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Abstract: Hepatitis C virus (HCV) replication is dependent on the existence of several 

highly conserved functional genomic RNA domains. The cis-acting replication element 

(CRE), located within the 3' end of the NS5B coding region of the HCV genome, has been 

shown essential for efficient viral replication. Its sequence and structural features determine 

its involvement in functional interactions with viral RNA-dependent RNA polymerase and 

distant RNA domains of the viral genome. This work reports the use of an in vitro selection 

strategy to select aptamer RNA molecules against the complete HCV-CRE. After six 

selection cycles, five potential target sites were identified within this domain. Inhibition assays 

using a sample of representative aptamers showed that the selected RNAs significantly 

inhibit the replication (>80%) of a subgenomic HCV replicon in Huh-7 cell cultures. These 

results highlight the potential of aptamer RNA molecules as therapeutic antiviral agents. 

Keywords: aptamer selection; SELEX; RNA aptamers; anti-HCV aptamers; aptamer 

therapeutics 

 

1. Introduction 

Some 3% of the World’s population is infected with hepatitis C virus (HCV), the major etiological 

agent of non-A non-B hepatitis [1,2]. No protective vaccine is available and current therapeutic strategies 
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based on the combination of pegylated -interferon and ribavirin are effective in only 40% of patients [3]. 

The quasispecies structure of the infecting viral population, a consequence of the high mutation rate of 

the HCV genome, is the main factor responsible for therapeutic failure [4]. The identification of conserved 

viral genomic functional elements that could act as potential therapeutic targets has therefore attracted 

much research attention. 

The HCV genome is a 9,600 nt-long positive strand RNA molecule [1]. It encodes a single open 

reading frame (ORF) flanked at both ends by untranslatable regions (UTR) (Figure 1A) that are 

characterized by high sequence and secondary structure conservation rates across viral genotypes [5]. 

These UTRs contain domains essential for viral replication, translation and infectivity [6-12]. 

Conserved functional RNA domains have also been identified within the coding region. Of particular 

interest is the cis-acting replication element (CRE) in the 3' end of the NS5B coding region. 

Recognised as an important partner in viral RNA synthesis [13,14], it folds into a cruciform structure 

composed of three stem-loop motifs known as 5BSL3.1, 5BSL3.2 and 5BSL3.3 [14] (Figure 1B). 

Deletion and mutational analyses of these motifs have shown 5BSL3.1 and 5BSL3.2 to be essential in 

the replication of HCV subgenomic replicons [13-16]. The blockage of the 5BSL3.3 stem-loop by 

antisense peptide nucleic acids (PNAs) has shown this stem loop to have an important role in the 

initiation of minus-strand RNA synthesis [13]. The specific structural features of the CRE promote the 

recruitment of functional proteins, such as NS5B RNA polymerase [17], to the replication process. The 

CRE domain is also involved in RNA-RNA interactions with distant sequences within the HCV 

genome [15,18-20] (Figure 1A). An apical loop-apical loop interaction has been defined between 

5BSL3.2 and the 3'SL2 domain in the 3'UTR that is important in viral RNA synthesis [15]. Further, 

5BSL3.2 establishes, through its internal loop, two ALIL (apical loop-internal loop) interactions with 

structural elements located upstream in the NS5B coding sequence [18], and with the conserved apical 

loop of domain IIId in the internal ribosomal entry site (IRES) [20]. This last interaction is involved in 

the regulation of IRES-dependent translation mediated via the 3' end of the viral genome [19]. These 

data highlight the importance of these conserved genomic RNA domains in the modulation of essential 

steps of the viral cycle. 

RNA molecules, and particularly aptamer RNAs, are good candidates for targeting functional viral 

RNA domains [21-24]. Most of the aptamer selection procedures described to date are based on the  

so-called SELEX (systematic evolution of ligands by exponential enrichment) strategy [25]. These 

procedures allow the identification of short oligonucleotides—Aptamers—that efficiently bind to a 

target molecule. The specificity of aptamer molecules resides in their sequence and structure, which 

allow them to recognize and bind to specific chemical groups in a proper conformation within their 

ligand molecules. In particular, binding efficiency of aptamers targeting RNA molecules resides in the 

recognition of the nucleotide sequences and structure of the target RNA domain. Extensive work has been 

performed with the aim of isolating RNA aptamers that efficiently bind to essential functional domains in 

viral genomes [26-32]. However, the use of such molecules as therapeutic agents is yet to be explored. 

The present work describes the use of an in vitro selection strategy to isolate RNA aptamers against 

the HCV-CRE. This method allowed the identification of several potential target sequences within this 

viral domain and provided a collection of aptamer RNA molecules specific to each. To our knowledge 

this is the first report describing the selection of aptamers designed to target this region. The testing of 
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the ex vivo functionality of a few selected aptamers confirmed their feasibility as efficient HCV 

inhibitors as well as the potential of the CRE as a target for new anti-HCV therapeutic strategies. 

Figure 1. (A) Diagram of the secondary structural elements of the 5' and 3' ends of the 

HCV genome. ORF indicates the only open reading frame, which is flanked by the 5' and 

3' untranslatable regions (UTR). The translation start and stop codons are indicated by an 

arrow. The main structural domains at the 5' end are numbered I to VI; subdomains are 

identified by adding a lower case letter (IIIa–IIIf). The representation of the 3' part of the 

genome includes (from the 3' end): The 3' X-tail region that includes the SLI, SLII and 

SLIII domains; the polyU stretch [(U)n]; the hypervariable region (HV); the CRE domain, 

which includes domains 5BSL3.1, 5BSL3.2 and 5BSL3.3 at the 3' end of the coding 

region; and the stem-loop SL9110. Long range RNA-RNA interactions are depicted by 

lines. The genomic fragment used as a target for the in vitro selection procedure is shaded 

in the diagram; (B) The sequence and secondary structure for the HCV-CRE194 genomic 

RNA fragment used as target. Numbering refers to the nucleotides positions of the HCV 

Con1 isolate [33]. Motifs complementary to the consensus sequences of the groups of 

selected aptamer are shown in bold. 
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2. Experimental Section 

2.1. Construction of the Initial RNA Population 

The template for the synthesis of the RNA population was assembled by the annealing and 

extension of the 5'aptamerCRE—GCTATGAATTCTAATACGACTCACTATAGGGATATTATAGT 

ACATAAAN30aggtagcgaattaaagagtagtc, and the 3'aptamerCRE—CGACTGTCgactactctttaattcgctacct, 

using an Oligo 3400 DNA Synthesizer (Applied Biosystems, Foster City, CA, USA). The T7 promoter 

region is underlined, the restriction site for EcoR1 is shown in italics, the lower case letters indicate 

complementary residues, and N30 denotes 30 consecutive A, G, C or T nucleotides, thus providing for 

different RNAs. A mixture of 3 nmol of each oligonucleotide was heated at 95 °C for 2 min, followed 

by slow cooling to room temperature. Full, double-stranded DNA was obtained by extension for 1 h at 

37 °C with 2.5 U of the Klenow fragment of DNA polymerase (Fermentas, Burlington, ON, Canada) in 

the presence of 2.5 mM of each dNTP. It was then PCR-amplified (7 cycles) using Taq DNA 

polymerase (Biotools B&M Labs, Madrid, Spain) in the presence of the primers 3' PCR-CRE 

(TCGACTACTCTTTAATTCGCTACCT) and 5' PCR-CRE (GCTATGAATTCTAATACGACTCACT 

ATAGGGATATTATAGTACATAAA). The resulting dsDNA was used as a template for in vitro 

transcription using the T7 RiboMAXTM transcription kit (Promega, Madison, WI, USA) to yield the 

initial RNA population. 

2.2. Selection of Aptamers 

The isolation of active RNA molecules for binding to the viral RNA was performed in a  

sepharose-streptavidin column (HiTrap Streptavidin HP Columns, Amersham Biosciences GmbH, 

Uppsala, Sweden) loaded with biotinylated viral HCV-CRE194 RNA fragments. These fragments were 

obtained by in vitro transcription of the SalI linearised plasmid construct pUC18-T7HCV9181-9371 [20]. 

The latter plasmid is constructed by cloning the 9181-9371 fragment of HCV con1 isolate of genotype 

1b [33] between the EcoRI and SalI restriction sites of the pUC18 vector (Fermentas). HCV-CRE194 

was internally biotinylated during its synthesis by adding 188 µM of biotin-16-uridine-5'-triphosphate 

(biotin-16-UTP, Roche Diagnostics, Molecular Biochemicals, Mannheim, Germany) to the reaction 

mix. The amount of biotin-modified nucleotide added was calculated to yield approximately one biotin 

residue per molecule [34]. 38 µmol of the biotinylated viral RNA target were immobilised in the 

sepharose-streptavidin column following the manufacturer’s instructions. The column was then 

equilibrated with binding buffer (50 mM Sodium cacodylate, 300 mM KCl with 10 mM MgCl2) and 

stored at 4 °C until use. Prior to the initial selection step, 6.4 nmol of the RNA population (P0) were 

passed with binding buffer through a pre-equilibrated column lacking the biotinylated target RNA, and 

incubated for 30 min at 25 °C, to prevent false-positives due to non-specific binding to the column 

matrix. Aliquots of 4.5 nmol of the resulting RNA molecules were loaded, in 1 mL of binding buffer, 

onto the target RNA-prepared column and incubated for 30 min at 25 °C. Unbound molecules were 

discarded by washing three times with 5 mL and once with 10 mL of cacodylate buffer at 25 °C. All 

RNA molecules bound to the column were eluted by washing with 10 mL of binding buffer heated  

at 95 °C. They were then concentrated to 10 µL with Centricon YM-10 (Millipore, Bedford, MA, USA). 
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2.3. Amplification of Selected Molecules 

The eluted, concentrated active RNA molecules were retrotranscribed using SuperScriptTM III reverse 

transcriptase (Invitrogen, San Diego, CA, USA) in the presence of 10 pmols of 3' PCR primer and 10 mM 

of each NTP for 1 h at 55 °C. The reaction was stopped by heating for 15 min at 70 °C. cDNA was 

then amplified with Certamp mix DNA polymerase (Biotools B&M Labs) in the presence of 25 pmol 

of the 3' PCR-CRE and 5' PCR-CRE primers. The resulting dsDNA product was used as a template for 

in vitro transcription using the T7 RiboMAXTM transcription kit (Promega), and the resulting RNA 

population (P1) either subjected to a new selection round or cloned in the pGEMT-Easy vector 

(Promega) for sequence analysis. Selection conditions were changed between selection cycles by 

reducing the target:RNA pool ratio from 5:1 to 1:2 as well as increasing the incubation temperature  

to 37 °C in round 5, and by reducing the ionic strength from 10 mM MgCl2 to 2 mM MgCl2 in round 7. 

The new conditions were maintained in the following cycles. 

2.4. Inhibition Assays of the HCV Replication 

HCV replication assays were performed using a human hepatocarcinoma cell line harbouring an 

HCV subgenomic replicon system (Huh-7 NS3-3'; [33,35]) as previously reported [19,31]. Cell 

monolayers were maintained in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 

20% heat-inactivated foetal bovine serum (FBS, Invitrogen) and 0.5 mg mL−1 G-418 at 37 °C in  

a 5% CO2 atmosphere. Twenty hours before transfections, 80,000 cells were seeded onto a 24 well 

plate in DMEM supplemented with 20% FBS. Cells were transfected using TransFectinTM lipid reagent 

(Bio-Rad) plus 3 µg of the aptamer RNA molecule, and harvested 20 h post-transfection. Viral HCV 

RNA was quantified by real time RT-PCR as previously described [31]. Briefly, 20 ng of total intracellular 

RNA extracted with Trizol (performed following the manufacturer’s instructions) were reverse-transcribed 

with the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems). cDNA was diluted 

with Taqman Gene Expression Master Mix (Applied Biosystems) and amplified by PCR over 40 cycles 

(15 s a 94 °C and 1 min at 60 °C) with specific oligonucleotides C-149 and C-342 [36]. The fluorogenic 

Taqman probe (FT-275) was added to the PCR mixture to a final concentration of 150 nM [36]. 

Quantification of the mRNA GAPDH was performed with the Human GAPD (GAPDH) Endogenous 

Control kit (Applied Biosystems). Reactions were run in an ABI PRISM 7000 Sequence Detector 

System (Applied Biosystems). Data were analysed using ABI PRISM 7000 SDS software v.1.1 

(Applied Biosystems). 

3. Results and Discussion 

3.1. In Vitro Selection for Aptamers Targeting the HCV-CRE 

The starting RNA population (P0) consisted of 75 nt-long RNA molecules containing a 30 nt-long 

variable region flanked by fixed sequences that act as primer binding sequences necessary for the 

amplification of active molecules (see Experimental Section). Although the design of the initial 

population could have yielded a theoretical sequence heterogeneity of more than 1 × 1018 sequence 

variants, the experimental constraints limited the number to 1 × 1015. P0 RNA molecules were 
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binding-challenged against the internally biotinylated HCV-CRE194, a 194 nt-long RNA fragment of 

the HCV 1b genome (Figure 1B), fixed to the sepharose-streptavidin column. Only molecules able to 

bind to the target viral RNA were introduced into a new selection cycle following their consecutive 

retrotranscription, amplification and transcription (Figure 2). This selection process was repeated for 

nine rounds, with the stringency of selection increased from the fifth generation by modifying the 

different experimental variables as described in Experimental Section. A fraction of the amplified 

cDNA population resulting from generations 6–9 was used for cloning and sequence analysis. 

Figure 2. Diagram of the in vitro selection procedure. Details of the protocol are given in 

the Experimental Section. T7P, sequence promoter of the bacteriophage T7 RNA 

polymerase; PBS, Primer binding site. 

 

3.2. Sequence Analysis of Selected RNA Molecules 

The molecules that bound to the HCV-CRE194 viral RNA after six rounds of selection (P6) were 

cloned. Sequence analysis of 43 clones allowed the identification of selected sequence motifs common 

to several molecules; these were used to classify the selected molecules into five different groups or 

families (Figure 3). Some selected aptamers shared more than one consensus sequence; they were 

therefore classifiable as members of different aptamer groups. No strong bias was observed for the 

localization of the consensus sequence in the variable region. Similarly, no sequence bias was 

observed for any other nucleotide of the variable region outside of a consensus motif. As expected, 

sequence analysis of the HCV-CRE194 sequence revealed that each of the selected consensus sequences 

was complementary to a defined domain within the viral target (Figure 1B). These results suggest that 
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each of the selected consensus motifs are involved in binding the HCV-CRE194, with the complementary 

sequence within the viral RNA the most plausible target. The selected putative target sequences, ordered 

from 5' to 3' within the HCV-CRE sequence, were mapped to nucleotide positions 9205 to 9209 at the 

5' of the 5BSL3.1 domain for aptamer group 1; to nucleotides 9284 to 9288 at the apical loop of 

5BSL3.2 and 9297 to 9301 at the internal loop of 5BSL3.2 for aptamer groups 2 and 3 respectively; to 

nucleotides 9314 to 9318 at the linker between 5BSL3.2 and 5BSL3.3 for aptamer group 4; and to 

nucleotides 9364 to 9369 at the 3' of the 5BSL3.3 domain for aptamer group 5 (Figure 1B). It is 

interesting to note that both the apical and the internal loop of the 5BSL3.2 domain have been 

previously shown involved in long distant RNA-RNA interactions with other regions of the HCV 

genome [15,18-20]. The identification of both sequences as potential targets confirms this selection 

procedure to be a powerful tool for the identification of RNA targets prone to interact with other RNA 

sequences. RNA probing assays are currently being planned at our laboratory to confirm the involvement 

of the complementary RNA sequence motifs in viral genome-aptamer binding. 

Sequence analysis of the cDNA libraries of active molecules resulting from the P7, P8 and P9 

selection rounds identified no significant qualitative changes that might alter the aptamer consensus 

sequences arrived at in P6 (data not shown). None of the identified consensus sequences were counter 

selected neither new consensus motifs were selected from P7 to P9. Nevertheless, this analysis was 

able to identify consensus sequences extended by 1 or 2 nucleotides, and clarified nucleotides whose 

identity remained ambiguous in the P6 round (Figure 3). Thus, the 5 nt-long consensus sequence  

5' RGUGR 3' associated with the group 1 aptamers was redefined as the 6 nt-long consensus sequence 

5' RGUGRR 3' seen in the P8 population. Similarly, the 5' GGYUG 3' consensus of the group 2 

aptamers became 5' GGYUGUG 3' in generation P8, and the 5' YGGGNR 3' of group 3 became  

5' YGGGYR 3'. Finally, the 5' GUGUG 3' consensus sequence for the group 4 aptamers became  

the 6 nt-long 5' YGUGUG 3'. No changes were observed in the group 5 aptamer consensus sequence. 

In all cases the redefined consensus sequence matched an extension of the corresponding putative 

target within the viral RNA. These results indicate that the selection of aptamers and their targets had 

been achieved in round six, and the higher selection stringency in later rounds have allowed the 

definition of greater sequence requirements on the aptamer sequences. 

3.3. Inhibition of HCV Replication by Selected Aptamers in Cell Culture 

To test the inhibitory activity of the selected molecules on HCV replication, and therefore to 

evaluate their therapeutic potential, Huh-7 cells that allow the autonomous replication of a subgenomic 

HCV 1b Con1 replicon were independently transfected with representative aptamers of each selected 

group, and the number of positive HCV strands quantified by real time RT-PCR at 20 h  

(see Experimental Section). Transfection with a non-related RNA of similar length was used as an 

internal experimental control. A total of 16 aptamers were tested (Table 1), all isolated during selection 

cycles P6 to P9. These aptamers represented specific groups, although some shared more than one 

consensus sequence. Figure 4 shows that most of these aptamers reduced the number of subgenomic 

replicon RNA copies (maximum 83% for aptamer P6-45) compared to those seen in control cells. The 

degree of inhibition exerted seems to be independent of the putative target site within the HCV-CRE. 

Interestingly, the most efficient inhibitors (P6-45 and P9-8) theoretically target different sequence 
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motifs, P6-45 has two potential target sites located at the 5' of both 5BSL3.1 and 3.3 domains and  

P9-8 a unique site at the 3' of the CRE region. Additional experimental work is required to clearly 

determine the secondary structure of the aptamers and identify their target sequences, and the nucleotides 

involved in binding. Knowing the binding capacity of the different aptamers may help explain their 

inhibitory capacity. In any event, the present results demonstrate the potential of in vitro selection 

strategies for identifying RNA molecules as tools for the development of anti-HCV aptamers and to 

identify potential viral therapeutic targets 

Figure 3. Sequence of the P6 RNA aptamers against HCV-CRE. Only sequences of  

the 30 nt-long random RNA motif are shown, grouped according to a common sequence 

shown in bold. Sequences are all aligned according to the position of the common 

sequence motif shown boxed. The defined consensus sequences from P6 and P8 are shown 

below each group. R: G or A; Y: C or U. 
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Table 1. Representative RNA aptamers assayed for their ex vivo inhibition of HCV replication. 

Group Aptamer Sequence * 
I 
5'-RGUGRR-3' 

P8-27 GUCCCUGUGCAGCGGUGGAGUGCUUGCUGG 
P9-39 GGCAGUGCGAGGCGGUGGACCUGAUUGCGU 

I y IV P6-45 CGUGUGUGCUGGCUAGUGGUGAGUCCGG 
II 
5'-GGYUGUG-3' 

P7-54 CGGCCGUUGCUGGAGUGGUUGGCCGCAGUG 
P9-34 GUGGCGGCUGUGGUUGUCCCGGCCUUGGGU 

II y IV P6-91 GUCGGCUGUUGACACGUGUAGUGUGGGUGG 

III 
5'-YGGGYR-3' 

P7-14 CCUAACAGGAUUGGUCGCUACGGUGGGC 
P8-65 GCUGCCUUGGGUUCGCUGCGUGGAGUGCGG 
P8-68 GGCGUGUGGGCGAUGUGGUG 
P8-71 CAGGUUGGGCAAAUGUUGUGCGGUCCCGG 

III y IV 
P6-99 GUGGCCGUGUGGGCAACGGAACAUGCCGUG 
P9-15 CGUGCUGAGUGUGUUGGGCAGCCGCCUGGG 

IV 
5'-YGUGUG-3' 

P6-2 CGUGGACGAGAGCUGGUAGUGUGUGGCGAU 
P6-20 CAACGUGGCGAUGGCGUGUGUACGAUGUGG 
P9-37 CGGCUUGAGGGAGCGUGUGUGCUAGCGUGG 

V 
5'-UGGGGR-3' 

P9-8 CGUGUCGAUGGGAGCCGUUCGCCUGUGGGGAA

* Sequence of the variable region is shown. Common sequence is highlighted in grey for group I 
aptamers, in blue for group II aptamers, boxed for group III aptamers, highlighted in green for 
group IV aptamers and in red for group V aptamers. 

Figure 4. Inhibition of subgenomic HCV replicon replication in Huh-7 cells. Huh-7 cells 

that permit the autonomous replication of subgenomic HCV replicons, were transfected 

with 3 μg of the different aptamers (independently). Viral RNA was isolated and quantified 

as described in Experimental Section. The bar chart shows the (+) strand HCV RNA levels 

normalized to the value obtained with the control RNA, an 80 nt-long unrelated RNA used 

as an internal control. (−) RNA, cells treated with TransFectinTM in the absence of any 

RNA. Values are the mean of at least 4 independent experiments. 
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4. Conclusions 

This work reports the selection of aptamers, belonging to five different groups, which appear to 

interact with complementary sequences in the HCV-CRE domain. Representative aptamers showed 

potent (>80%) inhibition of the replication of HCV replicons, thus demonstrating their potential as 

antiviral agents. These results confirm the feasibility of using conserved structural RNA genomic 

domains as targets in new therapeutic strategies. 
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