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Glucagon-like peptide-1 (GLP-1) is an incretin hormone mainly secreted from intestinal L cells in response to nutrient ingestion.
GLP-1 has bene	cial e
ects for glucose homeostasis by stimulating insulin secretion from pancreatic beta-cells, delaying gastric
emptying, decreasing plasma glucagon, reducing food intake, and stimulating glucose disposal. �erefore, GLP-1-based therapies
such asGLP-1 receptor agonists and inhibitors of dipeptidyl peptidase-4, which is aGLP-1 inactivating enzyme, have been developed
for treatment of type 2 diabetes. In addition to glucose-lowering e
ects, emerging data suggests that GLP-1-based therapies also
show anti-in�ammatory e
ects in chronic in�ammatory diseases including type 1 and 2 diabetes, atherosclerosis, neurodegenerative
disorders, nonalcoholic steatohepatitis, diabetic nephropathy, asthma, and psoriasis. �is review outlines the anti-in�ammatory
actions of GLP-1-based therapies on diseases associated with chronic in�ammation in vivo and in vitro, and their molecular
mechanisms of anti-in�ammatory action.

1. Introduction

Glucagon-like peptide-1 (GLP-1) is produced by posttransla-
tional proteolytic cleavage of the proglucagon gene product
and mainly secreted from the enteroendocrine L cells in
the distal intestine in response to nutrient ingestion. GLP-1
is an incretin hormone, which increases glucose-stimulated
insulin secretion [1, 2]. GLP-1 is quickly degraded by dipep-
tidyl peptidase-4 (DPP-4), and inhibition of this proteolytic
enzyme enhances its biological half-life [3]. GLP-1 has many
bene	cial e
ects on the control of blood glucose levels
including stimulation of insulin secretion and inhibition
of glucagon secretion, expansion of the beta-cell mass by
stimulating beta-cell proliferation and di
erentiation and
inhibiting beta-cell apoptosis, delay of gastric emptying, and
reduction of food intake [4–6]. �erefore, GLP-1 has been
extensively studied as a possible treatment of type 2 diabetes,
and GLP-1 analogues and DPP-4 inhibitors are now widely in
clinical use in these patients [7–11].

Expression of the GLP-1 receptor is widely detected in
various cells and organs including the kidney, lung, heart,
hypothalamus, endothelial cells, neurons, astrocytes, and
microglia as well as pancreatic beta-cells [12–17], suggesting
that GLP-1 might have additional roles other than glucose-
lowering e
ects. It was reported that GLP-1 shows anti-
in�ammatory e
ects on pancreatic islets and adipose tissue,
contributing to lowering glucose levels in diabetes [18–20].
In addition to these tissues, emerging data suggest that GLP-
1-based therapies also showed anti-in�ammatory e
ects on
the liver, vascular system including aorta and vein endothelial
cells, brain, kidney, lung, testis, and skin by reducing the
production of in�ammatory cytokines and in	ltration of
immune cells in the tissues [17, 21–25]. �us, GLP-1 therapy
may be bene	cial for the treatment of chronic in�ammatory
diseases including nonalcoholic steatohepatitis, atheroscle-
rosis, neurodegenerative disorders, diabetic nephropathy,
asthma, and psoriasis [14, 26–32]. Drugs which are GLP-1
receptor agonists or DPP-4 inhibitors are shown in Table 1. In
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Table 1: GLP-1-based drugs.

GLP-1-based drugs Generic name Disease References

GLP-1 receptor agonists

Exenatide (synthetic form of exendin-4)

Diabetes [43, 46, 47]

Vascular disease [61, 65, 70]

Nonalcoholic steatohepatitis [61, 93, 96]

Nephropathy [99, 101, 105, 107]

Neurodegenerative brain disorder [87, 92]

Liraglutide

Diabetes [48]

Vascular disease [8, 23, 58–60]

Neurodegenerative brain disorder [24, 84, 89]

Nonalcoholic steatohepatitis [9, 28, 95]

Nephropathy [14]

Asthma [30, 108]

Psoriasis [31, 111, 112]

Lixisenatide Neurodegenerative brain disorder [90]

Albiglutide

Taspoglutide

Dulaglutide

DPP-4 inhibitors

Sitagliptin

Diabetes [7, 19, 45]

Vascular disease [26, 64, 65, 72]

Neurodegenerative brain disorder [91]

Nephropathy [25, 107]

Des-�uoro-sitagliptin Vascular disease [66]

Alogliptin
Vascular disease [67]

Nephropathy [105, 106]

Linagliptin
Nephropathy [104]

Vascular disease [63]

Vildagliptin (PKF-275-055)
Diabetes [49]

Nephropathy [103]

NVP-DPP728 Diabetes [44]

Anagliptin Nephropathy [105]

Saxagliptin Nephropathy [102]

this review, we will introduce some of the chronic in�amma-
tory diseases and then discuss evidence for bene	cial e
ects
of GLP-1-based therapies focusing on its anti-in�ammatory
actions.

2. Diabetes

Type 1 diabetes is caused by autoimmune-mediated destruc-
tion of pancreatic beta-cells [33], and type 2 diabetes is
caused by both insulin resistance and relative de	ciency of

insulin [34–36]. In�ammation can be a mediator of insulin
resistance and beta-cell damage by high glucose, fatty acids,
or adipokines released from adipose tissues [37–39]. �us,
in�ammation is an important factor for the pathogenesis of
both type 1 and type 2 diabetes, and inhibition of in�amma-
tion can be a therapeutic strategy for treatment of diabetes.

�e proin�ammatory cytokines, such as interleukin-1
beta (IL-1�), interferon gamma (IFN-�), and tumor necrosis
factor alpha (TNF-�), inhibit glucose-stimulated insulin
secretion and proliferation of beta-cells [40–42]. Treatment
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of isolated mouse islets with palmitate induced the expres-
sion of proin�ammatory cytokines TNF-�, IL-1�, and IL-6.
Liraglutide (100 nM), a long-actingGLP-1 analogue, inhibited
the palmitate-induced expression of these in�ammatory fac-
tors and p65 expression [43]. Treatment of cultured human
islets with exendin-4 (50 nM), a GLP-1 receptor agonist,
suppressed the expression of in�ammatory genes such as
NF�B1(p105), NF�B2(p100), RelA (also termed p65), TNF
receptor superfamily member 1A, and receptor-interacting
serine/threonine kinase 2. As well, exendin-4 (50 nM) and
cyclic adenosine monophosphate (cAMP) response element-
binding protein overexpression additively protected trans-
planted human islets in streptozotocin- (STZ-) induced
diabetic nude mice [44]. Treatment of nonobese diabetic
micewith theDPP-4 inhibitor, NVP-DPP728 (30mg/kg), sig-
ni	cantly increased the levels of plasma transforming growth
factor beta-1 (TGF-�1), an anti-in�ammatory cytokine, and
increased CD4+CD25+FoxP3+ regulatory T cells, contribut-
ing to the remission of diabetes [45]. Treatment of diet-
induced obese mice with sitagliptin (4 g/kg), a DPP-4
inhibitor, signi	cantly reduced the expression of in�amma-
tory genes including monocyte chemotactic protein- (MCP-)
1, IL-6, IL-12(p40), IL-12(p35), and IFN-�-induced pro-
tein 10 (IP-10) in pancreatic islets and improved glucose-
stimulated insulin secretion in isolated islets [19]. Treatment
of STZ-induced diabetic rats with another DPP-4 inhibitor,
vildagliptin (10mg/kg), signi	cantly reduced plasma TNF-
� concentration and decreased nitric oxide concentration in
serum and pancreatic homogenates comparedwith untreated
diabetic rats [46]. Treatment with sitagliptin (20mg/kg)
increased serum GLP-1 levels in STZ-induced diabetic mon-
keys and showed signi	cantly protective e
ects on STZ-
induced islet injury in vivo and in vitro via activation of the
insulin-like growth factor receptor (IGFR)/AKT/mammalian
target of rapamycin (mTOR) signaling pathways [47]. �ese
results suggest that GLP-1-based therapies suppress in�am-
matory cytokines and increase anti-in�ammatory mediators
in the pancreas.

C-X-C motif chemokine 10 (CXCL10/IP10), which is
induced by IFN-�, has an important role in recruiting
activated T cells into the islets in type 1 diabetes. Exendin-
4 (100 nM) decreased IFN-�-induced signal transducer and
activator of transcription-1 (STAT1), which is important for
CXCL10 expression in the pancreatic beta-cell line, MIN6
cells, and human islets. �erefore, suppression of CXCL10
production by exendin-4 could reduce islet in�ammation by
decreasing cytotoxic T lymphocyte recruitment into the islets
in autoimmune type 1 diabetes [48].

Serine proteinase inhibitor-9 plays an important role in
the survival of cells against attack by natural killer cells
and cytotoxic T lymphocytes, which play a direct role in
the destruction of pancreatic beta-cells in type 1 diabetes.
�e GLP-1 receptor agonist, exenatide (a synthetic form of
exendin-4) (10 nM), induces the expression of serine pro-
tease inhibitor-9 in human islets [49]. �ese results suggest
that GLP-1-based therapies not only directly regulate the
expression of in�ammatory mediators, but also regulate the
recruitment of immunocytes and protect from immunocyte
attack, contributing to the preservation of pancreatic islets.

�e abundance of proin�ammatory cytokines and
chemokines in adipose tissue is a key contributor to insulin
resistance in type 2 diabetes, and blocking of in�ammatory
signaling pathways or immune cell in	ltration in adipose
tissue improves insulin sensitivity [50–52]. Administration
of a recombinant adenovirus producing GLP-1 (4 ×
109 PFU/mouse) to ob/ob mice reduced the macrophage
population and production of TNF-�, MCP-1, and IL-6 in
adipose tissue via inhibition of nuclear factor-kappa B (NF-
�B) activation and phosphorylation of ERK1/2 and c-Jun
N-terminal kinases [18]. Sitagliptin (4 g/kg) also showed
similar e
ects and reduced the expression of mRNA for
in�ammatory cytokine genes and macrophage in	ltration in
adipose tissue of high fat diet- (HFD-) induced obese mice
[19]. In patients with type 2 diabetes, sitagliptin (100mg/day)
therapy signi	cantly reduced the plasma levels of C-reactive
protein (CRP), IL-6, IL-18, secreted phospholipase-A2,
soluble intracellular adhesion molecule- (ICAM-) 1, and
E-selectin compared with placebo. �e in�ammatory score
and the homeostatic model assessment index for insulin
resistance were signi	cantly reduced in sitagliptin-treated
type 2 diabetes patients [7]. �erefore, suppression of
in�ammatory mediators in adipose tissue by GLP-1-based
therapies might contribute to the improvement of insulin
sensitivity.

GLP-1-based therapies for diabetes contribute to reduce
in�ammation and have additional bene	cial e
ects such as
islet preservation and improvement of insulin sensitivity in
addition to glucose-lowering e
ects. However, some rare
cases of acute pancreatitis and neoplasms have been reported
[53–55]; thus the establishment of safety of GLP-1-based
therapy should be validated by su�cient further studies.

3. Vascular Disease

In�ammation is known to be a risk factor for vascular
diseases such as atherosclerosis. Atherosclerotic cardiovas-
cular disease is caused by proin�ammatory stimuli in the
vascular endothelial cells and is associated with increased
plasma levels of TNF-�, IL-6, CRP, and circulating endotoxin
(i.e., lipopolysaccharide (LPS)) [56, 57]. Atherosclerosis is a
chronic in�ammatory condition resulting from the invasion
and accumulation ofwhite blood cells (foamcells) in thewalls
of arteries and therefore is a syndrome a
ecting arterial blood
vessels [58].

GLP-1 (5.0 �M) perfusion attenuates LPS-inducedmicro-
vascular permeability via the cAMP protein kinase A (PKA)
pathway [59]. Liraglutide (100 �M) reduced the mRNA
expression of adhesion molecules such as vascular cell
adhesion molecule- (VCAM-) 1, ICAM-1, and E-selectin in
TNF-�- or LPS-stimulated human aortic endothelial cells
and human umbilical vein endothelial cells [60–62]. Liraglu-
tide (100 nM) induced phosphorylation of calcium/calmod-
ulin-dependent protein kinase I and 5� adenosine mono-
phosphate-activated protein kinase (AMPK), and inhibition
of calcium/calmodulin-dependent protein kinase kinase �
(CAMKK�) abolished the inhibitory e
ect of liraglutide
on the expression of VCAM-1 and E-selectin. In addition,
knockdown of AMPK with short hairpin AMPK RNA
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abolished the liraglutide activation of AMPK and anti-
in�ammatory e
ects.�ese results demonstrate that the anti-
in�ammatory e
ects of liraglutide in human aortic endothe-
lial cells is dependent on activation of CAMKK� and AMPK,

which are cAMP/Ca2+ signaling pathways [60]. In addition,
it was reported that liraglutide (100 nM) inhibited TNF-�- or
hyperglyceamia-mediated induction of plasminogen activa-
tor inhibitor type-1 in human vascular endothelial cells [23].
Exendin-4 (50�g/kg/day) treatment resulted in a reduction
of atherosclerosis development and the number of mono-
cytes adhering to the endothelium wall in the aortic root
in western-type diet-fed APOE∗3-Leiden.CETP(E3L.CETP)
mice [63].

Sitagliptin (25 �M), NVP-DPP728 (270 �M), or liraglu-
tide (1000 ng/mL) treatment signi	cantly reduced oxidized-
low-density lipoprotein-induced or PKC activator-induced
protein expression of nucleotide-binding domain-like recep-
tor with a pyrin domain 3 (NLRP3), toll-like receptor 4
(TLR4), and IL-1� in a human monocytic cell line, THP-
1, by decreasing phosphorylated-protein kinase C (PKC)
[64]. Administration of linagliptin (10mg/kg/day), a DPP-4

inhibitor, to ApoE−/− mice, an animal model of atheroscle-
rosis, decreased in�ammatory molecule expression and
macrophage in	ltration in the atherosclerotic aorta [65].
Another report showed that sitagliptin (576mg/kg) reduced
plaque macrophage in	ltration and matrix metallopep-

tidase-9 (MMP-9) levels in ApoE−/− mice [26] and increased
activation of AMPK and AKT signaling pathway but inhib-

ited MAPK and ERK1/2 signaling in aorta of ApoE−/− mice
[66]. �is suggests that sitagliptin has protective actions
against atherosclerosis through AMPK and MAPK-depend-
ent mechanisms. In addition, sitagliptin (30mg/kg/day)
and exenatide (3 �g/kg/12 h) signi	cantly inhibited advanced
glycation end products-induced oxidative stress in aortic
endothelials in high fat diet (HFD)/STZ diabetic rats by
reducing endothelin-1 (ET-1) and in�ammatory cytokine
via RhoA/Rho-associated protein kinase (ROCK)/NF-�B
signaling pathways and AMPK activation [67]. Des-�uoro-
sitagliptin (200mg/kg/day) treatment reduced atheroscle-
rotic lesion formation, in	ltration of macrophage and T lym-
phocytes, and the expression of proin�ammatory cytokines

within plaques in ApoE−/− mice [68]. As well, treatment
with alogliptin (20mg/kg/day), a selective DPP-4 inhibitor,
showed similar anti-in�ammatory e
ects in the injured
arteries of low-density lipoprotein receptor-de	cient mice
[69]. Interestingly, metabolite (9-37) of GLP-1 as well as
the c-terminal GLP-1 split product (28-37) also reduced
plaque in�ammation and stabilized atherosclerotic lesions in

ApoE−/− mice [70]. �ese suggest that GLP-1-based thera-
pies have protective e
ects in atherosclerosis by decreasing
macrophage in	ltration in atherosclerotic lesions via inhibi-
tion of the expression of adhesion molecules.

�e loss of sirtuin 6 (SIRT6), which regulates proin-
�ammatory mediators, in human umbilical vein endothelial
cells is associated with upregulation of the expression of
proin�ammatory genes [71]. Liraglutide (100 nM) treatment
increased SIRT6 expression and reduced NF-�B expression
compared with only high glucose-treated endothelial cells.

In diabetic patients treated with GLP-1-based therapy, the
protein level of SIRT6 in asymptomatic plaques was signif-
icantly increased and TNF-� and MMP-9 levels in lesions
were signi	cantly reduced compared with diabetic patients
without treatment [8]. �is result suggests that GLP-1-based
therapy has anti-in�ammatory e
ects by induction of SIRT6
expression in endothelial cells.

Cardiovascular disease is increased in type 2 diabetes, and
hyperglyceamia is a critical promoter during the develop-
ment of cardiovascular diseases. In�ammation is an impor-
tant pathophysiologic factor in diabetic cardiomyopathy.
Exendin-4 protects against cardiac contractile dysfunction
in an experimental myocardial infarction model. Exendin-
4 (5 �g/kg or 1 and 10 nM) inhibited high mobility group
box I protein expression, a proin�ammatory mediator, in
myocardial ischemia and reperfusion in rats [72] and in high
glucose-induced myocardial cell injury [73]. Sitagliptin (30
and 50mg/kg/day) reduced the expression of TNF-� and IL-6
in the diabetic heart and had amyocardial protective e
ect in
STZ/HFD-induced diabetic rats [74].�erefore, GLP-1-based
therapy have anti-in�ammatory e
ects on vascular disease
and may explain the vasoprotective properties.

4. Neurodegenerative Brain Disorder

Neurodegenerative central nervous system disorders are
associated with chronic neuroin�ammation [75–77]. Epi-
demiological and clinical studies have suggested a link
between type 2 diabetes and Alzheimer’s disease [78]. In
patients with Alzheimer’s disease, insulin receptors and
insulin signaling in the brain are desensitized and impaired
as found in type 2 diabetes patients. �erefore, drugs used
for treatment of diabetes are expected to have a preventive
e
ect against Alzheimer’s disease. GLP-1 is known to be
produced in the brain [79] and has many functions including
neuroprotection [80–82]. In addition, GLP-1 and GLP-1
analogues enter the brain through blood brain barrier [83–
86].

�e glia may play a critical role in the central nervous
system in�ammatory responses including Alzheimer’s dis-
ease, and GLP-1 receptor was observed in astrocytes and
microglia [17, 87]. In astrocytes, GLP-1 (1 �M) prevented the
LPS-induced IL-1� expression by increase of cAMP [17].

Models of Alzheimer’s disease include intracerebroven-
tricular injection of STZ [88], intracerebral injection of
LPS [88], and the APPSWE/PS1ΔE9 mouse [84]. Exenatide
(20�g/kg/day) treatment inhibited brain TNF-� levels, which
were induced by intracerebroventricular injection of STZ
[89]. GLP-1 (7-36) amide (50 nM) protected the synaptic
impairments induced by intracerebral injection of LPS in
the rat hippocampus [90]. Liraglutide (25 nmol/kg/day) treat-
ment signi	cantly reduced the in�ammatory response in the
cortex as measured by the number of activated microglia
and prevented degenerative processes in a 7-month-old
APPSWE/PS1ΔE9 mouse model of Alzheimer’s disease [86].
In addition, in the 14-month-old APPSWE/PS1ΔE9 mouse,
in�ammation was also markedly reduced and restorative
e
ects were improved by liraglutide treatment [91]. �e
GLP-1 receptor agonist, lixisenatide, exerted neuroprotective



Mediators of In�ammation 5

e
ects via reduction of oxidative stress and the chronic
in�ammation response in the brain of APPSWE/PS1ΔE9 mouse
[92]. In addition, sitagliptin (10 and 20mg/kg) also showed
similar anti-in�ammatory e
ects in APPSWE/PS1ΔE9 mouse
[93]. �is suggests that GLP-1-based therapies could have a
preventive and restorative e
ect on the pathophysiology of
Alzheimer’s disease progression.

Irradiation of the brain causes a chronic in�amma-
tory response. X-ray irradiation of the brain signi	cantly
increased IL-6, IL-1�, and IL-12p70 cytokine protein expres-
sion. Liraglutide (25 nmol/kg/day) treatment reduced the
mRNA expression of proin�ammatory cytokine genes, which
was induced by X-ray irradiation [24].

Parkinson’s disease is a chronic and neurodegenerative
brain disorder, and in�ammatory activity is one of important
features of Parkinson’s disease. Microglial activation plays a
critical role in the pathogenesis of the 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyidine- (MPTP-) induced Parkinson’s dis-
ease model and human Parkinson’s disease [27]. Exendin-4
(10 �g/kg) treatment signi	cantly decreased MPTP-induced
microglial activation and suppressed MPTP-induced expres-
sion of TNF-� and IL-1� [94]. �e inhibitory e
ect of
exendin-4 on microglial activation may have therapeutic
potential for the treatment of Parkinson’s disease. �ese
anti-in�ammatory e
ects of GLP-1-based therapies on the
brain may protect against neurodegenerative central nervous
system disorders.

5. Nonalcoholic Steatohepatitis

Nonalcoholic steatohepatitis is associated with an in�am-
mation of the liver by an aberrant accumulation of fat in
the liver. GLP-1 receptor agonists reduced alanine amino-
transferase and aspartate aminotransferase levels in patients
with nonalcoholic fatty liver disease (or type 2 diabetes)
and improved lipid metabolism and reduced fat mass [21].
Liraglutide (50, 100, and 200 �g/kg/12 h) treatment protected
against nonalcoholic fatty liver disease by inhibition of ER
stress-associated apoptosis in HFD-fed rats [28]. Liraglutide
or exendin-4 (1 nmol/kg/day) treatment dose-dependently
reduced steatosis and lobular in�ammation in HFD-fed rats
or mice compared with the saline-injected group [28, 95],
probably due to an increase of SIRT1 [96]. As a matter of fact,
exendin-4 (50�g/kg/day) treatment increased the expression
of SIRT1 and its downstream factor, AMPK, in exendin-4
treated mouse livers and hepatocytes. Exendin-4 treatment
reduced hepatic expression of the in�ammatory markers
TNF-�, IL-1�, and IL-6 and macrophage markers, cluster of
di
erentiation 68 (CD68), and F4/80 in the liver of mice fed
a western-type diet [63].

In nonalcoholic steatohepatitis patients with glucose
intolerance, liraglutide (0.9mg/person/day) therapy for 96
weeks resulted in improvement of histological indicators of
in�ammation in seven subjects out of ten subjects [97]. CRP
is produced by the liver and is a marker of in�ammation.
In a retrospective analysis of 110 obese patients with type
2 diabetes treated with liraglutide, the mean concentration
of CRP declined a�er treatment with liraglutide for a mean

duration of 7.5 months [9]. In addition, exenatide plus
metformin resulted in a signi	cant reduction in CRP and
TNF-� compared with baseline [98]. �ese reports suggest
that GLP-1-based therapies improve fatty liver disease by
ameliorating in�ammation in rodents and humans.

6. Nephropathy

Diabetic nephropathy is associated with a state of low-
grade in�ammation in the microvasculature of the kidney’s
glomeruli [99, 100]. �e GLP-1 receptor is expressed in
glomerular capillaries and vascular walls of themouse kidney
[14, 101] and in the glomerulus and proximal convoluted
tubules of the rat and pig [29, 102]. GLP-1 receptor de	ciency
in the diabetic nephropathy-resistant C57BL/6-Akita mouse
contributes to the development of diabetic nephropathy,
and liraglutide treatment suppressed the progression of
nephropathy of the KK/Ta-Akita mouse, which shows high
susceptibility to diabetic nephropathy [14], suggesting that
GLP-1 action might play an important role in prevention of
diabetic nephropathy.

Various studies have shown that GLP-1-based thera-
pies can reduce macrophage in	ltration and in�ammatory
molecules in models of diabetic nephropathy. Exendin-4
(3 and 10 �g/kg/day) treatment signi	cantly downregulated
the gene expression of CD14, ICAM-1, and TGF�1 in the
renal cortex, prevented glomerular macrophage in	ltration
in glomeruli, and reduced oxidative stress and in�am-
mation in tubular cells in STZ-induced diabetic animals
[101, 103]. Treatment with the DPP-4 inhibitor, saxagliptin
(10mg/kg/day), reduced renal tubulointerstitial in�amma-
tion by NF-�Bp65-mediated macrophage in	ltration in STZ-

induced diabetic enos−/− mice [104]. Administration of the
DPP-4 inhibitor, PKF275-055 (3mg/kg/day), or linagliptin in
STZ-induced diabetic rats inhibited macrophage in	ltration,
in�ammatorymolecules, andNF-�B activity in the glomeruli
[105] and signi	cantly reduced glomerular leukocyte in	l-
tration [106]. Sitagliptin (10mg/kg/day) treatment decreased
the expression of proin�ammatory cytokine genes IL-1� and
TNF-� in kidney of diabetic ZDF rat [25].

GLP-1-based therapies are also e
ective in nondiabetic
models of kidney injury. In a nondiabetic glomerular injury
model, alogliptin (20mg/kg/day), anagliptin (300mg/kg/
day), or exendin-4 (10mg/kg) signi	cantly reduced in	l-
tration of CD68-positive in�ammatory macrophages in the
kidney [107]. In the mouse cisplatin-induced renal injury
model, treatment with alogliptin (10mg/kg/day) signi	cantly
decreased cisplatin-induced renal injury via antiapoptotic
e
ects [108]. In addition, a�er ischemia-reperfusion injury,
the expression of proin�ammatory cytokines, NF-�B and
ICAM-1, as well as macrophage in	ltration in the kid-
ney was signi	cantly decreased by exendin-4 (10 �g/kg) or
sitagliptin (600mg/kg) treatment [109]. �erefore, GLP-1-
based therapies might be bene	cial for nephropathy by
reducing glomerular leukocyte in	ltration and proin�amma-
tory mediators.
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Figure 1:Molecular signals underlying the anti-in�ammatory e
ects of GLP-1-based drugs. DPP-4 inhibitors increase GLP-1 levels in plasma.
GLP-1 and GLP-1 receptor (GLP-1R) agonists bind to the GLP-1 receptor, which blocks PKC or NF-�B activation and subsequent expression
of NLRP3, IL-1�, TNF-�, IL-6, VCAM-1, IFN-�, and MCP-1. In addition, GLP-1R signaling activates cAMP/Ca2+, CAMKK�, and pAMPK,
which induces anti-in�ammatory e
ects on monocyte adhesion.

7. Other Diseases

Asthma is a chronic pulmonary in�ammatory disease.
Liraglutide (2mg/kg) reduced immune cell in	ltration and
protein expression of E-selectin, TNF-�, IL-4, IL-5, and
IL-13 in the lung tissue or bronchoalveolar lavage �uid in
an ovalbumin-induced chronic asthma model. Liraglutide
treatment decreased NF-�B activation, which was reversed
by PKA inhibitor, H-89, suggesting that the cAMP-PKA
pathway is involved in inhibition of NF-�B activation, and
subsequently the inhibition of in�ammation [110]. In addi-
tion, in mice with bleomycin-induced pulmonary 	brosis,
liraglutide treatment inhibited in	ltration of immune cells
and decreased the content of TGF-�1. Liraglutide treatment
markedly attenuated bleomycin-induced VCAM-1 and NF-
�B activation [30]. �ese results suggest that GLP-1-based
therapies might have bene	cial e
ects on asthma but need to
be validated by clinical studies.

Obesity can reduce the quality and count of men’s sperm
[111, 112].�e expression of TNF-�, MCP-1, and F4/80mRNA
levels is increased in the testis and signi	cantly decreased
the sperm motility and activity in diet-induced obesity mice,
and exenatide (24 nmol/kg/day) treatment suppressed the
expression of TNF-�,MCP-1, andF4/80mRNA levels in testis
and improved sperm quality in diet-induced obesity mice
[111].

In type 2 diabetes patients, GLP-1 and liraglutide also
improve clinical symptoms of psoriasis, a skin in�ammatory
disease, by downregulation of invariant natural killer T cells
[31, 113, 114].

GLP-1 (100 nM) or exendin-4 (10 nM) treatment inhibited
TNF-�-induced expression of receptor for advanced glyca-
tion end products (RAGE), ICAM-1, and VCAM-1 in human
retinal pigment epithelial cells [32], suggesting that GLP-
1-based therapies might have bene	cial e
ects on diabetic
retinopathy.

Treatment with the DPP-4 inhibitors, linagliptin
(5mg/kg/day) and sitagliptin (50mg/kg/day), and the GLP-1
analogue, liraglutide (200�g/kg/day), signi	cantly reduced
in�ammatory markers such as inducible NO synthase,
cyclooxygenase, and VCAM-1 via the AMPK pathway in
LPS-induced endotoxemic shock in rats as a model of human
sepsis [115].

�ese reports suggest that GLP-1-based therapies have
anti-in�ammatory e
ects in the lung, testis, skin, and eye.

8. Conclusion

In�ammation is a protective process including immune
system, vascular system, and molecular mediators. However
out-of-control in�ammation and chronic in�ammation can
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Brain

Alzheimer’s disease, 

Parkinson’s disease:
Liver

Nonalcoholic steatohepatitis 

(NASH):

Vascular system

Atherosclerosis

cardiovascular disease:

NOS-2, COX-2, VCAM-1,

Asthma:

Lung

Testis

Testis:

Nephropathy:

Kidney

Pancreas

Diabetes:

Skin

Psoriasis:

GLP-1
anti-in�ammation

TNF-�, IL-6, PAI-1 ↓

iNKT cells ↓

TNF-�, IL-1�, IL-6, IP-10 ↓

TNF-�, IL-1�, ICAM-1 ↓

TNF-�, MCP-1, F4/80 ↓

TNF-�, IL-4, IL-5, IL-13 ↓

CRP, TNF-�, IL-1�, IL-6 ↓

TNF-�, IL-1�, IL-6 ↓

Figure 2: GLP-1-based therapies, including GLP-1, GLP-1R agonists and DPP-4 inhibitors, have anti-in�ammatory functions in several
organs.

cause pathological disease. In�ammation is a risk factor for
diabetes, atherosclerosis, cardiovascular disease, neurode-
generative central nervous system disorders, nonalcoholic
steatohepatitis, and nephropathy.

GLP-1-based therapies have many attractive and bene	-
cial e
ects including their antidiabetic actions on pancreatic
beta-cells. However, beyond their metabolic e
ects, GLP-1-
based therapies have been shown to have anti-in�ammatory
e
ects via several molecular pathways (Figure 1) in several
organs, tissues, and cells (Figure 2). GLP-1-based therapies
downregulate proin�ammatory responses in in�ammatory
related diseases. �is review concludes that GLP-1-based
therapy has bene	cial e
ects on in�ammatory disease. �us
GLP-1, GLP-1R agonists, and DPP-4 inhibitors might have
important roles as mediators of in�ammation.

Abbreviations

AMPK: 5� adenosine monophosphate-activated
protein kinase

CAMKK�: Calcium/calmodulin-dependent protein
kinase kinase �

CD: Cluster of di
erentiation
CRP: C-reactive protein
CXCL10: C-X-C motif chemokine 10
cAMP: Cyclic adenosine monophosphate
DPP-4: Dipeptidyl peptidase-4

Erk: Extracellular signal-regulated kinase
GLP-1: Glucagon-like peptide-1
HFD: High fat diet
ICAM: Intercellular adhesion molecule
IFN: Interferon
IL: Interleukin
LPS: Lipopolysaccharide
MCP-1: Monocyte chemotactic protein
MPTP: 1-Methyl-4-phenyl-1,2,3,6-

tetrahydropyidine
NF-�B: Nuclear factor-kappa B
NLRP3: Nucleotide-binding domain-like receptor

with a pyrin domain 3
PKA: Protein kinase A
PKC: Protein kinase C
SIRT: Sirtuin
STZ: Streptozotocin
TLR4: Toll-like receptor 4
TGF-�: Transforming growth factor beta
TNF-�: Tumor necrosis factor alpha
VCAM: Vascular cell adhesion molecule.

Competing Interests

�e authors declare that there are no competing interests
regarding the publication of this paper.



8 Mediators of In�ammation

Acknowledgments

�is research was supported by Basic Science Research
Program through the National Research Foundation
of Korea (NRF) funded by the Ministry of Education
(2015R1D1A1A01060232). �e authors thank Dr. Ann Kyle
for editorial assistance.

References

[1] C. Ørskov, L. Rabenhøj, A.Wettergren, H. Kofod, and J. J. Holst,
“Tissue and plasma concentrations of amidated and glycine-
extended glucagon-like peptide I in humans,” Diabetes, vol. 43,
no. 4, pp. 535–539, 1994.

[2] L. L. Kjems, J. J. Holst, A. Vølund, and S. Madsbad, “�e
in�uence of GLP-1 on glucose-stimulated insulin secretion:
e
ects on �-cell sensitivity in type 2 and nondiabetic subjects,”
Diabetes, vol. 52, no. 2, pp. 380–386, 2003.

[3] R. Mentlein, B. Gallwitz, and W. E. Schmidt, “Dipeptidyl-
peptidase IV hydrolyses gastric inhibitory polypeptide,
glucagon-like peptide-1(7-36)amide, peptide histidine
methionine and is responsible for their degradation in
human serum,” European Journal of Biochemistry, vol. 214, no.
3, pp. 829–835, 1993.

[4] Y.-S. Lee and H.-S. Jun, “Anti-diabetic actions of glucagon-like
peptide-1 on pancreatic beta-cells,” Metabolism: Clinical and
Experimental, vol. 63, no. 1, pp. 9–19, 2014.

[5] M. Karaca, C. Magnan, and C. Kargar, “Functional pancreatic
beta-cell mass: involvement in type 2 diabetes and therapeutic
intervention,” Diabetes & Metabolism, vol. 35, no. 2, pp. 77–84,
2009.

[6] D. J. Drucker, “�e biology of incretin hormones,” Cell
Metabolism, vol. 3, no. 3, pp. 153–165, 2006.

[7] A. J. Tremblay, B. Lamarche, C. F. Deacon, S. J.Weisnagel, and P.
Couture, “E
ects of sitagliptin therapy onmarkers of low-grade
in�ammation and cell adhesion molecules in patients with type
2 diabetes,” Metabolism: Clinical and Experimental, vol. 63, no.
9, pp. 1141–1148, 2014.

[8] M. L. Balestrieri, M. R. Rizzo, M. Barbieri et al., “Sirtuin 6
expression and in�ammatory activity in diabetic atherosclerotic
plaques: e
ects of incretin treatment,” Diabetes, vol. 64, no. 4,
pp. 1395–1406, 2015.

[9] A. Varanasi, P. Patel, A. Makdissi, S. Dhindsa, A. Chaudhuri,
and P. Dandona, “Clinical use of liraglutide in type 2 diabetes
and its e
ects on cardiovascular risk factors,”Endocrine Practice,
vol. 18, no. 2, pp. 140–145, 2012.

[10] A. J. Garber, “Long-acting glucagon-like peptide 1 receptor
agonists: a review of their e�cacy and tolerability,” Diabetes
Care, vol. 34, supplement 2, pp. S279–S284, 2011.

[11] M. Nauck, “Incretin therapies: highlighting common features
and di
erences in themodes of action of glucagon-like peptide-
1 receptor agonists and dipeptidyl peptidase-4 inhibitors,”
Diabetes, Obesity &Metabolism, vol. 18, no. 3, pp. 203–216, 2016.

[12] M. Arakawa, T. Mita, K. Azuma et al., “Inhibition of monocyte
adhesion to endothelial cells and attenuation of atherosclerotic
lesion by a glucagon-like peptide-1 receptor agonist, exendin-4,”
Diabetes, vol. 59, no. 4, pp. 1030–1037, 2010.

[13] B.�orens, “Expression cloning of the pancreatic� cell receptor
for the gluco- incretin hormone glucagon-like peptide 1,”
Proceedings of the National Academy of Sciences of the United
States of America, vol. 89, no. 18, pp. 8641–8645, 1992.

[14] H. Fujita, T. Morii, H. Fujishima et al., “�e protective roles of
GLP-1R signaling in diabetic nephropathy: possible mechanism
and therapeutic potential,” Kidney International, vol. 85, no. 3,
pp. 579–589, 2014.
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