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A model for a flat isotropic universe with a negative cosmological constant� and a massless scalar field

as sole matter content is studied within the framework of loop quantum cosmology. By application of the

methods introduced for the model with � ¼ 0, the physical Hilbert space and the set of Dirac observables

are constructed. As in that case, the scalar field plays here the role of an emergent time. The properties of

the system are found to be similar to those of the k ¼ 1 Friedmann-Robertson-Walker (FRW) model: for

small energy densities, the quantum dynamics reproduces the classical one, whereas, due to modifications

at near-Planckian densities, the big bang and big crunch singularities are replaced by a quantum bounce

connecting deterministically the large semiclassical epochs. Thus in loop quantum cosmology the

evolution is qualitatively cyclic.
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I. INTRODUCTION

Loop quantum cosmology [1] —an application of meth-

ods of loop quantum gravity [2] to symmetry reduced

models— constitutes a promising way of studying

quantum-gravitational effects in cosmological models. In

particular one of the simplest models, a flat Friedmann-

Robertson-Walker (FRW) universe was analyzed within its

framework [3–5]. In that case, the structure of the

Hamiltonian constraint allowed to treat the constrained

system as a free one, evolving with respect to the scalar

field which thus plays the role of an emergent time. This, in

turn, allowed the construction of a physical Hilbert space

and a set of Dirac observables, which were used next to

extract the physics by means of numerical methods. The

results were quite surprising: the analysis has shown that,

when the matter energy density approaches the Planck

scale, the quantum-geometric effects cause gravity to be-

come repulsive. In consequence, a large semiclassical ex-

panding universe is preceded by a (also large and

semiclassical) contracting one, deterministically con-

nected to the former by a quantum bridge. The transition

point of the evolution (called quantum bounce) is charac-

terized by an energy density which, at this point, equals the

critical value �c � 0:82�Pl. Furthermore, even when quan-

tum corrections actually dominate the dynamics, the state

representing the universe remains semiclassical—its evo-

lution is to great precision described by the so-called

classical effective dynamics [5,6].

The results obtained for the flat FRW model were next

generalized to the spherical one [7] (the k ¼ 1 FRW

model). The properties of the Hilbert space and an evolu-

tion operator were investigated analytically [8,9] and the

robustness of their features was confirmed through the

analysis of its approximation (known as sLQC) [10,11].

Further generalizations to anisotropic (and further inho-

mogeneous) models by different research groups are in

various stages of progress [12–14].

Thus far, however, the only models described rigorously

were universes with a vanishing cosmological constant �
and a massless scalar field. In this article, we extend the

analysis of [5] to include the universes with negative �.

Although the observations favor a positive �, this model

constitutes a convenient way of testing which features of

the previously investigated model we can hope to general-

ize to more realistic systems. Also, since it is a classically

recollapsing system, we can use it to investigate semi-

classicality issues (dispersion after many ‘‘cycles’’ of evo-

lution). The specific questions we intend to address here

are the following:

(i) Do the qualitative features of the � ¼ 0 model sur-

vive also in this case? In particular, are the big bang/

crunch singularities replaced by quantum bounces as

in the previously investigated cases? All the models

analyzed so far not only experienced the bounce, but

for Gaussian states the observed dispersion of the

wave packet after the bounce was severely restricted

by the values of the spreads before it. In the flat case

this result was next generalized analytically to a

space of states admitting semiclassical epoch1 [11]

within the context of sLQC. Therefore, it is impor-

tant to ask whether such behavior will occur also in

the considered model, or it was just a result of the

extreme simplicity of the previous ones.

*bentiveg@gravity.psu.edu
+tomasz@iem.cfmac.csic.es

1The states for which either at early or late times the relative
dispersions of chosen Dirac observables are � 1.
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(ii) If the answer to the previous question is in the

affirmative, then is the critical energy density �c
still a fundamental bound? In both the k ¼ 0 and

k ¼ 1 models for physically sensible2 states, the

matter energy density at the bounce point agreed to

great precision with �c. Furthermore, later inves-

tigations within the sLQC model have shown that

�c is indeed a fundamental energy bound. But

again, we do not know a priori whether this feature

is characteristic just for the models investigated so

far and how (if at all) it generalizes.

(iii) Does this model possess any new feature not ob-

served in the � ¼ 0 or k ¼ 1 case?

A preliminary investigation of the �< 0 model has been

conducted already in [5]. However, the physical Hilbert

space was not constructed; the goal there was only to verify

the persistence of the bounce. Recently, a heuristically

constructed effective classical Hamiltonian was used [15]

to obtain the effective trajectories of both the �< 0 and

�> 0 systems and analyze the effect of the quantum-

geometric corrections on the universe’s dynamics.

However, since the effective Hamiltonian was not derived

systematically, the results have to be confirmed against

genuine quantum evolution.

In addition to the problems described above, we also

address the concerns about the choice of the symmetric

sector of the physical Hilbert space that is sometimes

raised. Because of the absence of fermions, the triad ori-

entation reflection is a large gauge symmetry. This allowed

one to restrict the physical Hilbert space to the states

symmetric under parity reflection. However, since the

choice of antisymmetric states is equally justified, it is

natural to ask whether the results of LQC are robust and

will continue to hold if the antisymmetric sector is chosen.

We address this issue by analyzing, in addition to the

standard symmetric states, also the space of antisymmetric

ones and establish robustness.

The paper is organized as follows: we start with a brief

summary of the basic framework (introduced already in

earlier papers) in Sec. II. Its content is divided into three

parts: the classical theory, the kinematics of LQC, and the

derivation of the quantum Hamiltonian constraint. In

Sec. III we consider a geometrodynamical equivalent of

the model—the Wheeler-DeWitt (WDW) one. The reason

for that is twofold: first, it will allow us to compare the

results of LQC against a standard quantum model and

identify the nonperturbative quantum-geometric effects.

Second, it will serve as an introduction to the methodology

of extracting physics, used next on the LQC model. The

analytical solvability of the WDW model will allow us to

show these methods without having to deal with the com-

plications of numerical analysis. Analysis of the physical

sector is carried out in Sec. IV. There, we extensively use

the results of the numerical study described in turn in

Sec. V. That section contains also a description of the

construction and analysis of the states semiclassical at

late times. The final results and their discussion are placed

in Sec. VI.

Apart from the main body, the article contains two

appendices: in Sec. A, we analyze the space of antisym-

metric states, whereas B contains a description of the

heuristic methods used to extract some of the results.

II. THE LQC QUANTIZATION SCHEME

In this section, we introduce the quantization framework

used in later sections of the paper. Since we directly apply

the framework described in detail in [5,7], we will just

present a brief sketch of it. For a more detailed discussion,

the reader is referred to the above mentioned articles.

The content of this section is divided into three parts. In

the first, we present the classical theory used as a basis for

quantization. The second part is dedicated to the descrip-

tion of the LQC kinematics. Finally, we recall the deriva-

tion of the LQC Hamiltonian constraint.

A. Classical theory

A flat (k ¼ 0) FRW model represents a spacetime ad-

mitting a foliation by spatial isotropic 3-surfaces M of

topology R3. Its metric tensor can be written in the form

g ¼ �dt2 þ a2ðtÞoq; (2.1)

where t is a time parameter (the cosmic time), oq is a unit

(fiducial) Cartesian metric on the surfaceM, and the func-

tion aðtÞ is called a scale factor.

Because of the homogeneity and noncompactness ofM,

one cannot write an action or Hamiltonian as an integral of

the appropriate density over the entire M. Instead, we can

define them as integrals over a chosen fiducial cubical cell

V , constant in comoving coordinates.3 Given such a cell,

one can define a triad oe (and cotriad o! dual to it) as

directed along the edges of V and orthonormal with

respect to oq.
As gravitational phase space variables, we choose the

connections Aia and the density-weighted triads Eai

Aia ¼ cV�ð1=3Þ
o

o!i
a; Eai ¼ pV�ð2=3Þ

o

ffiffiffiffiffi
oq

p
oeai ; (2.2)

where Vo is a volume of V with respect to oq. The real

parameters c, p called, respectively, connection and triad

coefficients coordinatize the (2-dimensional) phase space

of the gravitational degrees of freedom. Appropriate scal-

2This indicates the states of the scalar field with momentum
sufficiently high for the closed universe to grow to macroscopic
(> 1 megaparsec) scales before recollapsing.

3The considered model is of the Bianchi type A: the equations
of motion derived from the Hamiltonian specified in this way are
identical to the Einstein field equations reduced to the isotropic
case.
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ing by Vo ensures the invariance of the symplectic structure

of this phase space (when written in terms of c, p) under
different choices of oq. The Poisson bracket between c and
p equals

fc; pg ¼ 8��G

3
; (2.3)

where � is the Barbero-Immirzi parameter.

The basic variables defined as in (2.2) automatically

satisfy the Gauss and diffeomorphism constraints. The

contribution of the geometry to the only nontrivial con-

straint—the Hamiltonian one—is of the form

Cgrav ¼ � 1

�2

Z
V

d3xð"ijke�1EaiEbjFkab � �2�Þ

¼ � 6

�2
c2

ffiffiffiffi
p

p þ�p3=2; (2.4)

where e :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detEj

p
and the field strength Fkab :¼

2@aA
k
b þ "kijA

i
aA

j
b.

The only matter content—a homogeneous massless sca-

lar field—is described by two global variables: the field

value � and its conjugate momentum p�, with Poisson

bracket between them

f�;p�g ¼ 1: (2.5)

The pair ð�;p�Þ coordinatizes the phase space correspond-
ing to the matter degrees of freedom. The full phase space

of the system is thus 4-dimensional. The complete

Hamiltonian constraint is of the form

C ¼: Cgrav þ C� ¼ 0; where C� ¼ 8�Gp�ð3=2Þp2
�:

(2.6)

The above constraint defines a 3D hypersurface in the 4D

phase space. Furthermore, since C does not depend explic-

itly on �, the momentum p� is a constant of motion.

Therefore, the dynamical trajectories can be represented

as a (parametrized by p�) family of functions pð�Þ

pð�Þ ¼
ð4�GÞ1=3p2=3

�

j�j1=3cosh2=3ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
12�G

p
ð���oÞÞ

: (2.7)

Their form implies that the considered system recollapses.

Each trajectory starts at the big bang singularity and ends

in a big crunch.

B. Kinematics of LQC

To quantize the system, we follow the Dirac program.

First we construct a kinematical Hilbert space: in our case,

it is the tensor product of spaces corresponding to, respec-

tively, gravitational and matter degrees of freedom:

H kin ¼ H kin
grav �H kin

� .

For the matter we apply the standard Schrödinger quan-

tization. As H kin
� we choose the standard Hilbert space of

square integrable functions H kin
� ¼ L2ðR; d�Þ. The basic

operators are �̂ and p̂�. To describe the state we choose the

(dual) basis ð�j of eigenstates of �̂. The action of �̂, p̂� on

the state can be then expressed as follows:

�̂�ð�Þ ¼ ��ð�Þ;
p̂��ð�Þ ¼ �i@@��ð�Þ; where �ð�Þ :¼ ð�j�i:

(2.8)

The quantization of the gravitational degrees of freedom

within LQC at the kinematical level has been rigorously

performed in [16]. The procedure is the analog of the

quantization scheme used in full LQG (see for example

[17]). Here the basic variables are triads and connections

along straight edges generated by oeai . The kinematical

Hilbert space is the space of square integrable functions

on the Bohr compactification of the real line H kin
grav ¼

L2ð �RBohr; d�BohrÞ. We will represent its elements using

the basis consisting of the eigenfunctions of p (promoted

to an operator), labeled by � 2 R. Despite the continuity

of�, the elements of the chosen basis are orthonormal with

respect to Kronecker delta

h�1j�2i ¼ ��1�2
: (2.9)

As basic quantum operators, we select p̂ and dexpði �c
2
Þ.4

Their action on the basis elements j�i is given by

p̂j�i ¼ 8��G‘2Pl
6

j�i; dexp
�
i
�c

2

�
j�i ¼ j�þ �i:

(2.10)

Since the holonomy along the edge of fiducial length �
generated by oeai can be expressed via expði�c=2Þ

hð�Þk ¼ 1

2

�
exp

�
i�c

2

�
þ exp

�
� i�c

2

��
I

þ 1

i

�
exp

�
i�c

2

�
� exp

�
� i�c

2

��
�k (2.11)

(where the �k are related to the Pauli matrices 	k via

2i�k ¼ 	k), its quantum analog ĥð�Þk can be expressed in

terms of the operators dexp in the same way.

C. LQC: the Hamiltonian constraint

In order to write the quantum operator corresponding to

the Hamiltonian constraint (2.4) and (2.6), we need to

reexpress it in terms of the basic objects selected in the

previous subsection.

Let us start with Cgrav (2.4). The quantization of the

cosmological term is straightforward (and just amounts

to promoting p to operator p̂). The remaining part is an

integral of the product of two terms: e�1EaiEbj and Fkab.

4Since the family dexpði�c=2Þ is not weakly continuous, the
operator ĉ does not exist.
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Following Thiemann [18], we can rewrite the first term

in the following form

"ijke
�1EaiEbj ¼

X
k

sgnðpÞ
2��G�V1=3

o

o"abco!k
c

� Trðhð�Þk fhð�Þ�1
k ; Vg�iÞ; (2.12)

where V ¼ jpj3=2 is the (physical) volume of the cell V .

The field strength term Fkab can, on the other hand, be

approximated via holonomies along the square loop hij

oriented on the i-j plane,

Fkab ¼ �2Tr

�hð�Þ
hij

� 1

�2V2=3
o

�
�ko!i

a
o!j

b;

hð�Þ
hij

¼ hð�Þi h
ð�Þ
j hð�Þ�1

i hð�Þ�1
j :

(2.13)

The size ofhij is fixed by the requirement that its physical

area equals the lowest nonzero eigenvalue of the LQG area

operator

� ¼ ��ð�Þ s:t: Arhij
¼ ��2jpj ¼ � :¼ ð2

ffiffiffi
3

p
��Þ‘2Pl:

(2.14)

To express the action of the operator corresponding to hð ��Þ,
it is convenient to use, instead of the label�, a new label v
defined as follows

v :¼ Ksgnð�Þj�j3=2; K :¼ 2
ffiffiffi
2

p

3
ffiffiffiffiffiffiffiffiffi
3

ffiffiffi
3

pp : (2.15)

In the new labeling an exponent operator dexpði ��c
2
Þ —the

component of hð ��Þ (via (2.11))— acts simply as a unit

translation

dexp
�
i

2
��c

�
jvi ¼ jvþ 1i: (2.16)

In the matter part of the Hamiltonian constraint, the only

nontrivial component is jpj�3=2, but again this can be

reexpressed in terms of holonomies via Thiemann’s

method

jpj�ð3=2Þ ¼ sgnðpÞ
�

1

2�‘2Pl� ��
Tr
X
k

�kh
ð ��Þ
k fhð ��Þ�1

k ; V1=3g
�
3

:

(2.17)

Finally, applying all the results (2.11), (2.12), (2.13),

(2.14), (2.15), (2.16), and (2.17) to (2.6), one can write

the operator Ĉ. We do so choosing, in the process, a

particular factor ordering (the so-called Kaminski order-

ing) [5], in which Ĉgrav is manifestly symmetric and

positive-definite. The action of the final result on the state

� 2 H kin can be written in the following form:

@2��ðv;�Þ ¼ ���ðv;�Þ
¼ ��o�ðv;�Þ þ ½BðvÞ��1C��ðv;�Þ;

(2.18)

where�ðv;�Þ :¼ hv;�j�i and the functions BðvÞ, C�ðvÞ
equal

BðvÞ :¼ 27K

8
jvjjjvþ 1j1=3 � jv� 1j1=3j3;

C�ðvÞ :¼
16�2�3‘4Pl

27K@
�jvj

(2.19)

and �o is an operator corresponding to the � ¼ 0 case

derived in [5]

�o�ðv;�Þ ¼ �½BðvÞ��1ðCþðvÞ�ðvþ 4; �Þ
þ CoðvÞ�ðv;�Þ þ C�ðvÞ�ðv� 4; �ÞÞ;

(2.20)

with coefficients C�, Co equal to

CþðvÞ ¼ 3�KG

8
jvþ 2jjjvþ 3j � jvþ 1jj; (2.21a)

C�ðvÞ ¼ Cþðv� 4Þ; CoðvÞ ¼ �CþðvÞ � C�ðvÞ:
(2.21b)

For reasons we will explain in later sections of the paper,

the operator � is called an evolution operator. It is sym-

metric and positive-definite (with respect to the measure

BðvÞd�Bohr) on the domain D of finite linear combination

of states jvi.

III. THE WHEELER-DEWITT LIMIT

The quantization scheme presented in the previous sec-

tion is motivated by LQG; however, it is not the only

method applicable to the system. By replacing H kin
grav

with H kin
grav :¼ L2ðR; d�Þ and taking the limit � ! 0 in

expressions (2.12), (2.13), and (2.17), one arrives to the

system equivalent to the one originating from geometrody-

namics, known as the Wheeler-DeWitt system. In the

literature, the system obtained from LQC via this proce-

dure is called a WDW limit. We will study it in this section

in order to identify the effects of the spacetime discrete-

ness. We will keep this terminology in the paper although

(as it was shown in [10]) theWDWmodel is not the limit of

the LQC model in any precise sense. One should think

about it as the WDW equivalent of a LQC model.

A. WDW constraint equation, emergent time

The evolution operator� is a sum of two terms: a� ¼ 0
operator �o and a �-dependent potential term (2.18). The

WDW limit of �o was derived in [5] and is of the form

� o�ðv;�Þ ¼ �12�Gðv@vÞ2�ðv;�Þ; (3.1)

where� 2 H kin :¼ H kin
grav �H kin

� . Calculating the limit
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of the cosmological constant term requires just replacing B
in the potential term by its point limit B :¼ K=jvj for � !
0. In consequence, the WDW equivalent of Eq. (2.18) has

the form

@2��ðv;�Þ ¼ ���ðv;�Þ
¼ 12�Gðv@vÞ2�ðv;�Þ

þ 16�2�3‘4Pl
27K2

@
�v2�ðv;�Þ; (3.2)

where the operator � is symmetric and positive-definite

with respect to the measure Bdv in the standard domain of

fast-decaying functions (Schwartz space).

The above constraint divides the domain of v into two

independent sectors, corresponding to different signs of v,
i.e. to different orientations of the triad Eai . Because of the
absence of a parity violating interaction in the considered

system, we can restrict the studies to states that are sym-

metric/antisymmetric with respect to a reflection in v. For
further analysis, we choose the symmetric sector, that is

�ð�; vÞ ¼ �ð�;�vÞ; however, the presented construc-

tion can be repeated directly also in the antisymmetric

case, with equivalent results.

B. General solutions, frequency decomposition

The constraint (3.2) is similar in its form to the Klein-

Gordon equation. Furthermore, since there is no explicit

dependence on� in either (2.6) or (3.2), p� is a constant of

motion of both the classical and the quantum system. Also,

at the classical level � is monotonic in time: we can thus

follow the prescription of [5] and reinterpret the constraint,

treating it as an evolution equation of a free system evolv-

ing with respect to �. The scalar field becomes then an

emergent time as in the case � ¼ 0.
To construct the physical Hilbert space we need to find

the spectrum of the self-adjoint extension of �. The ei-

genfunction corresponding to an eigenvalue !2 satisfying

!2 ðvÞ ¼ �12�Gðv@vÞ2 ðvÞ �
16�2�3‘4Pl
27K2

@
�v2 ðvÞ

(3.3)

can be written in terms of Bessel functions of the third kind

 !ðvÞ ¼ cðIÞI ikð

ffiffiffiffiffiffiffiffiffi
��

p
jvjÞ þ cðKÞKikð


ffiffiffiffiffiffiffiffiffi
��

p
jvjÞ;
(3.4)

where k :¼ !=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
12�G

p
, 
 :¼ 2

ffiffiffiffiffiffiffiffiffi
��3

p
@‘Pl=ð9KÞ and cðIÞ,

cðKÞ 2 C. When 

ffiffiffiffiffiffiffiffiffi
��

p
jvj< k, both I and K show

oscillatory behavior. In particular, as jvj ! 0, they ap-

proach the eigenfunctions of the �o operator correspond-

ing to the same frequency !

 !ðvÞ ¼ ~cþ expðik lnjvjÞ þ ~c� expð�ik lnjvjÞ: (3.5)

The complex coefficients ~cþ, ~c� of the limit can be deter-

mined uniquely as functions of cðIÞ, cðKÞ.
For 


ffiffiffiffiffiffiffiffiffi
��

p
jvj> k, the functions I grow exponentially,

whereas the functions K exponentially decay. In conse-

quence, only the eigenfunctions with cðIÞ ¼ 0 will contrib-

ute to the spectral decomposition of �. This implies that

the spectrum of � equals Spð�Þ ¼ ½0;1Þ and is continu-

ous. Furthermore, due to (3.5), the eigenfunctions with

cðIÞ ¼ 0 are Dirac delta normalizable. Therefore, we can

choose the basis setting e! :¼ �ð!ÞKikð

ffiffiffiffiffiffiffiffiffi
��

p
jvjÞ,

where � is a real, positive, !-dependent normalization

factor chosen to satisfy the relation

he!je!0i ¼ �ð!;!0Þ: (3.6)

At this point, we note that the structure of the spec-

tral decomposition of � is similar to the one of the WDW

limit for the k ¼ 1 FRW model [7], so that we can fol-

low the construction used there. Each element  ðvÞ of

L2ðR; BðvÞdvÞ can be decomposed in the basis e!:

 ðvÞ ¼
Z 1

0
d!~ ð!Þe!ðvÞ; (3.7)

where ~ 2 L2ðR; d!Þ. Therefore, the solutions to the evo-
lution equation (3.2) with initial data in the Schwartz space

can be represented in terms of the two functions��ð!Þ 2
L2ðR; d!Þ

�ðv;�Þ ¼
Z

d!½ ~�þð!Þe!ðvÞei!�

þ ~��ð!Þ �e!ðvÞe�i!��: (3.8)

The solutions with vanishing ~�þ and ~�� (denoted in the

following as ��, �þ) are called the negative and positive

frequency solutions, respectively. Their general form can

be written in terms of the square root of the � operator;

namely, for initial data  oðvÞ specified at� ¼ �o, we have

��ðv;�Þ ¼ e�i
ffiffiffi
�

p
ð���oÞ oðvÞ: (3.9)

C. Physical Hilbert space, observables

To construct the physical Hilbert space H phy, we again

follow [5,7]. As � is the sum of the �o operator (which is

just @2
lnjvj) and the positive potential term, it is essentially

self-adjoint and positive-definite [9]. Friedrich’s extension

of it is thus a unique self-adjoint one. One can then apply

group averaging techniques [19] (see the discussion in [4])

to find H phy and the inner product. The result is the

following: the space H phy itself consists of normalizable

solutions to (3.2); however, as the spaces of positive and

negative frequency solutions are superselected sectors, we

can take as H phy the restriction to just one of them.

Following previous works, we chose the positive frequency

part, thus defining H phy as
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�ðv;�Þ ¼
Z

d! ~�ð!Þe!ðvÞei!�;
~� 2 L2ðRþ; d!Þ:

(3.10)

The physical inner product within this space can be written

as

h�j�i ¼
Z
�¼�o

BðvÞdv ��ðv;’Þ�ðv; ’Þ: (3.11)

In order to be able to extract physical information out of

our system, we need to define a set of Dirac observables,

i.e. self-adjoint operators preserving H phy. Here again we

can directly use the scalar field momentum p̂� and jv̂j�,
the amplitude of v at a given �, defined already for � ¼ 0
and k ¼ 1. Their action on the elements � of H phy is the

following:

p̂ �� ¼ �i@@��; jv̂j�0� ¼ ei
ffiffiffi
�

p
ð���0Þjvj�ðv;�0Þ;

(3.12)

and their expectation values equal, respectively,

h�jp̂�j�i ¼ �i@
Z
�¼const

BðvÞdv ��ðv;�Þð@��Þðv;�Þ;

(3.13a)

h�jjv̂j�j�i ¼
Z
BðvÞdvjvjj�ðv;�Þj2: (3.13b)

D. Semiclassical states

Once we have the physical Hilbert space, the inner

product, and the observables, we can investigate the evo-

lution of a universe represented by a given state. A par-

ticularly interesting question one can ask is whether, in the

considered system, the singularity is resolved. To address

this question, we construct a Gaussian state which, at a

given time �o, is sharply peaked at a large scalar field

momentum p?� ¼ @!? (with spread	=
ffiffiffi
2

p
) and volume v?

and is expanding:

�ðv;�Þ ¼
Z 1

0
d!e�ððð!�!?Þ2Þ=2	2Þe!ðvÞei!ð���

?Þ;

(3.14)

where

�? ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
12�G

p arcosh

�
3K

ffiffiffiffiffiffiffiffiffiffiffiffiffi
12�G

p

ð4��‘2PlÞ3=2
p?�ffiffiffiffiffiffiffi
j�j

p
v?

�
þ�o:

(3.15)

Because of the complicated form of e!, the wave func-
tion (3.14) and expectation values (3.13) were calculated

numerically (see Sec. V for the details). An example of the

results is shown in Fig. 1. The state remains semiclassical

(sharply peaked) and simply follows the classical trajec-

tory (2.7)

vð�Þ ¼ 3K
ffiffiffiffiffiffiffiffiffiffiffiffiffi
12�G

p

ð4��‘2PlÞ3=2
p?�ffiffiffiffiffiffiffi
j�j

p

� ½coshð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
12�G

p
ð���? þ�oÞÞ��1 (3.16)

to the big bang and big crunch singularities. In conse-

quence, similar to the � ¼ 0 case, the classical singular-

ities are not resolved.

IV. PHYSICAL SECTOR OF LQC

The analysis in the previous section allowed to find

dynamics predicted by the WDW limit of the considered

LQC model. Now we perform an analogous study of the

model of interest. Because of qualitative similarities of the

Hamiltonian constraint with its WDW limit, the analysis

can be performed analogously to the one done in Sec. III

(with only slight modifications required by the fact that �

a) b)

 0
 5
 10
 15
 20
 25
 30
 35
 40
 45

-1.5
-1

-0.5
0

0.5
1

1.5

2*10
4

4*10
4

6*104

8*104

 0
 20
 40
 60

|Ψ(v,φ)|

|v|

φ -1.5

-1

-0.5

 0

 0.5

 1

 1.5

10
1

10
2

10
3

10
4

10
5

|v|

φ

WDW
classical

FIG. 1 (color online). An example of a Wheeler-DeWitt Gaussian wave packet (3.14) generated for the parameter values � ¼
�0:01, p?� ¼ 5� 103, �p�=p

?
� ¼ 0:02, and �? ¼ 0. Figure (a) shows the absolute value of the wave function. For the presentation

clarity, only the points of j�ðv;�Þj> 10�6 were plotted. Figure (b) presents the expectation values and dispersions of jv̂j� (red bars)

compared against the classical trajectory vð�Þ (blue line). As we can see, the quantum trajectory agrees with the classical one (the

difference being much smaller that the spread). Because of the large changes in magnitude of v during the evolution, the trajectory

was plotted in logarithmic scale.
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is now a difference operator). Following that work, we

again restrict the study to states symmetric under parity

reflection.5

First we note that, thanks to the fact that � is a differ-

ence operator, we can naturally divide the gravitational

kinematical Hilbert space onto superselected sectors

H kin
grav ¼

L
"H

kin
grav;", where H kin

grav;" are the restrictions

of H kin
grav to the functions supported on the sets L" :¼

f�"þ 4n;n 2 Zg preserved by the action of the

Hamiltonian constraint (2.18) and parity reflection

�:  ðvÞ�  ð�vÞ. Following the literature, we call these

sets lattices and work with single sectors H kin
" :¼

H kin
grav;" �H kin

� . The kinematical inner product corre-

sponding to them is just a restriction of the product of

H kin.

For each of the sectors illustrated above, the operator �
is obviously well defined and symmetric (with respect to

the measure BðvÞd�Bohr) on the domain D"—the space of

finite combinations of jvi with v 2 L". Its mathematical

properties were rigorously analyzed in [9]. It is essentially

self-adjoint, its extension is positive-definite, and its spec-

trum is discrete. The first two properties allow us again to

choose � as an emergent time and treat � as an evolution

operator.

The discreteness of �’s spectrum implies that the ei-

genfunctions relevant for its spectral decomposition are

normalizable. Furthermore, a numerical study (discussed

in Sec. V) shows that the spectrum is nondegenerate. In

consequence, for each allowed value of the label ", we can
build the physical Hilbert space H phy

" as a space of

normalizable positive frequency solutions to (2.18), analo-

gously to the construction in Secs III B and III C:

i@�� ¼
ffiffiffiffiffi
�

p
�; �ðv;�Þ ¼

X
n2N

~�nenðvÞei!n�;

(4.1)

where ~� are square summable and enðvÞ are symmetric in

v and normalized eigenfunctions of �, corresponding to

eigenvalues!2
n which form the basis ofH phy

". The physi-

cal inner product can be found through group averaging

analogously to the WDW case and can be written in the

form

h�j�i ¼
X1

n¼0

�~�n
~�n ¼

X
v2L�; �¼const

BðvÞ ��ðv;’Þ�ðv;’Þ:

(4.2)

To complete the quantization program we need to

choose a set of Dirac observables. In order to be able to

compare the results with the WDW limit, we choose the

operators analogous to (3.12)

p̂�� ¼ �i@@��; jv̂j�0� ¼ ei
ffiffiffi
�

p
ð���0Þjvj�ðv;�0Þ:

(4.3)

Their expectation values are equal, respectively, to

h�jp̂�j�i ¼ �i@
X

v2L�; �¼const

BðvÞ ��ðv;�Þð@��Þðv;�Þ;

(4.4a)

h�jjv̂j�j�i ¼
X
v2L�

BðvÞj�ðv;�Þj2: (4.4b)

To calculate an explicit form of � (needed to find the

expectation values) one needs to find the spectrum of �
and the explicit form of its normalizable eigenfunctions.

Because of the complicated structure of�, in order to do so

one needs to resort to numerical methods. We present them

in the next section.

V. NUMERICAL STUDY

This section is divided onto two parts. In Sec. VA, we

present the methods and results of identifying the spectrum

of the� operator and finding normalizable eigenfunctions.

The techniques for computing the wave function and the

expectation values are presented in Sec. VB. In both parts,

we applied the (appropriately refined) methods used al-

ready for the k ¼ 1 model and introduced in [7]. Unless

specified otherwise, from now on we will work with units

in which G ¼ 1.

A. Spectrum of �

In order to construct the Hilbert spaceH phy
", one needs

to find the eigenfunctions supported on the lattice L",

which consists of two sublattices L�j"j :¼ f�j"j þ
4n;n 2 Zg invariant with respect to the action of the

Hamiltonian constraint. Each of such eigenfunctions (de-

noted here as  ) is a solution to a difference equation:

�!2BðvÞ ðvÞ ¼ CþðvÞ ðvþ 4Þ þ ðCoðvÞ
þ C�ðvÞÞ ðvÞ þ C�ðvÞ ðv� 4Þ;

(5.1)

where !2 is the eigenvalue that each given eigenfunction

corresponds to and Co, C�, C� are given by (2.19) and

(2.21). On each sublattice, this is a second-order

equation—one needs to specify the initial data at two

neighboring points (vin, vin þ 4) to uniquely define a so-

lution. The symmetry condition  ðvÞ ¼  ð�vÞ, however,
restricts the amount of initial data in the following way:

(i) For " 2 ð0; 2Þ, the sublatticesL�j"j are disjoint and
the parity reflection� transforms one onto another.

Therefore one needs to specify an initial data

 ðvinÞ,  ðvin þ 4Þ for just one of them, say Lþj"j,
and complete it by the action of�. We denote such

lattices as generic.

5It is also correct to work with the antisymmetric sector of the
theory. We discuss that case in Appendix A.
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(ii) When " ¼ 0, 2 the sublattice Lþj"j coincides with
L�j"j and is invariant with respect to parity reflec-

tion. The condition  ðvÞ ¼  ð�vÞ, applied to (5.1),
imposes on it an additional constraint of the form

depending on the value of ":
(a) " ¼ 0:  ð�4Þ ¼  ð0Þ ¼  ð4Þ,
(b) " ¼ 2:  ð�2Þ ¼  ð2Þ. Here the equality C�ð2Þ ¼

Cþð�2Þ ¼ 0 implies additionally  ð�6Þ ¼
�½ð!2Bð2Þ þ C�ð2Þ þ Coð2ÞÞ=Cþð2Þ� ð�2Þ.

In consequence, the value of  at just one point (v ¼ 0 or

v ¼ 2) determines the entire eigenfunction. These cases

are called exceptional.

The degrees of freedom specified above are complex;

however, since the coefficients of (5.1) are real,  satisfies

it iff so do its components <ð Þ, =ð Þ. Therefore, we can
safely restrict our study to a real  .

Upon this restriction, the space of solutions to (5.1) is

1-dimensional for exceptional lattices and 2-dimensional

for generic ones. Once the initial data are specified appro-

priately for each case, the function  can be found by

solving (5.1) iteratively.

To determine the properties of  , we calculated the

solutions in a wide range of both � (½�10;�10�6�) and

! (½0; 105@�). The qualitative features of the found solu-

tions is visualized in Fig. 2; in general, for each  one can

distinguish 5 zones of distinct behavior, and the boundaries

of these zones are specified by the functions vBð!Þ and
vRð!Þ, approximately equal to, respectively, the position

of the bounce for a � ¼ 0 universe with p?� ¼ @! (deter-

mined in [5]) and the value of v at the recollapse point of

the classical universe (given by (3.16) at � ¼ �? ��o).

(i) For jvj< vBð!Þ, the amplitude of  grows/decays

quasiexponentially.

(ii) For vB < jvj< vR, the behavior of  is oscillatory

(similar in nature to the behavior of (3.4)).

(iii) When jvj> vR the eigenfunction grows/decays

exponentially with jvj (where the exponential

growth is a generic behavior).

Note that for small !, the zones (i) and (ii) may be empty

(see Fig. 3 for examples).

Since we search for normalizable functions only, we

have to select the ones which decay exponentially in the

zones of type (iii). We identify them numerically using

different methods depending on whether the eigenfunc-

tions are supported on generic or exceptional lattices.
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FIG. 2 (color online). Examples of eigenfunctions of � supported on the lattices L" for " ¼ 0 (a) and " ¼ 1 (b). (a) shows a

normalizable eigenfunction of ! � 300:45 (red solid line) and two divergent ones of ! respectively smaller (green dashed line) and

larger (blue dotted line) by 0.1. For clarity, only the positive v part is shown. (b) presents the absolute value of a normalizable

eigenfunction of ! � 52:85 (red solid line) along with two divergent examples: generic (green dashed line) and left-converging (blue
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On exceptional lattices, each eigenfunction  ! is (for a

given !) determined uniquely up to a global scaling. To

find the normalizable solutions, we scan the domain of !
using the following observation:

Observation V.1 For a chosen! 2 ½!1; !2�,  !ð�Þ ¼ 1,
and v� vRð!2Þ, the value  !ðvÞ is a continuous function
of! (more specifically, a polynomial) and its sign changes

quasiperiodically. Furthermore, if we define !v;n as the

values of ! such that �!v;n
ðvÞ ¼ 0, the limits !n :¼

limv!1!v;n are well defined and correspond to the values

of ! for which  ! decays in zone (iii).

In practice, due to the precision bound posed by numeri-

cal round-off, it is enough to (instead of finding the limits)

look for values of!v;n at vT sufficiently far away from vR.
For the actual search, we selected vT ¼ maxð2000; 1:3vRÞ.
The search itself was performed in two steps:

(i) First the sign of �!ðvTÞ was checked for values of

! uniformly separated by a distance around 0.1.

(ii) If a change of sign was detected between neighbor-

ing points, the value of !n;vT
was found via

bisection.

For generic lattices, the space of solutions is, up to a

global rescaling, 1-dimensional, so besides ! we need to

specify the value of  at two points vI, vI þ 4 2 Lþj"j. An
additional complication is the fact that now the behavior in

zones of type (iii) for v > 0 and v < 0 is independent. The
function may grow for positive v while decaying for

negative ones and vice versa. Therefore, to find the desired

functions we divide the search procedure into two steps:

(i) First we identify the family  ! of functions decay-

ing in zone (iii) for v < 0 (further denoted as left-

converging). To do so, we parametrize the initial

data at vI, vI þ 4 by a parameter � 2 ½0; ��
 �;!ðvIÞ ¼ cosð�Þ;  �;!ðvI þ 4Þ ¼ sinð�Þ;

(5.2)

and scan the domain of � for the values at which the

limit limv!�1 �;!ðvÞ ¼ 0. Analogously to the ex-

ceptional lattice case, it is enough here to just

choose some value �vRð!Þ � vT� 2 Lþj"j and

look for the values of � at which  �;!ðvT�Þ ¼ 0.

In practice, it suffices to choose vT� � �vT , where
vT is the value defined for exceptional lattices. The

scan method is analogous to the scan of ! in the

exceptional case: we divide the domain of � into 10

uniform intervals and if a change of sign of

 �;!ðvT�Þ is detected within an interval, the precise
value of � is found via bisection.

It was checked by inspection that, for each !, there
is exactly one value of � satisfying the above re-

quirement. In consequence, for each ! the eigen-

space of left-converging functions is 1-dimensional.

(ii) Once the family  ! of left-converging functions

is selected, we choose some vT � vTþ 2 Lþj"j
and scan the domain of ! for values at which

 !ðvTþÞ ¼ 0, via the method specified for excep-

tional lattices.

The search was first performed for small ! (< 50)
to find the qualitative behavior of normalizable eigen-

functions. An example of the results is shown in Figs. 3

and 4(a). All found eigenfunctions belong to one of the

following groups:

(1) Suppressed on the v < 0 side with suppression ex-

ponential in !.
(2) Suppressed for v > 0.
(3) Peaked about v ¼ 0.

In consequence, it is most convenient, from the point of

view of the numerical precision of the solutions, to specify

the initial data at vI � �vR. However, because of the

quasiexponential behavior of the eigenfunctions in zone

(i), we can calculate (with a sufficiently small numerical

error) only the solutions suppressed on the side where the

initial data were specified. Therefore it is necessary to

repeat the search twice: for vI � vR and vI � �vR.
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FIG. 4 (color online). (a) The lowest (!< 44) elements of �’s spectrum are shown as functions of �j"j. The eigenvalues are
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norm is located at the three points closest to v ¼ 0. (b) The large ! limit of the eigenvalue separation �!, shown as a function of �
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The spectrum scan described above was performed for

18 values of� ranging from�20 to�10�6. It revealed the

following properties (visualized in Figs. 3–5).

(i) As analytically predicted, for each � the spectrum

of � is discrete and the eigenvalues are isolated.

With the exception of the lowest !, the eigenfunc-
tions are highly (exponentially in

ffiffiffiffi
!

p
) suppressed

for one triad orientation (sign of v). The eigen-

values corresponding to them are continuous func-

tions of �. The density of eigenvalues is twice

higher on the generic lattices than on the excep-

tional ones. Furthermore, for " ¼ 2, the two fam-

ilies of left-suppressed and right-suppressed

eigenfunctions converge [see Fig. 4(a)].

(ii) The separation�!n :¼ !nþ1 �!n is not uniform.

It depends on � and � as well as n. However, for
large values of!,�!n converges to the limit value

�! with convergence rate !�2 [see Fig. 5(a)]

�!n ¼ �!þOð!�2Þ; �! ¼ lim
n!1

�!n:

(5.3)

Numerical inspection shows that the correction

satisfies (with the exception of the lowest !) the
following bound relation

j�!� �!nj 	
Að�!Þ2
!2
n

; (5.4)

where, for j�j< 10, A < 0:21 and A decreases for

smaller j�j, reaching in the j�j ! 0 limit the value

A � 0:1358� 2� 10�4 (see Fig. 5).

(iii) The limit �! was found numerically via 4th order

polynomial extrapolation of�!n. It is a function of

� only, i.e. it does not depend on ". Its values for
different superselection sectors agree up to 10�9

precision. The dependence on� found numerically

is shown in Fig. 4(b). For small values of j�j it can
be approximated via a power function

�! � aj�Gjb; (5.5)

where a � 3:87 and b � 0:0489.
The spectrum and normalizable eigenfunctions found

here may be next used to construct the semiclassical states.

Details of this construction will be presented in the next

section.

B. Semiclassical states, evolution

Once we know the values of !n and enðvÞ, the construc-
tion of a physical state from (4.1) is straightforward. There

are two possibilities here: direct summation of Eq. (4.1)b or

numerical integration via Eq. (4.1)a (or equivalently via

(2.18)) of some initial data specified at a given �o. To find

these data, we again have two methods at our disposal: one

of them is the same direct summation of (4.1)b, but applied

to one slice, whereas the second possibility is the use of a

slice of a WDW semiclassical state (see Sec. III peaked at

large v?, where we do not expect strong quantum-

geometric effects. In practice we used the second method,

integrating the state in � via Eq. (2.18) and using as initial

data both the WDW slices and the results of the summation

of (4.1)b. The first method of state calculation was used

only to measure the wave packet spread increase in large

intervals of �, as the integration methods were not precise

enough for this application.

1. Initial data

Let us focus on the second method of initial data speci-

fication: constructing the WDW slice. In order to be able to

directly compare the dynamics of the LQC model and its

WDW limit described in Sec. III we take as the initial data

the � ¼ �o section of the Gaussian state (3.14) peaked at

p?� ¼ @!? and v?. Since (2.18) is a second-order equation,

to specify the initial data completely we also need
_�ðv;�oÞ—the first order derivative of � with respect to

�. We get it by integrating the integrand of (3.14), multi-

plied by i!, over !.
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In order to calculate the specified integrals, we first need

to compute the values of e!ðvÞ, which are the normalized

Bessel functionsK (see Sec. III B). To do so, we apply the

combined method specified by Gil, Segura, and Temme

[20].

Once we have e!ðvÞ, we integrate (3.14) (and the analo-
gous expression for _�) over the domain ½!? � 7	;!? þ
7	�, using the trapezoid method. Such choice of domain

provides sufficient precision—the errors due to the re-

moved tails are much smaller than the error associated

with the computation of the K functions.

Note that we intend to construct the initial data corre-

sponding to the positive frequency solution to (2.18). In

that case, _� is already determined by � via (4.1)a. On the

other hand, we determined it using positive frequency

WDW equation (3.9). Since
ffiffiffiffiffi
�

p
differs from

ffiffiffiffiffi
�

p
, our

initial data is not a pure positive frequency solution. To

minimize the negative frequency part, we choose the fol-

lowing method to construct states sharply peaked at large

v?: we require v? be greater than 2:5p?�=@, which keeps

the negative frequency part below 10�3 of the entire wave

packet norm.

We avoid the above problem if we use directly the basis

of functions enðvÞ and sum them using (4.1)b. In that case,

as the spectral profile ~�n we choose the restriction of the

Gaussian to f!ng, that is
~� n ¼ e�ðð!n�!?Þ2Þ=ð2	2Þe�i!n�

?
; (5.6)

where @!? ¼ p?� is again the location of the peak in the

momentum and @	=
ffiffiffi
2

p
is its spread. The parameter �? is

determined by the position v? of the peak in v and value of

�o via (3.15). Similar to the WDW initial data, we sum

only over !n 2 ½!? � 7	;!? þ 7	�. The derivative _� is

calculated by summing over the individual terms, multi-

plied by i!n.

2. Evolution

Given some initial data, one can integrate it over some

interval ½�o; �1� using Eq. (2.18), which is a system of a

countable number of coupled ordinary differential equa-

tions (ODE). Because of the v-reflection symmetry, it is

enough to restrict the domain of integration toLþ ¼ Lþj"j
for generic lattices and Lþ ¼ L" \ Rþ for exceptional

ones. Additionally, the numerical nature of our study re-

quires that we further restrict the domain of v to the finite

subset Lþ
vmax

:¼ Lþ \ ½�vmax; vmax�, imposing at the out-

ermost points of the domain some (artificial) boundary

conditions. Since the system under consideration is a clas-

sically recollapsing one, it is enough to choose the reflec-

tive conditions � ¼ _� ¼ 0. To prevent their interference

with the dynamics, we have chosen vmax to be not smaller

than 1:3vRð!?Þ þ 2000.
Upon the above restriction of the v domain, Eq. (2.18)

becomes a finite system of ODEs. We integrate it using a

4th-order adaptive Runge-Kutta method (RK4). To adapt

the steps of integration, we compare solutions correspond-

ing to step �� and ��=2 and require the difference

between them (at a single �� step/two ��=2 steps) to

satisfy the inequality:

k ��� ����=2 k	
���

j�1 ��oj
k ���=2 k; (5.7)

where � is a preset global bound. The two solutions are

compared via the following norm

k � k:¼ sup
v2Lþ

vmax

j�ðv;�Þj: (5.8)

Since only j�j enters the formulae for the expectation

values of jv̂j� and v2�, it is also convenient to introduce

an auxiliary metric measuring the error in absolute values

only

k �1 ��2 kA¼ sup
v2Lþ

vmax

jj�1ðv;�Þj � j�2ðv;�Þjj:

(5.9)

An example of convergence test done with respect to both

the norm (5.8) and the metric (5.9) is shown in Fig. 6,

where the results of integration with different error bounds

� were compared against the result of polynomial extrapo-

lation at � ¼ 0. As we can see, the integration error is for

10-7

10
-6

10-5

10-4

10
-3

10
-2

10-1

104 105 106 107

N

(I)
(II)

FIG. 6 (color online). Convergence test for the integration

method of a Gaussian wave packet generated with � ¼ �0:1
and peaked at p?� ¼ 103, with relative p� spread 0.05 and

v? ¼ 0:5vRðp?�Þ. The initial data were specified at � ¼ 0 and

evolved till � ¼ 1. The upper (red) curve shows the norm of the

difference k �ðNÞ �� k between the slice � ¼ 1 of the

solution �ðNÞ corresponding to the integration with N steps

and the same slice of its N ! 1 limit � (found via 8th order

polynomial extrapolation). The lower (green) curve shows the

analogous difference taken with respect to the metric (5.9).
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j�j at least 1 order of magnitude smaller than that for �
itself.

3. Observables

Knowing an explicit form of � at Lþ
vmax

� ½�o; �1�, we
can complete it to ðLþ

vmax
[L�

vmax
Þ � ½�o; �1� (where

L�
vmax

:¼ f�v: v 2 Lþ
vmax

g) via reflection and find the ex-

pectation values of the observables (4.3), restricting the

sums (4.2) and (4.4) to a finite domainLþ
vmax

[L�
vmax

. Their

dispersions can be in turn calculated in the standard way

h�jv̂j�i2 ¼ hv̂2�i � hjv̂j�i2; h�p̂�i2 ¼ hp̂2
�i � hp̂�i2;

(5.10)

where hv̂2�i, hp̂2
�i have a form analogous to (4.4).

In addition to jv̂j�, p̂�, it is useful to introduce another

family of observables: the regularized energy density at a

given moment of �

�̂� :¼ 1

2‘6Pl

�
6

8��

�
3

p̂�B̂�p̂�B̂�;

B̂�� :¼ ei
ffiffiffi
�

p
ð���0ÞBðvÞ�ðv;�0Þ:

(5.11)

We calculate their expectation values via

h�j�̂�j�i ¼ � K2

2‘6Pl

�
6

8��

�
3 X
Lþvmax[L�vmax

BðvÞj�ðv;�Þj2;

� ¼ @�ð djvj�1
��Þ; (5.12)

whereas the dispersions can be derived analogously to

(5.10).

The above methods for calculating the expectation val-

ues were applied to the wave functions calculated earlier

through the RK4 method. We analyzed the states evolved

(integrated) from both WDW and exact LQC Gaussian

wave packets corresponding to 17 values of � ranging

from �20 to �10�6, for 5 different superselection sectors

covering the full range of ". The peak in momentum p?�
covered the values from 5� 102 to 104 (10 values), while

its relative spread ranged from 0.01 to 0.1.

VI. RESULTS AND DISCUSSION

An example of the results of our numerical investiga-

tions is presented in Figs. 7–10. The general properties of

the considered model are similar to the ones of the models

previously investigated: � ¼ 0 and k ¼ 1, that is:
(i) The states remain sharply peaked for long evolution

times. On each superselection sector and large!, the
spectrum of � quickly approaches uniformity (with

approach rate !�2). In consequence, a wave packet

sharply peaked at large p� should be almost periodic

in�. This expectation is confirmed by our numerical

results, where already for p?� of the order of few

thousands the departures from periodicity were un-

detectable within given precision of integration.

(ii) For large volumes (small energy densities), the

trajectory of the expectation values hjvj�i agrees
with the classical one given by (3.16). In particular,

the universe recollapses at the volume predicted by

the classical theory even for large values of �; this

was numerically confirmed for j�j up to 20.

(iii) Once the expectation value of the energy density

approaches the Planck order, we observe the depar-

tures from the classical theory due to quantum-

geometric corrections. The corrections act effec-

tively like an additional repulsive force, which, in

particular, causes the bounce at the point where the

total energy density h�̂�i þ�=ð8�GÞ approaches
a critical value �c � 0:82�Pl, identified already

in [5].

(iv) After the bounce, the universe again enters (an-

other) classical trajectory repeating the cycle of

expansion, recollapse, and contraction till the en-

ergy density grows again to Planck scale. In con-

sequence, the evolution is periodic and, similar to

the k ¼ 1 case, we are dealing with a cyclic model.

(v) The wave packet remains sharply peaked even in

the region where the quantum corrections are

strong. In consequence, the evolution can be de-

scribed by the classical effective dynamics, similar

to the � ¼ 0 case. Indeed, the comparison of the

values of hjvj�i with the effective trajectories cor-

responding to the holonomy corrections (see

Appendix A 1) has shown that they agree up to an

error well below h�vi.
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FIG. 7 (color online). The absolute value of the wave function

representing a Gaussian state (4.1) generated via backward

integration of an initial profile corresponding to � ¼ �1, p?� ¼
5� 103@, �p�=p

?
� ¼ 0:01, v? ¼ 0:6vRðp?�Þ and evaluated at

�o ¼ 0. For presentation clarity, only values >10�6 were

shown on the plot.
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The results listed above show that the picture based on

the analysis of the previous models is valid here as well.

Similar to that case, the correction due to the discreteness

of geometry cause gravity to become repulsive at large

energy densities and, in particular, force the universe to

bounce when the energy density reaches a critical value.

This indicates that �c may be a fundamental quantity,

independent on the matter content at least in isotropic

cases. Furthermore, the states remain sharply peaked

even in regions where quantum-geometric effects domi-

nate the dynamics, where in principle one expects to lose

the semiclassicality. The dynamics itself can be well

approximated by an effective Friedmann equation (see

Appendix A 1)
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FIG. 10 (color online). A detailed picture of the comparison of h��i against the ��ð�Þ trajectories presented in Fig. 8(b) is shown

near the bounce (a) and recollapse (b) points, respectively.
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FIG. 8 (color online). The expectation values (red bars) of jv̂j� (a) and �̂� (b) are compared against the classical (red lines) and

effective (blue lines) trajectories of vð�Þ and ��ðvÞ, respectively. The data corresponds to a Gaussian wave packet (4.1) with

� ¼ �0:1, p?� ¼ 104@, �p�=p
?
� ¼ 0:012, v? ¼ 0:55vRðp?�Þ specified at �o ¼ 0 and evolved backwards. Because of the large

changes in magnitude of h��i, a logarithmic scale was used for the y-axis of Fig. (b).
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FIG. 9 (color online). A detailed picture of the comparison of hjvj�i against the vð�Þ trajectories presented in Fig. 8(a) is shown

near the bounce (a) and recollapse (b) points, respectively.
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H2 ¼ 8�G

3
�ð1� �=�cÞ; (6.1)

where H is a Hubble rate and � is a total energy density.

The agreement between the quantum evolution and the

effective one brings out another issue: since the spectrum

of � is not exactly uniform, the states are not exactly

periodic and a spread increase can be observed between

cycles. This leads ultimately to the loss of semiclassicality.

This in turn raises the question about the size of time

interval in which the state remains sharply peaked.

To answer this question, we analyzed the spread increase

within one cycle of evolution. It can be estimated via the

heuristic methods described in Sec. A 2 and turns out to be

much smaller than in the k ¼ 1 case. For example, when

� � �10�120, a universe peaked about p?� large enough

for it to grow to megaparsec size, and with relative dis-

persions in p� and v of the same order, will need at least

1070 cycles for the relative dispersion to double. The

number of cycles needed to grow to a considerably large

value (say 10�6) is correspondingly larger.

For small values of the momentum (that is p?� 	 103@),

we were able to confirm the heuristics numerically. Also,

since for larger momenta the states become more and more

semiclassical, we expect the estimate to become more

accurate there. The result is, however, far from general,

as numerical tests were done for a specific family of states

only, thus (as it was argued in [21]) do not allow us to

exclude the hypothetical situation, where some specific

example of state violates the bound. On the other hand,

the proposed estimate is based on the properties of the

spectrum of �, thus we expect that a bound of at least a

similar order should hold in general. Such a situation

happened, for example, in the � ¼ 0 case [11], where it

was possible to find (in the context of sLQC) an analogous

bound satisfied by all the states which admit semiclassical

epoch (see Sec. I) in their history. A similar bound was next

derived in exact LQC [22]. More precise statements re-

garding the model considered here will, however, require

further work.
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Kamiński, and Parampreet Singh for extensive discussions

and helpful comments. We also profited from discussions

with Martin Bojowald and Jerzy Lewandowski. This work

was supported in part by the National Science Foundation

(NSF) Grant No. PHY-0456913 and the Eberly research

funds. T. P. acknowledges financial aid provided by the

I3P framework of CSIC and the European Social Fund

and Foundation for Polish Science, ‘‘Master’’ grant. E. B.

acknowledges the support of the Center for Gravitational

Wave Physics, funded by the National Science Foundation

under Cooperative Agreement No. PHY-0114375.

APPENDIX A: ANTISYMMETRIC SECTOR

OF LQC

Because of the lack of a parity violating interaction in

the model considered in this article, the change in the triad

orientation is a large gauge symmetry. This allowed us to

restrict the physical Hilbert space to the subspace of states

invariant with respect to the reflection in v corresponding

to this orientation change—the symmetric sector. In prin-

ciple, however, we could choose instead the space of states

which are antisymmetric under considered transformation.

There is no physical reason to favor one of these two

choices over the other. This raised a concern on whether

the results of LQC are tied to the selection of the symmetric

sector and whether they will still hold in the antisymmetric

one. We address these concerns here by repeating the

constructions of Sec. IV, this time building the physical

Hilbert space out of antisymmetric states.

First, following Sec. IV we divide the kinematical

Hilbert space H kin
grav onto superselection sectors, i.e. the

spaces H kin
grav;" of functions supported on lattices L". The

results of [9] (self-adjointness of � and discreteness of its

spectrum on each of these spaces) were derived without

any symmetry assumption, thus they hold also in our case.

Furthermore, as we will show below, the spectrum is non-

degenerate also when we restrict the space of eigenfunc-

tions to the antisymmetric ones. In consequence, we can

construct the physical Hilbert space as specified in (4.1),

but by imposing on the relevant eigenfunctions ean the

condition eanðvÞ ¼ �eanð�vÞ instead of the symmetry

requirement.

To check the effect of the above modification on the

dynamics, we have to examine how it changes the exact

form of en. That, in turn, depends on the value of the

superselection sector label ".
(1) For " � 0, 2 (generic lattices), the symmetric eigen-

function on L" is completely determined (see dis-

cussion in Sec. VA) by its restriction to the lattice

Lþj"j, with the remaining part supported on L�j"j
determined via a symmetry relation. Furthermore,

symmetry does not impose any constraint on the part

supported on Lþj"j itself and we can complete it to

the antisymmetric eigenfunction by simply acting

with�� on it. In consequence, there exists a 1� 1
correspondence between these two types of eigen-

functions. Namely, each antisymmetric eigenfunc-

tion  a is related to the symmetric one  via:

 aðvÞ ¼
�
 ðvÞ v 2 Lþj"j
� ðvÞ v 2 L�j"j

: (A1)

This implies that, in the antisymmetric sector, the

spectrum of � is the same as in the symmetric one.

(2) When " ¼ 2, the situation is similar to the generic

case. The solutions to (5.1) on two sublattices L" \
Rþ and L" \ R� are independent, thus each eigen-

function is again determined by its restriction to
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L" \ Rþ. In consequence, we again have the 1� 1
correspondence between the symmetric and anti-

symmetric eigenfunctions

 aðvÞ ¼
�
 ðvÞ v > 0

� ðvÞ v < 0
; (A2)

and the spectra of � in both sectors are identical.

(3) The case when " ¼ 0 requires a bit more care. In

Sec. VA, the symmetry assumption imposed on

solutions to (5.1) an additional constraint, allowing

to determine  ð4Þ for known  ð0Þ. Antisymmetry

replaces this constraint by a different one:  að0Þ ¼
0. Therefore the whole procedure of identifying the

normalizable eigenfunctions has to be redone. We

can, however, apply exactly the same procedure as

in Sec. VA. The results are as follows:

(a) The qualitative features of the eigenfunctions re-

main the same. In particular, we can still distinguish

the same 5 zones of exponential/oscillatory behavior

[see Fig. 11(b)]. Their boundaries vB, vR are exactly
the same as in the symmetric case.

(b) The spectrum of � in the antisymmetric sector is

different than in the symmetric case, however, the

eigenvalues of one sector approach the ones of the

other very quickly [see Fig. 11(a)]. In consequence,

the separation between the eigenvalues approaches,

as !! 1, the same limit shown in Fig. 4(b). The

rate of approach to this limit also remains the same.

The similarity between eigenfunctions of the two con-

sidered sectors implies an analogous similarity between the

physical states. In particular, for " � 0, if the eigenfunc-

tions satisfy Eqs. (A1) and (A2), so will the wave functions.

Then if we take two physical states, a symmetric and an

antisymmetric one with the same spectral profile ~�n, the

expectation values of (all the powers of) the observables

defined in Sec. VB 3 will be exactly the same for both of

them.

For " ¼ 0, due to the slight difference in the spectrum,

we have to repeat the analysis of VB. But again the

numerical checks reveal no measurable deviations from

the results obtained in the symmetric sector.

In summary the results obtained for both " � 0 and " ¼
0 show that working with the antisymmetric sector instead

of the symmetric one does not produce any qualitative

changes or (apart from a slightly different spectrum of �
in " ¼ 0 case) any measurable modifications to the physics

predicted by the model.

APPENDIX B: HEURISTIC DESCRIPTION

In this section we discuss some issues related to the

heuristic method for the description of the quantum evo-

lution. We divide its content into two parts, dedicated

respectively to the effective classical dynamics and the

estimate of the dispersion growth during the evolution of

the semiclassical state.

1. Effective dynamics

The numerical tests described in the main body of the

paper have shown that if a state is semiclassical at some

epoch, it will remain so for a large fraction of the evolution

(i.e., a large number of cycles of bounces and recollapses).

In particular it remains sharply peaked even in the regions

where the quantum gravity corrections modify the dynam-

ics. This indicates the existence of a (n effective) classical

theory whose predictions well agree with those of LQC.

At the rigorous level, such a theory was derived for � ¼
0 [23] with the use of the geometric formulation of quan-

tum mechanics [24]. Up to the second-order quantum

corrections (remaining always small during the evolution),

its results confirm the predictions of the classical effective

dynamics proposed earlier [5,6], derived heuristically by

replacing the connection c in classical Hamiltonian by

sinð ��cÞ= ��. Here we apply this heuristic method to the
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FIG. 11 (color online). (a) A set of lowest (!< 44) spectrum elements of � for the symmetric and antisymmetric sector (with

� ¼ �1) is shown with respect to �j"j. The green x-es represent the eigenvalues corresponding to the cases where the relation

between symmetric and antisymmetric eigenfunctions is given by (A1) and (A2) (denoted as generic). The red crosses and blue stars

represent the eigenvalues of, respectively, the symmetric and antisymmetric eigenfunctions on the lattice L"¼0. The antisymmetric

eigenfunctions ea0 to ea4 corresponding to the eigenvalues shown in (a) are presented in (b). For clarity, they are plotted on the v > 0
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system with a cosmological constant considered in the

main body of the paper. An analogous derivation of the

effective dynamics (to the level of quadratures) and the

analysis of the resulting trajectories was done in [15],

however the trajectory parametrization used there makes

the direct comparison with the results of quantum evolu-

tion difficult.

The classical Hamiltonian of the system is related to the

constraint (2.4) and (2.6) via H eff ¼ C=ð16�GÞ.
Application of the rule c! sinð ��cÞ= �� yields the result

H eff ¼ � 3

8�G�2 ��2
jpj1=2sin2ð ��cÞ þ 1

2

p2
�

jpj3=2

þ p3=2

16�G
�: (B1)

Hamilton’s equations _v ¼ fv;H effg and _� ¼ f�;H effg
are identical to the � ¼ 0 case. Written in terms of v they

are, respectively,

_v ¼ 3vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffi
3

p
��‘2Pl

q sinð ��cÞ cosð ��cÞ;

_� ¼
�

6

8��‘2Pl

�
3=2 K

jvjp�:
(B2)

Taking the square of (B2)a and supplying sinð ��cÞ via (B1),
we arrive to an analog of Friedmann equation:

H2 :¼
�

_v

3v

�
2

¼ 8�G

3
�

�
1� �

�c

�
; (B3)

where � and �c are the total matter energy density and the

critical energy density found in [5]

� :¼ �� þ �

8�G
; �� :¼

p2
�

2p3
;

�c :¼
ffiffiffi
3

p

16�2�3G2
@
:

(B4)

Applying (B2)b, we can rewrite the resulting Friedmann

equation in the form involving v and � only

v� ¼ �v
ffiffiffiffiffiffiffiffiffiffiffiffiffi
12�G

p �
�

��

�
1� �

�c

��
1=2
: (B5)

The sign in front of the right-hand side of the above

equation depends on the evolution epoch, and, in particu-

lar, changes during recollapse. Therefore, it is convenient

to rewrite (B5) in the second-order form (obtained by

differentiating it):

v�� ¼ 12�Gv

��
2�

��
� 1

��
1� �

�c

�
þ �

�c

�
: (B6)

To compare the results of the numerical evolution, we

integrated Eq. (B6) numerically using a fifth-order adap-

tive Runge-Kutta method (known as RK45). The initial

value _v, needed to complete the initial data specification,

was calculated via (B5).

An example of the comparison results is shown in

Figs. 8–10. The trajectories agree with the results of the

quantum evolution everywhere. The differences between

them are much smaller than the spreads of the wave pack-

ets even near the bounce.

2. Bound on the dispersion growth

The analysis of Sec. V has shown that the states that are

semiclassical at a given initial time �o remain so for many

cycles of bounces and recollapses. However, due to non-

uniformity of the spectrum of the � operator, the initially

coherent wave packet slowly spreads out. Here we derive

an upper bound on this spread growth using some heuristic

estimates and applying the knowledge about the spectrum

of � presented in Sec. VA.

To start with, let us note that for large p� ¼ @! the

distance between neighboring eigenvalues is almost con-

stant !nþ1 �!n � �! (see (5.3)). In consequence, the

wave function is almost periodic in�, with an approximate

period equal to

T � 2�

�!
: (B7)

Now, if we consider two classical (effective) trajectories

corresponding to p� equal, respectively, to @! and @ð!þ
�!Þ, the difference between periods is determined by the

corrections to the uniformity of �!n. They are in turn

bounded by the function Að�!Þ2!�2 (see (5.4)). Applying

this bound to (B7) (i.e. taking�!n ¼ �!ð1þ A�!!�2Þ)
and neglecting terms of higher order in �!, we obtain the

following difference in T:

�T � 4�A

!3
�!; (B8)

which can be now used to estimate the growth of �v=v
within one cycle. To do so, we note that, since the cosmo-

logical constant term acts like a positive v2 potential, the

speed v� is bounded from above by the speed vo� of a

classical universe with � ¼ 0

jv�j 	 jvo�j :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
12�G

p
jvj: (B9)

In consequence:

�v

v
	 8

ffiffiffi
3

p
�3=2A

1

!2

�!

!
: (B10)

In order to arrive to this bound, we used some heuristic

methods that need to be confirmed using numerics.

Unfortunately, due to the extremely small values of

�v=v, we were able to check (B10) only for small values
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of the frequency, ! 	 103. To do so, we calculated the

semiclassical states in two intervals of � separated by a

large (>100) distance in � and compared the difference

between the maximal relative dispersion in v observed

within one cycle in both of the chosen intervals. To com-

pute the wave functions, we used a direct summation

method specified in Sec. VB. Within the checked range

500 	 ! 	 1000, the bound was satisfied.
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