Weyl spinors are:

ψ+ =

(

ψα

0

)

ψ− =

(

0

ψ̄α̇

)

, (A.9)

from which we can compose a 4D Majorana spinor:

ψ =

(

ψα

ψ̄α̇

)

. (A.10)

B Modular transformation of the worldvolume fermion

The D3-brane action (2.2) contains the following combination of fields:

LD3
2−f ⊃ eφ/2 ImGISD

mnp Θ̄ΓmnpΘ , (B.1)

which must therefore be modular invariant. Converting to complex coordinates:

eφ/2 ImGISD
mnp Θ̄ΓmnpΘ =

1

2i

(

eφ/2GISD
ijk Θ̄ΓijkΘ− eφ/2ḠISD

īj̄k̄ Θ̄Γīj̄k̄Θ+ . . .
)

, (B.2)

where we have omitted the ijk̄, ij̄k̄ components for brevity. At this point it is not easy to

see how the above term from the brane action can be modular invariant, but progress can

be made by dimensionally reducing the 10D MW spinor as:

Θ = λ− ⊗ ζ− + ψi
− ⊗ ζi − C4γ

0λ∗
− ⊗ C6ζ

∗
− − C4γ

0(ψi
−)

∗ ⊗ C6(ζ
i)∗ (B.3)
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where ζ− is the 6D nowhere vanishing covariantly constant (w.r.t. the unwarped metric)

spinor of negative chirality, which is annihilated by γ īζ−. Also, ζi =
1

6||Ω||Ωijkγ
jkζ− has

negative chirality. Dimensional reduction of (B.2) then yields:

1

2i

(

eφ/2GISD
ijk Θ̄ΓijkΘ− eφ/2ḠISD

īj̄k̄ Θ̄Γīj̄k̄Θ
)

(B.4)

=
1

2i

(

− eφ/2GISD
ijk λT

−C4λ− ⊗ ζT−C6γ
ijkζ− + eφ/2ḠISD

īj̄k̄ λ†
−C4λ

∗
− ⊗ ζ†−γ

īj̄k̄C6ζ
∗
− + . . .

)

where several terms vanish due to γ īζ− = 0, but we have omitted several non-vanishing

terms for brevity. Modular invariance is then satisfied provided that:

λ− → e−iγ5δλ−, ψi
− → e−iγ5δψi

−, λ∗
− → eiγ5δλ∗

−, and (ψi
−)

∗ → eiγ5δ(ψi
−)

∗ .

(B.5)

Finally, we see that the modular transformation of Θ must be:

Θ → e−i(γ5⊗1)δΘ , (B.6)

where γ5⊗1 appears to ensure that the Marjorana condition on Θ continues to be satisfied

after the modular transformation. Notice that if we plugged this transformation into (B.2),

we would not immediately obtain modular invariance due to the second term. To see the

modular invariance, we need to exploit the brane origin of the worldvolume fermion, and

decompose it according to its longitudinal and normal directions, where the normal space

has structure group SU(3) and covariantly constant spinor ζ−.
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[10] I. Bena, J. Bl̊abäck and D. Turton, Loop corrections to the antibrane potential,

JHEP 07 (2016) 132 [arXiv:1602.05959] [INSPIRE].

[11] S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory,

Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].

[12] S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string

compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].
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