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In both flat and curved spacetimes, there are weak and strong versions of the anti-Unruh/anti-
Hawking effects, in which the KMS field temperature is anti-correlated with the response of a
detector and its inferred temperature. We investigate for the first time the effects on the weak
and strong anti-Hawking effects for an Unruh-DeWitt detector orbiting a BTZ black hole in the
co-rotating frame. We find that rotation can significantly amplify the strength of the weak anti-
Hawking effect, whereas it can either amplify or reduce the strength of the strong anti-Hawking effect
depending on boundary conditions. For the strong anti-Hawking effect, we find a non-monotonic
relationship between the angular momentum and detector temperature for each boundary condition.
In addition, we note that the weak anti-Hawking effect is independent of a changing AdS length,
while a longer AdS length increases the temperature range of the strong anti-Hawking effect.

INTRODUCTION

The nature of the quantum vacuum is fundamental
to the study of quantum information. By coupling the
vacuum field to particle detectors, it is possible to gain
understanding of the quantum vacuum and its response
to the structure of spacetime. This is particularly in-
teresting if topological features or horizons are present.
These detectors are often taken to be simple two-level
quantum systems (known as Unruh-DeWitt detectors)
that interact with an underlying scalar field, a model
that captures the essential features of the light-matter
interaction [1, 2]. Such detectors have been employed to
study the structure of spacetime [3, 4], black holes [5, 6],
and the thermality of de Sitter spacetime [7, 8].

Consider a detector with uniform acceleration in flat
spacetime. The detector will experience the Unruh ef-
fect, in which the temperature increases in proportion
to acceleration [9–11], and heat up. This effect arises
because the temperature of the vacuum of one set of
modes is different than the vacuum temperature of a
second set of modes. Though highly idealized in its orig-
inal assumptions (such as that of an eternally uniformly
accelerating detector), a model-independent derivation
of the Unruh effect has been given in the context of ax-
iomatic quantum field theory [12], with the field tem-
perature (given by the Kubo-Martin-Schwinger (KMS)
condition [13–15]) and the temperature measured by the
detector being the same. There have since been many
demonstrations that detectors undergoing other forms
of acceleration (non-uniform, circular) get hot [16–22].
In these more general situations the field temperature
is positively correlated with the detector temperature,
with the latter a monotonically increasing function of
the former.

In the last few years it has been shown that some
physical situations exhibit the so-called anti -Unruh ef-
fect instead, in which the temperature of the field is no
longer positively correlated with that measured by the

detector [23, 24]. This anti-Unruh effect can be split into
two cases: a weak Anti-Unruh effect (as the temperature
of the field increases, the detector clicks less often) and
a strong Anti-Unruh effect (the field temperature and
detector temperature are inversely related) [24].

When considering black holes, the Hawking effect is
the analogue of the Unruh effect [25]. While in general
detector temperatures are positively correlated with the
field temperature outside a black hole [26–29], recently
an anti-Hawking effect was shown to also exist, in which
a static Unruh-DeWitt (UdW) detector exhibited both
strong and weak versions of the phenomenon [30]. This
was explicitly demonstrated for the (2+1) dimensional
static Banados-Teitelboim-Zanelli (BTZ) black hole. For
sufficiently small black holes, the temperature measured
by the detector would decrease as the Kubo-Martin
Schwinger (KMS) field temperature of the Hawking radi-
ation increased. The anti-Hawking effect has since been
observed for a broader range of boundary conditions [31],
though its weak version is not observed for massless topo-
logical black holes in four spacetime dimensions [32].

The effects of spacetime dragging due to rotation on
these phenomena are much less understood. The quan-
tum vacuum around a rotating black hole is known to ex-
hibit features significantly different from its non-rotating
counterpart [33–35]. Several investigations of the be-
haviour of quantum scalar fields in the background of a
rotating BTZ black hole have been carried out [36–39],
and studies investigating the response of Unruh-DeWitt
detectors in such spacetimes have also been undertaken
[26]. Recently it was shown that rotation has very signif-
icant effects on the entanglement harvesting abilities of
UdW detectors, with the harvested entanglement being
considerably amplified at intermediate distances (about
20-50 horizon radii) from the black hole [40].

Motivated by this, we study here the implications of
rotation for the anti-Hawking effect. We find that ro-
tation increases the intensity of the weak anti-Hawking
effect, but has a negligible influence on its threshold crit-
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ical temperature. However for the strong anti-Hawking
effect, we find that there is a strong dependence on the
angular momenta, with the effect becoming stronger or
weaker depending on the boundary conditions. The in-
fluence of AdS length on the strong and weak versions
of the effect is likewise distinct: the weak anti-Hawking
effect is independent of AdS length whereas the strong
version sees an increased temperature range.

UNRUH-DEWITT DETECTORS

To model the interaction between the detectors and
the field, we take the detectors to be two-level quantum
systems with ground state |0〉D and excited state |1〉D,
separated by an energy gap ΩD. We shall assume that
these detectors have a spacetime trajectory xD(τ). The
interaction Hamiltonian is

HD = λχD(τ)
(
eiΩDτσ+ + e−iΩDτσ−

)
⊗ φ[xD(τ)] , (1)

where the switching function dictating the duration of
the interaction between the detector and field is χD(τ).
λ � 1 is the field-detector coupling constant, and the
ladder operators that raise and lower the energy levels
of the detectors are σ+ = |1〉D 〈0|D, σ− = |0〉D 〈1|D,
respectively.

Let the initial state of the detector-field system
be |Ψi〉 = |0〉D |0〉. The final state after a time
t is then |Ψf 〉 = U(t, 0) |ψi〉, where U(t, 0) =

T e−i
∫
dt
[
dτD
dt HD(τD))

]
, with T being the time-ordering

operator. With the reduced density operator ρ =
Trφ |Ψf 〉 〈Ψf | being the state of the system after inte-
grating over the field’s degrees of freedom, we have [3, 41]

ρAB =

(
1− PD 0

0 PD

)
+O(λ4) , (2)

where

PD = λ2

∫
dτDdτ

′
DχD(τD)χD(τ ′D)e−iΩD(τD−τ ′D)W (xD(τD), xD(τ ′D)) (3)

is the detector’s transition probability. We note that this
quantity depends on the two-point correlation function,
W (x, x′) = 〈0|φ(x)φ(x′)|0〉 (also called the Wightman
function) of the vacuum. From the transition probabil-
ity, we can then define the response function,

F =
PD
λ2σ

, (4)

where σ describes the timescale of interaction between
the field and the detector. In this paper, we shall focus

on a Gaussian switching function, χD(τ) = e−
τ2

2σ2 .
We will consider fields whose Wightman functions

obey the relation

W (τ − i/TKMS , τ
′) = W (τ ′, τ) (5)

known as the Kubo-Martin-Schwinger (KMS) condition
[13–15]. The quantity TKMS in (5) can be regarded as
the temperature of the quantum field in the spacetime.
It depends only on the nature of the quantum field and
the spacetime background.

Correspondingly, we can also define the detector’s
temperature from its excitation to de-excitation ratio
(EDR). Let

R =
F(Ω)

F(−Ω)
, (6)

such that there exists a temperature, T , that obeys the
same form of the KMS condition [42],

R = e−Ω/T . (7)

Labelling the temperature that obeys this condition by
TEDR, we have

TEDR = − Ω

logR
(8)

The quantity TEDR can be regarded as the temperature
that the UdW detector registers in the spacetime.

Normally we expect TEDR and TKMS to be positively
correlated: as the black hole gets hotter, the field tem-
perature increases and the temperature registered by the
UdW detector likewise increases. This is indeed the case
for most situations in black hole physics. As noted above,
it was recently shown that this is not always the case [30],
and that sometimes the contrary situation, known as the
anti-Hawking effect, occurs. As with the anti-Unruh ef-
fect [23, 24], we define

dF(Ω)

dTKMS
< 0 weak (9)

∂TEDR
∂TKMS

< 0 strong (10)

for the weak and strong anti-Hawking effects respec-
tively.
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ROTATING BTZ BLACK HOLES

We can write the action of our system as S = SEH +
Sφ, where

SEH =
1

16π

∫
R
√
−gd3x (11)

is the Einstein-Hilbert action (R is the Ricci scalar and
g is the determinant of the metric tensor gµν) and

Sφ = −
∫ (

1

2
gµν∂µφ∂νφ+

1

16
Rφ2

)√
−gd3x (12)

is the action for a conformally-coupled scalar field φ. We
are interested in analyzing both the KMS temperature
of the field and the EDR temperature of a detector near
a rotating BTZ black hole, whose line element is [43]

ds2 = −(N⊥)2dt2 + f−2dr2 + r2(dφ+Nφdt)2 (13)

where, N⊥ = f =
√
−M + r2

`2 + J2

4r2 and Nφ = − J
2r2

with M =
r2++r2−
`2 the mass of the black hole and J =

2r+r−
` its angular momentum. The Hawking tempera-

ture is

TH =
1

2π`

(
r2
+ − r2

−
r+

)
, (14)

where the inner and outer horizon radii are denoted by
r− and r+, and ` is the AdS length. Note that |J | ≤M`,
with extremality occurring when r+ = r− (i.e. J = M`).

In the Hartle-Hawking vacuum, a conformally
coupled-scalar field has a Wightman function that can be
written as the image sum over the Wightman functions
for AdS3 [44, 45],

WBTZ(x, x′) =

∞∑
n=−∞

ηnWAdS3(x,Γnx′) (15)

where Γx′ takes (t, r, φ) → (t, r, φ + 2π), η = 1 is an
untwisted scalar field and η = −1 is a twisted scalar
field. This yields [26, 27]

WBTZ =
1

4π

1

2
√
`

n=∞∑
n=−∞

ηn

(
1√

σε(x,Γnx′)
− ζ√

σε(x,Γnx′) + 2

)
(16)

where

σε(x,Γ
nx′)2 =− 1 +

√
α(r)α(r′) cosh

[r+

`
(∆φ− 2πn)− r−

`2
(t− t′)

]
−
√

(α(r)− 1)(α(r′)− 1) cosh
[r+

`2
(t− t′)− r−

`
(∆φ− 2πn)

] (17)

and

α(r) =
r2 − r2

−
r2
+ − r2

−
∆φ = φ− φ′ (18)

with the respective boundary conditions as ζ = 1
(Dirichlet), ζ = 0 (transparent), and ζ = −1 (Neu-
mann). We shall take the detector to have switch-

ing function χD(τD) = e−τ
2
D/2σ

2

and only consider un-
twisted scalar fields with η = 1.

To calculate the transition probabilities, we will work
in the co-rotating frame of the detectors [26]:

t =
`r+τ√

r2 − r2
+

√
r2
+ − r2

−

(19)

φ =
r−τ√

r2 − r2
+

√
r2
+ − r2

−

. (20)

in which case [46]

TKMS = TH/γ , (21)

where

γ =

√
r2 − r2

+

√
r2
+ − r2

−

r+
(22)

is the Lorentz factor. Straightforward calculations
show that we can rewrite equation (3) as PD =∑∞
n=−∞ ηn {I−n − ζI+

n }, where

I±n = KP

∫ ∞
−∞

dz
e
−a
(
z− 2πnr−

`

)2

e
−iβ

(
z− 2πnr−

`

)
√(

cosh(α±n )− cosh (z)
) (23)



4

0.10 1 10 100 1000

0.1

0.2

0.3

0.4

0.10 1 10 100 1000

0.1

0.2

0.3

0.4

(a) ζ = 1

0.10 1 10 100 1000

0.5

1.0

1.5

0.10 1 10 100 1000

0.1

0.2

0.3

0.4

(b) ζ = 0

0.10 1 10 100 1000

0.5

1.0

1.5

2.0

2.5

3.0

0.10 1 10 100 1000

0.1
0.2
0.3
0.4
0.5
0.6

(c) ζ = −1

FIG. 1: Response functions for a black hole of mass M = 1/10 for Dirichlet, transparent, and Neumann boundary
conditions and an energy gap of Ω` = 1/10. The inset plots correspond to M = 100. As expected, the rotation of

the black hole has a smaller effect for larger masses. As the mass of the black hole increases, the weak
anti-Hawking effect goes away for ζ = 1 and ζ = 0. Note that for ζ = −1, the weak anti-Hawking effect is still

present even for large mass black holes, with the distinctions between the different rotation parameters so tiny that
the curves effectively all overlap.
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FIG. 2: Response of a rotating BTZ black hole with mass M = 1/1000 and Dirichlet boundary conditions (ζ = 1).
We note that for transparent and Neumann boundary conditions, qualitatively similar results are obtained.

and

KP =
λ2σD

4
√

2π
(24)

a =
1

(4πTKMSσD)2
β =

ΩD
2πTKMS

(25)

cosh(α±n ) = ±4`2π2T 2
KMS + (1 + 4`2π2T 2

KMS) cosh
2πnr+

`
(26)

In the limit of an infinite interaction time (i.e. σ →∞), we note that we can write the n = 0 term (corresponding
to AdS spacetime) analytically as

lim
σ→∞

PD,n=0 = lim
σ→∞

I0 =

√
π

4

[
1− tanh

ΩD
2TKMS

] [
1− ζP−1/2+iβ

(
coshα+

0

)]
(27)

To investigate the influence of rotation (and AdS
length) on the weak and strong anti-Hawking effects, we
must determine the dependence of the response function
and EDR temperature on the KMS temperature. To
vary the latter, we locate the detector at r = RD in
the co-rotating frame and solve (21) and (22) for RD in

terms of TKMS and the other parameters. The response
PD in (3) and the EDR temperature are then functions
of TKMS .
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WEAK ANTI-HAWKING EFFECT FOR
ROTATING BTZ BLACK HOLES

To set the context for our investigation, we first com-
pare the situation for large and intermediate mass black
holes with a detector energy gap of ΩD` = 1/10 (with
other energy gaps yielding qualitatively similar results).
This is shown in Figure 1, where we plot detector re-
sponse as a function of TKMS . The general trend is
that for both masses and all boundary conditions the
response is suppressed at small KMS temperatures and
asymptotes to a constant value at a large ones. Apart
from these two general features, there is notably dis-
tinct behaviour as these parameters are varied. In the
main figure, we depict the situation for an intermedi-
ate mass M = 1/10, where we see that rotation has
marginal impact at small and large KMS temperatures,
but significantly amplifies detector response at interme-
diate KMS temperatures. An even larger influence is due
to boundary conditions, where we observe that the weak
anti-Hawking effect is absent for Dirichlet boundary con-
ditions, but present for the other two. The negative slope
to the right of the peak is steeper for Neumann bound-
ary conditions, indicative of increasing strength of the
weak effect as ζ decreases. In the inset of each subfigure,
we consider the large mass M = 100 case, where we see
that the weak anti-Hawking effect disappears for ζ = 1, 0
boundary conditions, yet remains for ζ = −1, recover-
ing earlier results [30] for large-mass black holes. We see
that there is negligible dependence of the response on
angular momentum in this large mass case for all KMS
temperatures.

It is clear from this that rotational effects are more
pronounced for smaller mass black holes, and so in Fig-
ure 2, we plot the dependence of the response function
on KMS temperature for M = 1/1000. The weak effect
is now clearly evident for Dirichlet boundary conditions,
with the peak response enhanced as much as sevenfold,
compared to the left diagram in Figure 1. Similar re-
sults hold for the other boundary conditions. As before,
as rotation increases, the response is amplified for all
values of TKMS . For all values of rotation and all gaps,

the response asymptotes to a value of PD =
√
π

4 , in ac-
cord with equation (27), noting from equation (23) that
In → 0 for n 6= 0.

The strength of the weak anti-Hawking effect depends
on the magnitude of the negative value of the slope of
equation (9) after the peak. We see that this increases
with decreasing gap, showing that smaller gap enhances
the weak anti-Hawking effect, which we illustrate for
Dirichlet boundary conditions in Figure 3. The slope
peaks at dF

dTKMS`
≈ −0.15 for the large energy gap and

dF
dTKMS`

≈ −0.6 for the small gap. For each gap, we also
see that the weak anti-Hawking effect is amplified with
increasing rotation, by as much as 50% for near-extremal
black holes, for all gaps in the figure.

Furthermore, we find that the weak anti-Hawking ef-

fect occurs after a critical value of TKMS that depends
on the detector’s energy gap, but not on the rotation
of the black hole, again evident from Figure 3. Though
we have only illustrated results for Dirichlet boundary
conditions ζ = 1, we emphasize that this critical value
depends on ζ, with the critical temperature becoming
smaller as ζ → 1.

Finally, we note that changing the AdS length will not
change the strength of the weak effect. Physically, this is
because the AdS length is the only length scale present
(as σ → ∞), and everything is calibrated against this
length.

STRONG ANTI-HAWKING EFFECT FOR
ROTATING BTZ BLACK HOLES

Let us now turn our attention to the strong anti-
Hawking effect. In Figures 4 and 5, we plot the rela-
tionship between the EDR and KMS temperatures for
M = 1/1000 and different boundary conditions, with
Ωσ = 1 and Ωσ = 1/10, respectively. We note several
interesting features.

First, it is evident from Figure 4 that a strong anti-
Hawking effect is present for all three boundary condi-
tions. This is clear at low values of TKMS , where we see
a negative slope indicative of the strong effect. Eventu-
ally a minimum is reached and TEDR begins to increase
with TKMS . The insets indicate the behaviour at large
TKMS , where we see that this quantity is indeed posi-
tively correlated with TEDR, and there is minimal depen-
dence on angular momentum, even for small M . Unlike
the weak effect, we see that the maximum decreases with
increasing values of angular momentum for all boundary
conditions. Consequently the strength of the strong ef-
fect (the slope in equation (10)) likewise diminishes. As
extremality is approached, the strong effect essentially
vanishes.

The exception is for Dirichlet boundary conditions.
In Figure 5, we plot the EDR temperature for Dirichlet
boundary conditions for Ωσ = 1 and Ωσ = 1/100. In the
insets, we see that there is a small strong anti-Hawking
effect for non-rotating black holes, similar to what was
found in [30]. As the angular momentum increases, the
peak in Figure 5 moves rightward, and the threshold
value of TKMS at which the strong effect appears in-
creases. This threshold value will reach a maximum
for some J/M`, after which it decreases with increas-
ing J/M` as extremality is approached, as is clear from
Figure 6. We also qualitatively see that the magnitude
of the slope becomes larger for larger angular momenta,
indicating that the strong anti-Hawking effect becomes
stronger. For smaller values of the energy gap, we see
that the strong anti-Hawking effect increases in strength,
with the Ωσ = 1/10 case being similar to Ωσ = 1/100.
This can be seen by noting that J/M` = 0.9 does not
exhibit the strong anti-Hawking effect for Ωσ = 1, but
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FIG. 3: Derivative of the response with respect to the KMS temperature (9) of a rotating BTZ black hole with
mass M = 1/1000, and Dirichlet boundary conditions (ζ = 1). We note that for transparent and Neumann

boundary conditions, qualitatively similar results are obtained.
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FIG. 4: EDR temperature for a black hole of mass M = 1/1000 and energy gap of Ωσ = 1. We plot KMS
temperature down to TKMS` = 10−5. The insets show the relation between the EDR temperature and KMS

temperature for larger values of TKMS .

there is a small effect present at this value of the angular
momentum for Ωσ = 1/100.

For transparent and Neumann boundary conditions,
we find that the strong anti-Hawking effect is much more
pronounced, as can be seen from Figure 4. Furthermore,
as ζ increases from −1 to 1 in Figure 4, the range of
TKMS` over which the strong effect is present also de-
creases, and is very small for Dirichlet boundary condi-
tions. This range decreases with increasing angular mo-
mentum for transparent and Neumann boundary condi-
tions. There is a minimal value of TEDR` as function of
TKMS`, and this minimal value decreases as the angular
momentum of the black hole increases.

For Dirichlet boundary conditions and sufficiently
small angular momentum, larger angular momenta also
yields a decreasing range of TKMS temperatures for
which the strong effect holds, up to a critical value
of J/M`. Beyond this value, increasing angular mo-
menta results in a greater range of TKMS temperatures
for which the effect is present. As a result, the anti-
Hawking effect appears to nearly disappear for near-
extremal black holes J ≥ 0.9999M` for transparent and
Neumann boundary conditions, yet is still present for
Dirichlet boundary conditions. In Figure 5, we see that

there is a strong anti-Hawking effect for a non-rotating
black hole, but the effect disappears (or almost disap-
pears, depending on the energy gap) as the angular mo-
mentum increases to J/M` = 0.9.

Beyond this, however, as we continue to approach ex-
tremality in the Dirichlet case, the strong effect emerges
at lower KMS temperatures, as shown in Figure 6. In-
deed, its range and strength both get larger as J/M`
gets very close to unity, as evidenced by the curve for
J/M` = 0.9999. It is quite remarkable that there is such
a strong dependence on boundary conditions.

Finally, inspection of Figures 4 and 5 indicate that the
strong effect does not monotonically depend on J/M`.
Indeed, we observe a ‘crossover’ effect at small TKMS , in
which the values of TEDR decrease with increasing an-
gular momentum as TKMS → 0, whereas at sufficiently
large TKMS the rate of change of TEDR with respect
to TKMS increases with increasing angular momentum
such that the higher-J curves cross over the lower-J
curves. At large TKMS , we see that TEDR ∼ TKMS ,
with the largest TEDR corresponding to the largest J
for fixed TKMS , and the smallest TEDR corresponding
to the smallest J . This is clearly evident in Figure 5.
We have also verified that this effect is also present for
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FIG. 5: EDR temperature for a black hole of mass
M = 1/1000. The results are similar for Ωσ = 1/100.
The insets show the EDR temperature for our first

three values of the angular momentum, plotted on a
linear scale (rather than a log scale, as is the case for

the main plots).

Neumann and transparent boundary conditions, though
the ‘crossover’ occurs at larger KMS temperatures than
the Dirichlet case.

By comparing Figures 2-5, we see that there is no
range of TKMS for which the strong anti-Hawking ef-
fect overlaps with the weak anti-Hawking effect, with
the weak anti-Hawking effect appearing for TKMS` >∼
1, while the strong anti-Hawking effect appears for
TKMS` <∼ 0.1 − 0.5. The exact temperature range is
dependent on the boundary conditions, energy gap, and
in the case of the strong anti-Hawking effect, the angular
momentum. Furthermore, the critical KMS temperature
at which the strong anti-Hawking effect disappears be-
comes smaller for larger angular momentum, in contrast
to the weak anti-Hawking effect where the critical tem-
perature at which this effect appears has minimal de-
pendence on angular momentum. In addition, we again
note that the location of this critical temperature for
the strong effect is highly dependent on the boundary
conditions.
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FIG. 6: Strong anti-Hawking effect for a near-extremal
black hole of mass M = 1/1000 and Dirchlet boundary

conditions. The results are similar for Ωσ = 1/10.

Our last consideration is that of the impact of chang-
ing the AdS length on the strong effect. Here the situ-
ation differs from the weak anti-Hawking effect as now
there is a second length scale present (σ, the width of the
switching function). In Figure 7, we consider the effect
of changing the AdS length for a non-rotating BTZ black
hole, compared to a near-extremal BTZ black hole. In
the non-rotating case, increasing AdS length increases
the range of TKMS temperatures where the strong anti-
Hawking effect holds. However, the marginal effect of
increasing ` is reduced for larger and larger values of the
AdS length. We also see that for small TKMS`, a larger
AdS length will broaden the initial peak. In the case of a
near-extremal black hole, the situation is similar. As we
saw in Figure 4a, there was a tiny strong anti-Hawking
effect present for near-extremal black holes. For larger
AdS lengths, we similarly see that the temperature range
of the strong anti-Hawking effect increases in size. How-
ever, we note that this effect is still relatively weak and
only becomes noticeable for larger values of `.
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FIG. 7: Changing AdS lengths for the strong
anti-Hawking effect for a black hole of mass

M = 1/1000, Dirichlet boundary conditions, and
energy gap of Ωσ = 1/10. We plot KMS temperature
down to TKMS` = 10−5. The insets show the effect of

changing AdS length on the EDR temperature for
larger values of TKMS .

CONCLUSION

As with entanglement harvesting [40], rotation can
have a significant impact on the anti-Hawking effect. For
large-mass black holes with Dirichlet and transparent
boundary conditions, the weak anti-Hawking effect van-
ishes, as expected; it is present for Neumann boundary
conditions [30]. In all cases the effects of rotation are
negligible. But as the mass of the black hole decreases,
rotation significantly amplifies the weak version of the
effect.

The impact of rotation on the strong effect is some-
what inverted. We find that rotation tends to weaken the
strength of the strong anti-Hawking effect for transpar-
ent and Neumann boundary conditions, with it nearly
vanishing for near-extremal black holes. In contrast, for
Dirichlet boundary conditions, larger angular momenta
causes the strong anti-Hawking effect to be reduced be-
fore being amplified again.

Furthermore, for the strong anti-Hawking effect, the
relationship between angular momentum and detector
temperature is non-monotonic for each boundary condi-
tion, leading to a ‘crossover’ phenomenon that is most
prominent for Dirichlet boundary conditions. For small
TKMSL, larger angular momenta yield smaller TEDRL,
whereas for larger values of TKMSL, larger angular mo-
menta yield larger TEDR. More work is needed to better
understand how this cross-over effect comes about and
its dependence on the boundary conditions. It would
also be interesting to consider whether 3+1 dimensional
rotating black holes also exhibit these same findings as
the rotating BTZ black hole.

While the weak anti-Hawking effect is independent
of the AdS length `, increasing AdS length increases
the range of TKMS temperatures where the strong anti-
Hawking effect holds. A larger AdS length will also
broaden the initial peak for small TKMS`. However as
` continues to increase, its impact on the strong effect
becomes increasingly marginal.

In summary, our results indicate that the effects of
spacetime dragging on the quantum vacuum can sig-
nificantly modify detector response as small field KMS
field temperatures, as exemplified by the anti-Hawking
effect(s). The role of boundary conditions is very impor-
tant; indeed, it is surprising that there is such a strong
dependence of the strong anti-Hawking effect on bound-
ary conditions for small-mass rotating black holes. The
origin of this effect merits further study.
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