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Abstract. Social discrimination discovery from data is an important
task to identify illegal and unethical discriminatory patterns towards
protected-by-law groups, e.g., ethnic minorities. We deploy privacy
attack strategies as tools for discrimination discovery under hard as-
sumptions which have rarely tackled in the literature: indirect discrim-
ination discovery, privacy-aware discrimination discovery, and discrimi-
nation data recovery. The intuition comes from the intriguing parallel
between the role of the anti-discrimination authority in the three sce-
narios above and the role of an attacker in private data publishing. We
design strategies and algorithms inspired/based on Fréchet bounds at-
tacks, attribute inference attacks, and minimality attacks to the pur-
pose of unveiling hidden discriminatory practices. Experimental results
show that they can be effective tools in the hands of anti-discrimination
authorities.

1 Introduction

Discrimination refers to an unjustified distinction of individuals based on their
membership, or perceived membership, in a certain group or category. Human
rights laws prohibit discrimination on several grounds, such as sex, age, mari-
tal status, sexual orientation, race, religion or belief, membership of a national
minority, disability or illness. Anti-discrimination authorities (equality enforce-
ment bodies, regulation boards, consumer advisory councils) monitor, provide
advice, and report on discrimination compliances based on investigations and in-
quiries. Data under investigation are studied by them with the main objective of
discrimination discovery, which consists of unveiling contexts of discriminatory
practices in a dataset of historical decision records. Discrimination discovery is
a fundamental task in understanding past and current trends of discrimination,
in judicial dispute resolution in legal trials, in the validation of micro-data or
of aggregated data before they are publicly released. As an example of the last
case, consider an employer noticing from public census data that the race or
sex of workers act as proxy of the workers’ productivity in his specific indus-
try segment and geographical region. The employer may then use those visible
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traits of individuals, rather than their unobservable productivity, for driving (dis-
criminatory) decisions in job interviews. Such a behavior, known as statistical
discrimination [I2], should be foreseen before data are publicly released.

Existing approaches for discrimination discovery [I2|[13] are designed with two
assumptions: (1) the dataset under studying explicitly contains an attribute de-
noting the protected-by-law social group under investigation, and (2) the dataset
has not been pre-processed prior to discrimination discovery. A first major source
of complexity is to tackle the case that (1) does not hold — a problem known
as indirect discrimination discovery, where indirect discrimination refers to ap-
parently neutral practices that take into account personal attributes correlated
with indicators of race, gender, and other protected grounds and that result
in discriminatory effects on such protected groups. For example, even without
race records of credit applicants, racial discrimination may occur in the practice
of redlining: applicants living in a certain neighborhood are frequently denied,
as most of people living in that neighborhood belong to the same ethnic mi-
nority. A second source of complexity, ignored in the literature so far, occurs
when data contain attributes denoting protected groups but such data have been
pre-processed to control the (privacy) risks of revealing confidential information,
i.e., assumption (2) does not hold. If the anti-discrimination authority cannot be
trusted, the original data cannot be accessed, and then discrimination discovery
must be performed on the processed data. We name such a case privacy-aware
discrimination discovery. A further case in which (2) may not hold occurs when
data is pre-processed to hide discriminatory decisions to the anti-discrimination
authority. Since the authority has to recover the original decisions as part of its
investigation, we name such a case discrimination data recovery.

We follow the intriguing parallel between the role of the anti-discrimination
authority in discrimination data analysis and the role of an attacker in privacy-
preserving data publishing [IL4l5] — an unauthorized (possibly malicious) entity.
Several attack strategies have been proposed in the literature, which model the
reasonings of an attacker and its background knowledge. Conceptually, the role
of an anti-discrimination authority is similar to the one of an attacker. In the
case of indirect discrimination discovery, the authority has to infer personal data
of individuals in the dataset under investigation, namely whether she belongs
to a protected group or not (this step is necessary in order to measure the
degree of discrimination in decisions). We substantiate this view by showing how
combinatorial attacks based on Frechet bounds inference [3] can be deployed to
this purpose. In the case of privacy-aware discrimination discovery, the parallel is
even more explicit: the anti-discrimination authority has to reason as an attacker
to find out as much information as possible on the membership of individuals in
the protected group. We will investigate a form of attribute inference attacks for
discrimination discovery from a bucketized dataset [II]. Finally, in the case of
discrimination data recovery the anti-discrimination authority has the objective
of re-constructing original decisions from a perturbed dataset, which, again, is
a typical task of privacy attackers. By exploiting an analogy with optimality
attacks [I4], we will devise an approach to reconstruct a dataset that has been
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Fig. 1. Discrimination table

sanitized by means of the approach in [9]. The parallels highlighted open a new
research direction consisting of applying the vast amount of methodologies and
algorithms of privacy protection for discrimination data analysis.

This paper is organized as follows. Section [2 formalizes the three scenarios
mentioned above. Section [3 recalls basic notions of discrimination analysis. The
adaptation of privacy attack approaches and algorithms to each scenario is pre-
sented in Sections[@H6l Section[dreports experimental results. Finally, conclusions
report on related work and summarize our contributions.

2 Problem Scenarios

We assume two actors: a data owner and an anti-discrimination authority. The
data owner releases to the anti-discrimination authority some data either in the
form of micro-data, e.g., one or more relational or multidimensional tables, or
in the form of aggregate data, e.g., one or more contingency tables. The anti-
discrimination authority has access to additional information, called the back-
ground knowledge, that is exploited to unveil contexts of possible discrimination
from the released data. The case when attributes to identify protected groups are
part of the released data and data are without modification is known as direct
discrimination. This is well-studied [12[13], and in this paper our main emphasis
will be on the alternative case, consisting of one of the following scenarios.

Scenario I: Indirect discrimination discovery. The released data do not include
attributes that explicitly identify protected-by-law groups. The task of the anti-
discrimination authority is to unveil contexts of discrimination from the released
data by exploiting background knowledge (e.g., correlations between attributes)
to link the unknown attributes to attributes present in the data.

Scenario II: Privacy-aware discrimination discovery. The released data in-
clude attributes that explicitly identify protected-by-law groups, but the data
were pre-processed by the data owner by applying a privacy-preserving inference
control method to perturb such attributes. The anti-discrimination authority
has the task of unveiling contexts of discrimination by exploiting background
knowledge (e.g., aggregate counts on members of the protected group) and the
awareness of the inference control algorithm used to pre-process the data.

Scenario III: Discriminatory data recovery. The released data were pre-
processed by the data owner by applying a discrimination prevention inference
control method that perturbed the data to hide discriminatory decisions. The
task of the anti-discrimination authority is to reconstruct the original data by
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exploiting, again, background knowledge (e.g., amount of hidden discrimination)
and the awareness of the inference control algorithm. Starting from the recon-
structed dataset, standard direct discrimination discovery techniques can then
be adopted to unveil contexts of discrimination.

3 Measures of Group Discrimination

A critical problem in the analysis of discrimination is precisely to quantify the de-
gree of discrimination suffered by a given group (say, an ethnic group) in a given
context (say, a geographic area and/or an income range) with respect to a deci-
sion (say, credit denial). To this purpose, several discrimination measures have
been defined over a 4-fold contingency table, as shown in Fig. [l where: the pro-
tected group is a social group which is suspected of being discriminated against;
the decision is a binary attribute recording whether a benefit was granted (value
“+7) or not (value “-”) to an individual; the total population denotes a context
of possible discrimination, such as individuals from a specific city, job sector,
income, or combination thereof.

We call the 4-fold contingency table of Fig. Ml a discrimination table. Different
outcomes between groups are measured in terms of the proportion of people in
each group with a specific outcome. Fig. [Il considers the proportions of ben-
efits denied for the protected group (pi1), the unprotected group (p2) and the
overall population (p). Differences and rates of these proportions can model the
legal principle of group under-representation of the protected group in positive
outcomes or, equivalently, of over-representation in negative outcomes [12]. For
space reasons, we restrict to consider only risk difference (RD = p; — p2), which
quantifies the marginal chance of the protected group of being given a negative
decision. Once provided with a threshold a between “legal” and “illegal” degree
of discrimination, we can isolate contexts of possible discrimination [I3].

Definition 1 (a-protection). A discrimination table is a-protective (w.r.t. the
RD measure) if RD < a. Otherwise, it is a-discriminatory.

Direct discrimination discovery consists of finding a-discriminatory tables
from a subset of past decision records. The original approach [13] performs a
search in the space of discrimination tables of frequent (closed) itemsets. Fix a
relational table whose attributes include GROUP, with values PROTECTED and
UNPROTECTED, and DEC, with values + and -. An itemset is a set of items
of the form A = v, where A is an attribute and v € dom(A), the domain
of A. As usual in the literature, we write A; = v1,...,Ar = v; instead of
{A1 = v1,...,Ar = vi}. Let B be an itemset without items over GROUP and
DEC. The discrimination table associated to B regards the tuples in the cover of
B as the total population. Therefore, n in Fig. [[lis the number of tuples satisfy-
ing B (i.e., its absolute support), and the cell values a, b, ¢ and d are the counts
of those also satisfying the cell coordinates. For instance, a is the support of the
itemset “B, GROUP=PROTECTED, DEC=—"".
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decision rel. decision rel. group
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Fig. 2. Indirect discrimination. Left: unknown contingency table. Center: known con-
tingency table. Right: background knowledge contingency table.

4 Scenario I: Indirect Discrimination Discovery

The release of some aggregate data over a statistical database may lead to in-
ferences on unpublished aggregates. In particular, the inference of bounds on
entries in a 4-fold contingency table, given their marginals, trace back to the
1940’s — and they are known as Frechet bounds. They have been generalized to
multidimensional contingency tables in the early 2000’s [3]. We adopt an item-
set based notation for contingency table cell entries. Let us denote by nx the
support of an itemset X in the dataset R under analysis: nx = [{t € R|X C ¢}|.
Consider now an itemset X of the form A; = vy, Ay = vy, and Y of the form
Ay = vg, A3 = v3. The itemset XY is A; = v1,As = v9, A3 = v3 and the
itemset X NY is Ay = vy. The Frechet bounds for the support of X Y are the
following [3l, Theorem 4]:

min{nx,ny} > nxy > mar{nx +ny —nxny,0} (1)

Let us exploit Frechet bounds to model indirect discrimination discovery by
means of background knowledge on attributes (cor-)related to membership to
the protected group. Consider Fig. 2l Our problem is as follows: we want to
derive bounds on a discrimination measure for an unknown contingency table
(left) given a known/released contingency table (center) and some additional in-
formation contained in a background knowledge contingency table (right). The
known contingency table shows data on an attribute that is related to the mem-
bership to the protected group through the background knowledge contingency
table. The higher the correlation the closer the (known) discrimination mea-
sures for such an attribute are to the (unknown) discrimination measures for
the protected group. The unknown value a can be decomposed into the num-
ber a; of individuals of the group gl plus the number as of individuals the
group g2. Thus, a; = nxy, where X is REL. GROUP=G1, DEC=- and Y is
GROUP=PROTECTED, REL. GROUP=G1. The Fréchet bounds for a; yield:

min{a,e} > a1 > maz{a+e —n1,0} = maz{e — b,0}

and, with similar reasonings, those for ay yield: min{¢, f} > as > maz{¢+ f —
fia, 0} = maz{f — d,0}. Therefore, for a = a1 + a2, we have the bounds:

min{a, e} + min{é, f} > a > maz{e — b,0} + maz{f — d, 0} (2)
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rel. decision rel. group
group - + group gl g2
gl |2 0 2 pro. |1 0 1
g2 |6 18 24 unp. | 1 24 25
8 18 26 2 24 26

Fig. 3. Sample known and background contingency tables

These bounds have an intuitive reading. Of the n; individuals in the protected
group, e belong to group gl and f belong to group g2. Consider the lower
bounds. At most min{b, e} of those e (resp., min{d, [} of f) have a positive
decision. Therefore, the number a is at least maz{e — b,0} + maz{f — d,0}.
Consider now the upper bounds. At most e (resp, f) individuals of the protected
group are in the gl group (resp., g2 group), which, in turn, has at most a
(resp., ¢) negative decisions. Summarizing, the background knowledge necessary
to derive the bounds for a consists of the distribution of the protected group
into individuals of groups gl and g2, namely values e and f in the background
knowledge of Fig. 2l With similar means, one derives bounds for c:

min{a, g} + min{é, h} > ¢ > maz{g — b,0} + maz{h — d, 0}

Since n; and ny are in the background knowledge and m; is in the known
contingency table, bounds for the proportions p1 = a/n1, p2 = ¢/n9, and p =
m1/n can be readily computed. Finally, we derive a lower bound for RD:

maz{e — b,0} + maz{f — d, 0} _ min{a, g} + min{¢, h}
n1 n2

RD > RDIb =

Ezxample 1. Consider the known and background knowledge tables in Fig.[Bl The
Fréchet bounds on a (number of protected individuals with negative decisions)
and ¢ (number of unprotected individuals with negative decisions) are:

1 =min{2,1} + min{6,0} > a > maz{l — 0,0} + maz{0 — 18,0} =1
7= min{2,1} + min{6,24} > ¢ > maz{l — 0,0} + maz{24 — 18,0} =7

We have py = 1/1, po = 7/25 = 0.28, and then RD = p; — ps = 0.72.

Notice that since Fréchet bounds are sharp [3], the bounds on discrimination
measures are sharp as well. Although we described the case of a single attribute
related to the protected attribute, the approach can be repeated for two or more
related attributes, and the best bounds can be retained at each step. The overall
approach is formalized in Algorithm [I named FréchetDD for Fréchet bounds-
based Discrimination Discovery. The algorithm takes as input a relational table
R, background knowledge contingency tables BX and a threshold « for indirect
discrimination discovery of a-discriminatory contingency tables. For each closed
itemset B, the algorithm infers bounds ctu for its unknown contingency table.
At the beginning (line 3), such bounds are the widest possible — from 0 to the
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Algorithm 1. FréchetDD (R, BK, a)

1: C + { frequent closed itemsets of R w/o GROUP and DEC items }

2: for B e C do

ctu = ([0, ng], [0, n8], [0, n8], [0, nB])

4: I={A=wv| no A-tem is in B}

5. for A=veZdo

6: if ctbg = ¢t(B, (GROUP=PRO., GROUP=UNPRO.), (A = v, A # v)) € BK then
7.

8

ctk = ct(B, (A =v, A # v), (DEC=-, DEC=+))
ctu’ < Fréchet bounds from ctk and ctbg

9: ctu + min(ctu, ctu’)
10: end if
11:  end for

12: RDIb < RD lower bound from ctu
13:  if RDIb > « then

14: output B
15: end if
16: end for

support ng of B. For every item A = v, where A is not already in B and such that
a contingency table ctbg relating the protected group to A = v in the context B is
available in the background knowledge (line 6), the Fréchet bounds are calculated
starting from such background contingency table and from a contingency table
ctk that is computable from R (line 7), as described earlier in this section. The
bounds are used to update ctu (line 9). After all items are considered, the final
bounds ctu can be adopted for computing a lower bound on the discrimination
measure at hand, RD in our case, to be checked against the threshold « (line 13).
The computational complexity of Algorithm [is O(|C| - |BK]), i.e., the product
of the size of closed itemsets by the size of the background knowledge.

A remarkable instance of indirect discrimination discovery is redlining, a prac-
tice banned in the U.S. consisting of denying credit on the basis of residence.

Ezample 2. Consider a released contingency table in Fig. [ (right) regarding ben-
efits granted and denied in a neighborhood specified by a ZIP code. In highly seg-
regated cities, it may be very likely that specific neighborhoods, such as z1P=100,
are mostly populated by a specific race, say, a black minority. In such a case,
the ZIP code acts as a proxy of the race of the population. Fig. @ (left) shows
the contingency table for the possibly discriminated group of black people living
in the specific neighborhood zZiP=100. Entries of such a table may be unknown,
due to the fact that the race of individuals is not recorded in the dataset. Fix the
itemset X to zip=100,DEC=—, and Y to BLACK,zIP=100. From the released
contingency in Fig. @] (right), we know that nx = d and nxny = fi1. Assume
now to have, as a background knowledge, the number ny of black people living
in the neighborhood zip=100. Notice that, ny = ny. Moreover, nxy = a. The
Fréchet bounds () are:

min{a,n1} > nxy = a > maz{a + ny — 11,0} = maz{n, — 3,0}
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decision decision
group -+ group - +
black,zip=100| a b n1 zip=100| & b 71
others c d n2 others | ¢ d T2
mi1 ma n mi mz n

Fig. 4. Unknown (left) and known (right) contingency tables

Dividing by n1, we get min{a/n1,1} > p1 > maz{1l —B/nl, 0}. Since c=m1 —a
and ng = n—nq, bounds for ps = ¢/nsy can be derived. The exact value p = n1/n
is also known. Summarizing, ranges can be derived on all proportions in Fig. [l
and, a fortiori, on any discrimination measure based on them.

5 Scenario II: Privacy-aware Discrimination Discovery

In this scenario, the released dataset includes an attribute that explicitly iden-
tifies the protected group. However, since such an attribute is considered sen-
sitiv, data were pre-processed by the data owner using a privacy-preserving
inference control method to diminish the correlation between such an attribute
and other non-sensitive attributes. There could be different purposes for data
sanitization: (1) to protect individuals’ sensitive information; (2) to use data
privacy as an excuse for hiding discriminatory practices. In both cases, the anti-
discrimination authority has to unveil discrimination from the sanitized data.

There is a vast amount of privacy-preserving inference control methods. We
investigate the scenario for one of the most popular ones, the bucketization
method [I5]. Bucketization disassociates the sensitive attributes from the non-
sensitive attributes. The output of bucketization consists of two tables: a non-
sensitive table (e.g., Fig. [l left) and a sensitive table (e.g., Fig. [l center). The
non-sensitive table contains the entire non-sensitive attributes information, in
addition to a group id GID (when tuples are partitioned into groups, a unique
GID is assigned to each group). The sensitive table contains the sensitive values
that appear in a specific group. Bucketization is a lossy join decomposition us-
ing the group id. For instance, tuple r; in group GID=1 has probability 25% of
referring to a Muslim, Christian, Jewish, or Other individual, but it is impos-
sible to determine which case actually holds. Thus, for the bucketized version
R’ of a dataset R, the correlation between sensitive attribute and non-sensitive
attributes is diminished. Note that in each group of our example table, every
sensitive value is distinct and so the group size is equal to the parameter [ in
the I-diversity privacy model [11]. We assume that [ is the cardinality of the at-
tribute denoting protected and unprotected groups, e.g., the number of religions
in our example.

! Protected group membership and private /sensitive information highly overlap [2], as
e.g., for religion, health status, genetic information and political opinions attributes.
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ID |Education| Job |Dec|GID GID| Religion

r1 | Bachelors |Engineer| - 1 1 | Muslim

ro | Bachelors |Engineer| + 1 1 |Christian

rs |Doctorate |Engineer| + 1 1 Jewish

r4 | Bachelors| Writer | + 1 1 Other decision

r5 | Master |Engineer| + | 2 2 | Muslim education=Dbachelors - +

re¢ |Doctorate| Writer | + | 2 2 |Christian religion=muslim a b 3
r7 | Bachelors | Dancer | - | 2 2 | Jewish religionZmuslim | ¢ d 3
rg | Master | Dancer | - 2 2 Other 4 2 6
rg | Master | Dancer | - 3 3 | Muslim

rio| Master | Lawyer | + | 3 3 |Christian

r11| Bachelors |Engineer| - | 3 3 | Jewish

r12| Bachelors | Dancer | - 3 3 Other

Fig. 5. Non-sensitive (left) and sensitive (center) tables. Right: sample unknown c.t.

In this context, privacy-aware discrimination discovery can be formalized as
the problem of deriving bounds on a discrimination measure for an unknown
contingency table (see Fig. 2] left) given the bucketized dataset R'. Consider a
subset of n tuples from R’ for which a contingency table has to be derived. The
value my is known (and also mg = n — my) because it consists of the number
of tuples with negative decision. We assume that, as background knowledge, the
number n; of tuples regarding protected group individuals is also known (and,
a fortiori, no = n — nq). Starting from those aggregate values, bounds on cell
values of the contingency table can be obtained by Frechet bounds. Here, we
propose to refine such bounds by exploiting the fact that in every bucket there
is one and only one individual of the protected group. This yields the following
bounds on a:

Zimin{l,n"} > a > ny — Zymin{l,n’} (3)
where i ranges over group id’s, n* (resp., nj_) is the number of individuals with
negative (resp., positive) decision with GID=i — this is available from the non-
sensitive table. The bounds for ¢ are easily derivable from those from a by noting
that ¢ = my —a, since my (the number of tuples with negative decision) is known.
Similarly for b = n; — a, and for d = ns — ¢. Starting from them, bounds for pq,
p2, p and discrimination measures defined over them can be computed.

Ezample 3. Consider the set of tuples from Fig.[Hl (left) such that EDUCATION=B-
ACHELORS. There are 6 such tuples: 4 with negative decision (r1, r7, 11, T12)
and 2 with positive decision (r2, r4). Moreover, assume to know by background
knowledge that n; = 3 out of the 6 tuples regard Muslims. This gives rise to the
unknown contingency table in Fig. [ (right). It turns out that n* =1, n2 =1
and n® = 2; and that ni_ =2, ”3— =0 and n‘i = 0. Therefore, we have:

min{l,1} + min{1,1} + min{l1,2} =3 >a >
2 =3 — (min{1,2} + min{1,0} + min{1,0})
Frechet bounds for Fig. [ (right) would yield the strictly larger interval min{4, 3}

=3>a>1=maxr{4+ 3 —6,0}. Since a + ¢ = 4, we derive 2 > ¢ > 1. Thus,
p1=a/ni € [2/3,3/3], p2 = ¢/ng € [1/3,2/3] and then RD = p; — py € [0,2/3].
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Algorithm 2. PADD(R/, BK, o)

1: C + { frequent closed itemsets of R’ w/o GROUP and DEC items }
2: for B €C do
31 n<+<nB
n1 < ng,cROUP=PROTECTED // found in BK
m1 < ng pEc=- // compute from R’
a € [ar, ay], with a, = min{ni, mi, Zymin{1l,n"}},
a; = maz{ni +mi —n,0,n1 — Zymin{l,n’ },1b(a)} // Ib(a) found in BK
¢ € [er,cu] With cu =m1 —ar, g = m1 — au
9:  RDIb + a;/n1 —cu/(n —ny1)
10: if RDIb > « then

11: output B
12: end if
13: end for

Given a bucketized dataset R’ and background knowledge B, Algorithm [2]
whose name is PADD for Privacy-Aware Discrimination Discovery, formalizes
the search of itemsets B with a lower bound for RD greater or equal than a. We
assume that BK may also include a further lower bound [b(a) for a, obtained
e.g., from answers to a survey or from allegations of discrimination against the
data owner. The complexity of PADD is linear in the number of closed itemsets.

6 Scenario III: Discriminatory Data Recovery

To hide discrimination practices, data owners may apply discrimination preven-
tion methods on datasets before publishing. For example, discrimination may
be suppressed in the released data with minimal distortion of the decision at-
tribute, i.e., by relabeling of some tuples to make the released dataset unbiased
w.r.t. a protected group. Such discrimination prevention strategies are analogous
to mechanisms of anonymization for data publication, where data anonymiza-
tion is framed as a constrained optimization problem: produce the table with the
smallest distortion that also satisfies a given set of privacy requirements. Such
an attempt at minimizing information loss provides a loophole for attackers. The
minimality attack [14] is one of the strategies to recover the private data from
optimally anonymized data, given the non-sensitive information of individuals in
the released dataset, the privacy policy, and the algorithm used for anonymiza-
tion. The target of an anti-discrimination authority is precisely to reconstruct
the original data from the released data, and then apply direct discrimination
discovery techniques on the reconstructed data to unveil discrimination. In this
sense, strategies such as minimality attacks can be readily re-proposed as a
means in support of discrimination discovery.

We assume that the released dataset R’ is changed minimally w.r.t. the orig-
inal dataset R to suppress historical discriminatory practices. For instance, the
massaging approach [9] changes a minimal number of tuples by promoting (from
— to +) or demoting (from + to —) decision values. By “minimal” here it is
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Algorithm 3. DataRecovery(R', DiscInt)

1: M < 0.01 - |protected group| - |unprotected group| /|R'|

2: for 1 To (DiscInt-100) do

3:  (pr,dem) + Rank(R')

4 Change the decision of top M tuples of pr with DEC=- to DEC=+
5. Change the decision of top M tuples of dem with DEC=+ to DEC=-
6 R’ + R’ with new decision values of pr, dem

7: end for

8: return R’

Algorithm 4. Rank(R’)

1: Learn a ranker L of DEC=+ using R’ as training data
2: pr < unprotected group tuples in R’ with DEC=-
ordered descending w.r.t. the scores by L
3: dem < protected group tuples in R’ DEC=+
ordered ascending w.r.t. the scores by L
4: return (pr, dem)

meant that a number of changes is performed such that the RD measure for the
released dataset is 0. We assume that the anti-discrimination authority knows,
as background knowledge, the original value of RD, which we call discrimina-
tion intensity (DiscInt). More realistically, such a value can be estimated on the
basis of declarations made by individuals who claim to have been discriminated
against. We exploit the observation proposed in [I0] that discrimination affects
the tuples close to the decision boundary of a classifier. To determine the decision
boundary, we rank tuples of the protected and unprotected groups separately
w.r.t. their positive decision probabilities accordingly to a classifier trained from
R’'. We change the decision values of the tuples in the decision boundaries of
the protected and unprotected groups to recover the original decision labels of
R. Algorithms [ and [ provide the pseudocode of this discriminatory data re-
covery process. Procedure DataRecovery takes as inputs the released data R’
and the discrimination intensity DiscInt. The recovery is iteratively performed
to recover one percent of released data in each ste, rather than performing the
entire data recovery in a single step. The reason is that the released data with
altered attributes could lead to inaccurate calculation of probability scores. The
gradual data recovery process improves the quality of data continuously, and
thus provides more and more accurate probability scores.

Ezxample 4. Let us assume that an employment bureau released its historical
recruitment data as shown in Fig. [fl We, as an anti-discrimination authority,

2 The number of modifications M at each step is determined as follow. Let ni
(resp., m2) be the size of the protected (resp., unprotected) group in R’. A total
of M- DiscInt -100 tuples are demoted (resp., promoted) to move from RD = 0
to RD = (M- DiscInt -100)/n1 + (M- DiscInt -100)/n2 = DiscInt. By solving the
equation, we get M = 0.01 - n1 - n2/(n1 + n2) where ny + na = |R’|.
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Sex|Ethnicity|Degree|Job Type|Dec|Prob| [Sex|Ethnicity|Degree|Job Type|Dec|Prob
m | native | h.s. board | + |98% f | native | h.s. board | + |93%
m | native | h.s. board | + [98% f | native | none | health | + |76%
m | native | univ. | board | + |89% f | mative | h.s. edu. + |51%
m | non-nat. | h.s. health | - |47% f |non-nat.| univ. edu. -1 2%
m |non-nat. | univ. | health | - |30% f |non-nat.| univ. edu. -1 2%

Fig. 6. Sample job-application relation with positive decision probability scores

suspect of hidden discriminatory patterns in the released data due to complains
about the biasness of this company w.r.t. sex of applicants. However, the bureau
has changed minimally the original data to suppress historical discriminatory
practices of the company. We have then to recover the discriminatory data.
Assume the background knowledge that DiscInt = 40%. We first calculate the
positive decision probabilities for all tuples by adopting a probabilistic classifier
(e.g., Naive Bayes), and then order the tuples of males and females w.r.t. these
probability scores separately, as shown in Fig. [l DiscInt = 40% in these 10 tuples
implies that two tuples were relabeled for suppressing the sex discrimination,
i.e., one male (resp. female) tuples was relabeled to negative (resp. positive)
decision. The procedure DataRecovery (steps 4, 5) selects tuples close to the
decision boundaries as candidates for correction. In our example, those with
Prob around 50% (shown in red in Fig. [f]) will have decision values changed: the
male (resp., female) tuple is promoted from — to + (resp., demoted from + to —).

7 Experiments

In this section, we report experiments on three classical datasets available from
the UCI Machine Learning repository (http://archive.ics.uci.edu/ml): German
credit, which consists of 1000 tuples with attributes on bank account holders
applying for credit; Adult, which contains 48848 tuples with census attributes
on individuals; and Communities and Crimes, which contains 1994 tuples and
describes the criminal behavior of different communities in the U.S.

Scenario I: Indirect Discrimination Discovery. We experimented the
Frechet bounds approach of Algorithm[lon the German credit and Adult datasets.
For the former dataset, the personal status attribute, denoting the protected
group of non-single females, was removed before applying the algorithm. For the
latter dataset, the same approach was taken for the protected group of non-
Whites. Closed itemsets are computed by setting a minimum support threshold
of 20, i.e., 2%, for German credit and of 48, i.e., 0.1%, for Adult. We simulate the
availability of background knowledge contingency tables (ctbg in Algorithm [I])
by computing them from the original dataset. In order to evaluate the impact
of the size of the available background knowledge, only a random number ni of
the items in the set Z (see line 4 of Algorithm [I]) are actually looked up. We
experiment with ni = 1, i.e., the anti-discrimination authority has knowledge of
only one related item, with ni = 5, and with an optimistic ni = 30. Fig. [ (top)
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Fig. 7. Scenario I: precision (top), recall (middle), elapsed time (bottom) of FrechetDD

shows the top 10K contingency tables w.r.t. the lower bound on the RD measure
computed by Algorithm [ for the German credit and the Adult datasets. The
plots report the distributions of the contingency tables for which the lower bound
is greater or equal than a given threshold a. It is shown the total number of such
contingency tables (labels total) and the number of them for which the lower
bound coincides with the upper bound (labels ezact), namely, those for which
Frechet bounds are exact. Two facts can be concluded. First, if the inferred lower
bound is higher than 0.3, then it is exact with high probability (95% or higher).
Second, the higher is ni the higher are the inferred lower bounds. Fig. [l (middle)
shows the recall of the approach, namely the proportion of contingency tables
with a given RD value of v that have been actually inferred a lower bound of v.
The plots provide an estimate of the effectiveness of the indirect discrimination
discovery approach for a given amount of background knowledge (ni). Finally,
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Fig. 8. Scenario II: precision of PADD

Fig. [ (bottom) shows the elapsed times for the various experiments, including
the time (denote by FIM) required for extracting closed itemsets. The time
required by Algorithm [[]mainly depends on the number of closed itemsets, while
the size of the background knowledge (the ni parameter) has a residual impact.

Scenario II: Privacy-aware discrimination discovery. We experimented
with a subset of 200 tuples (resp., 14160) from the German credit (resp., Adult)
dataset, randomly selected with a balanced distribution of the personal status
(resp., race) attribute. Such a distribution is required to apply [-diversity data
sanitization, where [ = 4 (resp., | = 2) is the number of values of the personal
status (resp., race) attribute, including the protected group of non-single females
(resp., non-Whites). Tuples have been partitioned into groups of I elements with
distinct personal status (resp., race). Fig. B shows the distributions of the RD
lower bound for the top 10K contingency tables processed by Algorithm [21 The
lower bound [b(a) at line 7 is randomly generated in the interval from 0 to the
actual value of a. Contrasting the plots with Fig. [, we observe that the number
and the exactness of the bounds inferred for RD is much lower than in the case
of scenario I — notice that the plots in Fig. [ are logscale in the y-axis. This is
expected since the assumptions on the background knowledge exploitable in this
scenario are much weaker than in scenario I. The anti-discrimination authority is
assumed to know only the number of protected group individuals in the context
under analysis as well as a lower bound on those with negative decision. In
scenario I, correlation with groups whose decision value is precisely known is
instead assumed. Nevertheless, scenario I and IT are not mutually exclusive, and
a hybrid approach could be applied to improve the inferred bounds.

Scenario III: Discriminatory data recovery. We conducted experiments
on the Adult dataset, with protected group females, and on the Crimes and
Communities dataset, with protected group blacks. As background knowledge,
we assume to know that discrimination intensity is DiscInt=43% in Crimes and
Communities, and DiscInt=19.45% in Adult. These numbers can be calculated
from the original datasets. We proceeded with suppressing these differences by
the method of massaging [9] before releasing the datasets. We then adopted the
reverse engineering approach of Algorithm [J] to reconstruct the original data.
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Fig. 9. Scenario III: performances of DataRecovery

The original dataset R can be used as ground truth for performance com-
parison. We measure the performances of Algorithm [l by means of Recall and
Precision. The Recall calculates how much massaged tuples were corrected, while
the Precision measures how much corrected tuples were among those actually
massaged. Algorithm [Brecovers data by iterations. In order to evaluate the per-
formance at each iteration step, we compute recall and precision at the ¢-th step
by Recall = (Zle C;)/(DiscInt - |R|) and Precision = (Zle Ci)/(2-t-M),
respectively, where C; is the number of tuples whose decision values are success-
fully corrected at the i-th step, and M is as in Algorithm [Bl These sequential
performance measures are shown in Fig. @ The figure shows that our proposed
method gives very promising results by reconstructing the Adult and the Crimes
and Communities datasets (massaged to suppress 19.45% and 43% DisctlInt
resp.) with high precision and recall. We can observe that the method recov-
ers the Communities and Crimes dataset with 59% precision and can assist the
authorities to identify the suppressed discriminatory patterns. The recovery pro-
cess is relatively less accurate over the Adult dataset due to a higher imbalance
between protected and unprotected groups. Fig. [0 also shows the advantage of
stepwise data recovery and refined probability score calculation. Our recovery
algorithm continues to be more precise in the identification of perturbed tuples
on the later recovery steps. This gradual and significant improvement in the
performance can be attributed to the calculation of probability scores over the
intermediary recovered and relatively corrected data.

8 Conclusions

Related Work. Discrimination analysis is a multi-disciplinary problem, in-
volving sociological causes, legal argumentations, economic models, statistical
techniques [12]. More recently, the issue of anti-discrimination has been con-
sidered from a data mining perspective. Some proposals are oriented to using
data mining to measure and discover discrimination [I3]; other proposals [6]9]
deal with preventing data mining from becoming itself a source of discrimina-
tion. Summaries of contributions in discrimination-aware data mining are col-
lected in [21[12]. The term privacy-preserving data mining (PPDM) was coined in



Anti-discrimination Analysis 709

2000, although related work on inference control and statistical disclosure con-
trol (SDC) started in the 1970s. A detailed description of different PPDM and
SDC methods can be found in [I1/5L8]. Data are sanitized prior to publication
and analysis (according to some privacy criterion). In some cases, however, an
attacker can still re-identify sensitive information from the sanitized data us-
ing varying amounts of skill, background knowledge, and effort. Summaries of
contributions and taxonomies of different privacy attacks strategies are collected
in [I}4]. Moreover, the problem of achieving simultaneous discrimination preven-
tion and privacy protection in data publishing and mining was recently addressed
in [7]. However, to the best of our knowledge, this is the first work that exploits
tools from the privacy literature to the purpose of discovering discriminatory
practices under hard conditions such as those of three scenarios considered.

Conclusion. The actual discovery of discriminatory situations and practices,
hidden in a dataset of historical decision records, is an extremely difficult task.
The reasons are as follows: First, there are a huge number of possible contexts
may, or may not, be the theater for discrimination. Second, the features that may
be the object of discrimination are not directly recorded in the data (scenario
I). Third, the original data has previously been pre-processed due to privacy
constraints (scenario II) or for hiding discrimination (scenario III). In this pa-
per, we proposed new discrimination discovery methods inspired by the privacy
attack strategies for the three scenarios above. The results of this paper can be
considered a promising step towards the systematic application of techniques
from the well explored area of privacy-preserving data mining to the emerging
and challenging area of discrimination discovery.
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