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Abstract: Depressive disorders can affect up to 350 million people worldwide, and in developed
countries, the percentage of patients with depressive disorders may be as high as 10%. During
depression, activation of pro-inflammatory pathways, mitochondrial dysfunction, increased markers
of oxidative stress, and a reduction in the antioxidant effectiveness of the body are observed. It is
estimated that approximately 30% of depressed patients do not respond to traditional pharmacological
treatments. However, more and more attention is being paid to the influence of active ingredients
in food on the course and risk of neurological disorders, including depression. The possibility of
using foods containing polyphenols as an element of diet therapy in depression was analyzed in the
review. The possibility of whether the consumption of products such as polyphenols could alleviate
the course of depression or prevent the progression of it was also considered. Results from preclinical
studies demonstrate the potential of phenolic compounds have the potential to reduce depressive
behaviors by regulating factors related to oxidative stress, neuroinflammation, and modulation of the
intestinal microbiota.

Keywords: depression; dietetic polyphenols; anti-inflammatory; antioxidant and neuroprotective effects

1. Introduction

Depressive disorders can affect up to 350 million people worldwide, and in developed
countries, the percentage of patients with depressive disorders may be as high as 10% [1].
The prevalence of depression in people with various forms of eating disorders is much
higher than that of the general population, and in the case of patients with anorexia and
bulimia, it ranges from 30% to 90% [2]. Research has shown that in patients suffering
from depression, changes in eating behavior related to changes in appetite and food
preferences, including avoiding eating specific groups of products and dishes, are more
frequent [2]. These changes may lead to severe nutrient deficiencies, which, if they persist
for a long time, will negatively impact human health, including the proper functioning of
the nervous system.

Despite numerous previous studies, the etiology, pathogenesis, diagnosis, and treat-
ment of depressive disorders are still not fully understood. There are many possible causes
of depression. These include: (1) genetic and epigenetic factors [3], (2) abnormalities in the
functioning of the hypothalamic-pituitary-adrenal axis (HPA) and the extra-hypothalamic
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system related to the neurotransmitter corticoliberin (or corticotropin-releasing hormone—
CRH) [4], (3) chronic oxidative stress [5,6], and (4) excessive secretion of pro-inflammatory
cytokines such as IL-1β and IL-6, which stimulate CRH secretion from the medial nucleus
of the hypothalamus, activate the HPA axis, promote the secretion of ACTH and gluco-
corticoids, and inhibit the serotonergic system [7,8]. A correlation was found between the
activation of the HPA axis and the gut microbiota, which has a significant impact on the
development of depression. It is believed that the gut microbiota can influence the function
of the HPA axis through the activity of cytokines, prostaglandins, and bacterial antigens of
various species of microorganisms [7]. Other causes of depression include: deficiency of
monoamines—serotonin, dopamine, and norepinephrine—in the central nervous system;
abnormalities in specific areas of the brain; decreased activity of the GABAergic system;
and inappropriate regulation of the glutaminergic system [9], as well as socio-economic,
geographic, dietary, and lifestyle factors [10].

During depression, activation of pro-inflammatory pathways, mitochondrial dysfunc-
tion, increased markers of oxidative stress, and a reduction in the antioxidant effectiveness
of the body are observed (Table 1). Moreover, the use of exogenous antioxidants reverses
these unfavorable physiological conditions [5]. Oxidative stress is manifested by increased
lipid peroxidation and the production of mitochondrial reactive oxygen species (ROS) [11],
which can damage key biomolecules, such as nucleic acids. Low levels of ROS are necessary
for the regulation of the appropriate growth and development of nerve cells, as well as for
the long-term potentiation process, through glutamate-dependent mechanisms [12]. In-
creased levels of oxidative DNA damage and abnormalities in the repair of oxidative DNA
damage in the nucleus and mitochondria have been observed in patients suffering from
depression [13]. Single nucleotide polymorphisms of genes encoding proteins involved in
base excision repair (BER), the major pathway for the removal of oxidative DNA damage,
may modulate the risk of depression [14]. In addition to oxidative stress, preclinical and
clinical studies have confirmed the effect of increased production of reactive forms of
nitrogen (RNS), which lead to nitrous stress and changes in the structure of the brain [15].

Table 1. Antioxidant capacity and lipid peroxidation biomarkers in depression—review of studies
in humans.

Characteristic Place of
Collection Antioxidant Capacity Inflammation

Parameters
Peroxidation
Biomarkers References

Control n = 20
Depression n = 40 Serum ↓ Vitamin A; ↓ Vitamin

C; ↓ Vitamin E [5]

Control n = 38
Depression n = 42

Generalized anxiety
n = 37

Plasma ↓ Vitamin E ↑MDA [16]

Control n = 19
Depression n = 15 Serum ↓ GPX; ↓ SOD; ↑

RGSH ↑MDA [17]

Control n = 12
Depression n = 12 Brain ↓ SOD; ↓ CAT; ↓ GPX [18]

Control n = 1484
Depression n = 2477 Serum ↑ SOD; ↓ uric acid; ↓

Zn ↑MDA [19]

Control n = 1788
Depression n = 1979 Serum

↑ GST; ↑ CAT; ↓ GSH;
↑ nitrites; ↑ uric acid; ↑

TBARS; ≈SOD;
≈GPX; ≈Zn

↑MDA [20]
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Table 1. Cont.

Characteristic Place of
Collection Antioxidant Capacity Inflammation

Parameters
Peroxidation
Biomarkers References

Control n = 36
Depression n = 18 Urine ↑ F2 isoprostanes [21]

Control n = 30
Depression n = 60 Whole-blood ↓ SOD; ↓ GPX; ↑

adenosine deaminase [22]

Control n = 40
Depression n =30 Plasma ↓ GSH; ↓ RGSH; ↓

CAT; ↓ SOD; ≈GPX [23]

Control n = 20
Depression n = 58 Serum ≈ SOD; ≈ CAT; ↓ GPX [24]

Control n = 22
Depression n =55 Serum ↑ TBARS [25]

Control n = 35
Depression n = 73 Serum ↑ TBARS [26]

Control n = 16
Depression n = 16

Human dermal
fibroblast cultures ↑ PC; ↑ RGSH [27]

Control n = 20
Depression n = 20 Plasma

≈8-iso-PGF2a, (+)
correlation with IL-6

(–) correlation
with IL-10

[28]

Control n = 13
Depression n = 51
(‘high-risk’, n = 15,

‘ultra-high-risk’, n = 20,
mixed or manic
symptoms that

received, n = 16)

Serum ↓ LPH [29]

Control n = 612
Depression n = 2833
(depressive = 1619,

remitted = 610, anxiety
= 604)

Plasma ↓ 8-OHdG;
≈F2-isoprostanes [30]

Control n = 27
Depression n = 22 Serum

↑ PC; ↑ NADPH
oxidase; ≈CAT;
≈SOD; ≈GPX

[31]

Control n = 10
Depression n = 14 RBC

≈SOD1; ≈SOD2; ↑
NADPH oxidase; ↑

ROS + RNS

≈ oxidized
LDL [32]

Depression = 39
Control = 31 Brain ↓ GSH [33]

Depression = 19
Control = 8 Brain ↓ OCC; ↓ GSH, [34]

Control n = 94
Depression n = 55 Serum ↑ PC; ≈TBARS [35]

↑—Increased concentration or activity in comparison to the control (healthy) group; ↓—decreased or inhibited
concentration or activity in comparison to the control (healthy) group; ≈ no differences in comparison to
the control (healthy) group; 8-iso-PGF2a—F2alphaisoprostanes; IL-6—intreleukin 6; IL-10—interleukin 10; 8-
OHdG—8-hydroxy-2-deoxyguanosine; LDL-chol-low-density lipoprotein cholesterol; F2 isoprostanes—2,3-dinor-
5,6-dihydro-15; GSH—glutathione; SOD -superoxide dismutase; CAT—catalase; LPH—lipid hydroperoxides;
MDA—malondialdehyde; GST—GSH-transferase; GPX—glutathione peroxidase; PC—protein carbonylation;
TBARS—thiobarbituric acid reactive substances; RGSH—reduced glutathione; ROS + RNS—reactive oxygen
species + reactive nitrogen species; OCC—occipital cingulate cortex; NADPH—nicotinamide adenine dinucleotide
phosphate oxidase; LPH—lipid hydroperoxides.



Int. J. Mol. Sci. 2023, 24, 2258 4 of 32

It is estimated that approximately 30% of depressed patients do not respond to tradi-
tional pharmacological treatments [36]. Nevertheless, drug therapy is the primary treatment
for depression. Anti-depressants reduce the production of pro-inflammatory cytokines
such as IL-1 or TNF-α (tumor necrosis factor alfa) while increasing the concentration of
anti-inflammatory factors such as IL-10 [37]. However, more and more attention is being
paid to the influence of active ingredients in food on the course and risk of neurological
disorders, including depression [38–42]. The field of nutripsychiatry deals with the treat-
ment and diagnosis of depression in connection with nutrition, where the effects of various
nutrients and the nutritional quality of food on mental health are investigated. Food is
rich in biologically active compounds, many of which have health-promoting effects. Such
compounds include polyphenols, which have strong anti-inflammatory, antioxidant, an-
tibacterial, anti-obesogenic, and neuroprotective effects [11,43,44]. Some preclinical studies
indicate that phenolic compounds exhibit anti-depressant properties [40,45]. The possibility
of using foods containing polyphenols as an element of diet therapy in depression was
analyzed in the review. Based on the information available in the global literature covering
the last 10 years, the impact of regular consumption of foods containing polyphenols on the
antioxidant status and the occurrence of inflammatory reactions in the body was analyzed.
The possibility of whether the consumption of products such as polyphenols could alleviate
the course of depression or prevent the progression of it was also considered.

2. Information Search Strategy in the Available

The analysis of information available in the global scientific literature was carried out
in October 2022. The following databases were used: Scopus, PubMed, Web of Science, and
Google Scholar. The databases were searched for the separate or common occurrence of the
following keywords: “depression”, “depressive disorders”, “brain”, “polyphenols”, “diet”,
“inflammation”, “microbiome”, “oxidative stress”, “antioxidants”, “immunomodulation”,
and “epigenetics” in Polish and English. Based on the analysis of titles and abstracts,
articles unrelated to the substantive criteria were excluded, and the remaining research and
review publications were subjected to detailed analysis in order to select the most relevant
publications. The bibliography included in all the selected articles was also analyzed.
The search was limited to articles published between 2012 and 2022. Finally, a total of
292 publications were analyzed, of which 219 research papers and 73 reviews were used.

3. The Pathogenesis of Depressive Disorders
3.1. Inflammation in Depressive Disorders

Inflammation is an important factor/mechanism in the development of depression.
Anti-depressants are in fact anti-inflammatory in nature. Activation of inflammatory path-
ways has been observed in depressed people, as evidenced by increased levels of pro-
inflammatory cytokines such as interleukin-1β (IL-1β), IL-6, IL-8, and tumor necrosis factor
α (TNF-α) [8,46]. Furthermore, polymorphisms in the IL-1β, TNF-α, and C-reactive protein
may increase the risk of depression, and single nucleotide polymorphisms (SNP) in the
IL-1β, IL-6, and IL-11 genes may be associated with decreased efficacy of anti-depressant
treatment [47,48]. In depressed individuals, there is an increased expression of the NLRP3
inflammasome (NOD-, LRR-, and pyrin domain-containing protein 3), accompanied by
elevated serum levels of pro-inflammatory cytokines, IL-1β, and IL-18, and programmed
cell death—protein-mediated pyroptosis executive Gasdermin D (GSDMD) [49,50]. The
NLRP3 inflammasome (a multimeric protein complex) is activated by several stimuli, in-
cluding ion flux, mitochondrial dysfunction, ROS production, and lysosomal damage [51].
Activation of inflammasomes that activate inflammatory caspase-1 is the major inflamma-
tory pathway in various types of organism dysfunction [51]. Active caspase-1 cleaves the
cytokines pro-interleukin-1β (pro-IL-1β) and pro-IL-18 into their mature and biologically
active forms [52]. IL-1β induces the expression of genes controlling fever, pain threshold,
vasodilation, and hypotension and facilitates the infiltration of immune cells into infected or
damaged tissues [53,54]. In turn, IL-18 is essential for the production of interferon-gamma
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(IFN-γ), a cytokine that plays a key role in inflammation and immune responses [55].
Removal of superoxide-generating oxidase 2 (NOX2) has been shown to reduce NLRP3
expression in a traumatic brain injury model and disrupt the NLRP3-TXNIP interaction
in the cerebral cortex of mice after ischemic stroke, suggesting a tissue-specific role for
cytosolic ROS in activating the NLRP3 inflammasome [56]. NADPH 4 oxidase (NOX4) has
also been shown to regulate carnitine palmitoyltransferase 1A (CPT1A) and to increase
fatty acid oxidation, which contributes to the activation of the NLRP3 inflammasome [57].
In turn, mitochondria are involved in activating the inflammasome primarily through the
production of ROS [51]. The likely mechanism of action of the NLRP3 inflammasome is the
suppression of DNA repair and the induction of apoptosis through the p53 protein, which
may indicate a direct link between inflammation and DNA repair and partly explain the
decreased efficiency of DNA repair in people with depression [58,59].

Depressive disorders often coexist with other autoimmune diseases that involve
chronic inflammation. This is due to the fact that pro-inflammatory cytokines also act
within the central nervous system, where, reaching from peripheral tissues, they are also
synthesized de novo by nerve cells, and their activity correlates with the severity of de-
pressive symptoms and the polymorphism of genes encoding serotonin transport [60].
Pro-inflammatory cytokines regulate neurogenesis, which is important for synaptic plastic-
ity, by reducing the survival, proliferation, and differentiation of neural precursor cells [61].
Activation of signaling pathways that lead to the activation of pro-inflammatory genes
reduces cell regeneration in important migration pathways in the brain [62]. Higher levels
of IL-8 have been found in the cerebrospinal fluid of patients with unipolar depression than
in healthy patients, indicating the importance of these pro-inflammatory biomarkers in
the pathophysiology of depression [63]. Changes in immune system activity in depression,
including both activation and suppression at the same time, may suggest an immune
imbalance in depression [37].

The kynurenine pathway is probably the link between generalized inflammation in the
body and depressive symptoms [64]. In plasma, lower levels of picolinic acid, higher levels
of quinolinic acid, and reduced levels of neuroprotective to neurotoxic metabolite ratios
were found in depressive patients compared to the healthy controls. In the cerebrospinal
fluid, a significantly lower level of picolinic acid was found in depressed patients compared
to healthy subjects [64]. This pathway metabolizes tryptophan, an amino acid that is a
precursor to neurotransmitters such as serotonin and melatonin. Inflammation causes
excessive activation of indoleamine-2,3-dioxygenase (IDO), an enzyme that converts tryp-
tophan to N-formylkynurenine, which is then metabolized to kynurenine [64]. Excessive
activation of IDO causes the availability of tryptophan to decrease, which has consequences
during the synthesis of neurotransmitters. In addition, kynurenine is then metabolized to
3-hydroxykynurenine, 3-hydroxyanthranilate, or quinolic acid, which are cytotoxic [65].
Moreover, due to these alterations in the metabolic pathways, the reduced amount of
tryptophan limits the biosynthesis of serotonin and, consequently, may be the cause of
increased susceptibility to depressive mood [66]. It was found that the concentration of
tryptophan is negatively correlated with the levels of pro-inflammatory cytokines, positive
acute phase proteins (CRP), and neopterin produced by active monocytes [67].

Neurotransmitters regulate the secretion of cytokines through the level of cortisol. For
example, acetylcholine, dopamine, and norepinephrine all promote the secretion of the
corticotropin-releasing hormone (CRH) in the hypothalamus, while serotonin inhibits the
secretion of CRH in the hypothalamus and adrenocorticotropic hormone in the pituitary
gland [46]. When cortisol levels are low, the production of pro-inflammatory cytokines is
increased, while their production is inhibited by high levels of cortisol [46]. In pathological
conditions such as acute or chronic inflammation or tissue damage, the immune system
and macrophages are activated to increase the level of pro-inflammatory cytokines. Inflam-
mation markers, including IL-6, TNF-α, TNF-β1, IFN, and CRP have been shown to be
constantly increased in depressed patients [68].
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Depression is associated with polymorphisms in inflammation-related genes, while
several gene variants are involved in both immune activation and depression [48]. Studies
conducted in a group of 190 depressed people and 100 healthy people showed that the
expression of PON2 and PON3 genes at the protein level was significantly higher in patients
with depression, while the mRNA expression of PON1, PON2, and PON3 genes did not
differ in patients with depressive disorders compared to the control group. It was also
shown that the expression of the MPO gene, both at the mRNA and protein levels, was
significantly lower in patients with depressive disorders than in the control group [69].

3.2. Microbiota and Systemic Inflammation in Depression

Currently, the importance of the microbiota and its differentiation as a trigger for
generalized inflammation is recognized [70,71]. The destabilization of the composition
of the intestinal microbiota by antibiotics resulted in a 20–50% increase in the risk of
depression [72]. Moreover, alpha diversity was found to be negatively associated with
depressive symptoms, while beta diversity showed a significant association with major
depressive disorder, psychosis, and schizophrenia [73,74]. Depression has also been linked
to insufficient numbers of Firmicutes in the intestines [73]. The optimal composition of the
intestinal microflora determines the efficient functioning of the immune system. It has been
shown that the microbiota of people with depressive disorders is characterized by lower
levels of Faecalibacterium and Coprococcus and higher levels of Eggerthell compared to that of
healthy people, suggesting that the microbiome of people with depression contains less
anti-inflammatory butyrate-producing bacteria and higher numbers of pro-inflammatory-
producing bacteria [74]. Other studies have shown that the stool of people with depression
contained more Bilophil (type Proteobacteria) and Alistipes (type Bacteroidetes), and less
Anaerostipes and Dialister (type Firmicutes) compared to that of healthy people [75,76].
It should be noted that Bilophila and Alistipes are gram-negative bacteria, and thus the
lipopolysaccharides that form part of their membranes can stimulate the innate immune
system by activating TLR-4 [77]. Activation of TLR-4 induces depression-like behavior
in animal models and has been proposed as a key factor in the inflammatory theory of
depression [78]. It is also possible that Alistipes may affect the availability of tryptophan in
the body, which is necessary for the synthesis of the neurotransmitter serotonin, which in
turn may upset the balance of the serotonergic system [79].

Due to the impaired functioning of the intestinal barrier, bacteria migrate from the
gastrointestinal tract, which activates the cells of the immune system and affects the func-
tioning of the immune, endocrine, and nervous systems [80–82]. Certain factors negatively
affect the functioning and selectivity of the intestinal barrier, including increased concen-
trations of IL-1β, IL-6, TNF-α, IFN-γ, and NF-κB, increased production of ROS and nitric
oxide (NO), and decreased concentrations of exogenous antioxidants [83]. Gut barrier
dysfunction increases the potential influx of antigens, inflammatory cytokines, T-cells,
and macrophages into the brain, triggering neuroinflammation through the activation of
microglia and astrocytes [84]. In people with depression, the dysfunction of the intestinal
barrier is accompanied by inflammation, and the degree of intestinal barrier dysfunction
correlates with the severity of their depressive symptoms [84]. Increased concentrations of
immunoglobulins IgA and IgM against the lipopolysaccharides of bacteria in the micro-
biome have been observed in patients with depression [85]. In turn, increased translocation
of lipopolysaccharide from Gram-negative enterobacteria activates the inflammatory re-
sponse system, which leads to an increase in the level of pro-inflammatory cytokines (IL-6,
IL-1β, TNF-α) and the mitogen-induced lymphocyte response [86]. Stress negatively affects
the formation and diversity of the intestinal microflora [87]. On the other hand, microorgan-
isms belonging to the group of psychobiotics (probiotics and prebiotics that confer mental
health benefits through interactions with commensal gut bacteria) produce neurotransmit-
ters, including gamma-aminobutyric acid, serotonin, dopamine, and short-chain fatty acids
(SCFA; acetic, propionic, and butyric), which directly affect the nervous system [70,88,89].
SCFAs, i.e., the main metabolites produced in the colon by gut microbiota, are transported
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via blood vessels to the brain, where they modulate functions of neurons, microglia, and
astrocytes and affect the blood-brain barrier (BBB) [80,86]. Elevated levels of toxins and/or
microbes may alter the functioning of the BBB, which may lead to neurodegeneration [80].
In this context, the influence of the microbiome-gut-brain axis on the stress response of the
HPA axis in alcohol-induced depression is known [90].

3.3. Oxidative Stress in Depressive Disorders

At the site of inflammation, as a result of incomplete reduction of oxygen, among
others, a superoxide anion is formed, which influences the development of oxidative stress.
The superoxide anion is a reactant that produces a very reactive hydroxyl radical [91].
It is also a link between oxidative stress and nitrosation stress because, as a result of
the reaction of this radical with NO, superoxynitrite is formed, causing nitration of cell
elements [15,92]. The properties of proteins modified in this way are altered, thus making
them unable to fulfill their functions appropriately. Consequently, cell signal transduction
may be disturbed, leading to cell death. As a result of the increased synthesis of NO by
cells of the immune response in the inflammatory focus, not only does the pool of ROS
increase but also that of reactive forms of nitrogen (RNS), which is referred to as nitrosative
stress [92]. Nitrosation stress is associated with the synthesis of an excessive amount of
molecules containing a nitrogen atom as part of their structure, such as nitrogen oxide
(NO) and its derivatives: nitroxyl ions (NO=), nitric acid (III) (HNO2), nitric acid (V)
(HNO3), nitric oxygen radicals (•NO), nitric dioxide radicals (•NO2), nitrogen dioxide
(NO2), nitric oxide (III) (N2O3), and a particularly reactive superoxide anion—peroxynitrite
(ONOO−) [93]. The role of neuronal NO synthase (nNOS) in the pathophysiology of
depression has been demonstrated, and in the case of antidepressants, it has been shown
that they reduce NO levels in the serum of patients with depression [92]. Studies on mice
have shown that lowering NO levels in the brain and serum effectively reduces symptoms
of depression [94,95].

Oxidative stress is described as a condition in which cellular antioxidant defense is
inadequate due to the over-release of ROS [11]. Consequences of oxidative stress include
fragmentation of lipids and/or structural changes, protein denaturation, disturbances in
DNA replication, deformation of cell organelles, and consequently whole cells [11,96]. ROS-
induced oxidative stress leads to inflammation and also triggers NF-κB dependent (nuclear
factor kappa-light-chain-enhancer of activated B cells) gene transcription for many pro-
inflammatory factors [97]. It is presumed that oxidative stress, along with nitrosative stress,
may have an impact on the pathophysiology of depression [15]. The brain is an organ that
is particularly exposed to oxidative damage. This is due to the high oxygen consumption,
high lipid content, and relatively low content of antioxidant enzymes in the brain [91]. In
contrast, increased oxygen consumption results in increased production of ROS and RNS
in the brain. Particularly significant changes in the activity of antioxidant enzymes can be
observed in the mitochondria of the brain, which are the main source of the superoxide
radical anion (O2•−) and hydrogen peroxide (H2O2) [98]. Mitochondria are the main source
of endogenous ROS and are therefore particularly vulnerable to disrupting antioxidant
and detoxification systems [99]. It is worth noting that in people with depression, there
is a higher production of mitochondrial ROS and a decrease in ATP production, as well
as a reduced level of coenzyme Q10, which is an essential component of the respiratory
chain, and its reduced amount indicates mitochondrial dysfunction [99,100]. Adequate
ATP levels are especially important for the brain, which consumes a lot of energy but is
unable to store large amounts of it, among other things, because neurons do not store
glucose [101]. Inhibition of the activity of complexes I, III, and IV of the respiratory chain,
as well as creatine kinase, was observed in the brain cortex and cerebellum of a rat model
of depression [102].

The main targets of ROS in the brain are lipids, especially phospholipids, and their
excessive peroxidation in the brain is an important event in the pathogenesis of depres-
sion [103–105]. Moreover, studies in mice with chronic depression have shown that per-
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sistent changes in brain peroxidation occur not only during anhedonia but also during
recovery [105]. Brain lipids determine the location and function of proteins in the cell mem-
brane and thus regulate synaptic capacity in neurons; they can also act as messengers [106].
The results of preclinical studies suggest a key role for film-forming n-3 polyunsaturated
fatty acids, glycerolipids, glycerophospholipids, and sphingolipids in the induction of
behaviors related to depression and anxiety [106]. Possible mechanisms may include in-
creased production of pro-inflammatory cytokines, which can activate the HPA axis, and
alteration of membrane fluidity, which affects membrane enzymes, ion channels, receptor
activity, and neurotransmitter binding [106]. It has been suggested that an increased ratio
of omega-6 to omega-3 fatty acids in cell membranes is involved in the pathogenesis of
depression [107]. People with depressive disorders have an increased amount of malondi-
aldehyde (MDA), which is a marker of oxidative damage to fatty acids [108]. In the study
by Stefanescu and Ciobic [109], the level of MDA was higher in patients with subsequent
depressive episodes than in patients who developed the disease for the first time. Another
marker of oxidative damage to fatty acids such as arachidonic acid is 8-iso-prostaglandin
F2, an increased amount of which has been detected during the course of depression [110].

Reduced amounts of non-enzymatic antioxidants such as vitamins A, C, and E, albu-
min, coenzyme Q10, zinc, and glutathione have been detected in the blood, plasma, and
brain of people with depression [5], which proves a reduction in the effectiveness of antiox-
idant defense in these people. Moreover, in people with depression, there are disturbances
in activity and a decrease in the expression of enzymatic antioxidants, such as superoxide
dismutase (SOD), catalase (CAT), and enzymes related to glutathione metabolism: peroxi-
dase, reductase, and S-transferase [24,111]. Some polymorphs of manganese superoxide
dismutase (MnSOD, SOD2) are more common in people with depression than in healthy
people, which may lead to reduced MnSOD uptake by mitochondria and cause instability
of this enzyme mRNA [112,113]. The genetic polymorphism of MnSOD (rs4880) has also
been shown to have no effect on 6-month antidepressant treatment and inflammatory
biomarkers in depressed patients, suggesting that MnSOD is not the major genetic deter-
minant of the antidepressant response [113]. Studies have shown the presence of more
8-oxoguanine (8-oxoG), a marker of oxidative DNA damage, in depressed patients com-
pared to healthy subjects [114]. Moreover, it has been proven that DNA damage present in
depression may be caused by disturbances in DNA repair, which are slower in the cells of
depressed patients [114].

4. Anti-Inflammatory, Antioxidant, and Neuroprotective Effects of Polyphenols

Polyphenols (flavonoids and non-flavonoids, such as resveratrol, curcumin, coumarin,
and phenolic acids) exhibit anti-inflammatory, antioxidant, and neuroprotective properties
(Figure 1) and are thus considered complementary medicinal compounds in the treatment
of mental disorders. The anti-inflammatory properties of polyphenols result from their:
(1) effects on immune cells; (2) inhibition of the secretion of pro-inflammatory cytokines;
(3) influence on the expression of genes responsible for the synthesis of pro-inflammatory
cytokines; and (4) induction of apoptosis, which reduces DNA damage [115–117]. Phenolic
compounds exhibit antioxidant properties due to their ability to: (1) scavenge ROS; (2) re-
duce the production of ROS by inhibiting the activity of oxidative enzymes and chelating
trace elements; (3) increase the activity of endogenous antioxidants; and (4) donate an elec-
tron or hydrogen atom, which facilitates the neutralization of singlet oxygen [11,91,118,119].
The neuroprotective effect of polyphenols is due to their antioxidant and anti-inflammatory
properties, which include (1) the modulation of multiple neurotransmitter systems, (2) mod-
ulation of the functions of the HPA axis and intracellular signaling pathways involved in
neurogenesis, neuroplasticity and cell survival, (3) the prevention of demyelination and
neurodegeneration, (4) the ability to increase cerebral blood flow by stimulating NO pro-
duction in the endothelium, (5) the induction of sirtulin-1/AMP-activated protein kinase
(SIRT1/AMPK), which reduces microglia activation, and (6) the inhibition of key signaling
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pathways in activated microglia such as NF-κB, mitogen-activated protein kinases (MAPK)
and Janus kinase/signal transducers and activators of transcription (JAK-STAT) [120–124].
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5. Foods Containing Polyphenols as Part of Diet Therapy in Depression—A
Research Review

Polyphenols are naturally occurring compounds; they are secondary metabolites of
plants. Fruits, vegetables, cereals, and such beverages as tea represent the main sources
of polyphenols (Figure 2). A relationship has been shown between the way people eat
and the risk of depression, anxiety, and stress disorders [125–127]. The total antioxidant
capacity of the diet consumed is inversely correlated with depression and some biomarkers
of oxidative stress in menopausal, postmenopausal, and diabetic women [128–130], as
well as in young women and girls [131–133]. The study by de Oliveira et al. [130] per-
formed in Brazil showed that depressed women consumed fewer polyphenols than healthy
women, which may indicate the importance of this group of food ingredients in the pre-
vention of depressive disorders. A study in a group of 50 people found that an 8-week
high-antioxidant diet containing blueberries and dark chocolate reduced symptoms of
depression [134]. Similar results were obtained by Huang et al. [135]. Traditional Japanese
and Norwegian diets rich in fruit and vegetables have also been linked to a reduced risk
of depression [136]. Currently, the diet with the most evidence that it offers protection
against the risk of depression is the polyphenol-rich Mediterranean diet, which has been
recognized as a promising treatment strategy for depression [137,138]. Polyphenols may
inhibit the expression and function of pro-inflammatory cytokines, transcription factors,
and protein complexes that trigger neuroinflammatory responses and thus may diminish
depressive behavioral symptoms [124]. Changes in the microbiome have been observed in
depressed people who consume flavonoid-rich orange juice; these changes have been linked
to improved health in these people [139]. Another study found quercetin to ameliorate
lipopolysaccharide-induced depression in rats [140]. On the other hand, the relationship
between the content of non-enzymatic antioxidants in the diet and symptoms of depression
in Japanese workers was investigated, but no significant correlations were found [141], al-
though the healthy Japanese lifestyle—characterized by the consumption of large amounts
of vegetables, fruits, mushrooms, and soy products—is inversely associated with symp-
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toms of depression [142]. In other studies, polyphenol supplementation was found to be
effective in improving health in depression, but phenolic compounds do not work equally;
therefore, it was suggested that in diet therapy, the type of polyphenols should be selected
individually for the patient [143]. It has also been confirmed that Western eating styles (low
in fruits and vegetables, high in fat and saturated fatty acids, sugar, sodium, and processed
food) can increase the risk and severity of depression in adolescents [144].
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5.1. Influence of Polyphenols on Inflammation in Depression

Persistent inflammation disrupts several molecular and cellular pathways in the
central nervous system, associated with the pathophysiology of depression [124]. It has
been shown that the remission of depressive states is associated with the normalization
of the levels of inflammatory markers in the body [145]. Numerous preclinical, clinical,
and laboratory animal studies (Tables 2 and 3) have shown the anti-inflammatory effect of
polyphenols in depressive disorders. Polyphenols inhibit the MAPK signaling pathway,
mediating oxidative stress and inflammation in depression, and they also regulate NF-κB
activation [146].

Table 2. The effect of polyphenols on oxidative stress in depression—review of studies in human.

Polyphenols Oxidative
Stress Parameters

Inflammation
Parameters Place of Collection References

Curcumin No significant effects
on blood chemistry Blood [147]

Poliphenols ↓ DTAC; ↓ Vitamin C; ↓
Vitamin A; ↓ Vitamin E DTAC was calculated [130]

Curcumin ↓IL-1β, ↓TNF-α;
↓BDNF Serum [148]

Curcumin ↑MDA; ↑ TAC Serum [149]

↑—Increased concentration or activity in comparison to the control (healthy) group; ↓—decreased or inhibited
concentration or activity in comparison to the control (healthy) group; BDNF—Brain-derived neurotrophic
factor; DTAC—dietary total antioxidant capacity; IL-1β—interleukin 1β; MDA—malondialdehyde; TAC—total
antioxidant capacity; TNF-α—tumor necrosis factor.
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Table 3. The effect of polyphenols on oxidative stress in depression—review of studies on labora-
tory animals.

Polyphenols Animal Species Target Sites Antioxidant Factor Oxidative Stress
Parameters

Inflammation
Parameters Ref.

Curcumin Sprague-
Dawley rats

Hippocampus
Serum CUMS ↓ NOx2; ↓ 4-HNE;

↓MDA; ↑ CAT [150]

Curcumin Rats Brain

Intracerebroventricular
injection of propanoic

acid to induce
autistic behavior

↓ TBARS; ↑ CAT;
↑ SOD; ↑ GSH [151]

Curcumin Male Wistar rats The cortex and
hippocampus Reserpine treated ↓MAO [152]

Curcumin Male mice
Hippocampus,
frontal cortex,

amygdala
Regular ICR ↓MAO-A [153]

Curcumin Male rats Brain LPS administration ↓COX-2 [154]

Curcumin Female albino
rats Serum OVX

↓MAO-B; ↑
tyrosine

Hydroxylase; ↓
NO; ↑ TAC; ↓

MDA

↓IL-1β; ↓IL-6 [155]

Curcumin Male Swiss mice Brain CUMS ↑ CAT [156]

Chrysin Mice Brain

Male young and aged
Swiss Albino mice

were kept in groups
during aging

↑ SOD; ↑ CAT; ↑
GPX in PFC and

hippocampus
[157]

Chrysin Male rats Heart

Induced acute
cardiotoxicity
triggered by
doxorubicin

↑ GHS; ↑ CAT; ↑
SOD [158]

Chrysin Male Swiss mice Brain
The neurotoxicity

elicited by
aluminium chloride

↓ LPO; ↑ SOD; ↑
CAT in cortex and
hippocampus; ↓
ROS in neuronal

SH-SY5Y and
microglial THP-1

cells in vitro

[159]

Hypericin Wistar rats Brain Chronic
psychosocial stress ↓BDNF [160]

Dimethyl
fumarate Male Wistar rats Testicular

Serum CUMS ↓MDA; ↑ GSH; ↑
TAC [45]

Dimethyl
fumarate and

resveratrol
Wistar rats Brain

Serum CUMS ↓MDA
↑ TAC; ↑ GSH ↑BDNF [161]

Resveratrol Male Wistar rats Plasma CUMS ↑ TAC; ↑ GSH ↑ TNF-α; ↑ IL-6; ↑
CRP [162]

Hesperidin Male Sprague-
Dawley rats Brain CUMS

↓MDA; ↓
nitrite;↑ GSH; ↑

CAT, ↓ NOS;

↓ TNF-α; ↑ IL-1β;
↓ COX-2 [163]

Baicalin Male Sprague-
Dawley rats Brain CUMS

↑ SOD; ↓MDA; ↑
Bcl-2 protein; ↓

Bax

↓ IL-1β; ↓
caspase-3

proteins; ↑ BDNF
[164]

Catechins Sprague-
Dawley rats Brain CUMS ↑ CAT; ↑ SOD; ↑

GSH [165]

Hesperidin Male mice Serum LPS ↓ IL-1β; ↓ IL-6; ↓
TNF-α [166]

Quercetin Male Swiss albino
mice Brain, plasma CUMS ↑ GSH; ↑ SOD;↑

CAT ↓ IL-1β; ↓ TNF-α [167]
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Table 3. Cont.

Polyphenols Animal Species Target Sites Antioxidant Factor Oxidative Stress
Parameters

Inflammation
Parameters Ref.

Quercetin Swiss albino mice Brain, plasma CUS
↑ total thiol; ↑

CAT; ↓ TBARS; ↓
NOS;

↓ IL-1β; ↓ IL-6; ↓
TNF-α; ↓ COX-2 [168]

Quercetin
Male

Sprague-Dawley
rats

Serum CUMS
↑ SOD; ↑ CAT; ↑
GSH; ↑ GPX; ↓

MAO
↓ IL-1β; ↓ TNF-α [169]

Quercetin Male Wistar rats Brain CUMS ↓MDA; ↓ nitrite;
↑ GSH; ↑ SOD

↓ TNF-α; ↓ IL-6; ↓
iNOS [170]

Ferulic acid Male mice Brain Reserpine ↑ SOD; ↑ GSH; ↓
nitrite; ↓ LPO ↓ IL-1β; ↓ TNF-α [171]

Salvianolic
acid B

Male albino
Wistar rats Brain CMS ↑ CAT; ↑ SOD; ↑

GPX, ↓MDA
↓ IL-6; ↓ IL-1β; ↓
TNF-α; ↓ NLRP3 [172]

Resveratrol Male Wistar rats Plasma CUMS ↑ TAC; ↑ GSH ↑ TNF-α; ↑ IL-Iβ;
↑ CRP [162]

Ginsenoside Mice Brain
Behavioral tests

(forced swimming,
tail suspension)

↑ SOD [173]

Apocynum
venetum leaf

extract
Wistar rats Hippocampus,

serum CUMS
↓ ROS; ↓MDA;
↑ SOD; ↑ CAT;
↑GPX;

↓ Bcl-2/Bax; ↑
BDNF [174]

Hemerocallis
citrina Baroni

Sprague- Dawley
rats Brain CUMS ↓MDA ↑ BDNF [175]

Silybum marianum
(silymarin) Swiss albino mice Brain

Acute restraint stress
induced

by immobilizing

↓MDA; ↑ SOD; ↑
CAT; ↑ GSH [176]

Silybum marianum
(silymarin) Wistar rats Brain

Olfactory
bulbectomized

technique
↓MDA ↑ BDNF [177]

Resveratrol Sprague- Dawley
rats Brain CUMS ↓MDA; ↑ SOD; ↑

CAT; ↑ GSH [178]

Jasminum sambac
(Jasmine tea)

Sprague- Dawley
rats Brain CUMS ↑ GLP-1 ↑ BDNF [179]

Tea polyphenols Mice Brain CUMS ↓MDA; ↑ SOD; ↑
CAT; ↑ GSH [180]

Okra seeds
(catechin and

quercetin
derivatives)

Mice Brain

Behavioral tests (open
field, tail suspension,

forced swimming,
novelty

suppressed feeding

↓MDA; ↑ TAC; ↑
SOD [181]

↑—increased concentration or activity compared to the treated group; ↓—decreased or inhibited concentration
or activity compared to the treated group; 4-HNE—4-hydroxynonenal; Bcl-2—B-cell lymphoma 2; Bax—Bcl-
2-associated X protein; BDNF—Brain-derived neurotrophic factor; CAT—catalase; COX-2—cyclooxygenase;
CRP—C-reactive protein; CUMS—chronic unpredictable mild stress; CUS—chronic unpredictable stress;
CMS—chronic mild stress; GLP-1—glucacon-like peptide 1; GSH—glutathione; GPX—glutathione peroxidase;
IL-1β—interleukin 1β; IL-6—interleukin 6; iNOS—inducible nitric oxide synthase; LPS—lipopolysaccharide;
MAO—monoamine oxidase; MAO–A—monoamine oxidase A; MAO-B—monoamine oxidase B; NOx—index of
nitrite/nitrate; LPO—lipid peroxidation; MDA—malondialdehyde; NO—nitric oxide; PFC—prefrontal cortex;
ROS—reactive oxygen species; SOD—superoxide dismutase; TBARS—thiobarbituric acid reactive substances;
TAC—total antioxidant capacity; TNF-α—tumor necrosis factor. THP-1 monocytic cells; SH-SY5Y—the human
neuroblastoma cell line; NLRP3—NOD-like receptor family, pyrin domain containing 3.

5.1.1. Quercetin

Quercetin, a flavonol present in fruits, vegetables, and some herbs, has been proven
to have anti-depressant, anti-cancer, anti-bacterial, anti-oxidant, anti-inflammatory, and
neuroprotective effects [182]. Quercetin can regulate the level of neurotransmitters in the
body, promote the regeneration of hippocampal neurons, and improve HPA axis dysfunc-
tion [182]. In addition, quercetin crosses the blood-brain barrier and is present in the brain
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just a few hours after administration, thanks to which it has an effective neuroprotective
effect [183]. Studies in mice have shown that quercetin protects against stress-induced
anxiety and depressive behaviors and improves memory by regulating serotonergic and
cholinergic neurotransmission [184]. Quercetin may ameliorate lipopolysaccharide-induced
depression-like behavior and impairment of learning and memory in rats, which may be
due to the regulation of an imbalance in copin 6 expression and the triggering of receptors
expressed on myeloid cells (TREM1/2) in the hippocampus and prefrontal cortex [185].
A study conducted on rats showed that the combination of quercetin supplementation
and physical training exerts a strong anti-cancer and antidepressant effect by suppressing
inflammation and regulating the brain-derived neurotrophic factor (BDNF) axis—tyrosine
kinase β receptor (TrKβ)—β-catenin in the prefrontal cortex [186]. It has also been shown
that the synergistic effects of quercetin and curcumin are particularly effective as antide-
pressants. In rats exposed to carrageenan, the simultaneous administration of quercetin and
curcumin was found to modulate the expression of heme oxygenase-1 mRNA and TNF-α,
confirming the anti-inflammatory effect of these compounds, as well as the reduction in
oxidative stress [187]. A 0.8% quercetin supplementation reduced levels of interferon γ,
IL-1α, and IL-4 in male C57Bl/6j mice [188]. In turn, the administration of 10 mg/kg of
quercetin to obese Zucker rats reduced TNF-α production in adipose tissue [189].

5.1.2. Curcumin

Curcumin, a naturally occurring biologically active compound derived from Curcuma
longa, exhibits a wide range of pharmacological properties and has been recognized as
a potent antidepressant with multiple mechanisms including monoaminergic imbalances
(related to serotonin, dopamine, norepinephrine, and glutamate), effects on neurotransmitters,
neuroprogression, the HPA axis, dysregulation of inflammatory and immune pathways,
oxidative and nitrosative stress, and mitochondrial disorders [190]. Curcumin reduces chronic
mild stress induced depression symptoms and memory deficits by modulating oxidative stress
and inhibiting acetylcholinesterase activity [191]. Curcumin has also been shown to reduce
the expression of inflammatory cytokines TNF and IL-1, adhesion molecules such as ICAM-1
(intercellular adhesion molecule-1) and VCAM-1 (vascular cell adhesion molecule-1), and
inflammatory mediators such as prostaglandins and leukotrienes [192]. Curcumin also inhibits
the synthesis of enzymes involved in inflammation, such as COX (cyclooxygenase), LOX
(lipoxygenase), MAPK (mitogen-activated protein kinase), and IKK (kappa kinase inhibitor),
lowers the levels of NF-κB and STAT3 (signal transducer and activator of transcription 3),
reduces the expression of TLR-2 (toll-like receptor-2) and TRL-4, and increases the synthesis of
PPARγ (peroxisome proliferator-activated gamma receptor) [193–195]. It has also been shown
that curcumin is able to enhance the anti-inflammatory and phagocytic effects in microglia
cells, showing a direct regulatory effect on Aβ42 peptide phagocytosis as well as weakening
the inflammatory image on PGE2-stimulated N9 cells [196]. Studies in Wistar Kyoto rats
provided further evidence of the antidepressant effects of curcumin, possibly by increasing
neurotrophic activity in the hippocampus [197]. Studies have shown that curcumin is safe,
well-tolerated, and effective in depressed patients [198,199].

5.1.3. Tannic Acid

Tannic acid shows strong anti-inflammatory [200] and antioxidant properties [77,96,201,202],
as shown in studies carried out on laboratory animals. Tannic acid can regulate many sig-
naling pathways, including those related to TGF-β (transforming growth factor β), EGFR
(estimated GFR), and bFGF (basic fibroblast growth factor) [203]. The administration of tannic
acid significantly inhibited the levels of TNF-α, IL-1β, ET-1, and NF-κB in rats exposed to dox-
orubicin [204]. Tannic acid has been shown to be a nonselective monoamine oxidase inhibitor
and therefore increases the levels of monoaminergic neurotransmitters in the brain [205].
Studies in mice have shown a positive effect of tannic acid on lipopolysaccharide-induced
depressive and inflammatory lesions [206]. On the other hand, in stressed dogs, a decrease in
the level of pro-inflammatory interleukins was found after the use of tannic acid [207].
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5.1.4. Chrysin

Chrysin (5,7-dihydroxy flavone), a flavonoid isolated from plants such as Passiflora
coerulea, Passiflora incarnata, and Matricaria chamomilla [208], has very strong anti-
inflammatory and antioxidant properties [209]. Chrysin has been shown to exert neuro-
pharmacological effects by activating neurotransmitter systems (GABAergic, serotonergic,
dopaminergic, and noradrenergic), eurotrophic factors (e.g., brain-derived neurotrophic
factor and nerve growth factor), and some signaling pathways. Chrysin also alters serotonin
levels and modifies the expression of its receptors, including 5-HT1A and 5-HT2A in the
raphe nucleus and hippocampus [209,210]. It also regulates the levels of dopamine and nore-
pinephrine in the central nervous system [208]. Chrysin acts in brain structures involved
in the pathophysiology of anxiety and depressive disorders, such as the hippocampus,
prefrontal cortex, raphe nucleus, and striatum [208]. Both clinical and laboratory animal
studies and isolated cell cultures have shown a reduction in inflammatory markers (TNF-α,
IL-1β, IL-6, NF-κB, IKK-β) following the use of chrysin [159,208,211–214].

5.1.5. Peoniflorin

Peoniflorin, a polyphenolic compound found in Radix Paeoniae Alba (Paeonia lactiflora),
used in Chinese medicine, has antidepressant activity, although the potential therapeutic
mechanism has not been thoroughly investigated [215]. Peoniflorin has been shown to re-
duce depressive symptoms in rats and correct an abnormal metabolic profile [215]. This
study demonstrated that the metabolites critical for peoniflorin function are citric acid, thi-
amine monophosphate, gluconolactone, 5-hydroxyindole acetic acid, and stachyose, targeting
SLC6A4, TNF, IL6, and SLC6A3. However, a particularly important metabolic pathway is the
citrate cycle. Paeoniflorin alleviates spatial learning impairment in mice subjected to chronic
unpredictable mild stress, which causes depression symptoms [216]. In turn, the elimination
of changes in the hippocampus and the improvement of neuroplasticity in the CA1 region
proved the neuroprotective effect of peoniflorin [216]. Peoniflorin lowers TLR4, NF-κB and
NLRP3 levels, inhibits TLR4/NF-κB/NLRP3 signaling, and reduces proinflammatory cy-
tokines and microglia activation in the hippocampus of lipopolysaccharide-induced mice [217].
By inactivating microglia, it also increases the secretion of neuronal fibroblast growth fac-
tor 2 (FGF-2), an anti-inflammatory factor involved in the regulation of the proliferation,
differentiation, and apoptosis of neurons in the brain [217].

5.1.6. Tea Polyphenols

Regular tea consumption has been found to have an antidepressant effect, which is
related to its phenolic compound content [218]. In Korean studies, people who consume
more than three cups of green tea a week have a 21% lower incidence of depression [219],
and increasing tea consumption by three cups a day was associated with a 37% reduc-
tion in the risk of depressive disorders [220]. Green tea polyphenols increase the Nrf2
(nuclear factor erythroid-2-related factor 2) signaling pathway and suppress oxidative
stress and inflammatory markers [221]. With increased HPA axis activity in depression,
the hippocampus becomes sensitive to a constant, elevated level of corticoliberin, the
corticotropin-releasing hormone (CRH), which in turn causes the body to release more
cortisol in an attempt to regulate CRH production [218]. In turn, the increased level of
cortisol causes greater stress and intensifies inflammation (secretion of increased amounts
of NF-κB, TNF-α, IL-1, IL-2, IL-6, and monocyte chemoattractant protein-1 MCP-1), which
leads to the release of more cortisol and, eventually, causes neuropathology. Over time,
chronically elevated levels of stress hormones worsen important neural networks in the
brain, including the monoaminergic and limbic systems, and reduce hippocampal volume
and neuroplasticity [218]. Additionally, inflammation coincides with a significant decrease
in serotonin levels, and both serotonin synthesis and structure depend on tryptophan
as a precursor [218]. The immune system tries to stop bacterial growth by regulating
the metabolic pathway of tryptophan to kynurenine through the enzyme indoleamine
2,3-dioxygenase. Inflammatory cytokines induce indoleamine activity, causing a signifi-
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cant decrease in tryptophan levels and a corresponding decrease in serotonin synthesis,
and low levels of serotonin resulting from inflammation exacerbate the symptoms of de-
pression. Moreover, inflammatory cytokines can elevate cortisol levels and activate the
HPA axis, causing chronic stress [218]. The major ERK/CREB/BDNF signaling pathway
associated with depression is stimulated by tea polyphenols, primarily theaflavin, thea-
nine, epigallocatechin gallate (EGCG), and combinations of catechins and their metabolites.
Theaflavin and EGCG are potent anti-inflammatory agents that act by downregulating
signaling NF-κB [218]. Wang et al. [222] suggested that theanine may participate in the
relationship between inflammatory cytokines and the HPA axis. Catechins are active in-
gredients in green tea. The antidepressant effect of EGCG was observed in a rat model
of chronic unpredictable mild stress-induced depression, where EGCG inhibited neuroin-
flammation (reduced levels of IL-6 and NO) in the hippocampus [223]. Intraperitoneal
administration of EGCG (25 mg/kg) for 14 days prior to a single prolonged stress was able
to reduce IL-1β and TNF-α levels in the hippocampi of mice, which was associated with
improved cognitive abilities and object recognition memory during behavioral tests [224].
Gallocatechin (GCG) and EGCG were found to inhibit lipopolysaccharide-induced p65
phosphorylation and showed a similar ability to regulate NF-κB activation in vitro [225].
In mice with lipopolysaccharide neuritis, theaflavin black tea suppressed inflammatory
cytokine production and significantly reduced depression-like behavior [226]. The results
of the cited study indicate that the anti-inflammatory activity of theaflavin on microglia
is stronger than that of common polyphenols but comparable to EGCG. In vivo studies,
on the other hand, revealed that theaflavin-3,3′-digalate (TFDG) significantly inhibited
lipopolysaccharide-induced expression of inflammatory biomarkers such as TNF-α, IL-1β,
and IL-6 [227,228]. Ethanolic oolong tea extract showed comparable anti-inflammatory
activity to EGCG by reducing several inflammatory responses in a lipopolysaccharide-
induced mouse macrophage cell line [229]. The anti-inflammatory effects of tea and tea
polyphenols have also been demonstrated in other diseases [230–232].

5.2. Influence of Polyphenols on the Microbiome

The studies emphasize the impact of polyphenols on intestinal health, resulting from
their ability to (1) modulate intestinal barrier function, (2) innate and adaptive immune
responses, (3) signaling pathways, and (4) modify the composition of the intestinal micro-
biota [233,234]. Since a large proportion of polyphenols (90–95%) remain unabsorbed in the
gastrointestinal tract, they can accumulate in the large intestine, where most of them are
extensively metabolized by the intestinal microbiota [233]. Polyphenols can modulate the
mucus barrier, nutrient uptake, and viscoelastic microenvironment of the gut bacteria, as
demonstrated by ellagic acid and resveratrol studies in goblet cells in the colon mucosa in a
rat model of Crohn’s disease [235,236]. Phenolic compounds also affect the intestinal micro-
biome by inhibiting the development of harmful bacterial species or stimulating the growth
of certain species [71,237]. The microbiome can also metabolize food compounds and
produce bioactive molecules [237,238]. Phenolic compounds show selective bactericidal
activity by damaging bacterial cell membranes. Their inhibitory effect on the development
of Bacillus cereus, Campylobacter jejuni, Clostridium perfringens, Escherichia coli, Helicobacter
pylori, Legionella pneumophila, and Mycobacterium spp. has been proven [239]. An in vitro
study using human fecal microbiota showed that different polyphenols (in this case EGCG
and TFDG) undergo different microbial transformations, but their modulating effect on
the intestinal microbiota is similar and mostly related to the growth-promoting activity
of Bacteroides, Faecalibacterium, Parabacteroides, and Bifidobacterium and inhibitory Prevotella
and Fusobacterium [239]. In this regard, research suggests that polyphenols are candidates
for prebiotic-like compounds. Prebiotics are non-living gut microbial stimulants [71].

Interactions between polyphenols and the gut microbiota lead to changes in the com-
position of the microbiota and the production of metabolites, including SCFA, which exert
biological effects both locally and systemically. As a result of the cleavage of glycosidic bonds
in polyphenols, glycans are formed, which are an important nutrient for the intestinal micro-
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biota, especially for Bacteroidetes [240]. In vitro studies have shown that tea polyphenols pro-
mote the growth of Bacteroides, Faecalibacterium, Parabacteroides, and Bifidobacterium and inhibit
Prevotella and Fusobacterium; therefore, they are considered probiotic substances [237,241–243].
Probiotics are lactic acid bacteria. The main goal of supplementing the diet with probiotics
is to increase the population of beneficial bacteria and eliminate pathogens [71]. Studies
carried out on C57BL/6J mice showed a reduction in the number of Firmicutes in the cae-
cum and an increase in the number of Bacteroidete due to the production of polyphenols
extracted from green and black tea, as well as an increase in SCFA synthesis, which was corre-
lated with an increase in the number of Pseudobutyrivibrio [244]. Similarly, in studies by Sun
et al. [245] and Guo et al. [243], tea polyphenols inhibited the growth of Bacteroides-Prevotella
and Clostridium histolyticum and stimulated the growth of Bifidobacterium, Lactobacillus, and En-
terococcus bacteria and stimulated SCFA synthesis. Oolong tea polyphenols used in obese mice
after 4 weeks caused an increase in the biodiversity of bacteria and the number of bacteria types
producing butyrate and acetate, primarily Bacteroidetes, with a simultaneous favorable de-
crease in the proportion between Firmicutes and Bacteroidetes [242]. The oolong tea polyphenols
showed the ability to regulate circadian rhythms by enhancing beneficial intestinal microbiota
and regulating gene expression, which influences metabolic pathways [243]. Tea polyphenols
may have an effect on the microbiome by maintaining optimal redox status [246]. In this
study, Lachnospiraceae, Bacteroides, Alistipes, and Faecalibaculum were identified as biomark-
ers of gut redox status. Flavonols belonging to phenolic compounds regulate the adhesion
of bacteria to the intestinal walls, this mainly applies to Lactobacillus acidophilus LA-5 and
Lactobacillus plantarum IFPL379 [247]. Kaempferol present in tea leaves improves the integrity
of the intestinal barrier and inhibits inflammation in the intestines by reducing the activation
of the TLR4/NF-κB pathway [248]. Studies on laboratory animals and in humans have shown
that catechins inhibit the growth of pathogenic bacteria, Clostridium difficile and Staphylococcus
spp., and stimulate the growth of beneficial Bifidobacterium bacteria [240,249–251]. They also
improve the integrity of the intestinal barrier and reduce pro-inflammatory reactions, which
have been demonstrated in studies on laboratory animals and in humans [240,249–251]. Stud-
ies on rats with colitis showed that the EGCG present in green tea stimulates an increase in
Akkermansia abundance and the production of SCFA [252].

The participation of microbiota in the absorption of polyphenols is of great importance
for human health because, due to their complex structure and high molecular weight,
they are characterized by low bioavailability in the small intestine [241]. In the large
intestine, they are converted into bioactive, small-molecule phenolic metabolites by the
intestinal microbiota [43]. Although theaflavin and its galloyl derivatives, as well as
teasinensin A, are more resistant to degradation by intestinal bacteria [241,253], in vitro
studies have shown that the microbiota play an important role in the metabolism of
theaflavins in both mice and humans. Lactobacillus plantarum 299v and Bacillus subtilis
are of particular importance [254].

It is also recommended that products containing polyphenols be included in the diet
under certain conditions. A good example is yoghurt. It is enriched with plant extracts, it
makes a very good source of polyphenols and other antioxidants, and may also contain
probiotic bacteria that benefit the intestinal microbiome [255].

5.3. Influence of Polyphenols on Antioxidant Status in Depression

Polyphenols can interact with ROS and prevent oxidative damage to tissues [146].
ROS causes oxidative stress, lipid peroxidation, protein oxidation, and DNA damage
in neuronal tissues. Phenolic compounds may play an important role in the treatment
of mental illness due to their ability to protect neurons from oxidative stress, ameliorate
ischemic damage by inhibiting lipid peroxidation, and their ability to interact with NO from
the vascular endothelium and reduce inflammation [256]. The oxidative stress-induced
pathophysiological processes in nervous tissues are recognized as one of the leading
mechanisms in the induction of depression.
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Numerous studies have shown that a diet rich in phenolic compounds lowers oxidative
stress levels. Polyphenols are an important part of the diet as they are present in many
natural foods, herbs, and spices. Increased consumption of fruit and vegetables has been
shown to reduce the risk of depression in various groups of people [257,258]. A 100-g
increase in fruit and/or vegetable consumption was associated with a 3% reduction in
depression risk [259]. On the other hand, consuming less than 5 portions of fruit and
vegetables per day increases the risk of depression, which was shown in the analysis of the
diet of people living in Bangladesh, India, and Nepal [260]. Studies in rats have shown that
the polyphenol-rich fruits of the Acacia hydaspica plant exert antidepressant and anxiolytic
effects by improving the antioxidant status in the brain [261]. Banana fruit pulp and peel,
which contain polyphenols, have been shown to have both anti-anxiety and anti-depressant
effects [262]. Grewia asiatica berry juice, rich in phenols, anthocyanins, vitamin C, and
flavonoids, improves symptoms of depression by reducing oxidative damage in the brain
and increasing levels of SOD and GPx [263]. Saccharina japonica ethanol extract reduced
depression-like behavior in stressed mice and increased SOD activity [264]. On the other
hand, maqui berries improved health in post-stroke depression by increasing the level of
GSH expression and increasing the activity of SOD and CAT [265].

A diet rich in flavonoids, consisting of a variety of vegetables, especially yellow, orange,
red, and green leafy vegetables, can help reduce symptoms of depression [266]. Numerous
studies have also found an increase in antioxidant parameters (SOD, CAT, GPx, Gsr activity,
GSH, GSTs, vitamin C, and vitamin E) and a decrease in oxidative stress parameters
(TBARS, lipid hydroperoxides, conjugated dienes tissue, and circulatory levels) as a result
of the use of flavonoid chrysin [157,159,208,211]. Resveratrol improves antioxidant defense
by increasing the activity of CAT, SOD, GPx, and glutathione S-transferase (GST) [145].
Tannic acid increases the level of endogenous antioxidants in the tissues of laboratory
animals poisoned with xenobiotics, including the brain [96,202,204,238,267]. Ferulic acid
in mice reduced the markers of oxidative stress (MDA, nitrite, and PC) in the brain [268]
and increased the activity of SOD, CAT, and GSH-Px in the cerebral cortex and decreased
the level of TBARS in mice under stress [269]. In studies on mice, the positive effect of
gamma-aminobutyric acid (GABA) from green tea on the course of depression after stroke
was shown, and this effect was correlated with the antioxidant activity and phytochemical
composition of tea [270,271]. Quercetin was shown to be effective in preventing depressive
behaviors, through the reduction of thiols, TBARS, MDA, and NO expression and an
increase in the activity of CAT, SOD, and GSH [183].

5.4. Neuroprotective Action of Polyphenols

The neuroprotective effect of phenolic compounds is due to their anti-inflammatory
and antioxidant properties. Dietary polyphenols may have beneficial effects on health, but
their direct effect on neuronal cells is not fully known, as most phenols are metabolized and
do not reach the brain in the form in which they are found in food sources [272]. However,
a study in mice showed that some amounts of polyphenols are present in the brains of
animals that receive polyphenols, suggesting that the polyphenols may act directly in
the brain [273]. The results of experimental studies suggest that plant preparations rich
in phenolic compounds may be effective in reversing neurodegenerative pathology and
age-related declines in neurocognitive performance.

Polyphenols modulate specific cell signaling pathways involved in cognitive processes [136].
Curcumin exerts neuroprotective effects through several signaling pathways, including TLR-4-
dependent inflammatory signaling, and may inhibit TLR-4 activation [191]. It also inhibits the
production of pro-inflammatory markers in microglial cells, such as cyclooxygenase-2 (COX2),
by inhibiting NF-κB, IL-1β, and IL-6 [193]. The general neuroprotective effect of curcumin is a
result of the activation of molecular chaperones as well as an increase in the level of neutrophilic
factors and the chelation of toxic metals [193]. Terminalia chebula polyphenolic extracts exert a
neuroprotective effect in the BV2 microglial cells of the mouse brain and occlusion of the middle
artery (in vitro study) by stimulating Nrf2, thus inhibiting apoptosis [274]. Nrf2 translocation
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from the cytosol to the nucleus promotes the expression of antioxidant genes, including heme
oxygenase-1 (HO-1), and increases the activity of antioxidant-related enzymes, including SOD
and GSH [275]. Rats with induced neonatal hypoxia and cerebral ischemia whose mothers
received polyphenols (resveratrol, pterostilbene, and viniferine) isolated from grapefruit during
pregnancy displayed reduced cerebral edema and preservation of motor and cognitive functions,
including learning and memory [276]. In vitro studies investigated the effect of polyphenols
on H2O2-induced neuronal apoptosis in human SH-SY5Y neuroblastoma cells [272]. Of the 19
metabolites tested, 3,4-dihydroxyphenylpropionic acid, 3,4-dihydroxyphenylacetic acid, gallic
acid, ellagic acid, and urolithin prevented neuronal apoptosis by lowering ROS levels, increas-
ing redox activity, and reducing oxidative stress-induced apoptosis by preventing caspase-3
activation by the mitochondrial apoptotic pathway. Another study demonstrated the efficacy of
robinetinidol- (4beta-8) -epigallocatechin 3-O-gallate polyphenols isolated from Acacia mearnsii
in human SH-SY5Y neuroblastoma cells exposed to acrolein [135]. In this study, in addition
to improving the parameters of oxidative stress, inhibition of caspase-3 activation, reduction
of NADPH oxidase activity, lipid peroxidation, and reduction of phospho-JNK (c-Jun NH2-
terminal kinase), which is known as an apoptotic mediator in induced cell death, were also
observed. Acacia hydaspica extract reversed cisplatin-induced neurotoxicity in the brain tumor
therapy of Sprague Dawley rats by regulating acetylcholinesterase activity, reducing DNA
damage, and reducing the level of pro-inflammatory cytokines [277]. Pterostilbene, a phenolic
compound found in, e.g., blueberries, showed neuroprotective and anti-inflammatory effects
in SH-SY5Y human neuroblastoma cells and RAW 264.7 macrophages exposed to lipopolysac-
charide [278]. Phenylpropanoids isolated from raspberry fruit showed neuroprotective ac-
tivity against the oxidative stress induced by H2O2 in SH-SY5Y human neuroblastoma cells,
which was manifested by selective inhibition of the induction of apoptosis and ROS accumula-
tion and an increase in CAT activity [279]. The polyphenolic extracts from wild blackberries,
Rubus brigantinus and Rubus vagabundus, were shown to have neuroprotective effects in a cellu-
lar neurodegenerative model, through the lowering of intracellular ROS levels and modulation
of glutathione levels, as well as the activation of caspases [280]. An in vitro study confirmed
the neuroprotective effects of β-amyloid polyphenolic extracts from blueberries, black raspber-
ries, cranberries, red raspberries, and strawberries on microglia by scavenging free radicals,
capturing reactive carbonyl forms, anti-glycation, and anti-fibrillation effects [246]. The in vitro
study also confirmed the protective effect of polyphenol-rich blueberry extract on adult human
neuronal progenitor cells [281]. Polyphenol-rich infusions of white, red, black, and green tea
increased SOD, CAT, and GPx in the brains of Wistar rats poisoned with cadmium (Cd) and lead
(Pb) [282]. The antioxidant properties of various teas are believed to be due to their high content
of polyphenols such as catechins, including EGCG and quercetin, theaflavins, thearubigins,
and tannins, including tannic acid [91]. EGCG has a multidirectional neuroprotective mode
of action, including antioxidant, anti-inflammatory, anti-apoptotic, and anti-amyloidogenic
effects [283,284]. Tannins, which are phenolic compounds commonly found in fruits, vegetables,
herbs, and tea, have antioxidant properties and neuroprotective effects involving the prevention
of the accumulation of nitrites, inhibition of the expression and activity of heme oxygenase 1
(HO-1), and a reduction in the degradation of poly glycohydrolase (ADP-ribose) (PARP) [285].
Tannic acid showed a strong neuroprotective effect in an animal model of stroke (transient
occlusion of the middle cerebral artery; tMCAO), as well as Zn2+ chelating and antioxidant
activity in primary cortical neurons of Sprague-Dawley rats [286]. In addition, tannic acid
may soothe brain tissue damage caused by chronic exposure to heavy metals, including Cd,
aluminum (Al), and Pb, due to its strong antioxidant and metal chelating properties [71,96,287].
Tannic acid also significantly reduces behavioral disturbances, oxidative damage, and inflam-
matory responses due to brain injury, possibly related to the activation of PGC-1α and the
Nrf2/ARE signaling pathway [288]. Long-term administration of tannic acid has also been
shown to improve hypoperfusion-induced motor deficits and memory impairment in a rat
model of unilateral carotid occlusion [289]. This mechanism may be related to the inhibition of
apoptosis and cell death through the activation of antioxidant pathways, especially the Nrf2
pathway. Administration of gallic acid extract from Terminalia bellirica fruit to mice ameliorated
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chronic mild stress-induced depression-like behavior by reduction of serum corticosterone and
acetylcholinesterase (which led to regulation of hyperactivity of the hypothalamic-pituitary-
adrenal axis), elevation of neurotransmitters, inhibition of monoamino oxidases (which led
to modulation of the monoaminergic system), and mitigation of chronic mild stress-induced
oxidative stress and apoptotic cell death [290]. In turn, an alcoholic extract of Terminalia arjuna
bark showed protective activity against picrotoxin-induced anxiety in mice [291].

6. Summary and Perspectives

The results of preclinical studies indicate the potential of phenolic compounds in
reducing depressive behaviors by regulating factors related to oxidative stress, neuroin-
flammation, autophagy, dysregulation of the HPA axis, stimulation of monoaminergic
neurotransmission and neurogenesis, and modulation of the intestinal microbiota (Figure 3).
Future research should focus on describing the therapeutic and prophylactic mechanisms
of consuming phenolic-rich foods, with particular emphasis on their epigenetic mecha-
nisms. This knowledge can contribute to the development of more effective, personalized
therapies. In addition, understanding the relationship between the microbiome and the
brain is essential to developing microbiota-based therapeutic strategies that can be used in
brain disorders. Eating a diet rich in polyphenols could form part of dietary manipulation
as a non-invasive, natural, and inexpensive therapeutic agent to support a healthy brain.
Evidence suggests that polyphenols may have antidepressant effects.
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24. Katrenčíková, B.; Vaváková, M.; Paduchová, Z.; Nagyová, Z.; Garaiova, I.; Muchová, J.; Ďuračková, Z.; Trebatická, J. Oxidative
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69. Bliźniewska-Kowalska, K.; Gałecki, P.; Su, K.P.; Halaris, A.; Szemraj, J.; Gałecka, M. Expression of PON1, PON2, PON3 and MPO
genes in patients with depressive disorders. J. Clin. Med. 2022, 11, 3321. [CrossRef] [PubMed]

70. Sarkar, A.; Lehto, S.M.; Harty, S.; Dinan, T.G.; Cryan, J.F.; Burnet, P.W.J. Psychobiotics and the manipulation of bacteria-gut-brain
signals. Trends Neurosci. 2016, 39, 763–781. [CrossRef]

71. Winiarska-Mieczan, A.; Tomaszewska, E.; Donaldson, J.; Jachimowicz, K. The role of nutritional factors in the modulation of the
composition of the gut microbiota in people with autoimmune diabetes. Nutrients 2022, 14, 2498. [CrossRef]

72. Lurie, I.; Yang, Y.X.; Haynes, K.; Mamtani, R.; Boursi, B. Antibiotic exposure and the risk for depression, anxiety, or psychosis: A
nested case-control study. J. Clin. Psychiatry 2015, 76, 1522–1528. [CrossRef] [PubMed]

73. Bosch, J.A.; Nieuwdorp, M.; Zwinderman, A.H.; Deschasaux, M.; Radjabzadeh, D.; Kraaij, R.; Davids, M.; de Rooij, S.R.; Lok, A.
The gut microbiota and depressive symptoms across ethnic groups. Nat. Commun. 2022, 13, 7129. [CrossRef] [PubMed]

74. Nikolova, V.L.; Hall, M.R.B.; Hall, L.J.; Cleare, A.J.; Stone, J.M.; Young, A.H. Perturbations in gut microbiota composition in
psychiatric disorders: A review and meta-analysis. JAMA Psychiatry 2021, 78, 1343–1354. [CrossRef] [PubMed]

75. Jiang, H.; Ling, Z.; Zhang, Y.; Mao, H.; Ma, Z.; Yin, Y.; Wang, W.; Tang, W.; Tan, Z.; Shi, J.; et al. Altered fecal microbiota
composition in patients with major depressive disorder. Brain Behav. Immun. 2015, 48, 186–194. [CrossRef] [PubMed]

76. Naseribafrouei, A.; Hestad, K.; Avershina, E.; Sekelja, M.; Linlokken, A.; Wilson, R.; Rudi, K. Correlation between the human fecal
microbiota and depression. Neurogastroenterol. Motil. 2014, 26, 1155–1162. [CrossRef] [PubMed]

77. Takeda, K.; Kaisho, T.; Akira, S. Toll-like receptors. Neurosci. Biobehav. Rev. 2016, 64, 134–147.
78. Garcia-Bueno, B.; Caso, J.R.; Madrigal, J.L.; Lezam, J.C. Innate immune receptor Toll-like receptor 4 signalling in neuropsychiatric

diseases. Neurosci. Biobehav. Rev. 2016, 64, 134–147. [CrossRef]
79. Caso, J.R.; MacDowell, K.S.; González-Pinto, A.; García, S.; de Diego-Adeliño, J.; Carceller-Sindreu, M.; Sarramea, F.;

Caballero-Villarraso, J.; Gracia-García, P.; De la Cámara, C.; et al. Gut microbiota, innate immune pathways, and inflammatory
control mechanisms in patients with major depressive disorder. Transl. Psychiatry 2021, 11, 645. [CrossRef] [PubMed]

80. Dicks, L.M.T. Gut bacteria and neurotransmitters. Microorganisms 2022, 10, 1838. [CrossRef] [PubMed]
81. Foster, J.A.; Baker, G.B.; Dursun, S.M. The relationship between the gut microbiome-immune system-brain axis and major

depressive disorder. Front. Neurol. 2021, 12, 721126. [CrossRef]
82. Janowska, M.; Rog, J.; Karakula-Juchnowicz, H. Disruptions within gut microbiota composition induced by improper antibiotics

therapy as a probable trigger factor for development of depression—Case reports. Ann. Agric. Environ. Med. 2021, 28, 713–718.
[CrossRef]

83. Shin, W.; Kim, H.J. Intestinal barrier dysfunction orchestrates the onset of inflammatory host-microbiome cross-talk in a human
gut inflammation-on-a-chip. Proc. Natl. Acad. Sci. USA 2018, 115, E10539–E10547. [CrossRef]

84. Kiecolt-Glaser, J.K.; Wilson, S.J.; Bailey, M.L.; Andridge, R.; Peng, J.; Jaremka, L.M.; Fagundes, C.P.; Malarkey, W.B.; Laskowski, B.;
Belury, M.A. Marital distress, depression, and a leaky gut: Translocation of bacterial endotoxin as a pathway to inflammation.
Psychoneuroendocrinology 2018, 98, 52–60. [CrossRef] [PubMed]

85. Vogelzangs, N.P.; de Jonge, J.H.; SmitBahn, S.; Penninx, B.W. Cytokine production capacity in depression and anxiety. Transl. Psy-
chiatry 2016, 6, e825. [CrossRef] [PubMed]

86. Candelli, M.; Franza, L.; Pignataro, G.; Ojetti, V.; Covino, M.; Piccioni, A.; Gasbarrini, A.; Franceschi, F. Interaction between
lipopolysaccharide and gut microbiota in inflammatory bowel diseases. Int. J. Mol. Sci. 2021, 22, 6242. [CrossRef] [PubMed]

87. Leclercq, S.; Matamoros, S.; Cani, P.D.; Neyrinck, A.M.; Jamar, F.; Stärkel, P.; Windey, K.; Tremaroli, V.; Bäckhed, F.;
Verbeke, K.; et al. Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity. Proc.
Natl. Acad. Sci. USA 2014, 111, E4485–E4493. [CrossRef] [PubMed]
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201. Winiarska-Mieczan, A.; Kwiecień, M. The effect of exposure to Cd and Pb in the form of a drinking water or feed on the
accumulation and distribution of these metals in the organs of growing Wistar rats. Biol. Trace Elem. Res. 2016, 2, 230–236.
[CrossRef]

202. Li, M.; Liu, P.; Xue, Y.; Liang, Y.; Shi, J.; Han, X.; Zhang, J.; Chu, X.; Chu, L. Tannic acid attenuates hepatic oxidative stress,
apoptosis and inflammation by activating the Keap1-Nrf2/ARE signaling pathway in arsenic trioxide-toxicated rats. Oncol. Rep.
2020, 44, 2306–2316. [CrossRef] [PubMed]

203. Jing, W.; Xiaolan, C.; Yu, C.; Feng, Q.; Haifeng, Y. Pharmacological effects and mechanisms of tannic acid. Biomed. Pharmacother.
2022, 154, 113561. [CrossRef]

204. Zhang, J.; Cui, L.; Han, X.; Zhang, Y.; Zhang, X.; Chu, X.; Zhang, F.; Zhang, Y.; Chu, L. Protective effects of tannic acid
on acute doxorubicin-induced cardiotoxicity: Involvement of suppression in oxidative stress, inflammation, and apoptosis.
Biomed. Pharmacother. 2017, 93, 1253–1260. [CrossRef] [PubMed]

205. Hussain, G.; Huang, J.; Rasul, A.; Anwar, H.; Imran, A.; Maqbool, J.; Razzaq, A.; Aziz, N.; Makhdoom, E.U.H.; Konuk, M.; et al.
Putative roles of plant-derived tannins in neurodegenerative and neuropsychiatry disorders: An updated review. Molecules 2019,
24, 2213. [CrossRef] [PubMed]

206. Luduvico, K.P.; Spohr, L.; Soares, M.S.P.; Teixeira, F.C.; de Farias, A.S.; Bona, N.P.; Pedra, N.S.; de Oliveira Campello Felix, A.;
Spanevello, R.M.; Stefanello, F.M. Antidepressant effect and modulation of the redox system mediated by tannic acid on
lipopolysaccharide-induced depressive and inflammatory changes in mice. Neurochem. Res. 2020, 45, 2032–2043. [CrossRef]
[PubMed]

207. Yang, K.; Jian, S.; Wen, C.; Guo, D.; Liao, P.; Wen, J.; Kuang, T.; Han, S.; Liu, Q.; Deng, B. Gallnut tannic acid exerts anti-stress
effects on stress-induced inflammatory response, dysbiotic gut microbiota, and alterations of serum metabolic profile in beagle
dogs. Front. Nutr. 2022, 9, 847966. [CrossRef]

208. Rodríguez-Landa, J.F.; German-Ponciano, L.J.; Puga-Olguín, A.; Olmos-Vázquez, O.J. Pharmacological, neurochemical, and
behavioral mechanisms underlying the anxiolytic- and antidepressant-like effects of flavonoid chrysin. Molecules 2022, 27, 3551.
[CrossRef] [PubMed]
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