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Abstract: A relationship between ulcerative colitis (UC) and diet has been shown in epidemiological
and experimental studies. In a 6-month, open-label, randomized, placebo-controlled trial, adult
UC patients in clinical remission were randomized to either an “Anti-inflammatory Diet (AID)”
or “Canada’s Food Guide (CFG)”. Menu plans in the AID were designed to increase the dietary
intake of dietary fiber, probiotics, antioxidants, and omega-3 fatty acids and to decrease the intake
of red meat, processed meat, and added sugar. Stool was collected for fecal calprotectin (FCP) and
microbial analysis. Metabolomic analysis was performed on urine, serum, and stool samples at the
baseline and study endpoint. In this study, 53 patients were randomized. Five (19.2%) patients in
the AID and 8 (29.6%) patients in the CFG experienced a clinical relapse. The subclinical response
to the intervention (defined as FCP < 150 µg/g at the endpoint) was significantly higher in the AID
group (69.2 vs. 37.0%, p = 0.02). The patients in the AID group had an increased intake of zinc,
phosphorus, selenium, yogurt, and seafood versus the control group. Adherence to the AID was
associated with significant changes in the metabolome, with decreased fecal acetone and xanthine
levels along with increased fecal taurine and urinary carnosine and p-hydroxybenzoic acid levels. The
AID subjects also had increases in fecal Bifidobacteriaceae, Lachnospiraceae, and Ruminococcaceae.
In this study, we found thatdietary modifications involving the increased intake of anti-inflammatory
foods combined with a decreased intake of pro-inflammatory foods were associated with metabolic
and microbial changes in UC patients in clinical remission and were effective in preventing subclinical
inflammation.

Keywords: ulcerative colitis; diet; clinical trial

1. Introduction

Ulcerative colitis (UC) is a subtype of inflammatory bowel disease (IBD) characterized
by chronic relapsing and remitting inflammation of the colonic mucosa [1]. Diarrhea and the
presence of blood in the stool are the most common symptoms of active UC. UC prevalence
and incidence have been increasing worldwide [2]. Although the exact pathophysiological
mechanisms of UC development remain unknown, it has been suggested that a combination
of several factors, including genetic predisposition, epithelial barrier defects, dysregulated
immune responses, microbial dysbiosis, and environmental factors, plays a major role [1,2].

As shown in several experimental and epidemiological studies, dietary factors are
among the potential environmental contributors to UC development. Studies have linked
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the high intake of soft drinks and sucrose and n-6 polyunsaturated fatty acids (PUFAs)
and the low intake of fruits, vegetables, and n-3 PUFAs with an association with UC [3–7].
Although the exact mechanisms responsible for the association between diet and UC
are unknown, several mechanisms have been suggested. An unhealthy dietary pattern
such as a Western diet has been linked to dysbiosis of the gut microbiome, epithelial
barrier dysfunction, and persistent pro-inflammatory mucosal immune responses that may
ultimately trigger and perpetuate increased chronic colonic inflammation [4].

Multiple disease relapses result in impaired quality of life in IBD patients [8] and an
increased risk of colitis-associated colorectal cancer in patients with longstanding UC and
Crohn’s colitis [9]. Many UC patients attribute their disease relapses to diet, and there are
several, mostly observational and retrospective, studies of dietary factors that have been
associated with the increased risk of UC relapse [10,11]. However, according to a recent
Cochrane systematic review, a consensus on the composition of evidence-based dietary
interventions in UC patients is required, and there is a need for more high-quality, well-
powered, randomized, controlled trials to assess the efficacy of dietary interventions [12].
In the present randomized controlled pilot trial, we aimed to assess whether a diet based
on dietary components with proven anti-inflammatory properties would be effective in
maintaining remission in adult UC patients and to determine the potential protective
mechanisms.

2. Materials and Methods
2.1. Study Design and Patients

This study was an open-label, randomized, controlled, parallel-group study conducted
at the University of Alberta in Edmonton, Alberta, Canada, from 2014 to 2017 on UC
patients aged 18 to 75 years. The inclusion criteria included patients who were in clinical
remission (partial Mayo score of ≤2, with a rectal bleeding subscore of ≤1)) [13] but who
also had a documented history of a UC clinical relapse (partial Mayo of score > 2) in the
previous 18 months. Participants could be on any standard UC medications if they were
on a stable dosage of oral 5-aminosalicylic acid (5-ASA) for at least 2 weeks and on a
stable dosage of immunosuppressants or anti-tumor necrosis factor (TNF)-α for at least
2 months. We excluded patients who were on corticosteroids or antibiotics within 2 weeks
of enrollment. In addition, the study subjects were excluded if they were pregnant or
lactating, had significant co-morbidities, or a history of colectomy. All participants needed
to be able to communicate in English.

After stratification for sex and the use of anti-TNF medications, the subjects were
randomized 1:1 into the Anti-inflammatory Diet (AID) or the control group using the ran-
domization module of REDCap (Research Electronic Data Capture) [14]. The study protocol
was approved by the Health Research Ethics Board, University of Alberta (Pro00035413),
and written informed consent was obtained from all the participants (ClinicalTrials.gov (ac-
cessed on 10 June 2021). Identifier: NCT02093780). Neither the patients nor the public were
involved in the design, or conduct, or reporting, or dissemination plans of our research.

2.2. Intervention

The patients who were randomized to the control arm received dietary recommenda-
tions (not menu plans) to comply with Canada’s Food Guide (CFG), version 2007 [15], with
respect to daily recommended food group servings (Supplementary Table S1). The CFG
was primarily developed to help Canadians achieve a healthy, balanced diet and to reduce
the risk of obesity, type 2 diabetes, heart disease, certain types of cancer, and osteoporosis.
The patients in the CFG group had the same amount of face-to face counselling at the
baseline, at months 1, 3, and 6, or at relapse and telephone visits by the same dietitian at
months 2, 4, and 5.

The participants randomized to the AID group were provided with 45 to 60 min face-
to-face dietary counselling by the registered dietitian at the baseline, at months 1, 3, and 6, or
at relapse. At months 2, 4, and 5, the dietary recommendations were delivered by the same
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dietitian through 30 min telephone counselling sessions. They were instructed to follow a
structured four-week menu plan that included recipes and nutrition tips. The menu plan
was a modified version of the previously developed menu plan for the management and
prevention of type 2 diabetes, which has been described elsewhere [16]. The original anti-
diabetic menu plan was modified to emphasize the specific foods shown in the literature to
improve IBD-related symptoms or prevent IBD relapses. In terms of the number of food
group servings, the menus followed the recommended food group servings outlined in
the CFG [15]. On average, they provided 2000 kcal with 54%, 19%, and 27% of the energy
from carbohydrates, protein, and fat, respectively. Each recipe included ways to increase
or reduce caloric intake by 200 kcal. Menu plans and nutrition tips for the AID group
were designed to increase the participants’ intake of antioxidants, dietary fibers, probiotics,
and n-3 PUFA and decrease the consumption of red meat, processed meat, and added
sugar. For example, foods high in antioxidants, such as berries, were incorporated into the
daily menu plan. Other foods high in antioxidants, such as legumes or pulses, were also
incorporated into several days of each of the four weeks of menus. Probiotics from foods,
such as plain yogurt with active culture or the amount of probiotics noted on the product
label, were included. In addition, a significant number of recipes included foods with high
prebiotic/dietary fiber content, such as onion, garlic, and asparagus. The menu plan also
ensured that the participants were consuming two servings of fish weekly. Furthermore, at
least 50% of the weekly fish recipes involved consuming n-3 PUFA enriched fish, such as
salmon. To facilitate adherence to the menus, several recipes, cooking tips, weekly grocery
lists and a list of Alberta-produced foods and places to obtain them were also provided to
the participants. In addition, the participants randomized to the AID group were provided
with a food list from which they could choose their preferred food items. This could help
the dietitian direct an individualized dietary plan for the participants to incorporate their
daily dietary requirements.

2.3. Demographic and Clinical Assessments

Demographic and clinical information was collected at the baseline. At the baseline
and at the end of the study, weight and height were measured, and body mass index (BMI)
was calculated. We used the Short Inflammatory Bowel Disease Questionnaire (SIBDQ) [17]
to assess the health-related quality of life in all the patients at the baseline and at month
6 or at clinical relapse. Disease activity was assessed at the baseline and then monthly,
using a partial Mayo score that included stool frequency, rectal bleeding, and a physician’s
assessment, with total values ranging from 0 to 9 [13].

2.4. Dietary Assessments

To assess adherence to the dietary recommendations and changes in the dietary intake
from the baseline to the end of the trial, monthly self-administered 24 h dietary recalls were
used. The dietary intake data for 24 h dietary recalls were collected and analyzed using
the Automated Self-Administered 24 h (ASA24) Dietary Assessment Tool 2014, developed
by the National Cancer Institute, Bethesda, MD [18]. A validated dietary inflammatory
index (DII) score, which assesses the inflammatory potential of a diet, was calculated using
the method proposed by Shivappa et al. [19]. A higher DII score (more positive values)
indicates a more inflammatory diet, and a lower DII score (more negative values) indicates
a less inflammatory diet.

2.5. Laboratory Assessments

Blood, urine, and stool samples were collected from all the patients during the clinic
visits (baseline, months 1, 3 and 6). Fecal calprotectin (FCP) was measured in the stool
samples at the baseline and at months 1, 3, and 6 (or at the time of relapse) using an enzyme-
linked immunosorbent assay with monoclonal antibodies specific to calprotectin (Bühlmann
Laboratories AG, Basel, Switzerland). The subclinical response to the intervention was
defined as FCP < 150 µg/g at the endpoint.
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Targeted metabolomic assays that measure up to 160 metabolites each, including amino
acids, organic acids, short-chain fatty acids, sugars, lipids, acylcarnitines, and biogenic
amines, were conducted on the urine, serum, and stool samples at the baseline and at the
end of the trial (month 6 or at relapse). The urine samples were assayed using a combined
direct infusion (DI-)/liquid chromatography (LC-) tandem mass spectrometry (MS/MS)
as well as a gas-chromatography (GC-) MS assay. DI- LC MS/MS and nuclear magnetic
resonance (NMR) spectroscopy were used to identify and quantify the metabolites in the
serum samples. NMR was used to identify and quantify metabolites in the stool samples.
All the metabolomic assays were conducted at The Metabolomics Innovation Center-TMIC
(Edmonton, AB, Canada) following previously described protocols [20–23].

Genomic DNA was extracted from stool samples using the FastDNA Spin Kit for
feces (MP Biomedicals, Lachine, QC, Canada) and quantified using the PicoGreen DNA
quantification kit (Invitrogen, Carlsbad, CA, USA). Fecal microbial composition was as-
sessed using Illumina’s established 16S rRNA amplicon sequencing method and the MiSeq
DNA sequencing platform. No deviations from the manufacturer’s protocol were made. A
segment of the V3 and V4 region of the 16S gene was amplified with gene-specific primers
(aligning to 341 and 805 bp in the gene) that also included an adapter sequence overhang:
Bact_16s_ILL1_341mF 5′-TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG CCT
ACG GGN GGC WGC AG-3′, Bact_16s_ILL1_805mR 5′- GTC TCG TGG GCT CGG AGA
TGT GTA TAA GAG ACA GGA CTA CHV GGG TAT CTA ATC C-3′. This PCR reaction
was cycled 25 times, and the resulting reaction was purified using bead-based clean-up
followed by an 8-cycle PCR reaction using Illumina’s proprietary bar-coding primers that
also align to the adapter sequence. After a second clean-up, the bar-coded libraries were
diluted, denatured, pooled, and run using a V3 300 bp reagent cartridge on the MiSeq
system. The Divisive Amplicon Denoising Algorithm version 2 (DADA2 1.12.1) was used
for quality filtering, trimming, error correction, exact sequence inference, chimera removal,
and the generation of amplicon sequence variant (ASV) tables [24]. Taxonomic classification
was performed using a Naïve Bayes classifier trained using the GreenGenes 97% clustered
sequences (version 13_8), obtained from https://benjjneb.github.io/dada2/training.html
(accessed on 15 July 2021)

2.6. Study Outcomes

The primary outcome was the clinical relapse of UC, defined as a partial Mayo score of
> 2, measured at each face-to-face or telephone visit. The secondary outcomes were changes
in FCP, the subclinical response rate (FCP < 150 µg/g at the endpoint), the health-related
quality of life scores, and the metabolomic and gut microbial profiles from the baseline to
the end of the trial.

2.7. Sample Size Calculation

With a power of 80%, a type I error of 5%, a clinical relapse rate of 10% in the AID
group and 40% in the control group, and a drop-out rate of 10%—a total sample size of
70 participants was calculated to be required in this study (35 participants in each group).

2.8. Statistical Analysis

An intention-to-treat approach was used to analyze the data, such that the data from
all the patients were analyzed according to the diet to which they were randomized. The
Kolmogorov–Smirnov test and histograms were used to assess the normality of the data
distribution. Continuous and categorical variables are presented as mean ± SD or median
(interquartile range) and number (%), respectively. Logarithmic transformation was used
to normalize those data that were not normally distributed. Chi-square or Fisher’s exact
tests were used to compare qualitative variables between groups. A Student’s t-test or a
Mann–Whitney U test was used to compare quantitative variables between groups, where
appropriate. The baseline values and endpoint measures were compared within each
group using a paired t-test or a Wilcoxon signed-rank test. The FCP changes from the
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baseline to months 1, 3, and 6 within each group were assessed using analysis of variance
with the Friedman test (a nonparametric test). To examine the effect of intervention on
fecal calprotectin, split-plot repeated measures ANOVA (split-plot rANOVA) was used, in
which the effect of time, intervention (effects between groups), and time × intervention
interactions were assessed. For this analysis, we controlled for the baseline levels of
the outcome variables and the potential confounding variables. SPSS version 20.0 (IBM,
Armonk, NY, USA) was used for statistical analysis, and p < 0.05 was considered statistically
significant.

For the metabolomic analysis, the metabolites with at least 50% missing values were
removed from further analysis. For those analytes with < 50% missing values, the missing
values were replaced by half of the minimum positive values in the original dataset. Con-
centrations of urinary metabolites (µmol/L) were normalized to creatinine (mmol/L) and
reported as the ratio (µmol/mmol). Concentrations of fecal metabolites were normalized
to the dry weight of the stool sample and reported as µmol/gr. Multivariate statistical
analysis was performed using partial least squares discriminant analysis (PLS-DA). Per-
mutation analysis using random resampling (n = 2000) of the two groups of patients (i.e.,
AID baseline vs. CFG baseline, AID baseline vs. end of trial, and CFG baseline vs. end
of trial) was conducted, and a p value was determined. Variable importance in projection
(VIP) scores were used to identify the major metabolites responsible for the discrimination
between the metabolomic profiles of the two groups of patients. The VIP score indicates the
contribution of each feature to the regression model. Higher values of VIP scores indicate a
greater contribution of the metabolites to the group separation. The MetaboAnalyst 4.0 [25]
was used for all metabolomic-associated statistical analyses.

For microbial analysis, the ASV tables were imported into R 3.6.1 to calculate α-
diversity and β-diversity metrics, using the Phyloseq v1.28.0 package [26]. Based on
α-diversity rarefaction, the samples were included in the analyses if the rarefaction curves
reached a plateau and a minimum cut-off of 10,000 counts was exceeded. Differential
abundance analysis for bacterial ASVs was performed using DESeq2. β-diversity was
analyzed using permutational multivariate analysis of variance. Analyses were adjusted
for age, gender, and fecal calprotectin levels at the baseline. All P values were adjusted by
the Benjamini–Hochberg method to control the false discovery rate at 5%.

To investigate and visualize the interactions between changes in DII, metabolites, gut
microbial composition, and FCP levels from the baseline to the last visit, the correlations
between these features were calculated and visualized. For this purpose, the debiased
sparse partial correlation (DSPC) algorithm option of the Metscape v3.1.321 [27], which
is a plug-in for Cytoscape [28], was applied. The results were visualized as weighted net-
works where nodes represented different features and edges represented partial correlation
coefficients.

3. Results
3.1. Demographics: AID vs. CFG

Fifty-three UC patients in clinical remission were randomized to the two dietary
intervention groups: 26 to the AID and 27 to the CFG group. Due to the feasibility
issues (being a single-center study, the eligibility criteria, etc.) the pre-planned number of
participants could not be recruited into the study. The flow of participants through the trial
is presented in Figure 1. Two patients left the study just before the clinic visit at month
3; however, their data were used for statistical analysis by following the last-observation-
carried-forward method. The mean age of the participants was 41.4 ± 14.7 years; 34 (64.2%)
participants were female; 25 (47.2%) had pan-colitis; 22 (41.5%) had left-sided colitis; 16
(30.2%) were on immunosuppressants; and 13 (24.5%) were on anti-TNF medications. The
baseline demographic and clinical characteristics of the participants across the two diet
groups are summarized in Table 1. There were no significant differences in the baseline
characteristics between the groups.
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Figure 1. CONSORT flow diagram.

3.2. Clinical Relapse and Changes in Quality of Life: AID vs. CFG

In total, 13 (24.5%) patients experienced a clinical relapse during the intervention. Five
(19.2%) patients in the AID group and eight (29.6%) patients in the CFG diet group had a
UC clinical relapse, which was not statistically significant (p = 0.38). The SIBDQ scores (to
assess quality of life) did not change significantly from the baseline to the last visit, either
in the control group (5.5 ± 0.7 vs. 5.5 ± 0.9, p = 0.80) or in the AID group (5.5 ± 0.9 vs.
5.6 ± 0.8, p = 0.56).

3.3. Changes in FCP Levels: AID vs. CFG

The baseline FCP values did not differ significantly between the two groups (Table 1).
The changes in FCP from the baseline to month 6 or the time of relapse in the two diet
groups are presented in Figure 2. While there was a trend towards a decrease in FCP from
the baseline to the end of the trial in the patients randomized to the AID group (p = 0.053),
the FCP values increased significantly in patients randomized to the CFG group from the
baseline to month 6 (p = 0.002). In addition, the comparison of these FCP changes between
the two diet groups using split-plot rANOVA (adjusting for the baseline FCP in each group)
was statistically significant (p = 0.02). Furthermore, the subclinical response to the dietary
intervention, defined as FCP < 150 µg/g at the endpoint, was significantly higher in the
AID group in comparison to the CFG group (69.2 vs. 37.0%, p = 0.02).
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Table 1. Demographic and clinical characteristics of study participants at baseline.

Characteristics AID
(n = 26)

CFG
(n = 27) p-Value

Age, years 36.5 (30.0–55.5) 43.0 (25.0–54.0) 0.64
Females, n (%) 15 (57.7) 19 (70.4) 0.34

Current smoker, n (%) 1 (3.8) 1 (3.7) 1.00
University degree, n (%) 16 (61.5) 10 (37.0) 0.07
Body mass index, kg/m2 25.2 (22.1–29.2) 24.2 (22.6–27.6) 0.78

Partial Mayo score 0 (0–0) 0 (0–0) 1.00
Years since diagnosis, years 9.0 (5.5–12.8) 6.0 (3.0–13.0) 0.35

Duration of remission, months 6.0 (3.0–9.5) 6.0 (4.0–8.0) 0.96

UC subtype, n (%)
Proctitis

Left-sided colitis
Pancolitis

3 (11.5)
12 (46.2)
11 (42.3)

3 (11.1)
10 (37.0)
14 (51.9)

0.77

UC medications, n (%)

No UC medication
5-aminosalicylic acid
Immunosuppressants
Biologics (Anti-TNF)

2 (7.7)
18 (69.2)
9 (34.6)
7 (26.9)

3 (11.1)
22 (81.5)
7 (25.9)
6 (22.2)

0.67
0.30
0.49
0.69

C-reactive protein,
mg/L 1.1 (0.7–2.0) 1.2 (0.5–3.7) 0.67

Fecal calprotectin, µg/g 129 (70–266) 184 (85–483) 0.43
Fecal calprotectin < 150

µg/g, n (%) 16 (61.5) 13 (48.1) 0.41

Short Inflammatory
Bowel Disease
Questionnaire

5.5 (4.9–6.4) 5.0 (5.6–6.0) 0.99

Figure 2. Changes in fecal calprotectin levels from baseline to the end of the trial. While there
was a statistically significant increase in fecal calprotectin from baseline to month 6 or at time of
relapse in patients randomized to the Canada’s Food Guide (CFG) diet (p = 0.002), patients in the
Anti-Inflammatory Diet (AID) showed a slight decrease in their fecal calprotectin levels during the
same period (p = 0.053). Each box shows the median and interquartile range values, and a Friedman
test was used to compare FCP median values from baseline to the last visit in each group. Changes in
FCP from baseline to the last visit between the two groups after adjusting for baseline FCP values
was also statistically significant (p = 0.02) using split-plot repeated measures ANOVA.

3.4. Changes in Dietary Intake: AID vs. CFG

While there were no statistically significant changes (relative to the baseline) in the
dietary intake of the patients randomized to the CFG group, the patients in the AID group
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significantly increased their intake of fiber, zinc, phosphorus, selenium, yogurt, and seafood
(Supplementary Table S1). The DII scores at the baseline were not significantly different
between the two diet groups (−1.4 (−0.6–1.6) in AID vs. −2.1 (−1.2–0.5) in CFG, p = 0.29).
While there was a significant decrease in the total DII score of the patients in the AIG
group, the patients in the CFG group did not experience any significant changes in their
DII (Figure 3). Increases in FCP were significantly correlated with decreases in the intake of
yogurt (rs = −0.39, p = 0.01), poultry (rs = −0.34, p = 0.01), seafood (rs = −0.29, p = 0.05).
Increases in FCP were also significantly correlated to increases in the intake of fruit juices
(rs = 0.38, p = 0.01), cured meat (rs = 0.29, p = 0.04), and saturated fatty acids (rs = 0.28,
p = 0.05), from the baseline to the end of the trial.

Figure 3. Comparison of dietary inflammatory index (DII) scores (median and interquartile range)
from baseline to the end of the trial between the two intervention groups. There was a significant
decrease in DII scores in patients randomized to the Anti-inflammatory Diet.

3.5. Changes in Gut Bacterial Composition: AID vs. CFG

A microbial profile of stool samples from the patients in the two diet groups at the base-
line and at the last visit (either month 6 or the time of relapse) is shown in Supplementary
Figure S1. As presented in the Principal Coordinates Analysis (PCoA) plots (Figure 4A),
there were no significant differences in the gut bacterial composition of patients in the two
diet groups from the baseline to month 6 or at the time of relapse. The alpha diversity
scores (Chao 1 estimator and Shannon index) also did not change significantly from the
baseline to the end of the trial in the two intervention groups (Supplementary Figure S2).
However, as shown in Figure 4B,C, several bacterial ASVs changed significantly from the
baseline to month 6 or the time of relapse in the two intervention groups. While there was a
significant decrease in Bifidobacteriaceae, Lachnospiraceae, Clostridiaceae, and Ruminococcaceae
in the CFG group, there was a significant increase in the abundance of Bifidobacteriaceae,
Lachnospiraceae, and Ruminococcaceae in the AID group from the baseline to the last visit.



Nutrients 2022, 14, 3294 9 of 18

Figure 4. (A) Principal Coordinates Analysis (PCoA) plot of beta-diversity for bray distance matrix
showing no significant changes in gut microbial composition in the Anti-inflammatory Diet (AID) and
Canada’s Food Guide (CFG) groups from baseline to month 6 or time of clinical relapse. (B) Differen-
tial abundance testing showing significant changes in several bacterial amplicon sequence variants
(ASVs) from baseline to the end of the intervention in the Canada’s Food Guide diet group (adjusted
p < 0.01, absolute fold change >5). (C) Differential abundance testing showing significant changes in
several bacterial amplicon ASVs from baseline to the end of the intervention in the Anti-Inflammatory
Diet group (adjusted p < 0.01, absolute fold change >5).

3.6. Changes in Metabolome: AID vs. CFG

Using a combination of the LC-MS, GC-MS, and NMR metabolomic platforms, we
could identify and quantify 184, 122, and 49 metabolites in the serum, urine, and stool
samples, respectively. The metabolomic profiles of the patients between the two diet groups
at the baseline were not significantly different from each other (p = 0.31). The comparison of
the metabolome in the CFG patients did not show any significant changes from the baseline
to month 6 or the time of relapse (Figure 5A). However, there was a significant separation
of the metabolomic profiles of the patients in the AID group from the baseline to the end of
the trial (Figure 5B). The VIP scores and concentrations of the major metabolites responsible
for this separation are presented in Table 2. The AID intervention was associated with
decreases in phosphatidylcholine acyl-alkyl (PC ae) C38:3 (urine), acetone (stool), and
xanthine (stool) and increases in PC ae C38:5 (urine), pyruvic acid (serum), and taurine
(stool).
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Figure 5. Partial least squares discriminant analysis plot comparing the metabolomic profiles of
patients in the two diet groups from baseline to month 6 or time of relapse. While patients in the
Canada’s Food Guide diet (A) did not have any significant changes in their metabolome (p = 0.93,
R2 = 0.26, Q2 = −0.38), patients randomized to the Anti-Inflammatory Diet (B) group showed a
significant change in their metabolomic profiles from baseline to the end of the intervention (p = 0.01,
R2 = 0.74, Q2 = 0.27).

Table 2. Concentration of major metabolites in different biofluids responsible for the discrimination
of metabolome from baseline to month 6 or time of relapse in the anti-inflammatory diet group.

Metabolites
(Biofluid/Secreta)

Time p-Value 1 VIP Score
Baseline Month6/Relapse

PC ae C38:3 (urine), µM/mM
creatinine 0.0012 (0.0009–0.0022) 0.0008 (0.0004–0.0013) 0.003 2.20

PC ae C38:5 (urine), µM/mM
creatinine 0.0002 (0.0001–0.0006) 0.0006 (0.0002–0.0016) 0.03 1.65

Acetone (stool), µM/g 0.0975 (0.0422–0.2875) 0.0440 (0.0320–0.1387) 0.021 1.62
Carnosine (urine), µM/mM

creatinine 0.4760 (0.2304–1.6037) 1.1171 (0.3931–2.6940) 0.026 1.47

Pyruvic acid (serum), µM 34.2000 (23.3750–50.7000) 45.4000 (35.0750–62.5250) 0.007 1.35
Taurine (stool), µM/g 0.2390 (0.1140–1.7060) 0.7565 (0.1623–2.3445) 0.049 1.26

p-Hydroxybenzoic acid (urine),
µM/mM creatinine 0.3433 (0.2136–0.7777) 0.7265 (0.3568–1.6008) 0.012 1.15

Xanthine (stool), µM/g 0.0945 (0.0630–0.1358) 0.0725 (0.0438–0.1215) 0.025 1.13

3.7. Interaction between Changes in Diet, Metabolome, Microbiome, and FCP

The correlation network between the changes in the metabolites levels, the bacterial
relative abundances at the genus level, the DII (as inflammatory potential of diet), and
the FCP levels from the baseline to the time of relapse or the month 6 visit are presented
in Figure 6. Although the changes in the total DII scores were not directly correlated
with the changes in FCP levels, the decreased DII scores (i.e., increased intake of anti-
inflammatory foods) were correlated with significant changes in gut bacterial composition
(increased Collinsella and Blautia) and metabolites levels (increased urinary succinic acid
and 2,4-dihydroxybutanoic acid). As shown in Figure 6, the changes in these bacteria and
metabolites were associated with changes in the levels of other metabolites and the relative
abundancies of several bacteria which were correlated with changes in the FCP levels from
the baseline to the last visit.
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Figure 6. Correlation between changes in dietary inflammatory index (DII) score, fecal calprotectin
(FCP), metabolites (urine: Ur, stool: St, and serum: r), and gut bacterial composition (genus level)
from baseline to last visit (time of relapse or month 6). The statistically significant correlations were
filtered using |Spearman’s rank correlation| >0.3, and subsequently, a correlation network was built.
Only metabolites and bacteria that were correlated with either DII or FCP are shown. Blue lines
represent negative correlations, and red lines represent positive correlations.

4. Discussion

Our study is the first 6-month-dietary randomized controlled intervention study to
assess prevention of relapses in UC. In this study, the patients were consuming their own
choice of preferred foods within the principles of the diet intervention group and closely
monitored by a dietitian for adherence. Although there were no significant differences in
clinical relapse in this 6-month RCT, we found that adherence to the AID maintained and
even showed a trend towards reduced FCP levels, suggesting that this diet may have a
beneficial role in preventing the onset of subclinical colitis. Importantly, we also found
significant changes in the serum, urine, and stool metabolomes and changes to specific
fecal bacteria following the AID in comparison to the CFG dietary recommendations.

The role of diet in the pathogenesis of IBD has been reported in several animal and
epidemiological studies. It has been suggested that a Western diet characterized by a
high content of refined carbohydrates, saturated fatty acids, red meat, and processed



Nutrients 2022, 14, 3294 12 of 18

meat and a low content of fruits, vegetables, legumes, and fibers increases the risk of IBD
development through significant pro-inflammatory impacts on the host immune system
and microbial composition or function [4,29]. In addition, prospective cohort studies have
reported several dietary factors, such as red meat intake and processed meat intake, to
be associated with the increased risk of disease relapse in UC patients [30]. Many IBD
patients also believe that dietary factors are responsible for their disease development or
relapse of symptoms. According to a large cross-sectional study in the UK [31], about
half of IBD patients believed that diet could be the initiating factor in IBD and/or could
trigger a flare. In addition, Limdi et al. [31] reported that 66% of IBD patients deprived
themselves of their favorite foods to prevent relapses and that such dietary restrictions may
eventually lead to various nutritional deficiencies. However, there are very few evidence-
based dietary recommendations for relapse prevention in IBD patients, partly due to a lack
of well-designed, randomized dietary interventions.

In the present study, we did not find a significant difference in clinical relapse rate
between the two dietary interventions. It should be noted that our study was not sufficiently
powered to detect a small statistically and clinically important difference in the clinical
relapse rate between the AID and CFG diets. However, we found that the AID prevented a
statistically significant increase in FCP, which is an important objective marker of subclinical
colonic inflammation and a strong predictor of future disease relapse [32]. Therefore, a
larger sample size and/or longer duration study might have resulted in a statistically
significant difference in the clinical relapse rate between the two groups. However, our
6-month study is the longest duration dietary intervention study conducted on UC patients
so far.

The AID used in the present study was characterized by an increased intake of an-
tioxidants, dietary fibers, probiotics, and n-3 PUFA and a decreased intake of red meat,
processed meat, and added sugar. The AID design was based on our current understanding
of the role of dietary factors in the pathogenesis or disease course in IBD patients. For
instance, red and processed meat intake was shown to be related to an increased risk of UC
relapse [30]. Furthermore, the consumption of fruits and vegetables as two major sources
of antioxidants and dietary fiber was related to decreased odds of UC development in
a meta-analysis [33]. Another recent meta-analysis study found a negative association
between long-chain n-3 PUFA intake and UC development [34].

The assessment of dietary patterns and indices has become more popular in nutrition
research, considering that we eat complex combinations of foods, rather than individual
nutrients and food groups. In the present study, in addition to comparing single nutrients
or foods, we used DII scores to assess compliance and changes in the diet during the
intervention. The DII was developed to characterize the inflammatory potential of a
diet based on evidence from human studies, cell culture, and animal experiments [19].
Higher DII scores, which are reflective of a higher intake of inflammation-inducing foods
or nutrients, have been related to several chronic conditions, such as cardiometabolic
diseases, respiratory diseases, mental conditions, and cancers. In addition, a high DII was
associated with increased odds of UC in a case-control study [35]. In the present study,
we found a significant decrease in DII scores as a result of the AID intervention due to
the increased intake of anti-inflammatory nutrients or foods and the decreased intake of
pro-inflammatory foods or nutrients. The observed reduction in DII scores also confirms the
participants’ compliance with the diet. Furthermore, we found that increased consumption
of yogurt, seafood, or poultry and decreased consumption of cured meat or saturated fatty
acids were correlated with decreased FCP levels from the baseline to the end of the study.
This finding highlights the anti-inflammatory nature of yogurt, poultry, and seafood and the
inflammatory nature of cured meat and saturated fatty acids. After assessing dietary intake
using validated 24 h recalls, we found a significant increase in seafood intake, as a source
of n-3 PUFAs, in patients randomized to the AID group. Pre-clinical studies have identified
that n-3 PUFAs can affect the cell membrane composition and function, eicosanoid synthesis,
and signaling, as well as the regulation of gene expression [36]. A recent meta-analysis of
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observational studies reported a negative association between fish consumption and the
risk of Crohn’s disease (CD), as well as an inverse association between dietary long-chain
n-3 PUFAs and the risk of UC development [34]. Furthermore, we detected that the patients
in the AID group had a significant increase in zinc, phosphorus, and selenium intake.
Deficiencies of zinc, phosphorus, and selenium have been found in IBD patients [37]. As
lower levels of these micronutrients were associated with disease onset or exacerbation of
the inflammation, some experimental studies were conducted in this regard which showed
some improvement in the severity of colitis following the dietary supplementation [37].

Although overall gut microbial richness and abundance did not change significantly
from the baseline to the end of the trial in patients randomized to the two dietary groups,
we found several specific bacterial taxa that changed significantly from the baseline to the
end of the study in the two diet groups. Whilst we indicated that the CFG was associated
with decreased Bifidobacteriaceae, Lachnospiraceae, Clostridiaceae, and Ruminococcaceae, the
AID increased the abundance of Bifidobacteriaceae, Lachnospiraceae, and Ruminococcaceae.
Furthermore, a significant relationship between changes in FCP levels and changes in the
relative abundance of some bacteria was found in the present study.

Alterations in gut microbiota and their related metabolites (e.g., bile acids, short-chain
fatty acids, and tryptophan metabolites) have profound effects on immune maturation,
immune homoeostasis, host energy metabolism, and the maintenance of mucosal integrity
in IBD [38]. Furthermore, the association between dietary factors and gut microbial com-
position in UC patients has also been shown recently [39]. In a recent prospective cohort
study, Godny et al. [40] reported that a reduction in fruit consumption was associated with
shifts in the fecal microbiota that further correlated with the development of pouchitis
in UC patients who underwent proctocolectomy. Although it has been suggested that
the modulation of gut microbiota through dietary manipulations may result in favorable
outcomes in IBD patients, the impact of dietary interventions on gut microbial composition
in IBD patients has been evaluated in only a few RCTs [41]. A recent high-quality study
demonstrated that diet accounted for a small proportion (3%) of the taxonomic variation
between subjects and 0.7% of taxonomic variation longitudinally in IBD patients [42]. In
another recent well-designed cross-over trial study on 17 UC patients in clinical remission,
Fritsch et al. [43] reported a significant increase in Bacteroidetes and Faecalibacterium praus-
nitzii following a low-fat, high-fiber diet. In the present study, increased Faecalibacterium
and Blautia, both of which belong to the phylum Firmicutes, were significantly associated
with decreased FCP levels. This highlights the anti-inflammatory role these bacteria may
have in our UC patients. A recent meta-analysis of 16 human studies on 1669 patients
with CD or UC found a negative association between disease activity in IBD patients and
the abundance of Faecalibacterium prausnitzii [44]. Faecalibacterium prausnitzii is a butyrate
producer with several anti-inflammatory properties and an important bacterial contributor
to intestinal homeostasis. Interestingly, we also found a significant inverse relationship
between the DII or FCP and Blautia levels. Blautia belongs to the family Lachnospiraceae,
which is known to exhibit anti-inflammatory properties by producing short-chain fatty
acids. Its reduced abundance was shown previously in IBD patients [38]. These findings
indicate that the increased intake of anti-inflammatory type foods (decreased DII score)
could decrease colonic inflammation (i.e., decrease FCP) through significant increases in
Blautia. However, the observed reduction in Blautia in the control group may be the result
of increased inflammation. This needs to be investigated in future studies.

Metabolomics, defined as the comprehensive study of all metabolites in biological
samples, has been shown to have both diagnostic [21,45] and prognostic [46,47] potentials
in different IBD settings. In addition, metabolomic approaches have been used recently
to elucidate the mechanisms of response to different therapeutic interventions in IBD
patients [48,49]. Metabolomics allows one to acquire a comprehensive picture of changes to
metabolism, physiology, and cellular pathways, as well as to environmental factors such as
diet or microbial alterations.
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In the present study, we found significant changes in the urinary, serum, and stool
metabolomes of patients randomized to the AID following the 6-month trial. These
changes in the metabolome suggest an important role for diet in altering host and mi-
crobial metabolism that may ultimately reduce colonic inflammation.

Here, we discuss some of the more significantly changed metabolites and their rel-
evance to our findings and to the dietary interventions. Urinary PC ae C38:3, which is a
glycerophospholipid associated with low-calorie dieting [50], decreased significantly from
the baseline to the end of the trial in our study. Furthermore, patients in the AID group
had a significant decrease in their fecal acetone (a product of acetoacetate metabolism)
following the dietary intervention. We had previously shown that higher serum acetone
levels at the baseline were predictive of disease relapse in UC patients who were in clinical
remission at the baseline32. Furthermore, a recent study on diarrhea-predominant irritable
bowel syndrome patients indicated a significant decrease in the serum acetone level fol-
lowing 4 weeks of a synbiotic yogurt (L. plantarum, L. fermentum, and xylooligosaccharide)
intervention [51]. The authors concluded that the decrease in acetone could be due to
reduced inflammation associated with an increase in the Lactobacilli population. In our
study, decreased colonic inflammation, as well as several changes in bacterial ASVs could
play a role in the reduction in the acetone levels in these patients.

We also found a significant decrease in xanthine levels in stool samples following the
AID intervention. Xanthine is a purine base and an intermediate in the degradation of
adenosine monophosphate to uric acid. It has been shown that bioactive compounds such
as flavonoids that have antioxidant properties and have plant-based sources can decrease
xanthine levels [52]. Interestingly, we also indicated that the decrease in xanthine level
was associated with the decreased abundance of Blautia. Therefore, we speculate that
the decreased xanthine levels in the AID group could be due to the increased intake of
flavonoids by these participants, which may contribute to decreased colonic inflammation
through significant changes in gut bacterial composition.

We also found a significant increase in serum pyruvic acid (a tricarboxylic acid cycle
metabolite related to energy metabolism), stool taurine, and urinary p-hydroxybenzoic
acid. Taurine is a conditionally essential amino acid that plays an important role in many
physiological functions in the human body. However, humans have a limited ability
to synthesize taurine and are probably dependent in part on dietary taurine, which is
found exclusively in foods of animal origin, including fish [53]. The observed increase
in taurine levels in our study may be attributed to increased seafood intake in the AID
group. P-hydroxybenzoic acid is an organic acid and a phenolic derivative of benzoic acid.
Significant amounts of benzoic acid have been found in most berries. In addition, benzoic
acid is a by-product of phenylalanine metabolism in bacteria and is produced when gut
bacteria process polyphenols from plant sources [54]. Elevated urinary hydroxybenzoic
acids have also been related to cocoa and tea intake [55]. Therefore, the observed changes
in these metabolites can likely be attributed to the food contents of AID. However, the
determination of their mechanistic roles in decreasing inflammation in UC requires further
investigations.

In our study, we have also found an increase in urinary carnosine levels following the
AID. Carnosine (β-alanyl-L-histidine) is a histidine-containing dipeptide and has several
biological roles, such as pH buffering, calcium regulation, anti-glycation, and antioxidant
activity [56]. Although carnosine levels in urine have been suggested to be a biomarker
of meat intake in healthy individuals [57], a recent randomized trial study showed that
carnosine homeostasis was unaffected by a 6-month vegetarian diet [58]. Furthermore, in
another study elevated urinary carnosine levels were related to higher adherence to the
Mediterranean diet, while the authors found no relationship between carnosine and meat
intake [59]. The authors suggested that the increase in carnosine levels could be due to
other dietary factors related to the Mediterranean diet, such as higher vitamin B6 intake.

It should be noted that in the present study, we also used an integrative approach to
investigate the mechanisms by which following the anti-inflammatory diet could prevent



Nutrients 2022, 14, 3294 15 of 18

increases of colonic inflammation in UC patients. We found that the potential benefits of
increasing the intake of anti-inflammatory foods (as shown by a decreased DII score) are
modulated by the direct and indirect effects of the diet on gut bacterial composition and
several host- and bacterial-related metabolites in stool, urine, and serum. In this regard,
we found a statistically significant correlation between increases in FCP and increased
levels of trimethylamine in the stool samples from the baseline to the study endpoint.
Trimethylamine is a precursor of trimethylamine N-oxide (TMAO) that is formed from
dietary phosphatidylcholine and carnitine via microbiota-dependent pathways in the
gut. Increased fecal TMAO has been shown in UC patients [60]. Furthermore, it has
been reported that CD patients had higher levels of trimethylamine in their stools, which
decreased significantly following exclusive enteral nutrition [61]. These findings emphasize
the potential role of trimethylamine in IBD, which requires further investigations.

Our study is among the first RCTs investigating the potential benefits of a dietary
intervention for the maintenance of remission in UC patients. The AID as a set of dietary
recommendations was designed to be followed by individuals for 6 months by giving
them the opportunity to select different food items based on their personal dietary pref-
erences. Although an IBD specifically designed catered diet (low fat, high fiber diet [43])
for 4 weeks has recently been shown to improve inflammation in UC patients, its high
costs (~20,000 USD/year) and feasibility issues advocates for the designing of dietary
recommendations and menus that are easy to follow for patients in free-living settings.

Our study has a few methodological limitations that require further discussion. The
relatively small sample size is a main limiting factor in the current study and this likely
contributed to our inability to reach statistical significance for the clinical relapse rate (the
primary outcome of our study) between the two diet groups. However, we did detect a
significant role of the AID in the modest decrease and the prevention of the increase in
FCP, an objective marker for subclinical intestinal inflammation and prognosis for future
relapses. In comparison to the control diet, this finding is encouraging, and it suggests that
performing a larger study to evaluate the contribution of the AID or other types of dietary
manipulation (e.g., the Mediterranean diet) for the prevention of disease relapse in UC
patients. Furthermore, the assessment of dietary intake changes from the baseline to the
end of the trial was based on self-reported 24 h dietary recalls, which are subject to recall
bias and inaccurate reporting. However, we tried to attenuate this issue by using frequent
validated 24 h dietary recalls and assessment of the changes in metabolites as objective
measures of the dietary intake. Indeed, the results from our metabolomics analysis confirm
the compliance of the patients with their assigned diet.

In conclusion, we have shown that adherence to an anti-inflammatory diet can prevent
subclinical colonic inflammation in UC patients who are in clinical remission. This finding
was accompanied by significant changes in the metabolomic and gut microbial profiles of
AID subjects. These results are promising and should encourage the future development of
well-designed RCTs with larger sample sizes to further assess dietary interventions for the
maintenance of remission in UC patients.
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